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Abstract: This study aimed to evaluate the effects of feeding spray-dried porcine plasma (SDPP)
on the protection afforded by the BA71∆CD2 African swine fever virus (ASFV) vaccine prototype.
Two groups of pigs acclimated to diets without or with 8% SDPP were intranasally inoculated with
105 plaque-forming units (PFU) of live attenuated ASFV strain BA71∆CD2 and, three weeks later,
left in direct contact with pigs infected with the pandemic Georgia 2007/01 ASFV strain. During
the post-exposure (pe) period, 2/6 from the conventional diet group showed a transient peak rectal
temperature >40.5 ◦C before day 20 pe, and some tissue samples collected at 20 d pe from 5/6 were
PCR+ for ASFV, albeit showing Ct values much higher than Trojan pigs. Interestingly, the SDPP group
did not show fever, neither PCR+ in blood nor rectal swab at any time pe, and none of the postmortem
collected tissue samples were PCR+ for ASFV. Differential serum cytokine profiles among groups at
vaccination, and a higher number of ASFV-specific IFN
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Abstract: This study aimed to evaluate the effects of feeding spray-dried porcine plasma (SDPP) on 
the protection afforded by the BA71∆CD2 African swine fever virus (ASFV) vaccine prototype. Two 
groups of pigs acclimated to diets without or with 8% SDPP were intranasally inoculated with 105 
plaque-forming units (PFU) of live attenuated ASFV strain BA71∆CD2 and, three weeks later, left 
in direct contact with pigs infected with the pandemic Georgia 2007/01 ASFV strain. During the 
post-exposure (pe) period, 2/6 from the conventional diet group showed a transient peak rectal tem-
perature >40.5 °C before day 20 pe, and some tissue samples collected at 20 d pe from 5/6 were PCR+ 
for ASFV, albeit showing Ct values much higher than Trojan pigs. Interestingly, the SDPP group 
did not show fever, neither PCR+ in blood nor rectal swab at any time pe, and none of the postmor-
tem collected tissue samples were PCR+ for ASFV. Differential serum cytokine profiles among 
groups at vaccination, and a higher number of ASFV-specific IFNϒ-secreting T cells in pigs fed with 
SDPP soon after the Georgia 2007/01 encounter, confirmed the relevance of Th1-like responses in 
ASF protection. We believe that our result shows that nutritional interventions might contribute to 
improving future ASF vaccination strategies. 

Keywords: African swine fever; ASFV; spray-dried porcine plasma; vaccine; challenge;  
nutritional intervention 
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-secreting T cells in pigs fed with SDPP soon
after the Georgia 2007/01 encounter, confirmed the relevance of Th1-like responses in ASF protection.
We believe that our result shows that nutritional interventions might contribute to improving future
ASF vaccination strategies.

Keywords: African swine fever; ASFV; spray-dried porcine plasma; vaccine; challenge; nutritional
intervention

1. Introduction

African swine fever virus (ASFV) is a large, enveloped, double-stranded DNA virus.
As the only member of the Asfarviridae family [1], it can infect domestic pigs and wild
boars of all ages causing African swine fever (ASF). ASF is a notifiable disease to the World
Organization for Animal Health (WOAH, formerly OIE) and is the number one threat to
the global swine industry and a major limitation to global trading [2]. Since 2007, a virulent
ASFV strain (genotype II) has emerged, causing mortality rates up to 100%, and has spread
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in Europe, China, South-East Asia, and more recently, in the Dominican Republic and Haiti,
where millions of animals have succumbed to the disease [3].

Currently, there is no commercial vaccine available to fight the ASF pandemic at a
global level. The lack of efficacy of inactivated vaccines and the poor protection afforded
so far with recombinant vaccines based on ASFV-specific antigens left live attenuated
viruses (LAVs) as the short–medium term choice to develop ASFV vaccines [4–6]. The
recent launching of the first commercial vaccine against ASFV in Vietnam was based on a
recombinant deletion mutant lacking the I177L gene from the Georgia 2007 ASFV isolate [7]
and reflects the high expectation that this technology has opened in the field. Unfortu-
nately, vaccination in some regions of Vietnam was suspended due to unexpected pig
deaths (https://www.reuters.com/world/asia-pacific/vietnam-suspends-african-swine-
fever-vaccine-after-pigdeaths-2022-08-24/, accessed on 24 January 2023). This was most
probably due to defects in vaccination implementation, reopening biosafety concerns about
the use of ASF LAVs in the field [8].

