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The intramuscular fat content and fatty acid composition of porcine meat have a significant impact on its
quality and nutritional value. This research aimed to investigate the expression of 45 genes involved in
lipid metabolism in the longissimus dorsi muscle of three experimental pig backcrosses, with a 25% of
Iberian background. To achieve this objective, we conducted an expression Genome-Wide Association
Study (eGWAS) using gene expression levels in muscle measured by high-throughput real-time qPCR
for 45 target genes and genotypes from the PorcineSNP60 BeadChip or Axiom Porcine Genotyping
Array and 65 single nucleotide polymorphisms (SNPs) located in 20 genes genotyped by a custom-
designed Taqman OpenArray in a cohort of 354 animals. The eGWAS analysis identified 301 eSNPs asso-
ciated with 18 candidate genes (ANK2, APOE, ARNT, CIITA, CPT1A, EGF, ELOVL6, ELOVL7, FADS3, FASN, GPAT3,
NR1D2, NR1H2, PLIN1, PPAP2A, RORA, RXRA and UCP3). Three cis-eQTL (expression quantitative trait loci)
were identified for GPAT3, RXRA, and UCP3 genes, which indicates that a genetic polymorphism proximal
to the same gene is affecting its expression. Furthermore, 24 trans-eQTLs were detected, and eight can-
didate regulatory genes were located in these genomic regions. Additionally, two trans-regulatory hot-
spots in Sus scrofa chromosomes 13 and 15 were identified. Moreover, a co-expression analysis
performed on 89 candidate genes and the fatty acid composition revealed the regulatory role of four
genes (FABP5, PPARG, SCD, and SREBF1). These genes modulate the levels of a-linolenic, arachidonic,
and oleic acids, as well as regulating the expression of other candidate genes associated with lipid meta-
bolism. The findings of this study offer novel insights into the functional regulatory mechanism of genes
involved in lipid metabolism, thereby enhancing our understanding of this complex biological process.
� 2023 The Authors. Published by Elsevier B.V. on behalf of The Animal Consortium. This is an open access

article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
Implications

The relationships between the genes that regulate lipid metabo-
lism and the fatty acids are complex. Through an expression gen-
ome wide-association study and co-expression analysis, we
identified 27 expression quantitative trait loci affecting the gene
expression of the 18 candidate genes for lipid metabolism and their
relationship with fatty acid composition in longissimus dorsi mus-
cle. This research delved into the genetic factors regulating the
genes associated with lipid metabolism in pig skeletal muscle.
Deepening the knowledge in this field is key to have a better
understanding of how fatty acids are produced and, therefore,
how can they be modulated.
Introduction

The percentage of intramuscular fat (IMF) and its fatty acid (FA)
composition are recognised as key factors that influence meat
quality and play a significant role in determining the nutritional
value of meat (Wood et al., 2008). Moreover, IMF is directly related
to meat flavour, juiciness, tenderness and firmness, which are rel-
evant traits for consumers. Hence, in accordance with consumers, a
high quantity of backfat has less acceptance, although meat with
high IMF is considered a desirable trait (Schwab et al., 2006;
Wood et al., 2008). Some FAs are essential for humans, such as
omega-3 (x-3) and omega-6 (x-6) polyunsaturated FAs (PUFAs),
as they are not produced by de novo biosynthesis in the organism
and must be provided through the diet. Therefore, the FA profile
of pork is a key factor determining its quality and overall healthi-
ness (Simopoulos, 2002) can also affect meat nutritional values
and its sensory quality parameters (Chernukha et al., 2023). How-
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ever, excessive fat can result in a less desirable texture and taste.
To ensure a high-quality product, pork producers carefully balance
genetics, nutrition, and management practices to optimise the
level of IMF in the meat. With proper techniques, consumers can
appreciate pork that is both flavourful and healthy, as the right
amount of IMF can provide essential nutrients such as x-3 and
x-6 FAs (Chernukha et al., 2023). Commercial pig breeds, such as
Pietrain and Landrace, exhibit superior efficiency in growth and
leaner carcasses compared to Duroc or Iberian pigs. However, these
carcasses have less IMF, which affects its meat quality. Conversely,
meat from Iberian breed is characterised by high IMF deposition
and higher mono-unsaturated FA (MUFA) percentage, which pro-
vide more oxidative stability and improve meat taste and colour.
Furthermore, this breed is widely used for dry-cured products,
such as loin and ham (Lopez-Bote, 1998). It is a common practice
to cross the Iberian pig with Duroc breed to enhance growth and
feed efficiency.

Three different backcrosses, between Iberian � Duroc
(BC1_DU), Iberian � Landrace (BC1_LD), and Iberian � Pietrain
(BC1_PI) pigs were generated (Martínez-Montes et al., 2018) pro-
ducing animals with large phenotypic differences in growth, car-
cass and meat quality traits, such as the IMF content and FA
composition. Different studies based on these animals used several
analytical techniques such as quantitative trait loci (QTL) mapping
and genome-wide association studies (GWASs) to identify genes
associated with growth, IMF content, and FA composition
(Crespo-Piazuelo et al., 2020; Puig-Oliveras et al., 2014a and
2014b; Ramayo-Caldas et al., 2012).

In previous studies of our group, the expression of candidate
genes for lipid metabolism was analysed in longissimus dorsi mus-
cle, adipose tissue, and liver of an Iberian � Landrace backcross
(Puig-Oliveras et al., 2016; Revilla et al., 2018; Ballester et al.,
2017). Moreover, Criado-Mesas et al. (2020) conducted an expres-
sion genome wide-association study (eGWAS) with the same list of
candidate genes of Puig-Oliveras et al. (2016) but including longis-
simus dorsi muscle expression data of 355 animals of the three
backcrosses. These studies were specifically centred on the expres-
sion of candidate genes implicated in FA metabolism, aiming to
identify expression quantitative trait loci (eQTLs) regulating gene
expression. Detecting eQTLs is a valuable strategy to study com-
plex trait genetics, revealing genetic variants linked to gene tran-
scription levels that may contribute to phenotypic variation.

