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Abstract

Eukaryotes are endowed with sophisticated innate immune systems to recognize non-self

and halt pathogen proliferation. Activation of cell death at the site of attempted pathogen

ingress is a common strategy used by plants and animals to restrict pathogen proliferation

and trigger immune responses in the surrounding tissues. As such, immunogenic cell death

shares several features in both plants and animals that will be discussed in this article,

namely: (i) it is triggered by activation of NLR immune receptors—often through oligomeriza-

tion; (ii) it results in disruption of the plasma membrane (PM)/endomembrane integrity driv-

ing an imbalance in ion fluxes; and (iii) it results in the release of signaling molecules from

dying cells.

1. Pathogens are perceived by immune receptors

Immune receptors of the nucleotide-binding leucine-rich repeat (NLR)-type constitute funda-

mental elements of the plant and animal innate immune systems (Table 1). Animal NLRs

respond to and mediate interaction with pathogen- or danger-associated molecular patterns

(PAMPs or DAMPs) [1]. In plants, the task of pathogen recognition is divided between intra-

cellular NLRs and cell surface pattern-recognition receptors (PRRs). While plant NLRs recog-

nize secreted pathogen effectors or their activity within the host cells, PRRs recognize PAMPs

[2]. Animal and plant NLRs share a similar multidomain architecture within the core nucleo-

tide-binding and oligomerization domain (NOD) and the leucine-rich repeat (LRR) domains.

However, there is substantial diversity at the C- and N-terminal accessory domains [3].

In plants, NLRs are categorized based on their domain composition at the N-terminus and

their function during the immune response. NLRs carrying a coiled-coil (CNLs) or a Toll/

Interleukin 1-receptor (TIR)-type domain (TNLs) can act as sensor (sNLRs) by perceiving

effectors, whereas a subset of CNLs function as helper (hNLRs) by amplifying the downstream

immune signal emanating from sensor NLRs or PRRs [4–7]. In animal NLRs, N-terminal

domains belong to the death-fold superfamily and mainly include Pyrin and CARD domains

[8] (Fig 1).

In animals, the N-terminal domain of NLRs generally harbors either a CARD or a PYRIN

domain. Upon recognition of DAMPs or PAMPs, animal NLRs nucleate into heteromeric

inflammasome complexes. For instance, the pyrin-containing NLRP3 inflammasome is
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comprised of a sensor NLR (NLRP3), the adaptor protein Apoptosis-associated speck-like pro-

tein containing a caspase recruitment domain (ASC1) and caspase-1. Oligomerization of

NLRP3 through homotypic interactions at the NOD recruits the ASC through a PYD-PYD

interactions. Conformational changes in ASC allow recruitment of caspase-1 through CARD-

CARD interactions, enabling caspase-1 activation. Proteolytically active caspase-1 subse-

quently cleaves gasdermin D (GSDMD) and pro-ILs that are released into the extracellular

space. Insertion of the N-terminal pore-forming domain of GSDMD into the PM leads to non-

selective ion fluxes that ultimately results in cellular demise.

2. NLRs are activated by oligomerization

NLR activation in both plants and animals involves oligomerization through their N-terminal

domains. In mammals, PAMP or DAMP-triggered NLR oligomerization leads to the assembly

of the so called “inflammasomes.” These supramolecular structures are comprised of a varying

number of NLR molecules depending on the nature of molecule trigger and provide a platform

for recruitment and activation of caspases either directly or indirectly through the adaptor pro-

tein ASC [11]. Caspase-dependent processing of pro-interleukins (ILs) and GSDMs ultimately

results in pyroptosis (Fig 1) (described in section 3).

Upon pathogen effector perception, plant NLRs also assemble into multimeric protein

complexes termed “resistosomes” [12–15]. In the case of CNLs, pentameric oligomerization

Table 1. Abbreviation list.