Together with the necessary implementation of standardized protocols for registration
and approval of ASFV vaccines, we should continue investing efforts to better understand
the mechanisms involved in protection against ASF, aiming to develop the safest and most
efficient preventive and therapeutic strategies. Both antibodies [9] and CD8+ cells [10] play
important roles in protection, together with an appropriate innate immune response [11].
Recent work performed, among others, in our own laboratory has confirmed the key
importance of Th1-like responses and specific cytotoxic T lymphocytes (CTLs) in protecting
against ASF, independently of working with subunit experimental vaccines [12,13] or with
BA71∆CD2, a cross-protective recombinant live attenuated virus [14].

In parallel to the current efforts to develop efficient vaccines against ASF, we and others
have also demonstrated that the pig’s immune status and/or their microbiota significantly
influence the disease outcome [15–17]. In the present study, we aimed to evaluate the
effects of feeding pigs with spray-dried plasma (SDP) on the protection afforded by the
BA71∆CD2 vaccine prototype. SDP derived from porcine (SDPP) or bovine (SDBP) origin
are dry functional ingredients that are extensively used in pig starter diets and consistently
improve performance, feed efficiency, and animal survival, especially under stressful
conditions such as pathogen challenge [18]. SDP contains a diverse mixture of many
functional compounds such as immunoglobulins, albumin, growth factors, biologically
active peptides, transferrin, amino acids, and other molecules that have biological activity
independent of their nutritional value. Although the modes of action of SDP are not
completely known, it has been shown to modulate the efficiency of the immune system [19].
Based on the demonstrated capability of SDPP feeding to accelerate the induction of
specific Th1-like responses and to delay experimental ASFV transmission and disease
progression [20] (back-to-back submitted manuscript), the objective of this study was
to evaluate the effects of feeding SDPP on the protection afforded by the BA71∆CD2
vaccine prototype.

2. Materials and Methods
2.1. Clinical Monitoring

The clinical state of the animals and the end-point criteria were evaluated by scoring
the ASF-compatible clinical signs following a previously reported guide [21] with slight
modifications. A score from 0 to 5 according to severity was applied as follows: 0: no
clinical signs; 1: mild pyrexia (39.6–40.0 ◦C); 2: mild pyrexia (39.6–40.0 ◦C) and mild clinical
signs (skin, digestive); 3: moderate pyrexia (40.0–40.5 ◦C) and mild–moderate clinical signs
(distal ear spots, mild limp, lying down, but remaining alert); 4: moderate–high pyrexia
(40.5–41 ◦C) and moderate clinical signs (remains dormant, only stands up when touched,
hesitant step, subcutaneous bleeding <10%, diarrhea, mild tremors); and 5: pyrexia higher
than 41 ◦C and moderate–severe clinical signs (generalized subcutaneous bleeding, ataxia,
spasticity, clouding, prostration, bloody diarrhea).

https://www.reuters.com/world/asia-pacific/vietnam-suspends-african-swine-fever-vaccine-after-pigdeaths-2022-08-24/
https://www.reuters.com/world/asia-pacific/vietnam-suspends-african-swine-fever-vaccine-after-pigdeaths-2022-08-24/
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2.2. Study Design

The study was approved by the Committee of Ethics and Welfare “Comitè d’Experimentació
Animal de la Generalitat de Catalunya” with the protocol approval number CEA-OH/11387/1.
For this study, 24 4-week-old Landrace x Large White male pigs were used. Pigs were ran-
domly divided into two separate groups at the IRTA-Monells animal facility and acclimated
to their assigned diet (see Table 1, as described by Blazquez et al. [20]).

Thus, sixteen animals were fed a conventional diet with 10.09% soy protein concentrate,
and eight pigs were initially fed a diet supplemented with 8% SDPP (AP920 produced
by APC Europe S.L.U.-Granollers, Spain), replacing soy protein. Then, 14 days later,
animals were moved to the IRTA-CReSA BSL-3 animal facility and were distributed in two
separate rooms (Rooms 1 and 2) divided in half (left and right) with fences, maintaining
the same diet (8 fed with SDPP-supplemented diet and 16 with the conventional diet)
during 10 additional acclimation days, as described in Figure 1. The rooms contain slatted
floors, and the environmental conditions for both rooms were set at 22 ± 2 ◦C and relative
humidity of 60 ± 5%. The air renewal was established to be 12 times/h. The feed was
provided each morning between 7:30 and 9:30 a.m.
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Figure 1. Schematic representation of the study design. Abbreviations: BSL3 = biosafety level 3;
NS = Nasal swab; RS= rectal swab; pv = post-vaccination; pe = post-exposure; d = day; PBMCs =
peripheral blood mononuclear cells.