The main goal of this research is to study the expression and
regulation of a selected set of 45 candidate genes for lipid metabo-
lism in the porcine longissimus dorsi muscle in a total of 354 ani-
mals belonging to three different backgrounds to identify
potential variants that may explain the expression differences in
the analysed genes. Additionally, we aimed to investigate the inter-
relationship between the 45 candidate genes for lipid metabolism
utilised in this study and the 44 lipid metabolism candidate genes
employed in the study conducted by Criado-Mesas et al. (2020)
and the FA composition derived from the same tissue and
population.
Material and methods

Pig population

The IBMAP population was obtained by crossing Iberian boars
with Duroc, Landrace and Pietrain sows, and then, F1 boars were
crossed again with the respective Duroc, Landrace and Pietrain
sows. In the present study, 354 animals were used, of which 122
belong to the BC1_DU (25% Iberian and 75% Duroc), 114 to the
BC1_LD (25% Iberian and 75% Landrace) and 118 to the BC1_PI
(25% Iberian and 75% Pietrain). All animals were maintained under
2

the same intensive conditions and fed ad libitum with cereal-based
commercial diet on NOVA GENÈTICA S.A. experimental farm
(Lleida, Spain). Detailed information on generation schemes, diet,
growth, and housing condition of the three backcrosses is
described in (Martínez-Montes et al., 2018). Slaughtering proce-
dures were conducted in a certified abattoir according to the insti-
tutional and national guidelines for the Good Experimental
Practices and approved by the Ethical Committee of the Institution
(IRTA – Institut de Recerca i Tecnologia Agroalimentàries). The
longissimus dorsi muscle samples were collected, snap-frozen in
liquid nitrogen, and stored at �80 �C until further RNA isolation.
Diaphragm samples were collected for DNA extraction.

Selection of lipid-related metabolism candidate genes in muscle

In prior researches conducted by our group, we successfully
identified strong candidate genes that influence IMF content and
FA composition in the longissimus dorsi muscle of the IBMAP back-
crosses (BC1_DU, BC1_LD and BC1_PI), through the utilisation of
GWAS, RNA-Seq and co-association network methodologies
(Crespo-Piazuelo et al., 2020; Puig-Oliveras et al., 2014a and
2014b; Ramayo-Caldas et al., 2012). In this study, a total of 45
genes functionally related to lipid metabolism and FA composition
pathways were selected. These 45 genes have been described in
the literature to play different roles, including involvement in fatty
acid synthesis, transport, storage, oxidation, as well as acting as
transcriptional and nuclear factors that modulate gene expression.
Primers used for the analyses were designed using PrimerExpress
2.0 software (Applied Biosystems) and are detailed in Supplemen-
tary Table S1.

Genotyping

Genomic DNA was isolated from diaphragm tissue by the stan-
dard method of phenol–chloroform extraction and was quantified
with a NanoDrop-2000 spectrophotometer (Thermo Scientific).
Animals from BC1_LD and BC1_PI were genotyped using the Porci-
neSNP60 Beadchip (Illumina Inc.; San Diego, USA) (Ramos et al.,
2009), and BC1_DU animals were genotyped using Axiom Porcine
Genotyping Array (Affymetrix). PLINK v1.90b4.3 software (Chang
et al., 2015) was used to remove markers that showed a minor
allele frequency of less than 5% and single nucleotide polymor-
phisms (SNPs) with more than 5% of missing genotypes. For
eGWAS analysis, we used 38,423 SNPs that were common between
the two SNP-genotyping arrays and were mapped in the Sscro-
fa11.1 assembly. Moreover, 65 SNPs located in positional candidate
genes were genotyped in the 354 pigs using custom-designed Taq-
man OpenArray genotyping plates in a QuantStudioTM 12 K flex
Real-Time PCR System (ThermoFisher Scientific) and were also
included in the eGWAS analysis. Of these 65 SNPs, 11 SNPs were
located within the fatty acid elongase 6 (ELOVL6) gene. Eight, nine
and three were SNPs located on the fatty acid desaturase 1, 2 and 3
(FADS1, FADS2 and FADS3) genes, respectively. Five of them were
located in fatty acid synthase (FASN) gene, four in fatty acid elon-
gase 1 (ELOVL1) gene, three in fatty acid elongase 7 (ELOVL7) gene,
three in fatty acid binding protein 4 (FABP4) gene and three in
thrombospondin 1 (THBS1) gene. The remaining 18 were located
with one or two SNPs in the ACACA, ACSL4, ANK2, CPT1A, GPAT3,
LPL, NR1D2, PLIN1, SLC27A1, SREBF2 and USF1 genes. The SNPs
and their positions are detailed in Supplementary Table S2. A total
of 38,488 SNPs were used for further analysis.

RNA isolation and gene expression

Total RNA extraction from longissimus dorsi tissue was per-
formed with the Ribopure kit (Ambion), following the manufac-
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turer’s protocol. RNA integrity was assessed using an Agilent 2100
Bioanalyzer (Agilent Technologies) and purity and quantification
using a NanoDrop-2000 spectrophotometer (Thermo Scientific).
Only the RNAs with integrity above seven were used for the anal-
ysis. One lg of RNA was converted to cDNA using High-Capacity
cDNA Reverse Transcription Kit (Applied Biosystems) in 20 ll total
volume, following the manufacturer’s instructions. The cDNA sam-
ples were loaded into a Dynamic Array 48.48 chip in a BioMark sys-
tem (Fluidigm: San Francisco, CA, USA) through an integrated
fluidic circuit controller following the manufacturer’s instructions.

