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In addition to neuronal migration, brain development, and adult plasticity,

the extracellular matrix protein Reelin has been extensively implicated in

human psychiatric disorders such as schizophrenia, bipolar disorder, and

autism spectrum disorder. Moreover, heterozygous reeler mice exhibit features

reminiscent of these disorders, while overexpression of Reelin protects against

its manifestation. However, how Reelin influences the structure and circuits of

the striatal complex, a key region for the above-mentioned disorders, is far from

being understood, especially when altered Reelin expression levels are found

at adult stages. In the present study, we took advantage of complementary

conditional gain- and loss-of-function mouse models to investigate how Reelin

levels may modify adult brain striatal structure and neuronal composition. Using

immunohistochemical techniques, we determined that Reelin does not seem to

influence the striatal patch and matrix organization (studied by µ-opioid receptor

immunohistochemistry) nor the density of medium spiny neurons (MSNs, studied

with DARPP-32). We show that overexpression of Reelin leads to increased

numbers of striatal parvalbumin- and cholinergic-interneurons, and to a slight

increase in tyrosine hydroxylase-positive projections. We conclude that increased

Reelin levels might modulate the numbers of striatal interneurons and the density

of the nigrostriatal dopaminergic projections, suggesting that these changes may

be involved in the protection of Reelin against neuropsychiatric disorders.
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Reelin, striatum, interneurons, dopamine projections, schizophrenia, Tourette’s
syndrome
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1. Introduction

Reelin is an extracellular matrix protein important for neuronal
migration and layer formation during neocortical development
(D’Arcangelo et al., 1995; Alcántara et al., 1998; Rice and Curran,
2001; Soriano and Del Río, 2005; Cooper, 2008; Hirota and
Nakajima, 2017; Vílchez-Acosta et al., 2022). Besides its role
during development, the Reelin pathway is also active in the
adult brain, controlling glutamatergic neurotransmission, dendritic
spine formation, synaptic plasticity and adult neurogenesis (Chen
et al., 2005; Herz and Chen, 2006; Qiu et al., 2006b; Groc et al.,
2007; Niu et al., 2008; Pujadas et al., 2010; Teixeira et al., 2012;
Bosch et al., 2016). Reelin binds to apolipoprotein E receptor 2
(ApoER2) and very-low-density lipoprotein receptor (VLDLR),
leading to the phosphorylation and activation of the intracellular
adaptor protein Disabled 1 (Dab1), which triggers a complex
signaling cascade involving members of the Src kinase family, PI3K,
Erk1/2 and GSK3 kinases, and Cullin-5-dependent degradation,
amongst others (Howell et al., 1997, 1999; D’Arcangelo et al., 1999;
Hiesberger et al., 1999; Beffert et al., 2002; Arnaud et al., 2003;
Benhayon et al., 2003; Ballif et al., 2004; Strasser et al., 2004;
González-Billault et al., 2005; Simó et al., 2007, 2010; Yasui et al.,
2010; Molnár et al., 2019).

Genetic studies have associated the Reelin gene (RELN)
with a number of psychiatric diseases, including schizophrenia,
bipolar disorder, and autism spectrum disorder (Impagnatiello
et al., 1998; Fatemi et al., 2001, 2005; Persico et al., 2001;
Grayson et al., 2005; Ovadia and Shifman, 2011; Wang et al.,
2014; Baek et al., 2015; Lammert and Howell, 2016). This link
is also supported by studies showing that Reelin levels are
reduced in patients with schizophrenia and bipolar disorder
(Fatemi et al., 2000; Torrey et al., 2005; Ruzicka et al., 2007),
and can be altered by psychotropic medication (Fatemi et al.,
2009). In fact, Reelin haploinsufficiency models, based on the
suppression or reduction of Reelin expression (or its downstream
pathway), manifest features related to neuropsychiatric disorders,
such as cognitive impairments, psychosis vulnerability, and
learning deficits that frequently coexist with evident alterations in
hippocampal plasticity (Tueting et al., 1999; Krueger et al., 2006;
Marrone et al., 2006; Qiu et al., 2006a; Ammassari-Teule et al.,
2009; Folsom and Fatemi, 2013). Conversely, overexpression of
Reelin protects against psychiatric disease-related phenotypes in
mice, since it reduces cocaine sensitization, disruption of pre-pulse
inhibition (PPI) and the time spent floating in the forced swim
test (Teixeira et al., 2011). Furthermore, Reelin also regulates adult
neurogenesis and synaptogenesis (Kim et al., 2002; Pujadas et al.,
2010; Teixeira et al., 2012; Bosch et al., 2016), whose disruption
is considered to be involved in the pathogenesis of psychiatric
disorders (Kempermann, 2008; Zhao et al., 2008).