After acclimation, eight pigs from Room 1 (left pen), fed the conventional diet, and
eight pigs from Room 2 (left pen), fed the SDPP diet, were intranasally immunized (1 mL
per nostril) with a dose of 105 PFU of BA71∆CD2 ASFV. The rest of the pigs (eight), four
located in the right half of Room 1 and four in the right half of Room 2, continued to be fed
the conventional diet. Therefore, the donor animals (Trojans) for both groups were fed the
same control diet.

Nineteen days after vaccination (d19pv), each of the non-immunized animals (two
groups of four pigs fed with the conventional diet) was intramuscularly infected with 1 mL
of a lethal dose (103 GECs/mL) of the pandemic Georgia 2007/1 ASFV strain [22]. Finally,
two days later, the fences were removed, allowing the direct contact of vaccinated pigs with
the “Trojan” pigs previously infected with Georgia 2007/01 (day 0 post-exposure, d0pe),
with a final 1:2 ratio of Trojan to vaccinated pigs. This proportion was considered optimal
for the transmission of the virus by direct contact [14]. All Trojan pigs had to be sacrificed
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between 3 and 7 days post-infection. The study ended at d20pe, 41 days after initiating the
vaccination (Figure 1).

Throughout the experimental period, pigs were fed ad libitum and observed for
clinical signs and rectal temperature daily. Blood samples (10 mL tubes with EDTA) and
nasal and rectal swabs were taken at d0pv (before intranasal vaccination), d7pv, d14pv,
and d21pv (d0pe, the first day the Trojan and vaccinated pigs were in contact), d4pe, d7pe,
d14pe, and d20pe (d41pv). At necropsy, lesions were registered, and samples of spleen,
tonsil, and gastro-hepatic, submaxillary, and retropharyngeal lymph nodes were frozen
and kept at −75 ◦C until use. Once thawed, all samples were simultaneously analyzed
with real-time PCR (qPCR) to detect ASFV virus loads, as described below [23].

ELISPOT analysis was conducted using fresh peripheral blood mononuclear cells
(PBMCs) from blood obtained with EDTA at d21pv (d0pe) and at d9pe and d20pe.

2.3. Laboratory Analyses

DNA extraction was performed using an Indimag Pathogen Kit (Indical Biosciences,
Leipzig, Germany). Viremia was determined with qPCR analysis using the primers de-
scribed by Fernández–Pinero et al. [23] and the probe ASF-VP72P1 described in the current
OIE ASF chapter (Terrestrial Manual OIE, Section 3.9, Chapter 3.9.1 African Swine Fever
Virus pages 1–18) with the following modification in the thermoprofile made by the Spanish
National Reference Laboratory for ASF: 10 min at 95 ◦C, 5 cycles 1 min at 95 ◦C + 30 s at
60 ◦C, 40 cycles 10 min at 95 ◦C + 30 s at 60 ◦C with fluorescence acquisition in the FAM
channel at the end of each PCR cycle. According to these amplification settings, results
were considered positive when Ct ≤ 30, inconclusive when Ct was between 30 to 35, and
negative when Ct > 35.

The differential detection of BA71∆CD2 was performed in blood samples after ex-
posure using a recently described probe-based SYBR Green qPCR (Applied Biosystems,
Waltham, MA, USA, Path-ID qPCR Master Mix), targeting the LacI reporter gene, only
present in the genome of the BA71∆CD2 vaccine virus [14]. The detection limit of this
qPCR was 20 copies/reaction, with a Ct value of 34.93, standardized using serial dilutions
of a plasmid encoding the LacI gene.

Seroconversion was determined with ELISA (INgezim PPA COMPAC, INGENASA;
Madrid, Spain). Nasal and rectal swabs were analyzed for the presence of the ASFV viral
genome using the procedures previously mentioned. Once the nasal and rectal swabs
arrived at the laboratory, the end of the swab was cut and placed in a tube with 1 mL of
PBS. Tubes were stored at −75 ◦C until DNA extraction and analysis with qPCR.