Abbreviation Description of term

ASC Apoptosis-associated speck-like protein containing a caspase recruitment domain

cfDNA Circulating free DNA

PM Plasma membrane

PAMP Pathogen-associated molecular pattern

DAMP Danger-associated molecular pattern

PRR Pattern-recognition receptors

NLR Nucleotide-binding leucine-rich repeat

sNLR Sensor NLR

hNLR Helper NLR

NOD Nucleotide oligomerization domain

TNL Toll Interleukin 1 receptor-NLR

CNL Coiled-coil-NLR

RNL Resistance to powdery mildew 8 NLR

LRR Leucine-rich repeat

NAD+ Nicotinamide adenine dinucleotide

NLRP NLR family pyrin domain containing 3

PYD Pyrin domain

HMGB1 High mobility group box 1

IL Interleukins

GSDMs Gasdermins

HR Hypersenstive response

CARD Caspase recruitment domain

RIPK3 Receptor-interacting protein kinase 3

ROS Reactive oxygen species

MLKL Mixed-lineage kinase domain-like

EDS1 Enhanced disease susceptibility 1

https://doi.org/10.1371/journal.ppat.1011253.t001
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Fig 1. Domain architecture of NLR immune receptors and general activation mechanisms of resistosomes and

inflammasomes in plants and animals, respectively. NLRs are modular tripartite immune receptors comprised of an

N-terminal signaling domain, a NOD and LRR domain. In plants, NLRs are broadly classified into sNLRs and hNLRs

based on their function during the immune response. Sensors are divided into CC- or TIR-NLR, whereas helpers carry

a CC domain at their N-terminus. Upon pathogen perception, CNLs oligomerize into a pentameric wheel-like

structure, whereas TNLs oligomerize into a tetrameric structure collectively known as resistosomes. While CNLs can

sense pathogen effectors and execute cell death by acting as permeable Ca2+ channels with no need of hNLRs, TIR

domains from TNLs act as NAD+ hydrolases generating by-products or small molecules that bind to EDS1 complexes.

Allosteric changes in EDS1 complexes allow interaction with hNLRs. Oligomerization of certain hNLRs into a

pentameric resistosome with Ca2+channel activity at the PM drive ion flux imbalances that resultin HR-cell death

[9,10]. CNL, coiled-coil-NLR; hNLR, helper NLR; HR, hypersensitive response; LRR, leucine-rich repeat; NLR,

nucleotide-binding leucine-rich repeat; NOD, nucleotide oligomerization domain; PM, plasma membrane; sNLR,

sensor NL; TNL, Toll Interleukin 1 receptor-NLR.

https://doi.org/10.1371/journal.ppat.1011253.g001
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leads to resistosome activation and a concomitant structural switch that results in a funnel-

shaped structure that acts as a PM localized cation-selective channel permeable to Ca2+

[12,13,16,17]. Altered ion fluxes may act as an important determinant of pathogen-triggered

cell death. This indicates that while certain plant immune receptors (sensor CNLs) can act as

both sensors and executors of cell death, most animal NLRs require accessory molecules to

drive cell death [18] (Fig 1).

Plant TNLs oligomerize into tetrameric protein complexes exhibiting NADase activity (nic-

otinamide adenine dinucleotide hydrolases) in their TIR domains [19]. By-products or “info-

chemicals” derived from TNL-mediated hydrolysis of the metabolic co-factor NAD+ can

directly bind to heterodimers formed by plant lipase-like proteins with ENHANCED DIS-

EASE SUSEPTIBILITY 1 (EDS1), promoting interactions with helper NLRs [9,10]. Certain

helper NLRs can oligomerize into a pentameric resistosome capable of forming pores at the

PM and driving ion flux imbalances in a similar way to sensor CNLs [20–22] (Fig 1).

While activated plant resistosomes/NLRs in plants are executors of cell death and localize at

the PM membrane (CNLs and hNLRs) where they exert its pore-forming activities, activated

animal NLRs (NLRP3 inflammasome) remain cytoplasmic acting as molecular scaffolds for

recruitment and activation of accessory molecules that ultimate mediate plasma membrane

disruption (Fig 1).

3. Immunogenic cell death exists in different flavors

In plants, the term hypersensitive response (HR) is used to define a local, pathogen-triggered

type of cell death mediated by NLR activation. HR restricts pathogen growth, and hence, it is

an important component of plant immunity [23,24]. Broadly, HR involves production of reac-

tive oxygen species (ROS), nitric oxide, and an increase of intracellular calcium, likely medi-

ated by formation of PM pores by resistosomes [12–15,17] (Fig 2). Still, how NLR activation

and calcium influxes connects to downstream cell death programs as well as the role of proteo-

lytic enzymes and organelles such as the chloroplast, mitochondria, and the vacuole in this

process remains largely unknown.

