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Multi-population genome-wide association
study implicates immune and non-immune
factors in pediatric steroid-sensitive
nephrotic syndrome

A list of authors and their affiliations appears at the end of the paper

Pediatric steroid-sensitive nephrotic syndrome (pSSNS) is the most common
childhood glomerular disease. Previous genome-wide association studies
(GWAS) identified a risk locus in the HLA Class II region and three additional
independent risk loci. But the genetic architecture of pSSNS, and its genetically
driven pathobiology, is largely unknown. Here, we conduct amulti-population
GWAS meta-analysis in 38,463 participants (2440 cases). We then conduct
conditional analyses and population specific GWAS. We discover twelve sig-
nificant associations—eight from the multi-population meta-analysis (four
novel), two from the multi-population conditional analysis (one novel), and
two additional novel loci from the European meta-analysis. Fine-mapping
implicates specific amino acid haplotypes in HLA-DQA1 and HLA-DQB1 driving
the HLA Class II risk locus. Non-HLA loci colocalize with eQTLs of monocytes
and numerous T-cell subsets in independent datasets. Colocalization with
kidney eQTLs is lacking but overlap with kidney cell open chromatin suggests
an uncharacterized disease mechanism in kidney cells. A polygenic risk score
(PRS) associates with earlier disease onset. Altogether, these discoveries
expand our knowledge of pSSNS genetic architecture across populations and
provide cell-specific insights into its molecular drivers. Evaluating these
associations in additional cohorts will refine our understanding of population
specificity, heterogeneity, and clinical and molecular associations.

Pediatric steroid-sensitive nephrotic syndrome (pSSNS) is a rare
disease of the glomerular filtration barrier. Its incidence ranges
from 1.15–16.9 cases in every 100,000 children, occurring most fre-
quently in South Asian populations1. pSSNS causes massive protei-
nuria and increases the risk of thromboembolism, sepsis, and
progression to chronic kidney disease (CKD)/end-stage kidney dis-
ease (ESKD)2–7. And those progressing to ESKD have increased odds
of recurrent NS in their allograft8. pSSNS is impactful across the
lifespan—31–50%of those affected have relapses in adulthood9.Much
of pSSNS’s morbidity is related to side effects of the non-specific

immunosuppressants which allow some to achieve remission of their
proteinuria7, 10–17.

Despite intensive investigation, there are no known monogenic
forms of pSSNS to illuminate its pathobiology. However, we know that
immune dysregulation is a major contributor18,19. But determining
causal immune factors via case-control studies of cytokines profiles,
cell types, and transcriptomic signatures is challenging. The dynamic
responses of the immune system at different disease stages and to
various stimuli make it difficult to determine whether observed dif-
ferences are causal, correlated, or due to independent biological/
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environmental factors. And kidney tissue in children is rarely available
to determine intrarenal, molecular drivers of pSSNS.

Previous GWAS have discovered four pSSNS risk loci20–24. In each
GWAS, the top risk locus is in theHLAClass II region. Twoother loci are
plausibly immune-related, with the closest genes being Calcium
Homeostasis Modulator Family Member 6 (CALHM6)25 and TNF
SuperfamilyMember 15 (TNFSF15)26. The lead SNPof the fourth locus is
within nephrin (NPHS1), a fundamental glomerular gene implicated in
Mendelian NS27. These studies are illuminating but limited by smaller
sample sizes, primarily population-specific analyses, and limited post-
GWAS analysis. Herewe conducted a large anddiverseGWASof pSSNS
to discover and more fully characterize disease-associated genetic
variation and unravel its pathogenesis at the interface of the immune
system and kidney.

Results
We conducted amulti-population, fixed-effect, inverse-variance,meta-
analysis across twelve GWAS datasets comprised of 2440 cases and
36,023 controls of Admixed American, African, East Asian, European,
Maghrebian, and South Asian populations (Fig. 1, Supp. Fig. 1, Supp.
Table 1).To account for population-driven effect heterogeneity, we
also performed a meta-regression with MR-MEGA28. Given the
increased power in the presence of heterogeneity across populations,
we identified significant loci using MR-MEGA results. Eight loci (four
new, and all outside HLA) were significant (MR-MEGA p < 5 × 10−8)
(Table 1, Fig. 2A, Supp. Fig. 2). The lead SNPs of the novel loci were
all intronic: (1) rs7759971 in Abelson Helper Integration Site
1(AHI1; p = 4.90 × 10−12); (2) rs55730955 in CD28 molecule (CD28;
p = 4.27 × 10−10); (3) rs8062322 in C-type Lectin Domain Containing
16 A (CLEC16A; p = 1.61 × 10−10); (4) rs28862935 in betacellulin (BTC;
p = 1.08 × 10−9). The remaining three significant loci located outside of
the HLA region were previously reported23,24. The associations found
near NPHS1 and TNFSF15 are driven by overlapping samples from Jia