The expression of 45 target genes was analysed. After checking
their stability, ACTB and TBP were used as reference genes. Data
were collected using the Fluidigm Real-Time PCR analysis software
3.0.2 (Fluidigm) and analysed using the DAG expression software
1.0.4.11 (Ballester et al., 2013) applying the relative standard curve
method. Samples targeted in this study were analysed in duplicate.
The normalised quantity (NQ) values of each sample and assay
were used to compare the gene expression among animals. Data
normality was checked by applying the Shapiro-Wilk test in R,
and log2 transformation of the NQ value was applied when
required. The sex and breed effects were also tested by using a lin-
ear model with the lm function in R.

Furthermore, the gene expression data of 44 candidate genes
generated by Criado-Mesas et al. (2020) in the same 3BCs popula-
tion were used to analyse the gene co-expression patterns and its
association with FA composition.

Expression genome-wide association study

Genomic association studies between each gene expression
measure and SNP genotypes (eGWAS) were performed through a
linear model using GEMMA software (Zhou & Stephens, 2012).

y = Wa + xb + u + e; u � MVNn (0, ks � 1 K), e � MVNn (0, s � 1In),

in which: y is the vector of phenotypes for n individuals; W is a
matrix nxc of covariables (fixed effects) that includes sex (2 levels),
backcross (3 levels) and slaughtering batch (9 levels); a is a c vector
with corresponding coefficients, including the intercept; x is an n
vector with the marker genotypes; b is the size of the marker effect,
u is an n vector of random effects (additive genetic effects), e is an n
vector of errors. The random effects vector is assumed to follow a
normal multivariate n-dimensional distribution (MVNn) where
s � 1 is the variance of residual errors; k is the quotient between
the two components of variance; K is an nxn Kinship matrix calcu-
lated from the SNPs. The vector of errors is assumed to follow a dis-
tribution MVNn, where ln is an nxn identity matrix.

GEMMA software calculates the P-value from the Wald statisti-
cal test for each SNP comparing the null hypothesis that the SNP
has no effect versus the alternative hypothesis that the SNP effect
is different from zero.

An eGWAS using GEMMA software was conducted between
38,488 SNPs distributed along the genome of the animals and 45
lipid-related genes in longissimus dorsi muscle. The False Discovery
Rate (FDR) multiple testing correction method of Benjamini and
Hochberg (Benjamini & Hochberg, 1995) was using the p.adjust
function of R. For each gene, SNPs were considered significant at
a threshold of FDR � 0.05.

Identification of cis and trans expression quantitative trait loci

The cis-eQTL mapping window was defined from 1 Mb upstream
of the start of the gene to 1 Mb downstream of the gene end, and all
other regions were considered as trans-eQTLs. Significant SNPs sep-
arated less than 10 Mb apart were considered as belonging to the
same genomic interval or eQTL. This long distance was used to
3

ensure that SNPs located in different eQTLs were not in linkage dis-
equilibrium, being r2 = 0.05 the mean linkage disequilibrium
between SNPs separated by 10 Mb. In this study, only eQTL intervals
containing two or more SNPs were considered for further analysis.

Gene annotation

The annotation of the genes contained in the eQTLs was per-
formed with Biomart (Smedley et al., 2015) tool from the Ensembl
project (https://www.ensembl.org; release 108) using the Sscrofa
11.1 reference assembly. Additionally, a 1 Mb extension was
included at both ends of the genomic region. Functional predictions
of the significant SNPs comprised in the eQTL regions were carried
out using Variant Effect Predictor (VEP) (McLaren et al., 2010) and
the Ensembl Genes 108 Database. With these tools, the location of
eSNPs regarding a gene can be classified as outside of the gene, in
untranslated regions, in intron regions or in the coding sequence.

Co-expression and functional analysis

For this analysis, we used the gene expression data of the 45
candidate genes mentioned earlier, besides to the 44 candidate
genes employed by Criado-Mesas et al. (2020) measured in the
345 animals from the 3BCs. Furthermore, this analysis incorpo-
rated the relative quantification data of 14 different FAs in the
longissimus dorsi muscle, as previously obtained by Crespo-
Piazuelo et al. (2020). The FA composition values used in this anal-
ysis are shown in Supplementary Table S3.

Weighted gene expression networks were calculated using the
PCIT algorithm (Watson-Haigh et al., 2009), which employ first-
order partial correlation coefficients and an information theory
approach to detect primary gene interactions. Only significant
interactions between genes were considered for further analysis.
Networks were represented with the Cytoscape v3.9.1 (Shannon
et al., 2003) program.

Gene functional classification

The ShinyGO v0.77 (Ge et al., 2020) program was used to iden-
tify the main biological functions and the gene ontology associa-
tion from the most important pathways of the genes mapped
within the eQTLs. Moreover, STRING v11.5 (Jensen et al., 2009)
was used to perform the functional enrichment analysis of genes
found significantly associated in the eGWAS analysis, and also to
integrate and cluster the genes regarding their Gene Ontology.
Results

Sex and genetic background effect on gene expression

In this study, including the three backcrosses (3BCs), 24 out of
the 45 genes presented significant sex effect (P-value � 0.05) on
pig muscle gene expression: ADIPOQ, ADIPOR1, ADIPOR2, AGPAT2,
ANK2, APOE, ARNT, CD36, CYP2U1, EGF, ELOVL5, ELOVL6, ESRRA,
FADS2, FASN, GPAT3, HADH, LPL, ME1, NR1D2, NR1H2, PDK4, PLIN1,
and USF1 (Fig. 1). We have identified more genes over-expressed
in females (20), than in males (4).