In animals, pyroptosis, necroptosis, and ferroptosis, unlike apoptosis, are pro-inflammatory

cell death programs that involve release of lytic content to the extracellular space and rupture

of the plasma membrane prior to cellular demise (Fig 2). Besides their morphological resem-

blance, their triggers and biochemical executors of the cell death pathways differ [25].

Pyroptosis is activated upon detection of PAMPs or DAMPs by inflammasomes. These

multi-protein complexes act as platforms for the activation of caspases that cleave GSDM

unleashing its pore-forming domain to form an oligomeric pore at the PM [11]. Pore forma-

tion through GSDMD results in cell size increase and subsequent burst, releasing intracellular

proteins to the extracellular space.

Necroptosis involves ligand-mediated activation of RECEPTOR-INTERACTING PRO-

TEIN KINASE 3 (RIPK3) that phosphorylates the pseudo-kinase MIXED LINEAGE KINASE

DOMAIN-LIKE (MLKL) [26]. Phosphorylation drives interaction of MLKL with the PM

where it oligomerizes and forms a necroptotic pore [26]. Pore formation also results in the

release of intracellular content, including pro-inflammatory ILs, eventually leading to cellular

demise. Interestingly, plants possess a conserved protein family resembling animal MLKLs

that participate in immunity, indicating a potentially common mode of action with animal

MLKLs [27].

Ferroptosis is a lytic, pro-inflammatory cell death that involves iron-dependent peroxida-

tion of lipids associated with loss of PM integrity and ion influxes [28] (Fig 2). In plants, a fer-

roptosis-like process has been reported in response to NLR-mediated recognition of a fungal
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Fig 2. Overview of cell death types and their general features in plants and animals. During HR cell death in plants,

ROS accumulation and calcium channel activity exerted by plant resistosomes drive Ca2+ entry into the cytoplasm.

How intracellular Ca2+ spikes lead to downstream cell death features such as loss of chloroplast and mitochondrial and

eventually cellular demise is currently unknown. DAMPs and phytocytokines are released from infected/damaged cells

and activate defense responses in neighboring cells via perception by surface receptors. Although differentially

regulated at the molecular level, pyroptosis and necroptosis are both pro-inflammatory forms of cell death that involve

release of cellular content to the extracellular space (DAMP release and inflammatory cytokines). In both cell death

modalities, rupture of the plasma allows for the influx and efflux of ions altering homeostasis in the cell. Ferroptosis is

an iron-dependent mode of cell death in which peroxidation of lipids cause plasma membrane damage with partial

rupture allowing entry of Ca2+ ions and release of DAMPs to the extracellular space. Apoptosis is a non-inflammatory

and silent form of cell death in which membrane integrity is maintained during cellular dismantling. Cell shrinkage,

chromatin condensation, and DNA fragmentation are typical hallmarks of apoptosis. Importantly, plasma membrane

blebbing leads to apoptotic bodies that are eventually engulfed and eliminated by phagocytes. DAMP, danger-

associated molecular pattern; HR, hypersensitive response; ROS, reactive oxygen species.

https://doi.org/10.1371/journal.ppat.1011253.g002
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pathogen [29]. Conservation between plant and animal ferroptosis may unfold as the mecha-

nisms and players of the process become fully elucidated.

Apoptosis is an immunologically silent form of cell death in which gradual dismantling of

the cell content leads to morphological features such as cytoplasmic shrinkage, chromatin con-

densation, and DNA fragmentation [30]. As opposed to other cell death programs, PM integ-

rity is retained throughout the cell death process. Eventually, membrane blebbing results in

cell fragmentation giving rise to “apoptotic bodies” that are engulfed and eliminated by phago-

cytes (Fig 2). Apoptosis initiation culminates in activation of effector caspases and concomi-

tant cell death [25]. Inhibition of caspases is an important target for pathogens to prevent

apoptosis and maintain their replicative niche. It is thus not surprising that caspases have

evolved as versatile molecular switches that can resort to pro-inflammatory cell death when

apoptosis is blocked. In fact, an increasing number of immunogenic cell death modalities,

deeply interlinked between them, is emerging as a central determinant of tissular/systemic

responses [31].