The striatum plays a critical function in motor control
and regulation of motivated behaviors (Bolam et al., 2000). Its
neuronal population is composed of 5–10% interneurons but the
large majority (90–95%) are efferent neurons, the GABAergic
medium spiny neurons (MSNs). The latter can be classified
into striatonigral or striatopallidal subtypes based on their
axonal projections to the internal globus pallidus (iGP) and
substantia nigra (SN) or to the external globus pallidus (eGP),
respectively. They can be distinguished by the expression of the
dopamine D1 receptor (striatonigral MSNs) or the dopamine D2

receptor (striatopallidal MSNs) (Bolam, 1984; Schiffmann et al.,
1991; Gerfen, 1992; Smith et al., 1998). Although the striatum
exhibits a relatively uniform appearance, it presents a complex
organization based in two different compartments: the patches or
striosomes (stained by µ-opioid receptor MOR) and the matrix,
which surrounds the patches (Olson et al., 1972; Graybiel and
Ragsdale, 1978; Herkenham and Pert, 1981). A proper cellular
and compartmental organization is essential for a correct striatal
function (Crittenden and Graybiel, 2011).

Despite the involvement of the striatum (including the nucleus
accumbens) and its circuitry in psychiatric disorders such as major
depression, schizophrenia, and obsessive-compulsive disorder, few
studies addressing how Reelin influences striatal structure and
circuits are available (de Guglielmo et al., 2022). Most of these
studies use heterozygous reeler mice as a model, which have
reduced Reelin expression also during development. Here we
investigate how altering Reelin levels, specifically at late postnatal
and adult stages, may lead to cellular and compartmental changes
in the striatum that could be related to neuropsychiatric disorders.
We used gain- and loss-of-function conditional mouse models to
investigate how Reelin levels may modify striatal structure and
neuronal composition. Our results suggest that whereas Reelin does
not seem to influence the patch-matrix striatal organization and
the numbers of MSNs, overexpression of Reelin leads to increased
numbers of striatal interneurons and to a slight increase in the
dopaminergic projections.

2. Materials and methods

2.1. Animals

The TgRln is a conditionally regulated transgenic line that
overexpresses Reelin from postnatal (P) day 5–10 by means of a
transactivator (tTA) under the control of the calcium–calmodulin-
dependent kinase II α promoter (pCaMKIIα) (Pujadas et al., 2010).
Reelin transgenic littermates, which have an inactive form of the
Reelin gene insertion without the transactivator tTA, were used
as controls. For the generation of the Reelin conditional knockout
mouse line, homozygous floxed Reelin (fR/fR) mice, with the exon
1 of the Reln gene flanked by loxP sites, were crossed with a
heterozygous UbiCreERT2 line [B6.Cg-Tg(UBC-cre/ESR1)1Ejb/J,
stock #008085, The Jackson Laboratory], both on a C57BL/6J
background (Vílchez-Acosta et al., 2022). The UbiCreERT2 line
displays a ubiquitous expression of the Cre recombinase fused to
a modified estrogen receptor ligand-binding domain that retains
the Cre at the cytoplasm. Administration of an estrogen receptor
antagonist (tamoxifen) at P45–60 induces the nuclear translocation
of Cre recombinase and the ubiquitous scission of the floxed gene
sequence (Reln) in all tissues at adult stages. The resultant offspring
(Cre fR/fR) was used for the experiments, and fR/fR littermates
were used as controls. In both transgenic lines, 4–5 months old
female and male mice were used for the experiments.