For each tissue sample, 0.1 g of tissue was diluted 1:10 and homogenized using sterile
PBS and TyssueLyser II (Qiagen, Hilden, Germany); DNA extraction and qPCR were
performed as detailed above.

Plasma samples obtained from pigs were stored at −75 ◦C until use. Once thawed, lev-
els of IFNα, IFNγ, IL-1β, IL-10, IL-12/IL-23p40, IL-4, IL-6, IL-8, and TNFα in plasma were
quantified using the Luminex xMAP technology following the manufacturer’s instructions
(ProcartaPlex Porcine Cytokine & Chemokine Panel 1; ThermoFisher Scientific, Waltham,
MA, USA). The concentrations of each cytokine were calculated using xPONENT software
(Luminex, Austin, TX, USA). Levels of TGFβ and IL-17α were quantified with ELISA
(KingFisher Biotech, Saint Paul, MN, USA, [DIY0730S-003] and Invitrogen [CHC1683Kit],
Waltham, MA, USA, respectively), following the manufacturer’s instructions.

PBMCs were purified from EDTA blood samples by density–gradient centrifugation
with Histopaque 1077 (Sigma-Aldrich, St. Louis, MO, USA). To quantify by ELISPOT assay
the number of IFNγ secreting cells, fresh PBMC were stimulated for 16 h with BA71∆CD2
(vaccine prototype) and/or Georgia 2007/01 (pandemic challenge virus) at a multiplic-
ity of infection (MOI) of 0.2. Commercial mAbs (Porcine IFNγ P2G10 and biotin P2C11,
BD Biosciences Pharmingen, San Diego, CA, USA) at 5 µg/mL were used, as previously
described [24] (Díaz and Mateu 2005). Plates were revealed using HRP-conjugated Strepta-
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vidin (Life Technologies, South San Francisco, CA, USA) and TMB substrate (MABTECH,
Stockholm, Sweden), and spots were counted under a magnifying glass.

2.4. Statistical Analysis

Data were analyzed as a completely randomized design using the GLM procedures
of SAS (SAS Inst., Inc., Cary, NC, USA). An analysis of variance was conducted to detect
differences among treatments. The independent variable was treatment. Dependent
variables were body temperatures, blood, nasal and rectal swab, and tissue Ct values. The
LSMEANS procedure was used to calculate the mean values by treatment. If treatment
effects were detected, least squares means were separated using the PDIFF option in SAS.
For cytokine statistical analysis, a linear mixed-effect model was constructed for each
cytokine, with animal and replicate as fixed effects and treatment and day of study as
random effects. In order to contrast both treatments at each time point, a post-hoc analysis
was performed. The pig was considered the experimental unit. Means are considered
significantly different if p < 0.05, while trends are reported as p = 0.05 to 0.10.

3. Results

In the group fed the conventional diet, one animal died before starting the vaccination
period. Therefore, this group started with 7 animals instead of 8. In addition, another
animal (#396) died in this group on d31pv due to acute meningitis. In the SDPP group,
1 animal (#391) was euthanized on d21pv to balance both groups to 7 animals during the
exposure period. This animal (#391) was randomly selected between animals within the
corresponding pen, excluding those showing the lowest and the highest rectal temperature.
Another animal (#376) died on d35pv due to intestinal prolapse. Both groups finished at
d41pv with 6 pigs.

All pigs intranasally vaccinated with 105 PFU of BA71∆CD2 survived the direct-
contact challenge with pigs infected with Georgia 2007/01 independently of their assigned
diet. However, differences were observed between treatment groups, including clinical
signs and viral load in blood, excretions, and tissues after exposure to the ASFV-infected
Trojan pigs. Interestingly, no fever was recorded at any time after Georgia 2007/01 challenge
in any of the pigs from the SDPP group (Figure 2A; Supplementary Table S1).
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Figure 2. Rectal temperature recorded individually after Georgia 2007/01 exposure of pigs in-
tranasally inoculated with 105 PFU of BA71∆CD2. Data from pigs fed (A) the SDPP diet (SDPP1-7
pigs) or (B) the conventional diet (C1–C7 pigs). T1–T8 (dashed lines): Trojan pigs used for the direct
contact challenge. In red color, animals that died before the end of the study.
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A proportion of pigs vaccinated with 105 PFU intranasally and fed the conventional
diet (C3 and C4) showed a peak of fever starting at d14pe (Figure 2B), with no other signs
of ASF infection observed.