Furthermore, a significant backcross effect (P-value < 0.05) on
gene expression levels was detected in 35 out of 45 analysed
genes: ACACA, ACSL4, ADIPOQ, ADIPOR1, ADIPOR2, AGPAT2, ANK2,
APOE, ARNT, CD36, CPT1A, EGF, ELOVL1, ELOVL5, ELOVL6, ELOVL7,
ESRRA, ETFDH, FADS1, FADS2, FADS3, FASN, GPAT3, HADH, HADHA,
ME1, NR1H2, NRF1, PDK4, PLIN1, PNPLA2, RORA, RXRA, SLC27A1,
SREBF2 (Fig. 2). Overall, 24, 7 and 4 genes were over-expressed in
BC1_DU, BC1_LD and BC1_PI backcrosses, respectively.

http://www.ensembl.org/


Fig. 1. Comparison between females (red bars) and males (blue bars) of the mRNA levels (Mean Normalised Quantity (NQ)) of 45 lipid-related genes in animals from the three
backcrossed pig animals. Data are represented as mean ± SEM. Significant differences are labelled as: *P-value �0.05, **P-value � 0.01, ***P-value � 0.001.

Fig. 2. Comparison between the three backcrossed pig animals in the mRNA levels of 45 lipid-related genes. Data present mean ± SEM. Significant differences are labelled as:
*P-value � 0.05. Abbreviations: DU = Duroc; LD = Landrace; PI = Pietrain; BC1_DU = Backcross between Iberian � Duroc; BC1_LD = Backcross between Iberian � Landrace;
BC1_PI = Backcross between Iberian � Pietrain.
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Genome-wide association studies for gene expression and expression
quantitative trait loci identification

An eGWAS was performed between the muscle gene expression
values and the genotypes of 38,488 SNPs distributed along the Sus
scrofa chromosomes (SSCs) in 354 animals. The eGWAS identified
301 eSNPs located in 27 genomic Sus scrofa chromosome regions
4

associated with the expression of ANK2, APOE, ARNT, CIITA, CPT1A,
EGF, ELOVL6, ELOVL7, FADS3, FASN, GPAT3, NR1D2, NR1H2, PLIN1,
PPAP2A, RORA, RXRA and UCP3 (FDR < 0.05) genes. Unfortunately,
none of the 65 SNPs located in candidate genes and genotyped by
Taqman OpenArray were found significant in the eGWAS analysis.

A total of 24 eQTLs showed trans-regulatory effects on gene
expression of 12 genes (Table 1). In addition, three were classified



Table 1
Significant eQTLs for the 45-muscle gene expression study in the three backcrossed pig animals. Start and end positions refer to the eQTL interval and are based on Sus scrofa 11.1
assembly. Lengths are given in base pairs. Gene annotation was performed considering one additional Mb at the start and the end of the eQTL interval. The SNPs column indicates
the number of SNPs within the eQTL.

Inter-val Gene Chr eQTL Start position (bp) End position (bp) Size (Mbp) SNPs Top SNP q-value MAF eQTL Candidate genes

1 ANK2 6 129477727 132846185 3.36 3 rs81391604 0.0431 0.2 Trans
2 ANK2 7 90911258 92399480 1.4 3 rs340169919 0.0096 0.22 Trans
3 ANK2 7 105856850 105892246 0.04 2 rs81223355 0.0065 0.24 Trans
4 ANK2 14 55291076 82159674 26.9 118 rs80792689 0.0065 0.18 Trans NRBF2
5 APOE 13 77105634 82197802 5.1 14 rs80831731 0.0035 0.11 Trans
6 APOE 15 93185092 94923471 1.74 6 rs333806503 0.0135 0.11 Trans STAT1,

STAT4
7 ARNT 14 56474441 58410680 1.99 5 rs80792689 0.0033 0.18 Trans
8 EGF 8 131373563 131452301 0.08 2 rs81211121 0.0032 0.38 Trans
9 ELOVL6 13 24228663 24253641 0.02 2 rs80853212 0.0429 0.05 Trans
10 ELOVL6 13 77105634 82197802 5.1 14 rs80831731 0.0002 0.11 Trans
11 FASN 5 27631915 28327581 0.7 2 rs81334652 0.0269 0.06 Trans
12 FASN 8 79839602 79853747 0.02 2 rs81401770 0.0426 0.08 Trans NR3C2
13 FASN 13 52057695 61140536 9.1 3 rs80909668 0.0374 0.41 Trans
14 FASN 13 77105634 82197802 5.1 14 rs80831731 0.0065 0.11 Trans
15 FASN 15 74207778 74235458 0.03 3 rs80850172 0.0040 0.11 Trans
16 FASN 15 93185092 94923471 1.74 6 rs81301298 0.0183 0.09 Trans STAT1,