Fig. 1 | Flowchart of study design. 12 datasets across six populationswere used for
population-specific and multi-population GWAS meta-analyses. The population
assignment and number of cases for each dataset are indicated (yellow=European
(EUR), green=African (AFR), blue=East Asian (EAS), orange=South Asian (SAS),
purple=Maghrebian (MAG), red=Admixed American (AMR)). Post-GWAS analyses
include colocalization with both kidney and immune eQTL datasets and overlap of
SNPs within credible sets with single-cell kidney and immune open chromatin
(ATAC-seq). HLA imputation with HLA-TAPAS was used to identify classical alleles
and specific amino acids associated with pSSNS, followed by modeling of the HLA
protein and stability predictions. Dataset summary statistics were used to generate
polygenic risk scores using PRS-CSx and associations with clinical covariates were
tested. pSSNS= pediatric steroid-sensitive nephrotic syndrome, eQTL = expression
quantitative trait loci. Ta
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et al; however, this is an independent replication of the CALHM6 locus.
After conditioning on the lead SNPs, two more significant loci
emerged: (5) rs1794497 upstream of HLA-DQB1, (p = 6.79 × 10−52); (6)
rs2256318 in an intron of MHC Class I Chain-related Gene A (MICA;
p = 9.70 × 10−18) (Fig. 2B, Supp. Fig. 3). Population-specific GWASmeta-
analysis discovered two additional significant loci in Europeans
(Fig. 2C, Supp. Table 2-3, Supp. Fig. 4): The lead SNPswere in introns of
(7) rs111796602 in an intron of Engulfment and Cell Motility 1 (ELMO1;
p = 1.72 × 10−8) and (8) rs12911841 in an intron ofMortality Factor 4 Like
1 (MORF4L1;p = 3.88 × 10−8). Loci with population-driven heterogeneity
were observed at three loci. Variants at the CALHM6 locus were

associated with an increased risk in Europeans and those at the
TNFSF15 and NPHS1 loci were associated with an increased risk in East
Asians (Supp. Fig. 5, Supp. Fig. 6). The remaining loci showed similar
effects across populations (Fig. 2D). Finally, there were 20 novel sug-
gestive loci (MR-MEGA p < 1 × 10−5) in the multi-population GWAS
(Supp. Table 4, Supp. Table 5). On a liability scale and excluding HLA,
European heritability was 0.04 [CI: −0.08, 0.16] and East Asian herit-
ability was 0.12 [CI: 0.04, 0.21], with large confidence intervals likely
due to small effective sample sizes.

A number of insights emerged from evaluating disease asso-
ciations, functions, and expression patterns of the lead SNPs and/or

A)

B) C)

D)
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Fig. 2 | GWAS results.All loci are labeled by nearest genewith novel associations in
red.AMulti-populationmeta-analysis of 2440cases vs. 36,023 controls. TheP value
from test of deviance of full meta-regression model compared to the null model
using MR-MEGA. B Multi-population conditional meta-analysis. The P value from
multiple linear regression with COJO. C European meta-analysis of 674 cases vs.
6817 controls. Discoveries that included the summary statistics from suggestive
SNPs available fromDufek et al. are indicatedwith + and only novel associations are
labeled. The P values are from meta-analysis with METAL. D Multi-population and

single-population odds ratios with 95% confidence interval for novel multi-
population significant SNPs. The P value for MICA is from the conditional analysis
with COJO, Maghrebian, and Admixed American P values are from logistic regres-
sion, and the rest are from inverse-variancefixed-effectsmeta-analysiswithMETAL.
All P values in A–D are unadjusted for multiple testing and all tests are two-sided.
Number of cases in each analysis: Admixed American n = 98, African n = 109, East
Asian n = 1311, European n = 674, Maghrebian n = 55, South Asian n = 193, Meta-
Analysis n = 2440.
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the closest genes at the novel non-HLA loci. First, PheWAS
using Open Target Genetics (http://genetics.opentargets.org)29

found that SNPs at most loci were associated with diverse white
blood cell traits, atopic disorders, and autoimmune conditions.
For example, among the strongest associations with the lead SNPs
at the following loci include: CLEC16A, CD28, MICA, and ELMO1 with
eosinophil counts; AHI1 with monocyte and neutrophil counts,
asthma, and hay fever (also shared by CD28); and MICA with type 1
diabetes.

Second, while most of these genes are primarily known for their
role in immunity, many also have known roles in kidney diseases and
cells. Common AHI1 variants are associated with atopy, lupus, and
diverse immune cell traits29. But rare, pathogenic AHI1 coding variants
cause the monogenic ciliopathy Joubert Syndrome, which includes
cystic kidney disease30. ELMO1 participates in Rac1 pathway activation
and actin cytoskeletal rearrangement31, is expressed in podocytes32,
and is associated with diabetic nephropathy33. CD28, a T-cell glyco-
protein, binds a co-stimulatory molecule B7-1 (CD80) on antigen-
presenting cells. B7-1 is expressed on human podocytes in some forms
of nephrotic syndrome and blocking the B7-1/CD28 interaction with a
CTLA-4 immunoglobulin can ameliorate proteinuria34. MICA is
expressed in kidney endothelium, binds and activates cytotoxic
CD8+T cells and NK cells, and has increased glomerular expression in
lupus35. BTC contributes to inflammation by binding to epidermal
growth factor receptor36, a gene whose kidney expression is upregu-
lated following kidney injury37. CLEC16A takes part in the B cell
receptor-dependent HLA-II pathway in human B cells38 but is also

significantly expressed in the human podocytes (https://atlas.kpmp.
org). CLEC16A is also involved in autophagy, mitophagy, and endoly-
sosomal trafficking in multiple cell types39,40. Furthermore, it is
also in close proximity to CIITA, a master transcription factor of HLA
class II genes41 and Dexamethasone Inducible Transcript (DEXI), a
glucocorticoid-induced gene42.

We next turned to discovering specific variants and genes driving
these GWAS loci and discerning whether they are acting in immune
cells, kidney cells, or both.