In addition to elevated rectal temperature, pigs #C3 and #C4 were the only ones
exhibiting significant virus loads in both their blood and nasal swabs at the end of the
experiment (Figure 3B; Supplementary Table S2).
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Figure 3. Ct values obtained by qPCR using blood, nasal and rectal swabs from individual animals at
different times post-Georgia 2007/01 exposure (pe). Data from pigs fed (A) the SDPP diet (SDPP1-7
pigs) or (B) the conventional diet (C1–C7 pigs). The higher the Ct values, the lower the ASFV load,
with Ct values > 35 being considered negative (cut-off of the technique). Tables in orange show the
average Ct values obtained in samples from Trojan pigs. Animals in red color died before the end of
the experiment.

Pigs fed the SDPP-containing diet did not exhibit fever or become viremic, and virus
was not detected in rectal swabs at any time post-Georgia 2007/01 exposure (Figure 3A;
Supplementary Table S2).

In addition, the vaccine provided sterilizing protection in pigs fed the SDPP-containing
diet, as no virus was detected in tissue samples at the end of the study (Figure 4A). In
contrast, virus was present in most of the pigs from the conventional diet group in at least
one organ at d20pe (Figure 4B; Supplementary Table S3).
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Figure 4. Ct values obtained by qPCR from different tissue samples of individual animals at the end
of post-Georgia 2007/01 exposure (d20pe). Data from pigs (A) fed the SDPP diet (SDPP1-7 pigs) or
(B) the conventional diet (C1–C7 pigs). The higher the Ct values, the lower the ASFV load, with Ct
values > 35 being considered negative (cut-off of the technique). Tables in orange show the average
Ct values obtained in samples from Trojan pigs. Animals in red color died before the end of the
experiment. Abbreviations: Sub LN = Submaxillary lymph nodes; Retro LN = Retropharyngeal
lymph nodes; Gastro LN = Gastro-hepatic lymph nodes.
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Without exception, the average Ct values found in vaccinated pigs, both in fluids
during the exposure period and in postmortem tissues, were much higher than those found
in Trojan pigs succumbing to the ASFV challenge (see bottom panels in Figures 3 and 4;
Supplementary Tables S2 and S3) confirming solid protection afforded by BA71∆CD2.
Finally, in all cases, the only virus detectable after Georgia 2007/01 exposure was the pan-
demic virus, with no detectable traces of the BA71∆CD2 vaccine prototype (Supplementary
Table S4).

No treatment differences were observed (p > 0.1) in the kinetics of induction of ASFV-
specific IgG and IgA in sera between either treatment group of pigs before and after
the challenge, except for d20pe (d40pv) in which the average values for IgG and IgA
in conventional pigs was higher (p < 0.039 for IgG and p < 0.092 for IgA) (Figure 5A,B;
Supplementary Tables S5 and S6).
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Figure 5. ASFV-specific immune responses analyzed in BA71∆CD2-vaccinated pigs before and after
Georgia 2007/01 challenge. ASFV-IgG (A) and IgA (B) antibodies from sera quantified by ELISA.
Average values for SDPP-fed pigs (SDPP1-7) are shown as dashed lines, while solid lines represent
average values for pigs fed the conventional diet (C1–C7). Standard deviation values are shown.
(C) Number of ASFV-specific IFNγ-secreting T cells found at d9pe by ELISPOT in PBMCs upon
in vitro stimulation with either the pandemic Georgia 2007/01 (white boxes) or the BA71∆CD2
vaccine (black boxes). * = p < 0.05; # = p < 0.1.

Similarly, treatment differences were not found (p > 0.1) between the number of
ASFV specific IFNγ-secreting T cells present at d0pe and d20pe (Supplementary Table S7).
However, by d9pe, the number of specific T cells secreting IFNγ upon ASFV stimula-
tion was numerically higher for the vaccine virus (BA71∆CD2), and a trend to be higher
(p = 0.07) for the Georgia 2007/01 pandemic ASFV strain in pigs fed the SDPP diet than the
conventional diet (Figure 5C).