Male, 8–10-week old, Drd2-EGFP (n = 20 Swiss-Webster and
6 C57BL/6N background, founder S118), Drd1a-EGFP (n = 4
Swiss-Webster and n = 4 C57BL/6N background, founder X60)
hemizygous mice were also used in this study. BAC Drd2- and
Drd1a-EGFP mice, that express the reporter protein enhanced
green fluorescent protein under the control of the D2 and D1
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receptor promoters, were generated by GENSAT (Gene Expression
Nervous System Atlas) at the Rockefeller University (New York,
NY, USA) (Gong et al., 2007).

Mice were bred, studied, and processed at the animal
research facility of the Faculty of Pharmacy of the University of
Barcelona and at the animal research facility of the Rockefeller
University. Animals were provided with food and water ad libitum
and maintained in a temperature-controlled environment in a
12/12 h light-dark cycle. All the experiments involving animals
were performed in accordance with the European Community
Council directive 2010/63/EU, the National Institute of Health
guidelines for the care and use of laboratory animals, and
the Rockefeller University’s Institutional Animal Care and Use
Committee (protocol 14753-H). Experiments were also approved
by the local ethical committees.

2.2. PCR genotyping

DNA was extracted from tail biopsies by adding 100 µl sodium
hydroxide (50 mM), and incubating at 100◦C during 15 min. Then,
samples were kept on ice for 10 min and stored at−20◦C until use.

The PCR was performed with the GoTaq R© Green Master
Mix (Promega), and the primers used for genotyping were as
follows. Cre fR/fR line: for homozygous floxed Reelin detection,
FloxA (5′CGAGGTGCTCATTTCCCTGCACATTGC3′) and
FloxB (5′ CACCGACCAAAGTGCTCCAATCTGTCG 3′) primers
were used. Homozygous fR/fR mice present only one band of
613 bp whereas heterozygous mice present an additional band
at 496 bp. To determine the presence of UbiCre, the primers
UbiCre1(5′ GCG GTC TGG CAG TAA AAA CTA TC 3′) and
UbiCre2 (5′ GTC AAA CAG CAT TGC TGT CAC TT 3′) which
are specific for UbiCreERT2, and UbiCre3 (5′ CTA GGC CAC
AGA ATT GAA AGA TCT 3′) and UbiCre4 (5′ GTA GGT GGA
AAT TCT AGC ATC ATC C 3′) as internal positive control were
used. Mice heterozygous for Cre (Cre fR/fR) had a double band
at 324 and 100 bp while mice negative for Cre only amplified
the 100 bp band. TgRln line: the primers RLTG-gen-F (5′-
TTGTACCAGGTTCCGCTGGT-3′) and RLTG-gen-R (5′-GCA
CAT ATC CAG GTT TCA GG-3′) were used to amplify both the
endogenous Reelin gene (720 bp) and the transgenic DNA (320 bp);
the primers nTTA-C (5′-ACT AAG TCA TCG CGA TGG AG-3′)
and nTTA-F (5′-CGA AAT CGT CTA GCG CGT C-3′), were used
to detect the transactivator tTA transgene (Pujadas et al., 2010).

2.3. Tamoxifen administration

Inactivation of Reelin expression was induced at postnatal
day 45–60 by daily intraperitoneal injections of tamoxifen
dissolved in 10% alcohol-90% sunflower oil for 3 consecutive days
(180 mg/kg/day; Sigma-Aldrich).