STAT4
17 GPAT3 8 134733478 135607348 0.88 8 rs81336088 0.0003 0.25 Cis
18 NR1D2 6 99307882 99580947 0.27 3 rs81347503 0.0246 0.29 Trans
19 PLIN1 13 77105634 82197802 5.1 14 rs81447187 0.0078 0.11 Trans
20 PPAP2A 6 45156998 46387903 1.23 8 rs81395741 0.0089 0.11 Trans USF2
21 RORA 14 2722953 2758196 0.36 2 rs80785221 0.0291 0.21 Trans
22 RXRA 1 29427957 31162256 1.74 2 rs80801544 0.0086 0.12 Trans
23 RXRA 1 270278445 274019182 0.37 11 rs81352834 3.79E-08 0.13 Cis
24 RXRA 4 111702541 119798655 8.09 2 rs80985433 0.0014 0.09 Trans
25 RXRA 12 20659791 20767619 0.1 5 rs81214864 0.0383 0.07 Trans MLX, STAT3, STAT5
26 UCP3 9 8362141 8406364 0.44 2 rs81413811 0.0228 0.3 Cis UCP2
27 UCP3 X 96608820 96624858 0.02 2 rs81473579 0.0228 0.09 Trans

Abbreviations: eQTL = expression Quantitative Trait Loci; Chr = Chromosome; bp = base pairs; Mbp = Megabase pairs; SNP = Single Nucleotide Polymorphism; MAF = Minor
Allele Frequency.
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as cis-acting eQTLs for GPAT3, RXRA and UCP3 genes, which sug-
gests that there is a mutation in the same gene or in a proximal
genomic region affecting its expression (Table 1). Both cis and
trans-eQTLs were represented in Fig. 3.

In addition, in SSC13, we found an eQTL that affects the expres-
sion of four genes (APOE, ELOVL6, FASN and PLIN1). Moreover, in
SSC15, there is another eQTL that regulates two other genes (APOE
and FASN).

From the 258 eQTL-associated SNPs, 230 were successfully
annotated with VEP of Ensembl (Sscrofa 11.1 annotation release
108) of which 34.8% (80 SNPs) were located in intergenic regions.
The remaining 65.2% (150) of SNPs were mapped within 93 genes:
121 (52.6%) in intronic regions, 10 in upstream regions, five in
downstream regions, four in non-coding transcript regions, three
in 30UTR regions and six in the coding regions of genes, five deter-
mining synonymous mutations and one being a missense mutation
(Supplementary Table S4).

Cis-expression quantitative trait loci

Concerning the GPAT3 gene in the eGWAS results, located on
SSC8, one of the annotated cis-SNPs (GPAT3 g.134933342 T > C)
was mapped within the GPAT3 gene. However, this SNP was not
the most significant associated SNP (P-value = 9.00 � 10�8). The
most significant cis-SNP for GPAT3 (g.135550523A > C; P-value =
1.70 � 10�8) was located in the SCD5 gene, also located on SSC8
(Fig. 4).

Regarding the RXRA cis-eQTL, the variant NCS1
g.270313674C > T (rs81352834), located on SSC1, was the most sig-
nificantly associated polymorphism (P-value = 9.84 � 10�13), and
the second most significantly associated variant, also located on
SSC1, was RXRA g.273242436A > G SNP (rs80827620) (P-value =
9.73 � 10�11) (Fig. 5).
5

In relation to the Uncoupling Protein 3 (UCP3) gene, which is
located on SSC9, the SNP g.8362141G > A (rs81413811) located
within the UCP2 gene, also located on SSC9, was the most signifi-
cantly associated SNP with the UCP3 gene expression in muscle
(P-value = 6.54 � 10�7) (Fig. 6).

Trans-expression quantitative trait loci

A total of 786 genes located within 24 trans-eQTL genomic
regions were identified in our study. Among them, we detected
potential lipid metabolism regulatory genes in six genomic regions
(Table 1).

Gene expression correlations

In order to identify co-expression patterns in the candidate
genes, a co-expression correlation using PCIT algorithm
(Watson-Haigh et al., 2009) was performed. The analysis included
the muscle expression data of the 45 candidate genes used in this
study, the 44 candidate genes utilised in the study of Criado-
Mesas et al. (2020), and the composition data of 14 different
FAs in the 3BCs pigs. Hence, a total of 89 candidate genes and
14 FAs were analysed, and a network graph was generated by
Cytoscape software (Shannon et al., 2003) (Fig. 7). Notably, the
genes PDHX, HIF1AN, ACAA2, and NCOA6 exhibited the highest
number of correlated connections with other genes. Regarding
the 14 analysed FAs, only oleic acid (C18:1n-9), a-linolenic acid
(C18:3n-3) and arachidonic acid (C20:4n-6) displayed significant
correlations with genes. Specifically, C18:1n-9 exhibited positive
correlations with the expression of the genes SCD (r = 0.32) and
PPARG (r = 0.32). On the other hand, C18:3n-3 exhibited a nega-
tive correlation with the SREBF1 gene expression (r = –0.3) and
a positive correlation with the FABP5 gene (r = 0.3). Conversely,



Fig. 3. PhenoGram plot representing regions associated with gene expression of 45 lipid-related genes along pig chromosomes in the three backcrossed pig animals. The
shape indicates the type of expression quantitative trait loci (eQTL) and the colour indicates the gene name as indicated in the legend.
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C20:4n-6 displayed a negative correlation with the PPARG gene
expression. Finally, the strongest correlations within the entire
network were observed between the genes ADIPOQ1 and PLIN1,
with a correlation value of 0.96, between the genes SCD and
6

PPARG, with a correlation value of 0.84, between the linoleic acid
(C18:2n-6) and C20:4n-6, with a correlation value of 0.9 and
between C18:2n-6 and C18:1n-9, with a correlation value of –
0.89.



Fig. 4. Genome wide-association study (GWAS) plot of GPAT3 gene expression in muscle. Chromosome positions in Mb based on Sscrofa 11.1 assembly of the pig genome are
represented in the X-axis and the –log10 (P-value) is on the Y-axis. The red horizontal line represents the threshold for an False Discovery Rate (FDR) < 0.05. The SCD5
g.135550523A > C (rs81344869) and GPAT3 g.134933342 T > C (rs81269758) single nucleotide polymorphisms (SNPs) are circled and labelled in colour green.