Finally, the immunomodulatory influence of the SDPP-containing diet was evident
after 24 days of feeding, even before starting the vaccination. Indeed, pigs fed with SDPP
showed a modest but detectable amount in serum of both pro-inflammatory (IL-8 and
TNFα) and anti-inflammatory cytokines (IL-4) at vaccination time (Figure 6).
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Interestingly, the levels of the pro-inflammatory cytokine IL-17 before vaccination were
lower in the SDPP group than in pigs fed with a conventional diet, and, as expected, the
levels of cytokines in serum varied along the experiment. Furthermore, the Th1 cytokine
IL-12/IL-23p40 increased in the SDPP group at 7 dpv (Figure 6), coinciding with the
elevated levels of ASFV-specific T cells observed with ELISPOT (Figure 5C). Levels of the
two cytokines IFNγ and TNFα, also recently identified as markers of vaccine-induced
ASFV-specific Th1 response [14], showed a peak at 4 dpe significantly higher in animals
fed with SDPP. Despite TGFβ seeming to show some significant differences, they mostly
corresponded to the outlier value observed for one pig in the conventional group (#C4),
coinciding with an animal showing fever and low Ct values. Finally, IL-8, TNFα, and IL-10
peaked at the end of the study in the group of pigs fed the conventional diet, coinciding
with the detection of ASFV replication and fever (Supplementary Table S8).

4. Discussion

Due to the wide expansion of ASFV around the world, leading to a negative impact
on pig health as well as huge economic consequences for pig producers, research on new
treatments and vaccines that could help to mitigate the negative repercussions related
to this virus has intensified in recent years. Because inactivated and subunit vaccine
formulations have failed to protect pigs against the pandemic ASFV, research efforts have
focused on either natural or recombinant LAVs as the only short–medium-term strategy to
obtain highly efficient ASF vaccines [4,25]. Several recombinant LAV candidates have been
described so far in the literature, capable of inducing solid protection against experimental
challenges with the pandemic genotype II ASFV strains [5,6].

The detection of illegally introduced genotypes I and II attenuated ASFV vaccines in
Chinese pig farms [2,26] confirms the need for caution when delivering ASF LAVs to the
field without the appropriate supervision from regulatory agencies. This led to renewed
efforts to standardize protocols for the registration and approval of the most efficient and
safest vaccines [27]. At the same time, it is important to continue searching for methods to
improve LAV prototypes and to develop efficient subunit vaccines for the future.



Vaccines 2023, 11, 825 9 of 13

In the present experiment, we extended previous work using BA71∆CD2, a recombi-
nant vaccine prototype capable of protecting in a dose-dependent manner against experi-
mental challenges with homologous and heterologous viruses, including the genotype II
pandemic virus [28,29]. For comparative studies, in the present work, an intranasal dose
of 105 PFU of BA71∆CD2, one logarithm below the optimal dose previously reported [14],
was administered to pigs fed a conventional diet with or without SDPP. As expected for the
dose and route used, all pigs survived exposure to the Trojan pigs infected with Georgia
2007/01, independently of the dietary treatment. However, significant differences were
observed between treatment groups. Tissues and fecal samples from all pigs consuming the
SDPP-containing diet were negative for ASFV genome detection (at levels below our detec-
tion methods) at all sampling times following exposure to the Trojan pigs. In contrast with
this apparent sterilizing protection, many pigs fed the conventional diet showed detectable
virus in one or more samples post-exposure to the Trojan pigs. It is important to notice that
the Georgia 2007/01 virus titers found in fluids and tissues of some vaccinated pigs fed
the conventional diet were higher than expected, at least compared with those previously
found using lower and higher vaccine doses than the one tested here [14]. We believe that
this might be due to a sub-optimal health status of the animals from origin, which might
negatively affect ASFV vaccination and transmission, as has been postulated in [14,17]. In
fact, and as described in the results section, we had three ASF-unrelated deaths, one of them
even before starting the vaccination despite treating them with antibiotics. Independently
of this reality, the virus titers found in vaccinated pigs were always below those found in
the Trojan pigs succumbing to Georgia 2007/01, confirming the solid protection afforded
by the vaccine, even in adverse conditions. Therefore, the current data suggest that dietary
SDPP improved vaccine efficiency and demonstrates that dietary SDPP could have a direct
benefit for ASF vaccination.

Treatment differences, except at the end of the study, were not observed in the serum
levels of anti-ASFV IgG and IgA antibodies. Further studies are needed to better understand
the kinetics of induced immunoglobulin isotypes as well as the local immune responses
induced at the site of immunization and ASFV entry (nasal mucosa) and other mucosal
tissues to distinguish any changes in the antibody induction due to feeding diets with
SDPP [30,31].