2.4. Immunohistochemistry

For immunohistochemistry, 4–5 months old mice were
perfused transcardially with 4% paraformaldehyde (PFA) in

PB 0.1 M. Brains were quickly removed, fixed overnight in
PFA, and then transferred to 30% sucrose in PBS 0.1 M and
stored at 4◦C (48 h). Brains were frozen with methylbutane
(Honeywell) at −42◦C and stored at −80◦C until use. Thirty-µm
coronal sections were obtained with a freezing microtome (Leica
SM2010R) and were kept in a cryoprotective solution at −20◦C.
Immunohistochemistry was performed on free-floating sections.
The sections were inactivated for endogenous peroxidases with
3% H2O2 in 10% methanol and PBS for 15 min. After three
washes with PBS and three washes with PBS-0.2% Triton (PBS-
T), sections were blocked for 2 h at room temperature (RT) with
PBS-T containing 10% of normal horse serum (NHS) and 0.2%
of gelatin. For Reelin immunostaining, anti-mouse unconjugated
F(ab′)2 fragments (1:300, Jackson ImmunoResearch), were added
in the blocking step. After three washes with PBS-T, tissue sections
were incubated with a primary antibody with PBS-T containing 5%
of NHS and 0.2% of gelatine, overnight at 4◦C.

The commercial primary antibodies used were: anti-Reelin
(clone G10, MAB5364, Merck Millipore, 1:1,000), anti-choline
acetyltransferase (ChAT AB144P, Merck Millipore, 1:500),
anti-µ opioid receptor (MOR, 1:2,000, rabbit, AB5511,
Merck Millipore), anti-parvalbumin (PV, 1:500, Rabbit, PV27,
Swant), anti-dopamine- and cAMP-regulated phosphoprotein,
32 kDa (DARPP-32, 1:500, mouse, 611520, BD Transduction
Laboratories), anti-tyrosine hydroxylase (TH, 1:1,000, Rabbit,
AB152, Merck Millipore). Sections were washed with PBS-T and
then incubated for 2 h at RT with biotinylated secondary antibody
(1:200, Vector Laboratories). After subsequent washes with PBS-T,
the sections were incubated for 2 h at RT with streptavidin-HRP
(1:400, GE Healthcare UK). After washing, the staining was
developed using 0.03% diaminobenzidine (DAB) and 0.01% H2O2,
with 0.1% nickel ammonium sulfate added to the solution. Finally,
sections were dehydrated and mounted with Eukitt mounting
medium (Sigma-Aldrich).

For immunofluorescence staining a similar procedure was
followed using Alexa Fluor 488 secondary antibody (1:500,
Invitrogen, ThermoFisher) (excluding peroxidase inactivation),
counterstained with Bisbenzimide (1:500) for 30 min at RT,
mounted with Mowiol and stored at−20◦C.