First, we conducted colocalization with eQTL data from two
functionally distinct kidney compartments (glomerulus and tubu-
lointerstitium; NEPTUNE43), multiple tissues fromGTEx44, and immune
cells of healthy adults from DICE45 and BLUEPRINT46. Overall, pSSNS
GWAS SNPs demonstrated significant enrichment in multiple immune
cell eQTLs, led by a 69× and 62× increased odds of being monocyte
and CD4+memory Treg eQTLs, respectively (Fig. 3). On an individual
gene level, seven genes colocalized with immune cell eQTLs (Fig. 3,
Supp. Table 6). Three geneswere closest to the leadGWAS SNP at their
respective locus—CALHM6, AHI1, and TNFSF15. Each were significantly
colocalized with monocyte eQTLs. AHI1 also colocalized with many
T-cell subsets and naive B cells. Finally, a suggestive locus on chro-
mosome 17 colocalized in CD4+memory Treg cells with two distinct
genes—Gasdermin B (GSDMB) and ORMDL sphingolipid biosynthesis
regulator 3 (ORMDL3). The GSDMB/ORMDL3 locus is associated with
multiple autoimmune disorders and eosinophilic inflammation-driven
asthma47. In asthma, higher GSDMB expression is correlated with
increased interferon signaling and MHC class I antigen presentation48.
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Fig. 3 | Colocalization of SSNS GWAS and eQTL datasets. Each eQTL dataset is
labeled with colocalized loci (left) and enrichment estimates (right). The source of
each eQTL dataset is labeled on vertical gray bars. BP BLUEPRINT, NEP NEPTUNE.
Genes with regional colocalization probability (RCP) > 0.2 in at least one tissue/cell
are included. pSSNS GWAS loci that colocalized with tissue/cell-type eQTLs are
indicated by black dots, with larger dots indicating higher RCP. GTEx tissues
without associations are excluded from this figure (see Supp. Fig. 7). Enrichment

estimates from fastENLOC are based on genome-wide summary statistics from
GWAS and include a shrinkage parameter that results in 0 enrichment for multiple
tissues/cell types. Estimates are presented as the logarithm of the odds ratio ±
standard error. logOR = 2 ~ OR= 7.5, logOR=3 ~OR= 20.1, logOR = 4 ~ OR = 54.6.
eQTL sample sizes: NEPTUNE glomerulus n = 240, tubulointerstitial n = 311, BLUE-
PRINT n = 200 DICE n = 91.
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Notably, there was no colocalization with kidney eQTLs despite suffi-
cient sample sizes (Supp. Fig. 7).

We then created a 95% credible set for all non-HLA significant loci
and assessed their overlap with ATAC-seq derived open chromatin
data from immune49 and kidney cells50,51 (Supp. Table 7). The SNPswith
the highest posterior inclusion probability (PIP) for AHI1, rs7759971
(PIP = 0.40), overlapped with open chromatin ofmultiple immune cell
types, including CD34 + cells, common lymphoid and myeloid pro-
genitors, hematopoietic stem cells, and multipotent progenitors.
Similarly, the top SNP for CD28, rs55730955 (PIP = 0.68), overlapped
with CD4+and CD8+open chromatin. The top PIP SNP for BTC,
CLEC16A, and TNFSF15 had no overlap with open chromatin. However,
each locus had individual SNPs with lower PIPs that overlapped with
both immune and kidney cell open chromatin.

We next fine-mapped the HLA risk locus to discover classical HLA
alleles and amino acids associatedwith pSSNS (Supp. Table 8). We first
imputed across the extended MHC region using a multi-population
HLA imputation panel52, resulting in 640 classical HLA alleles, 4513
amino acids in HLA proteins, and 49,321 SNPs in the extended MHC
region for association. We used population-specific and multi-
population SNP-level logistic regression, to identify specific SNPs
and classical alleles associated with pSSNS (Supp. Table 9, Supp.
Note 1, Supp. Table 10, Supp. Fig. 8).

We next turned to discovering specific HLA amino-acid positions
most associatedwith risk of pSSNS through logistic regression analysis
of all residues at each position. Amino-acid position 47 in HLA-DQA1
was most strongly associated with pSSNS (Pomnibus = 7.73 × 10−83)
(Supp. Table 11, Supp. Fig. 9). Arginine was the most frequent amino-
acid; a substitution to lysine conferred the greatest disease risk
(p = 5.70 × 10−80; OR [95% CI] = 3.62 [3.17—4.14]). A second association
in near-perfect linkage disequilibrium was identified at HLA-DQA1
position 52 (p = 1.14 × 10−82). Arginine was again the most common
amino-acid at this position, and a substitution to serine conferred the
greatest protection from risk (p = 1.00 × 10−28; OR =0.53 [0.47—0.59]).
After conditioning, an independent associationwasdiscovered atHLA-
DQB1 position 26 (p = 3.22 × 10−13). A change from the most common
amino-acid leucine to glycine conferred the most significant protec-
tion (p = 4.75 × 10−12; OR = 0.64 [0.60—0.73]). A haplotype analysis
identified the 47lysine−52histidine haplotype was associated with greatest

increase in odds of pSSNS (Fig. 4A).HLA-DQA1position 47 is locatedon
the outside of the peptide-binding groove and acts as a regulator of
binding stability, which, when altered, has been suggested to mediate
the development of autoimmune disorders53. Arginine at HLA-DQA1
position 52 has been associated with autoimmune disorders, including
type 1 diabetes54.