4. Loss of plasma membrane/endomembrane integrity is a key step

of immunogenic cell death

Loss of plasma membrane/endomembrane integrity is a common hallmark between plant and

animal immunogenic cell death. In animals, pore formation at the PM constitutes an execution

step of pro-inflammatory cell death and it involves GSDMD and MLKL in pyroptosis and

necroptosis, respectively. During pyroptosis, the N-terminal portion of GSDMD, cleaved by

caspase-1, directly inserts into the PM, where it self-associates and forms ring-shaped pores

(approximately 20 nm) [32]. These large pores allow the release of pro-inflammatory mole-

cules (cytokines, alarmins) and cause cell lysis. In the case of necroptosis, phosphorylated

MLKL interacts with the PM, although the pore structure remains unresolved. Therefore, its

oligomeric state in membranes and how it mediates permeabilization remain not fully eluci-

dated. MLKL pores drive calcium and sodium influx and potassium efflux from the cell fol-

lowed by water influx, resulting in a cell burst typical of necroptosis [33,34]. Ferroptosis also

involves loss of integrity and partial rupture of the PM, which has been associated with iron-

dependent peroxidation of phospholipids [28].

In plants, it has been demonstrated that CNL pentameric resistosomes can drive membrane

pore formation. Oligomerization of CNLs results in a structural switch of the N-terminus of

each monomer that then projects out of the resistosome plane. The funnel-shaped structure

can insert into membranes forming a small pore (approximately 1 nm) that can act as a cat-

ion-selective channel permeable to Ca2+ [16,17,20]. Pore formation and subsequent Ca2+

influx may activate a cell death program as described for ferroptosis. In sum, current evidence

suggests that transient or permanent pore formation at the PM and permeabilization consti-

tutes a common mechanism to execute cell death both in plant and animal cells.

5. Dying cells release signaling molecules important for immunity

Immunogenic cell death results in the release of signaling molecules, which activate immunity

in surrounding/distal tissues and is therefore an important mechanism to counteract invading

agents. In animals, immunogenically dying cells release DAMPs such as nuclear HIGH

MOBILITY GROUP BOX 1 PROTEINS (HMGB1), ATP or circulating free DNA (cfDNA),

among others. In addition, pyroptotic and necroptotic cells release pro-inflammatory cyto-

kines. DAMP release appears tightly controlled and not a mere consequence of cell lysis as

originally considered. In this sense, a growing body of evidence indicates that different types

of lytic cell death will release a distinct signature of pro-inflammatory molecules [29,35].
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During plant immune responses, a broad range of DAMPs and phytocytokines are released

from infected/damaged cells and activate defense responses locally and in surrounding tissues

[36,37]. DAMPs include nucleotides, sugars, and amino acids, while phytocytokines comprise

endogenous signaling peptides actively generated upon maturation of the propeptide by a pro-

tease and subsequently perceived by cell surface receptors. Expression of phytocytokine pre-

cursors is in fact up-regulated upon MAMP treatments or pathogen attack, constituting an

early immune response [38]. Among phytocytokines, those peptides that do not contain a

secretory signal may reach the extracellular space after cell lysis via not yet identified mecha-

nisms. Research in recent years has evidenced that multitude of phytocytokines may in fact

regulate immune responses, although very few have been characterized to date, such as some

PLANT ELICITOR PEPTIDES (PEPs) or RAPID ALCALINIZATION FACTORS (RALFs)

[37].

An exciting avenue for future research is whether specific DAMPs/phytocytokines emanate

from dying cells, and if so, how do they communicate with neighboring cells and whether spe-

cific signatures exist depending on the particular plant–pathogen interaction. Also, it remains

unclear what is the exact effect of phytocytokines in neighboring cells: Do they promote cell

death or they are rather acting as pro-survival molecules acting for example in tissue repair? In

coming years, we may witness how increasing knowledge on plant HR is translated into dis-

ease resistance in the field, in the same way that basic knowledge on pro-inflammatory cell

death in animals is leading to novel therapeutics.
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