2.5. D1-/D2-cell specific mRNA
extraction

Cell-type specific translated-mRNA purification (TRAP), was
performed as previously described (Heiman et al., 2008) with a few
modifications. Each sample consisted of a pool of 2–3 mice. BAC-
TRAP transgenic mice (Drd2- and Drd1a-EGFP) were sacrificed
by decapitation. The brain was quickly dissected out and placed
in a cold buffer and was then transferred to an ice-cold mouse
brain matrix to cut thick slices from which the nucleus accumbens
(NAcc) and the dorsal striatum (DS) were punched out using
ice-cold stainless-steel cannulas. Each sample was homogenized
in 1 ml of lysis buffer (20 mM HEPES KOH (pH 7.4), 5 mM
MgCl2, 150 mM KCl, 0.5 mM dithiothreitol, 100 µg/ml CHX
protease and RNAse inhibitors) with successively loose and tight
glass-glass 2-ml Dounce homogenizers. Each homogenate was
centrifuged at 2,000 × g, at 4◦C, for 10 min. The supernatant was
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separated from cell debris and supplemented with NP-40 (EDM
Biosciences) to a final concentration of 1% and DHPC (Avanti
Polar lipids) to a final concentration of 30 mM. After mixing and
incubating on ice for 5 min, the lysate was centrifuged for 10 min
at 20,000 × g to separate the supernatant from the insolubilized
material. A mixture of streptavidin-coated magnetic beads was
incubated with biotinylated protein L and then with GFP antibody
that was added to the supernatant and incubated ON at 4◦C with
gentle end-over rotation. After incubation, beads were collected
with a magnetic rack and washed 5 times with high-salt washing
buffer (20 mM HEPES-KOH (pH 7.4), 5 mM MgCl2, 350 mM
KCl, 1% NP-40) and immediately placed in “RTL plus” buffer
(Qiagen). The mRNA was purified using the RNase micro KIT
(Qiagen). RNA integrity was checked with the Bionalyzer (agilent
2100 Bioanalyzer, Agilent RNA 6000 nano kit). Five nanograms
of mRNA from each sample were used for retro-transcription,
performed with the Reverse Transcriptase III (Life Technologies)
following the manufacturer’s instructions.

2.6. Real-time PCR

Quantitative real time PCR, was performed using SYBR
Green PCR kit in 96-well plates according to the manufacturer’s
instructions. Results are presented as normalized to the indicated
house-keeping genes and the delta-threshold cycle (Ct) method was
used to obtain a fold change. mRNA levels are presented relative
to D2. The housekeeping gene for normalization was beta-myosin
heavy chain gene (Myh7).

2.7. Western blot

Brains were quickly extracted, frozen in liquid nitrogen and
stored at −80◦C until use. Brain tissue was processed as previously
described (Pujadas et al., 2010). After incubation with antibodies,
membranes were developed with the ECL system.

2.8. Immunohistochemical analysis

For DARPP-32 cell counting, sections were scanned using
NanoZoomer 2.0-HT (Hamamatsu). We used FIJI software to crop
the striatal profile from the image. DARPP-32-positive cells were
counted with the cell nuclei assistant TMarker software.

The images of PV and ChAT interneurons were acquired
with a Nikon E600 microscope attached to an Olympus DP72
camera, and images were reconstructed using MosaicJ from the
Fiji software (Fiji is Just ImageJ – NIH). The intermediate striatum
was subdivided into four sub-regions: dorso-medial (DM), dorso-
lateral (DL), ventro-medial (VM), and ventro-lateral (VL) (see
Gernert et al., 2000; Ammassari-Teule et al., 2009) taking slices
from Bregma 1.34 to 0.02 mm, to identify possible changes in
the neuronal distribution inside the different striatal regions. Cell
density studies were performed with FIJI tools to measure the area
and to count cells (cell counter).

To measure TH intensity, slides were scanned with SilverFast
at 600 ppm and SigmaPlot was used to measure the intensity

of the different striatal areas. The results are expressed as %
from control which was considered as 1 in each independent
experiment to avoid deviations caused by differences in the DAB
development procedure.

TH-positive synaptic bouton images were taken with 63X
oil immersion objective and counted selecting randomly an
11 mm× 11 mm ROI using Fiji.

For each mouse transgenic line we analyzed 3–14 animals and
for each animal and average of 6–8 images were analyzed.

2.9. Statistics

All statistical analyses were performed using GraphPad Prism
5.0 software (GraphPad Software, Inc.). Data were analyzed with
unpaired, two-tailed Student’s t-tests and statistical significance
was set at p-value < 0.05. Unless otherwise stated, all values are
presented as mean ± the standard error of the mean (SEM).
The number of animals used in each experiment is detailed in
the figure legend.