We then used DynaMut255 to model the impact of the
47lysine−52histidine haplotypes on protein structural stability (Fig. 4B).
This is quantified by Delta Delta G (ddG), where ddG <0 predicts
unstable structure. The haplotype consisting of lysine (47) and histi-
dine (52) predicted the most instability (ddG= −3.64). Notably, the
predicted increase in protein instability and increased odds of disease
for each haplotype were concordant. This suggests pSSNS-associated
haplotypes increase the odds of disease by increasing the instability of
HLA-DQA1 and altering its ability to properly form a stable HLA-II
molecule.

Finally, we generated a multi-population pSSNS polygenic risk
score (PRS) using summary statistics of 1974 cases and 20,039 controls
from European, East Asian, African, and South Asian populations. We
tested the association of the PRS with demographic and clinical phe-
notypes in 233 European children with sufficient clinical data from the
EU-European sub-cohort, adjusting for four genetic principal compo-
nents. The highest PRS quartile had significantly lower age of onset
(Q4: 4.9 years) compared to the lowest quartile (Q1: 6.9 years,
p = 2.79 × 10−3, Supp. Table 12).We did not find a significant association
between PRS and sex or relapsepattern. Of note, we found concordant
results using a PRS generated using discovery GWAS from a PRS score
generated from European GWAS only (Supp. Table 12, Methods).

Discussion
A number of important discoveries emerged from this study. First, we
identified seven novel pSSNS loci—four novel loci from our multi-
population meta-analysis (BTC, AHI1, CD28, and CLEC16), one locus
from the corresponding conditional analysis (MICA), and two addi-
tional novel loci unique to the European meta-analysis (ELMO1,
MORFL1). Second, we found that while the immunological connections
with the lead SNPs and closest genes in these newly discovered loci are
well-established, most of them also have a bona fide, but overall less
understood role, in kidney cells and diseases. Identifying the genes,

Amino Acid Haplotype      Frequency

DQA1_47 DQA1_52 Case Control OR (95% CI) P-value
Predicted 

Stability Change 

cystine arginine 0.34 0.31 1.93 [1.71, 2.18] 8.77 x 10-27 -2.67
lysine histidine 0.28 0.12 3.56 [3.12, 4.06] 1.09 x 10-78 -3.64

glutamine arginine 0.13 0.18 1.69 [1.45, 1.97] 2.90 x 10-11 -0.05
arginine serine 0.25 0.39 - -

B)

A)

Reference

Fig. 4 | HLA-DQA1 amino-acid associations and stability prediction. A Increased
risk and predicted stability change of the two-amino-acid residue haplotypes at
HLA-DQA1 positions 47 and 52. Odds ratios and P values (two-sided) are from a joint
logistic regression with arginine47-serine52, the most common, set as reference,
adjusting for population-specific principal components and continental popula-
tions. The reference haplotype confers the strongest protection (i.e., odds ratios
indicate increase in risk compared to arginine47-serine52). Decreasing values of the

predicted stability change indicate decreasing stability. B Protein structure for the
reference haplotype arginine47-serine52 (left, blue) and lysine47-histidine52 (right,
red). The residues in green display a potential interacting amino acid with mutated
amino acids. The color scheme for interactions (dashed lines) is as follows: cyan for
Van der Waals [VDW], red for hydrogen bonds, green for hydrophobic bonds, sky
blue for carbonyl bonds, and orange for polar bonds. Amino acids displayed with
no visible bonds indicate a prediction of weak VDW bonds.
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cells, andorgan systemswithwhicheachof these identified risk loci act
will be an important future step.

For instance, is the lead SNP nearAHI1 in fact altering the function
of AHI1 itself? And if so, how will we come to understand how rare,
coding variants in this gene cause a structural, cystic kidney disease
while a common, non-coding variant impacting the same gene con-
tributes to an immunologically-mediated, acquired condition of the
kidney? The availability of single-cell omics data from larger samples
sizes and pediatric kidney tissue will be critical to help sort this out.
Thesenewdatasetswill alsohelppost-GWAS studies like colocalization
with eQTL and open chromatin, as we hypothesize that the paucity of
kidney eQTLs we observed may be due to mapping pSSNS GWAS data
tomolecular datasets that do not adequately represent rare kidney cell
types or changes that occur in the childhood age. In another example,
we have now identified a two amino-acid haplotype in HLA-DQA1 that
increases risk of pSSNS. By what mechanism is it doing this?

Third, while our field has been long-focused on the role of T cells
in pSNNS and more recently B cells, our results now suggest that
monocyte and eosinophil gene dysregulation may also be a potential
contributor to the pathogenesis of pSSNS. Are we observing a patho-
logic signature from resident monocytes and/or circulating mono-
cytes. Alternatively, are some single-cell immune eQTLs a proxy for
certain kidney subtypes that we don’t observe in our current bulk-level
analysis? While SSNS is sometimes observed in the hypereosinophilic
condition Kimura disease56, its etiology unknown. Defining the
mechanism by which genetically driven changes in these cell types
contribute to pSSNS onset is an important area of future inquiry.

Our analysis revealed a lack of significant colocalization between
genetic variants associatedwith pSSNS and those associatedwith gene
expression in kidney tissues. This could be consistent with the
understanding that pSSNS is primarily a disease of immune dysregu-
lation, with the kidney being the end organ affected. It is thus plausible
that most of the genetic risk for pSSNS is mediated through genes and
pathways in immune cells. This is supported by previous research that
has shown that transplanting healthy kidneys into patients with a his-
tory of NS can result in recurrence of disease. Furthermore, a case
report described that retransplanting the now-diseased kidney into a
patient without NS resulted in disease cessation in the transplanted
kidney, suggesting that an abnormal immune system alone is sufficient
to cause pSSNS8,57.