Fig. 5. Genome wide-association study (GWAS) plot of RXRA gene expression in muscle. Chromosome positions in Mb based on Sscrofa 11.1 assembly of the pig genome are
represented in the X-axis and the –log10 (P-value) is on the Y-axis. The red horizontal line represents the threshold for an False Discovery Rate (FDR) < 0.05. The NCS1
g.270313674C > T (rs81352834) and RXRA g.273242436A > G (rs80827620) single nucleotide polymorphisms (SNPs) are circled and labelled in colour green.

Fig. 6. Genome wide-association study (GWAS) plot of UCP3 gene expression in muscle. Chromosome positions in Mb based on Sscrofa 11.1 assembly of the pig genome are
represented in the X-axis and the –log10 (P-value) is on the Y-axis. The red horizontal line represents the threshold for an False Discovery Rate (FDR) < 0.05. The UCP2
g.8362141G > A single nucleotide polymorphism (SNP) is circled and labelled in colour green.
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Fig. 7. Gene co-expression network in three backcrossed pig animals using the PCIT algorithm (Watson-Haigh et al., 2009). After filtering by significance and r � |0.6| for
genes and r � |0.3| for fatty acids (FAs), 58 of the 90 initial genes and 10 different FAs are shown in this network. Node size represents the degree of a node. Green and red lines
indicate the positive and negative correlations, respectively.

M. Passols, F. Llobet-Cabau, C. Sebastià et al. Animal 17 (2023) 101033
Discussion

Sex and genetic background effects

In general terms, our results show that there are differences in
muscle gene expression betweenmales and females, particularly in
genes associated with fat accumulation and storage. In females, the
expression of genes related to lipid metabolism is generally higher,
which may contribute to differences in fat distribution between
the sexes (Varlamov et al., 2014). Hormonal differences between
males and females are thought to play a role in the regulation of
gene expression. For instance, oestrogen and progesterone are
more abundant in females and can stimulate the expression of
genes associated with fat storage (Varlamov et al., 2014). Previ-
ously, a sexual dimorphism in the transcriptional regulation of
genes related to lipid metabolism has been reported in various tis-
sues, such as muscle, liver, and backfat (Ballester et al., 2017; Puig-
Oliveras et al., 2016; Revilla et al., 2018). Therefore, it is relevant to
8

comprehend the mechanisms underlying sexual dimorphism in
gene expression.

The genes over-expressed in females are involved in FAmetabo-
lism (APOE, CYP2U1, EGF, ELOVL5, ELOVL6, FADS2, FASN, HADH,
PLIN1), transcriptional regulation and control (ANK2, ARNT,
NR1D2, NR1H2, USF1), energy metabolism (ADIPOQ, ADIPOR1, ADI-
POR2) and lipid metabolic process (AGPAT2, CD36, ME1). Con-
versely, some of the four genes showing higher expression in
males (ESRRA, GPAT3, LPL and PDK4) are relevant regulators of
lipolytic pathways (Cunningham et al., 2022). In humans, men
exhibit higher activity in lipolytic pathways, while women tend
to have higher rates of lipogenesis and triglyceride accumulation,
putting them at a greater risk for weight gain and obesity develop-
ment (Varlamov et al., 2014). In a similar way, female pigs seem to
develop obesity more readily than male pigs (Zhang & Lerman,
2016). On the other hand, a comparison between Iberian and Duroc
pigs reported a breed effect on the expression of genes involved in
energy balance and lipogenesis (Bahelka et al., 2007; Benítez et al.,
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2018; Font-I-Furnols et al., 2019). In summary, genes more related
to lipogenic pathways and biosynthesis pathways were more
expressed in BC1_DU whereas genes related to lipolytic pathways
were higher expressed in BC1_LD. Finally, 4 out of 45 genes were
over-expressed in BC1_PI and were mainly related to lipogenic
pathways and biosynthesis of unsaturated FAs.

Altogether, these results indicated a strong effect of sex and
breed on gene expression levels. Therefore, they were considered
in association studies and included as co-factors in our model.

Cis-expression quantitative trait loci

The Glycerol-3-Phosphate Acyltransferase 3 (GPAT3) gene is
involved in pathways such as the triglyceride biosynthetic process
through the conversion of glycerol-3-phosphate to lysophospha-
tidic acid in the synthesis of triacylglycerol, and pathways related
with gluconeogenesis (Cao et al., 2006). In the GPTA3 eGWAS
results, the most significant polymorphism was located on an
intronic region of Stearoyl-CoA Desaturase 5 (SCD5) gene, at
0.57 Mb upstream from the GPAT3 gene. The associated pathways
of SCD5 gene include lipid metabolism through stearoyl-CoA 9-
desaturase and acyl-CoA desaturase activity, as well as biosynthe-
sis of FAs and unsaturated FAs (Stelzer et al., 2016). On the other
hand, the second most significant SNP was located on an intronic
region of GPTA3 gene. These results suggest the presence of another
polymorphism within or near of this gene as a causative mutation
affecting GPTA3 gene expression levels.

Regarding Retinoid X Receptor Alpha (RXRA) in the eGWAS find-
ings, this gene is involved in pathways such as hormone-mediated
signalling pathway and regulation of RNA transcription (Stelzer
et al., 2016). Furthermore, the RXRA gene forms the complex
PPARA-RXRA, which increases lipid catabolism and FA b-oxidation
(Tontonoz et al., 1994; Vitali et al., 2018). In the RXRA eGWAS
results, the most significant SNP was located on an intronic region
of NCS1 gene, at 3.4 Mb downstream from the RXRA gene, and the
second most significantly associated variant was located within an
intronic region of RXRA gene. These findings indicate the presence
of an additional polymorphism located within or in close proximity
to this gene, which may act as a causal mutation influencing RXRA
gene expression levels.