Conversely to the antibody kinetics, an increase in specific IFNγ secretory T cells was
observed in vaccinated pigs, detectable by d9pe to the Trojan pigs. The fact that virus-
specific T cells recognize both the BA71∆CD2 vaccine and the pandemic virus confirms
the induction of T cells capable of recognizing genotypes I and II, currently circulating in
China [2]. These results and the corresponding peak of serum TNFα early after Georgia
2007/01 exposure of SDPP-fed pigs is consistent with the relevance of vaccine-induced
IFNγ + TNFα+ polyfunctional memory Th1 cells in ASFV protection [14] and in the delayed
transmission of ASFV in SDPP-fed pigs [20]. Additionally, in this line, the peak of the Th1
cytokine IL12 [32] in plasma at 7 dpv also suggests the SDPP-driven enhancement of the
vaccine-induced Th1 response. Altogether, these results indicate that the addition of SDPP
to diet somehow enhances the vaccine-induced ASFV-specific cellular responses. Further
studies focused on mucosal immunity and its interplay with systemic immune responses
will be required to better characterize the mechanisms behind this observation.

Of particular interest are the differences observed for several immune mediators in
the serum of vaccinated pigs consuming the SDPP diet compared to that of pigs fed the
conventional diet, even before immunization. Feeding SDPP resulted in elevated levels
of pro- and anti-inflammatory cytokines in their plasma, confirming the tight regulation
of the immune responses previously reported for SDPP-fed animals [33,34]. These results
also confirm the relevance of the health and immune status of the animals in the responses
observed after ASFV vaccination [15–17] and open new avenues for dietary intervention.

Interestingly, the sequential increase in IL-17 (from d0pv to d21pv) in vaccinated
pigs fed the conventional diet may indicate a tighter control of Th17 and T-regulatory
cells favoring the optimal expansion of Th1-like responses [35]. In this regard, a recently



Vaccines 2023, 11, 825 10 of 13

published study associated the presence of regulatory T cells with the lack of long-term
memory responses induced by ASF LAVs [36].

Dietary SDPP was shown to improve vaccine efficiency in a commercial trial where
pigs were vaccinated with a commercial vaccination program [37]. Finally, the increase in
IL-10, IL-8, and TNFα at the end of the study in pigs fed the conventional diet is consistent
with the presence of Georgia 2007/01 at this time point in the animals from this group.
Of course, the theoretical dysregulation of these cytokines is much lower than previously
described at a late time post-infection in naïve pigs showing acute ASF with an uncontrolled
cytokine storm due to the massive ASFV presence [38–41].

SDPP is a functional feed ingredient that has been demonstrated to systemically mod-
ulate the immune system. In some studies, the effects exerted by SDPP were characterized
to promote both Th1-like response and cytokine induction. Díaz et al. [42] reported a signif-
icant reduction in interstitial pneumonia and faster virus clearance in pigs infected with
porcine reproductive and respiratory syndrome virus and consuming an SDPP-containing
diet. The authors concluded that pigs fed SDPP were able to mount a more robust im-
mune response and were able to clear the virus more efficiently. The increase in cytokine
expression (IFNγ and IL-1) in the lungs of pigs receiving SDPP in their feed points to a
Th1 enhancement. Markowska-Daniel and Pejsak [43] reported that the administration
of SDPP through both water and feed significantly increased, especially in smaller pigs,
the percentage of CD8+ T cells, which are critical for protection against ASFV [10]. Thus,
dietary SDPP may enhance the immune response of pigs vaccinated with BA71∆CD2,
contributing to sterilizing immunity observed in the present experiment.

5. Conclusions

In summary, under the conditions of this exploratory study to prove the concept, the
addition of SDPP in feed improved the ASFV vaccine prototype efficacy. Pigs fed the diet
with SDPP showed lower virus load in nasal secretion and absence of virus in blood and
feces after exposure to Trojan pigs infected with Georgia 2007/01 compared to those fed
the conventional diet. Furthermore, no virus was detected in any organ tissue of the pigs
fed the SDPP diet at the time of sacrifice (d20pe). This suggests that dietary SDPP can be
used strategically as a health management tool to enhance vaccine efficiency. However, it is
important to point out that the current work involved a limited number of animals under
controlled conditions. These results should be verified and extended in further studies
with a larger number of animals under field conditions.
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