Nevertheless, we posit that, as exemplified by the NPHS1 risk
locus, there may be genetic factors that contribute to pSSNS through
regulatory effects on kidney cells. Larger GWAS and eQTL studies will
provide greater statistical power, which may uncover colocalized
variants in the kidney. In addition, eQTL analysis using single-cell RNA-
seq should providemore power to detect eQTLs in rare cell types, such
as podocytes and glomerular endothelium. These signals that may be
currently missed with the bulk methods. We may also more readily
detect kidney cell impact from these pediatric SSNS GWAS data if use
kidney cell omics datasets derived solely from children. Integrating
pediatric-derived GWAS and molecular data (e.g. eQTL, open chro-
matin) derived by patients of the same age may capture state-
dependent relationships that are obscured when using adult omics
data with pediatric GWAS summary statistics. Finally, it is important to
note that regulation of genes in kidney cells by risk SNPs may occur
through mechanisms that are not linked to levels of gene expression,
such as allele-specific expression of NPHS123. Therefore, future studies
should also consider looking for evidence of allele-specific expression,
splice QTLs, protein QTLs, or other forms of dysregulation to uncover
the impact of GWAS alleles on kidney cells.

Fourth, we discovered specific amino-acid changes in HLA-DQA1
and -DQB1 associated with pSSNS that should empower subsequent
studies to illuminate pathomechanisms at the risk locus that has been
identified in every GWAS of pSSNS to date. But change in HLA-DQA1
and HLA-DQB1 gene expression due to genetic variation in the MHC

region has also been implicated in association with eGFR, a common
complex kidney trait28,58. How is altered expression of these genes
involved in both a rare glomerular disease and a common, complex
kidney trait? We don’t currently know. Ultimately, applying in silico
methods to high-quality, human-derived immune- and kidney-omics
datasets should help pare down candidate alleles, genes, cell types,
and mechanisms to a manageable number for subsequent experi-
mental studies in cells and model systems.

Finally, the association of higher PRS with younger age of onset
suggests that a stronger genetic predisposition to disease lowers the
threshold of an individual to develop pSSNS in the context of envir-
onmental factors and may ultimately help share clinical screening and
care. We must now evaluate this PRS in other cohorts, such as in
cohorts of pSSNS from other global populations, adults with the dis-
ease, or childrenwith other forms of childhood-onset NS. Studying the
molecular correlates of a high PRS score could also shed light on
pathobiology driven by an increased burden of genetic risk of this
disease.

There are limitations to this study. Cases and the reference
population were not all genotyped on the same SNP array. While we
used a robust strategy to account for the use of different SNPs arrays
containing different SNPs, this still adds heterogeneity. Heterogeneity
is also added by the age of onset pSSNS not being identical for all
groups, with the Columbia-originating cohort including patients less
than 21 as opposed to 18 for the other groups. And for the most part,
we did not recruit healthy controls. Rather, we relied on available
reference populations, assuming that, as a rare disease, pSSNS cases
were absent within them. Each of these factors would be predicted to
reduce power for discovery. Our ability to accurately measure herit-
ability is limited. This is because sparse signals with strong effects can
lead to less efficient estimates and low sample sizes can downwardly
bias the results59. Moreover, heritability can vary among populations.
Thus, to better understand heritability of pSSNS within and across
populations, it is crucial to increase sample sizes across all popula-
tions. Finally, the sample sizes for South Asian, Maghrebian, and Afri-
can could result in overfitting of summary statistics and were too low
to allow us to perform rigorous post-GWAS analysis of their results on
a population-specific basis. Our novel genome-wide significant loci
revealed consistent directionality across all populations, but with
varying magnitudes and significance. Obtaining independent datasets
with sufficient sample sizes from each population will enhance our
understanding of population heterogeneity and refine estimates of
effect size.

In conclusion, the discoveries emerging from our global GWAS of
pSSNS expand our knowledge of the genetic architecture of this dis-
ease and accelerate our understanding of its molecular underpinnings
and clinical implications.

Methods
This research was conducted with the informed consent of all study
participants and had ethical approval from the Boston Children’s
Hospital IRB.

Figures were generated with R (v3.6.3) and ggplot2 (v3.3.5).

GWAS data summary
Recruitment of samples and statistical analyses varied by recruiting
group. Details for each dataset are described below and in Supp.
Table 1.

GWAS data from NEPHROVIR/EU. Sample collection and genotype
calling were done at Sorbonne Université in Paris. Pediatric steroid-
sensitivenephrotic syndromewasdefined as proteinuria >0.25 g/mmol,
serum albumin <25 g/L (< 30 in France), full response within four weeks
of 60mg/m2/day of oral prednisone or prednisolone, and age of onset
<18 years old. 244 previously reported European patients from the
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NEPHROVIR study21 were combined with 159 newly recruited European
patients recruited from France, Lithuania, Poland, Russia, Italy. Healthy
adult controls (n = 300) were recruited from Lyon, France, and com-
bined with population-matched controls from the 1000 Genomes
Project Phase 3 release (n =493)60 and the 3Cites Cohort (n = 2000).
There were also 56 sub-Saharan African cases with 451 African controls
from the 1000 Genomes Project and 85 Maghrebian cases with 261
Moroccan population-matched controls. Both were reanalyzed from a
previous report21. There were 160 Indian cases with 93 population-
matched controls. Samples were genotyped on the Illumina Human
OmniExpress or Illumina Omni 2.5 arrays.