3. Results

3.1. Reelin is highly expressed in
striatonigral MSNs

To determine the effects of Reelin levels in the mouse
striatal organization, we first studied Reelin expression in a
Reelin overexpressing and a knockout mouse line. Control
mice from both lines exhibited numerous Reelin-positive
cell bodies that were distributed throughout the striatum
(Figures 1A, D), whereas the tamoxifen-inducible conditional
knockout mouse line (Cre fR/fR) presented a drastic reduction
of Reelin protein as detected by immunohistochemistry
(Figure 1B) and by Western blot (Figure 1C). In contrast,
Reelin overexpressing mice (TgRln) showed a dramatic increase
of Reelin protein in the striatum (Figure 1E) which was
apparent in both cell bodies and neuropil (see also Pujadas
et al., 2010).

Reelin has been described to co-localize with Calbindin
D-28k-positive neurons (Sharaf et al., 2015), a well-known
marker of striatal MSNs. Hence, we used the TRAP technology
(Heiman et al., 2008) to determine a possible enrichment
of Reelin mRNA in D1- or D2-receptor expressing MSNs
in both DS and NAcc. BAC-TRAP-D1 and –D2 mice, were
used to specifically immunoprecipitate mRNAs from D1
(striatonigral) or D2 (striatopallidal) neuronal populations
from the DS and the NAcc. Reelin mRNA levels were
compared to the housekeeping beta-myosin heavy chain
gene. Results indicated that Reelin mRNA is enriched in
D1-MSNs, in both the DS and the NAcc (Figures 1F, G).
The expression of Dab1, a key downstream effector of the
Reelin pathway, was also higher in D1 MSNs of the DS
and NAcc (Figures 1H, I). These results suggest that the
striatonigral D1 MSNs population is the main producer of
striatal Reelin.
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FIGURE 1

Reelin in the striatum is mainly expressed by D1 striatonigral MSNs. (A–E) Immunohistochemistry and Western blot for Reelin show that it is absent in
Cre fR/fR mice (B,C) compared to the fR/fR littermates (control, A,C) while it is clearly overexpressed in the striatum of TgRln mice (E) compared to
transgenic littermates with an inactive form of the Reelin gene insertion without tTA (controls, D). (F,G) Quantification of Reelin mRNA levels in the
dorsal striatum (F) and NAcc (G) of D1/D2-TRAP mice (n = 3–4). (H,I) Quantification of Dab1 mRNA levels in the dorsal striatum (H) and NAcc (I) of
D1/D2-TRAP mice (n = 4–7). Scale bar: (A,B,D,E), 500 µm; high magnification insets (A,B), 100 µm, (D,E), 50 µm. NAcc, nucleus accumbens; D1,
dopamine 1 receptor; D2, dopamine 2 receptor. Statistical analysis was performed using Student’s t-test; significant differences were established at
*p < 0.05, **p < 0.01. Data represent means ± SEM.

3.2. Striatal MSNs organization is
independent of Reelin expression levels

To determine whether Reelin expression levels could modify
DS MSN populations, we first immunostained sections with
DARPP-32, a marker of MSNs, and quantified the density of striatal
MSNs in the Cre fR/fR (Figures 2A, B) and TgRln (Figures 2C, D)
mouse models. Results indicated that neither the absence nor the
overexpression of Reelin altered the density of striatal DARPP-32
positive neurons in the striatum of Cre fR/fR (Figures 2A, B, E) or
TgRln mice (Figures 2C, D, F).

Since Reelin controls neuronal migration, we next wanted
to determine whether Reelin levels could affect the DS patch
organization. Immunostaining of the striosomes with MOR
showed striatal patches with a similar spatial distribution in all
genotypes, suggesting that striatal MSNs density and organization
are not affected by alterations of Reelin expression levels
(Figures 2G–I).