The Uncoupling Protein 3 (UCP3) gene, a target of another cis-
eQTL region identified, is implicated in pathways including b-oxi-
dation of FAs, and it has been involved in chemical reactions and
pathways such as FA metabolism process and adaptative thermo-
genesis (Han et al., 2012; Lin et al., 2017). This cis-eQTL, located
in SSC9 contains a mutation located in an intronic position of
UCP2 gene, at 0.15 Mb downstream from the UCP3 gene. UCP2
gene, a paralog of UCP3 gene, plays a role in non-shivering thermo-
genesis, obesity and diabetes mellitus, while its pathways include
respiratory electron transport, ATP synthesis and heat production
(Lin et al., 2017).

In this study, the associations between gene expression and
genetic markers may be influenced by linkage disequilibrium with
the causal mutation. Nevertheless, additional investigations are
necessary to validate the findings derived from these analyses.

Trans-expression quantitative trait loci

The Ankyrin 2 (ANK2) eGWAS results unravelled a total of four
trans-eQTLs, but only one located at 55.2 Mb – 82.1 Mb in SSC14
(spanning 26.9 Mb and with 118 significant SNPs) contained a can-
didate gene (NRBF2) that could regulate the expression of ANK2.
The ANK2 gene belongs to the ankyrin family and has been sug-
gested as a susceptibility gene for obesity, based on studies in mice
with a human variant linked to type 2 diabetes (Lorenzo et al.,
2015). Furthermore, AnkB-deficient adipocytes displayed increased
9

levels of SLC2A4 (also known as GLUT4), plasmamembrane, glucose
uptake, and lipid accumulation (Lorenzo & Bennett, 2017). Nuclear
Receptor Binding Factor 2 (NRBF2) was located within the ANK2
trans-eQTL region and was associated with a lipid metabolism reg-
ulatory gene. Polymorphisms in NRBF2 gene have been associated
with specific PUFA levels in plasma in humans (Hu et al., 2015).
Furthermore, NRBF2 has also demonstrated its ability to interact
with several other receptors, including peroxisome proliferator-
activated receptor alpha (PPARA), thyroid hormone receptor beta
(THRB), retinoic acid receptor alpha (RARA), and retinoid X receptor
alpha (RXRA), which is also related to different candidate genes for
lipid metabolism, such as FABP4, FASN, LPL and PLIN1 (Ouyang
et al., 2020).

The Fatty Acid Synthase (FASN) eGWAS results identified trans-
eQTL covering the genomic region of 79.8–79.85 Mb, wherein a
transcription factor associated with lipid metabolism, the Nuclear
Receptor Subfamily 3 Group C Member 2 (NR3C2), was identified.
Polymorphisms in the NR3C2 gene have been associated with neu-
roendocrine parameters, carcass composition and meat quality
traits in pigs, suggesting its important role in the regulation of lipi-
dic genes (Terenina et al., 2013). Unfortunately, no evidence has
been found linking the gene NR3C2 to the regulation of FASN. How-
ever, further analysis would be necessary to determine if there is
any relationship between these genes.

The further trans-eQTL region identified in the eGWAS results of
the candidate gene PPAP2A was located in SSC6 at 45.1–46.3 Mb,
where Upstream Transcription Factor 2 (USF2) was found. The
USF2 gene has been identified as a transcriptional regulator of
the human APOC3 gene which is recognised as an inhibitor of
lipoprotein lipase, and as such, its overexpression in mice has been
observed to result in a substantial increase in plasma triglyceride
concentrations, consistent with its inhibitory function (Lai et al.,
2005). With this information, it suggests that the USF2 gene could
play a regulatory role in genes related to lipid metabolism.

The Retinoid X Receptor Alpha (RXRA) eGWAS unravelled a
trans-eQTL, positioned at 20.6–20.7 Mb in SSC12. Through a com-
prehensive analysis of this genomic locus, which spans 0.1 Mb, a
total of five SNPs have been identified that show significant associ-
ations with RXRA gene expression levels, with three candidate reg-
ulatory genes being mapped (MLX, STAT3, STAT5).

The MAX Dimerisation Protein (MLX) gene has been found to be
correlated with the ChREBP transcription factor, and it has been
observed that this complex is capable of modulating the transcrip-
tional activity of genes involved in lipid metabolism, including
ACC1 and FASN (Donald, 2012). According to a model proposed
by Ma et al. (2005), two ChREBP-Mlx heterodimers would bind
to the two E boxes of the ChoRE to provide a transcriptional com-
plex necessary for glucose regulation.

The Signal Transducer and Activator of Transcription 3 (STAT3)
gene has also been identified in the RXRA eQTL. According to Wu
et al. (2018), STAT3 gene plays a crucial role in regulating the FAS
and CPT1a1b lipid metabolism genes, as their promoter regions
are associated with the binding locus of STAT3 in yellow catfishes.
Unfortunately, we were unable to locate any relevant literature
concerning this transcription factor’s association with the RXRA
gene or its involvement with lipid metabolism genes in pigs.