GWAS data from Columbia University (US Cohorts). Sample collec-
tion and genotype calling was performed at Columbia University in
New York. Cases were defined by local recruitment centers across the
US, Europe, and Brazil as either minimal change disease or non-
biopsied SSNS with age of disease onset <21. Five cohorts from
Columbia University consisted of patients from European (ncases=371,
ncontrols = 4359), East Asian (ncases = 17, ncontrols = 443), sub-Saharan
African (ncases = 65, ncontrols = 7344), South Asian (ncases =39,
ncontrols = 534) and Admixed American (ncases = 109, ncontrols = 13,266)
populations. As defined by the 1000 Genomes Project, Admixed
Americans (AMR) include the following populations: Puerto Rican in
Puerto Rico (PUR), Columbian in Medellin (CLM), Peruvian in Lima
(PEL), Mexican Ancestry in Los Angeles (MXL). The genotyping of the
cases usedmultiple versions ofMEGA (Multi-EthnicGlobalArray) chips
that includes MEGA 1.0, MEGA 1.1, andMEGAEX. The controls that were
genotyped on MEGA 1.0 were downloaded from NCBI dbGAP (IDAT
files) from the PAGE consortium61. The differences between the chips
were correctedfirstbymapping all the SNPs to a commonclusterfile in
Genome Studio for individual MEGA platforms and then using Snpflip
software.

GWAS data from Kobe University. Pediatric steroid-sensitive
nephrotic syndrome cases were defined as urine protein to creati-
nine ratio ≥2.0, serum albumin ≤2.5 g/dl, and complete remission with
4–6 weeks after starting 60mg/m12 oral prednisolone per day and age
of onset <18 years old. Three GWAS studies of SSNS in Japanese
(ncases = 987, ncontrols = 3206), Korean (ncases = 243, ncontrols = 4041) and
Thai (ncases = 65, ncontrols = 94) population were completed at The
University of Tokyo, Japan. The Japanese GWAS data have been pre-
viously reported22,23. The Thai dataset was genotyped with the Axiom
array. TheKorean datawasgenotypedwith theAffymetrix Axiomarray
for cases and Illumina OmniQuad chip for controls.

Dataset QC, imputation, and GWAS
Quality control, imputation, and GWAS were conducted separately for
each study location and population. GC lambda (GCλ) was used to
assess inflation in all studies. The final case and control sizes and the
number of variants tested can be found in Supp. Table 1 and Supp.
Fig. 1. Supplementary Fig. 11 shows matching of cases and controls in
PCA plots. Manhattan plots and GC can be found in Supp. Fig. 12 and
genome-wide significant hits resulting fromdataset GWAS are in Supp.
Table 13.

GWAS data from NEPHROVIR/EU: EU-European, EU-African,
Maghrebian, Indian. Each file was quality controlled separately to
remove related individuals (IBD > 0.1875), low call rate (genotype rate
<98%), and cases with discordant sex. SNPs were quality controlled for
allele frequency (MAF < 0.01), call rate (genotype rate <98%) in all
cohorts, andHardyWeinberg equilibrium (HWE P < 1 × 10−5) in controls
only. The EU-European datasets were generated in multiple files and
were merged stepwise on the common subset of SNPs, with the pre-
vious QC procedure reapplied after each merge. PCA plots were con-
structed from PLINK v1.9 to identify population outliers and check for

batch effects62. Pre-imputation QC was conducted using McCarthy
Tools v4.3with the TOPMed referencepanel to check strand alignment
and allele assignment. Insertions and deletions were excluded prior to
imputation. Each population was imputed separately with cases and
controls were imputed together on the TOPMed Imputation Server
with the TOPMed r2 reference panel63–65. The QC was repeated after
imputation and SNPs with low imputation quality (rsq <0.3) were
excluded. After imputation, UCSC Liftover66 was used to convert SNP
positions from each population dataset to build GRCh37 to match
the build of summary statistics from other analyses. The association
tests were completed using PLINK v1.9 under an additive model with
principal component adjustment to account for population
stratification.

GWAS data from Columbia University (US Cohorts): US-European,
US-African,US-SouthAsian,US-EastAsian, andAdmixedAmerican.
Populationwas assigned by KING67 kinship analysis software and based
on continental population as defined by the 1000Genomes Project for
all cases and controls68,69. Within each continental population (EUR,
AFR, AMR, SAS, and EAS), we removed variants with genotype rate
<99%, MAF <0.01, and HWE P < 1 × 10−5. Each population was imputed
separately with the TOPMed r2 panel63–65. After imputation, we
removed first-degree relatives using KING, and variants with R2 < 0.8,
MAF <0.01, and HWE P < 1 × 10−5. Principal components were calcu-
lated with FlashPCA70. For cohorts with large case/control imbalances
(Admixed American and US-African), we used the SAIGE logistic mixed
model69 for calculating p value and generating summary statistics.
Association tests for European, South, and East Asian were completed
using PLINK v1.9 under an additive model with principal component
adjustment to account for population stratification62.

GWAS data from Kobe University: Japanese, Korean, and Thai.
Quality control and analysis of the Japanese dataset are previously
described in Jia et al.23. Samples were filtered for call rate <97%,
ambiguous sex, and IBD >0.1875. Variants were filtered for info score
>0.5, missing >3%, MAF >0.5%, and HWE P ≥0.0001 in controls. SNPs
were imputed with a Japanese reference panel with IMPUTE4 (v2.3.1).
For the Thai dataset, SNPs with MAF <0.005, call rate <97%, or HWE
P < 1 × 10−5 were removed. Individuals with missing rate > 3%, IBD >
0.1875 and PCA outliers were removed. For the Korean dataset, SNPs
with MAF<0.01, call rate <99%, or HWE P < 5×10−8 for cases and
<1 × 10−5 in controlswere removed. Individualswithmissing rate >4%or
IBD (PI_HAT) > 0.2. No outliers were removed from PCA inspection.
Both Thai and Korean genotypes were imputed with the 1000 Gen-
omes reference panel using SHAPEIT71 and IMPUTE272 and SNPs were
filtered for info score <0.9 and 0.8 in Thai and Korean, respectively.
Logistic regressionwasperformedwith Plink v1.9. Sex and thefirst four
principal components were used in the Japanese cohort. No covariates
were adjusted for the Thai and Korean datasets and p values were
adjusted for genomic control (GC).

Population-specific and multi-population meta-analysis
For each population-specific meta-analysis and the multi-population
meta-analysis, we conducted an inverse-variance, fixed-effect meta-
analysis using METAL (v2011-03-25) with adjustment for population
stratification (GC) on each input dataset and assessment for hetero-
geneity selected73. For within-population meta-analyses, we removed
variants with heterogeneity p value <0.05. All significant associations
were visually inspected and single SNPs that did not follow the
expected LD trend and SNPs with within-population heterogeneity
removed.

For the European meta-analysis, we included summary statistics
of only suggestive SNPs from a published GWAS in which the full data
was not available24, increasing the European sample size to 1096 cases
and 12,459 controls.
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Multi-population meta-regression with MR-MEGA
To account for and assess heterogeneous loci, we conducted a meta-
regression using MR-MEGA v0.228. We included three principal com-
ponents, which captured the population structure across all twelve
datasets. This allowed us to stratify heterogeneity into residual het-
erogeneity andheterogeneity that correlateswithpopulation. For each
variant with heterogeneity that correlated with population, we visua-
lized the dataset PCs fromMR-MEGAwith the dataset-specific log odds
ratio fromMETAL. We adjusted for genomic control at the study level
and after meta-regression to account for population structure within
and between datasets. SNPs present in less than five studies were
excluded. GC lambda (GCλ) was used to assess inflation. Results tables
include summaries frombothMETAL andMR-MEGAanalyses (Table 1).
All Manhattan plots were generated with the qqman R package v0.4.1
[doi: 10.21105/joss.00731.] and LocusZoom web tool74. All significant
loci are >1Mb from each other with r2 < 0.1. Loci are labeled by
nearest genes.

Conditional analyses
To identify independent secondary significant loci at the candidate
loci, we used GCTA COJO (v.1.93.2beta)75,76 to conduct approximate
conditional analyses based on cohort-specific meta-analysis summary
statistics. Conditional analysis was conducted in each dataset, with an
LD reference generated from thedataset samples, due todifferences in
linkage disequilibrium structure between continental populations.
Each cohort was conditioned for the eight independent loci identified
from the initial meta-analysis. Multi-population meta-analysis of the
conditioned cohorts was repeated in METAL73 to assess multi-
population genome-wide significant secondary loci after GCTA.

Heritability estimates
SNP-based heritability was estimated on a liability scale with LD score
regression (LDSC v1.0.1)77 using a population prevalence of 16/
100,000 and excluding HLA [chr6:25,000,000-34,000,000]. We
used non-GC corrected population-specific meta-analysis summary
statistics from METAL and pre-computed LD scores generated
from the 1000 Genomes EUR or EAS samples. (https://alkesgroup.
broadinstitute.org/LDSCORE/).

Colocalization of SSNS GWAS variants and eQTLs datasets
We used fast enrichment estimation aided colocalization analysis
(fastENLOC v1)78 for colocalization analysis with glomerular (n = 240)
and tubulointerstitial (n = 311) eQTLs from nephrotic syndrome
patients79, GTEx tissues (varied sample sizes), and immune eQTLs from
both BLUEPRINT46 (n = 200) and DICE45 (n = 91) databases. Posterior
probabilities for SSNS GWAS variants were calculated from MR-MEGA
Z-scores using TORUS80. We used an LD panel from European and East
Asian 1000Genomes samples to define haplotype blocks in the pSSNS
meta-analysis60,81. Enrichment of pSSNS GWAS variants in each eQTL
dataset was estimated using fastENLOC and subsequently informed
prior probabilities for each analysis. For colocalizationwith our kidney
eQTLs, which had available raw data, we could identify multiple eQTLs
per gene and multiple colocalized eQTLs at each locus. For all other
data, in which only summary statistics were available, we assumed at
most one colocalized SNP per loci.

Open chromatin annotation of credible sets
95% credible sets were constructed for each independent locus iden-
tified from the multi-population meta-regression with Bayes’ factors
reported by MR-MEGA. Posterior inclusion probability (PIP) was esti-
mated by dividing each Bayes’ factor by the summation of Bayes’ fac-
tors across all variants within 1Mb from the lead locus82.

SNPs within 95% credible sets of our genome-wide significant loci
were evaluated for positional overlap based on the boundaries
of known open chromatin peaks in kidney50 and immune49 cell types.

For immune open chromatin, 76 samples from primary whole blood
were used resulting in 1000–100,000 FACS-purified cells (GSE74912).
For kidney, kidney cortex from 5 patients undergoing nephrectomies,
resulting in 35,286 cells (GSE151302). Open chromatin peaks were
identified by the MACS2 (v2.2.7.1) peak calling algorithm and opti-
mized by gkmQC (v1.0)51.