On the other hand, the STAT5A/B family was also mapped at
RXRA trans-eQTL. According to Kliewer et al. (1999), the PPARc is
a key member of the nuclear hormone receptor superfamily. It col-
laborates with RXRA to effectively regulate specific genes associ-
ated with adipocyte differentiation and insulin sensitisation. In
relation with this, Meirhaeghe et al. (2003) indicated that PPARc3
could play a role in maintaining lipid balance in humans by influ-
encing the Growth Hormone/STAT5B pathway. Hence, it suggests
that the STAT proteins not only control the expression of genes
specific to fat tissue but also serve as targets of regulation by tran-
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scriptional factors such as PPARc. In addition, an study conducted
by Si & Collins (2002) on the regulation of haematopoiesis in
humans and its association with transcription factors, it was dis-
covered that the JAK2/STAT pathway, specifically the activation
of STAT5, plays a crucial role in enhancing RAR transcriptional
activity in cultured hematopoietic cells.

Trans-expression quantitative trait loci hotspot regions

Furthermore, we have detected two hotspot regions that mod-
ulate the expression of several genes. A trans-eQTL hotspot located
on SSC13 and spanning 5.1 Mb (77.1–82.2 Mb) was associated with
the expression of four genes: APOE, ELOVL6, FASN and PLIN1. The
Phosphatidylinositol-4,5-Bisphosphate 3-Kinase Catalytic Subunit
Beta (PIK3CB) gene was mapped in this region. PIK3CB participates
in the PI3K-Akt signalling pathway and mTOR signalling pathway,
and the regulation of the PI3K-Akt-mTOR signalling pathway on
lipid metabolism has been mentioned by different studies
(Dibble and Manning, 2013; Liu et al., 2016). Furthermore, inhibi-
tion of the PI3K-Akt-mTOR pathway leads to a decrease in intracel-
lular lipid accumulation along with a reduction in mRNA
expression and protein content of genes involved in de novo FA
synthesis (Zhao et al., 2023). Hence, we can suggest that PIK3CB
is involved in muscle lipid metabolism, being an interesting candi-
date gene to explain the differences in the expression of four genes
associated with the SSC13 hotspot. Other potential genes related to
lipid metabolism (ESYT3, RBP1 and RBP2) were detected, but no evi-
dence was found for their possible regulation of the four genes in
the mentioned hotspot.

The second trans-hotspot region covering 1.74 Mb on SSC15
(93.1–94.9 Mb) was associated with the expression of APOE and
FASN genes. In this region, we detected two candidate regulatory
elements, STAT1 and STAT4, which have been associated with lipid
metabolism pathways. Zhang et al. (2019) suggested that STAT1
may regulate the expression of genes associated with lipid metabo-
lism and FA synthases (FASs), such as FASN, the key enzymes in de
novo lipogenesis, which promotes the synthesis of long-chain FAs.
A previous study has indicated that STAT1 regulates adipogenesis
and adipolysis (Stephens et al., 1996). In addition, the Myostatin
(MSTN) gene was also mapped in this hotspot region. The MSTN
gene has been described by Xin et al. (2020) as being involved as
a regulator of AMP kinase activity in cattle. The down-regulation
of MSTN triggers the activation of AMPK signalling pathways to
regulate glucose and lipid metabolism, which highlights its possi-
ble role in lipid metabolism. Moreover, based on their findings,
Pan et al. (2021) propose that MSTN exerts an inhibitory effect on
adipogenesis and promotes lipolysis in the subcutaneous adipose
tissue of pigs, primarily through the activation of ERK1/2 and
PKA signalling pathways. These results indicate that MSTN may
act as a powerful regulator of genes involved in lipid metabolism
pathways.

The two trans hotspots detected in this study are associated
with APOE and FASN gene expression, suggesting that different
genetic variants are regulating the muscle expression of these
genes, but further studies are required to identify these variants.

Muscle gene expression and fatty acid composition correlation
networks

Our study investigates the relationship between specific gene
expression and the quantities of different FAs in the porcine longis-
simus dorsimuscle. SCD and PPARG genes are found to play a crucial
role in regulating C18:1n-9 levels, with a positive correlation
observed between their expression and the abundance of this FA.
Similarly, the genes FABP5 and SREBF1 are implicated in controlling
C18:3n-3 levels, with a positive correlation for FABP5 and a nega-
10
tive correlation for SREBF1. Furthermore, the study explores the
association between C20:4n-6 and the PPARG gene, revealing a
negative correlation and suggesting a regulatory role of PPARG in
C20:4n-6 metabolism. Moreover, we want to highlight the impor-
tance of the PPARG gene due to its substantial number of connec-
tions with other genes and its association with FAs, suggesting a
significant role of this gene in FA metabolism and with potential
implications in pork quality. In addition, the genes PDHX, HIF1AN,
ACAA2, and NCOA6 display significant correlations with multiple
genes, indicating their role as central regulators. The positive and
negative correlations between the genes and the FAs are shown
in Fig. 7.

Conclusion

In the present work, we discerned genetic variants linked to the
expression of genes associated with lipid metabolism in muscle tis-
sue. These genetic variants were clustered in 27 eQTLs from which
three were described as cis-acting major regulators of GPAT3, RXRA
and UCP3 gene expression levels. The other 24 regions were iden-
tified as trans-acting regulators, which affect different lipid-related
genes along the chromosomes. In addition, two trans-regulatory
hotspots, which affect the regulatory control over the expression
of multiple genes, were detected within the SSC13 and SSC15. Fur-
thermore, the co-expression analysis revealed the influence of four
regulatory genes modulating the levels of different FA levels within
the 3BCs, concurrently affecting the expression of other genes
associated with lipid metabolism. Our results increase the knowl-
edge of the genetic basis of gene expression regulation in muscle
lipid metabolism. Overall, the expression of genes related to lipid
metabolism is regulated in a complex way and further validations
are needed to corroborate our findings.
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