HLA imputation and analysis
To fine-map the HLA region, we conducted HLA imputation with the
four-digit multi-ethnic v2 reference panel on Michigan Imputation
Server52. Cohorts were imputed individually to optimize population-
specific structure within the HLA region. The imputed cohorts were
then merged for multi-population associations. We used HLA-TAPAS
(v2020.05.02) ‘assoc’ module to conduct a logistic regression of the
HLA region of the multi-population and population-specific datasets.
For population-specific analyses, we adjusted for genotype-based
principal components from Plink v1.962. The population-specific prin-
cipal components and continental populations were included as cov-
ariates in the multi-population analysis. HLA-TAPAS was also used to
conduct a stepwise conditional analysis, conditioning on the locus
with the smallest association p value. We additionally performed an
omnibus test on the population-specific andmulti-population cohorts
to assess significance by amino-acid position.

HLA modeling
To predict the reference (with arginine at position 47 and serine at
position 52) structure ofHLA-DQA1we extracted the sequence ofHLA-
DQA1 from UNIPROT database (Uniprot ID: P01909). We used NCBI
BLAST against PDB database to find the closest structure associated
with the amino-acid sequence of P01909. We identified the top hit as
6PX6_A (HLA-TCR complex, E = 2x10−161) for the HLA-DQA1 sequence83.
We extracted the PDB coordinates for chain A from the 6PX6 and
visualized in PYMOL v2.5. Since the most common amino-acid haplo-
type in the control population was arginine (47) and serine (52), we
performed mutagenesis using PYMOL to model the reference protein
3D structure84.

In brief, we used the mutagenesis tool from PYMOL and selected
the rotamer (most likely amino-acid conformation) for arginine and
serine which showed the minimum number of clashes with nearby
atoms. Afterwards, we adjusted the conformation of nearby atoms
(within 5 Angstrom) to minimum free state using ‘Clean’ command in
PyMOL which uses MMFF94 force field85. Though point mutations
locally affect the conformation of the protein, they can result in tor-
sion, bending and stretching of the entire molecule. Therefore, we
exported the protein structure to SPDBV software for further
refinement86.

We first fixed all the side chains of all amino acids to the best
rotamer conformation using the simulated annealing method. After-
wards, we performed energy minimization using GROMOS 96 force
field to extract the 3D coordinates that represent the lowestminimum
energy conformation87. The refinedprotein structureofHLA-DQA1was
then assessed for changes in stability of protein for both amino-acid
combinations for each haplotype using “MULTIPLE MUTATION” in
DynMut2 server55. The instability of HLA-DQA1was evaluated using the
predicted ddG parameter which measures changes in Gibbs free
energy between the folded and unfolded states and the change in
folding when a mutation is present. The interaction among amino
acids in reference and mutated structure were predicted using
Arpeggio88 and visualized in PyMOL.

Polygenic risk score analysis
Construction of themulti-population PRS. To investigate genetic risk
across the genome, we generated a PRS using 1974 cases and 20,039
controls from the GWAS of European (US-European), East Asian
(Japanese, Korean, US-East Asian), African (US-AFR, EU-AFR), and
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South Asian (US-SAS, Indian) populations using PRS-CSx (v7-29-
2021)89. Populations with less than 100 cases (Maghrebian, Admixed
American) were excluded. The EU-EUR dataset was excluded from PRS
calculations and was used as an independent test/train dataset, where
80%of cases and controlswere randomly selected for training and20%
for testing. While our goal of this analysis was to explore the rela-
tionships between the PRS and clinical correlates within case cohorts,
not case/control prediction, we used prediction accuracy to optimize
the gamma-gamma priors and the global shrinkage parameter used in
the PRS-CSx model. We varied the hyper parameters and chose the
model with the best prediction accuracy (F-measure; Supp. Table 15).
The regression betas from the best model were used to weight the
population-specific PRS.

Construction of the European PRS. We also generated a PRS from the
GWAS of European (US-European) populations using PRS-CS90. Similar
to the multi-population method, the EU-EUR dataset was used as an
independent test/train dataset, where 80% of cases and controls were
randomly selected for training and 20% for testing.We used prediction
accuracy to optimize the gamma-gamma priors and the global
shrinkage parameter used in the PRS-CS model. We varied the hyper-
parameters and chose the model with the best prediction accuracy (F-
measure; Supp. Table 14).

Clinical associations with PRS. The PRS was applied to pediatric
participants from the EU-European data for which clinical data were
available (n = 233). For each PRS (European and multi-population), we
split the samples into PRS quantiles. We tested significance of PRS
quartiles in the following models: Model 1: sex ~ PRS + age of onset +
relapse pattern + 4PCs (multiple logistic regression); Model 2: relapse
pattern ~ PRS+ age of onset + sex + 4PCs (multiple logistic regression);
Model 3: age of onset ~ PRS+ sex + relapse pattern + 4PCs (multiple
linear regression). The effect size, standard error, and p value for the
PRS effect are reported.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The fixed-effects multi-population summary statistics (METAL) gen-
erated by this study have been deposited in the GWAS Catalog
[GCST90258619]. The credible sets for significant variants and sig-
nificant colocalization results generated in this study are provided in
the Supplementary file. The raw GWAS data are protected and are not
available due to data privacy laws. For HLA modeling, we used the
Protein Data Bank (PDB; https://www.rcsb.org/) and UNIPROT data-
base (Uniprot ID: P01909). For colocalization analyses, we used the
NEPTUNE cohort, the unfiltered eQTL results from DICE, and the
BLUEPRINT consortium.

Code availability
Publicly available software was used to perform the analyses. We will
be happy to share some or all our code with any requester.
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