3.3. Reelin overexpression alters striatal
interneuron population

In addition to MSNs, the striatum also contains ChAT+
and GABAergic interneurons, the PV-expressing ones being the
best known. To assess the number and distribution of ChAT+
interneurons in the different transgenic lines, we subdivided the
DS in four sub-regions: DM, DL, VM, and VL (Figure 3A).
Analysis of the density and distribution of ChAT+ cells showed no
differences in Cre fR/fR mice compared to controls (Figures 3A–F).
In contrast, the density of ChAT+ cells was increased in Reelin
overexpressing mice compared to controls, reaching significance in
3 of the striatal sub-regions analyzed (Figures 3G–L).

We also analyzed the density and distribution of PV striatal
interneurons. In line with the ChAT+ interneuron data, no changes
in the density and distribution of PV+ interneurons (Figures 4A, B)
were observed in any of the DS regions of Cre fR/fR mice compared
to controls (Figures 4C–F). However, analysis of PV+ interneuron
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FIGURE 2

Striatal MSNs density and organization is not affected by Reelin levels. (A–D) Representative images of DARPP-32 immunohistochemistry (striatal
MSNs) in coronal sections of control and Cre fR/fR (A,B) and control and TgRln (C,D) striatum (respective controls as in Figure 1). (E,F) Quantification
of DARPP-32-positive cell density shows no alterations of striatal MSNs neither in Cre fR/fR (n = 5–6) (E) nor in TgRln (n = 6) (F) mice. (G–I)
Immunofluorescence for µ-opioid receptor (MOR) in coronal sections of control (G), Cre fR/fR (H), and TgRln (I) striatum showing a similar
organization of striatal patches in all the models. Scale bar: (A–D), 500 µm; high magnification insets 50 µm; (G–I), 500 µm. Statistical analysis was
performed using Student’s t-test. Data are represented as means ± SEM.
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FIGURE 3

Reelin overexpression increases the density of striatal cholinergic interneurons. (A,B) Immunohistochemistry of ChAT in striatal coronal sections of
control and Cre fR/fR mice, with representative subdivision of the striatum in four regions (DM, dorsal-medial; DL, dorsal-lateral; VM, ventral-medial;
VL, ventral-lateral). (C–F) Quantification of ChAT+ neurons density in the striatal subdivisions shows no differences between control and Cre fR/fR
mice (n = 4). (G,H) Representative images of ChAT immunohistochemistry in the striatum of control and TgRln mice, with higher magnification
insets showing increased ChAT+ neuronal density in the TgRln mice. (I–L) Quantification of ChAT+ cell density indicates a significant increase in the
DL, VL, and DM striatal regions of TgRln mice (n = 4–6). Scale bar: (A,B,G,H), 500 µm; high magnification insets 100 µm. Statistical analyses were
performed using Student’s t-test; *p < 0.05. Data are represented as means ± SEM.

density in TgRln mice showed a statistically significant increase in
the VL striatum (Figures 4G, H, K) but not in other striatal regions
(Figures 4G–J, L) as compared to controls. Altogether, our results
indicated that Reelin overexpression increased the number of DS
interneurons.

3.4. Reelin levels control dopaminergic
projections

Next, we analyzed whether the expression of Reelin could
influence dopaminergic projections. Thus, we performed
immunohistochemistry for TH to detect dopaminergic

projections that reach the striatum from the SN and the
ventral tegmental area (VTA). We quantified TH intensity
in the DS and the ventral striatum (VS), including the NAcc
and the olfactory tubercle (OT). In the Cre fR/fR model,
we observed no alterations in the dopaminergic intensity in
all three striatal regions studied (Figures 5A–E) compared
to controls. However, in the OT of Cre fR/fR mice, we
observed a tendency toward a reduction in TH intensity
compared to controls (Figure 5E). In contrast, in Reelin
overexpressing mice, quantification of TH immunostaining
(Figures 5F, G) showed a significant increase of TH intensity
in both the NAcc and OT regions compared to controls
(Figures 5H–J).
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FIGURE 4

Increased levels of Reelin alter the density of parvalbumin interneurons in the ventral-medial striatum. (A,B) Immunohistochemistry for PV in coronal
sections of control and Cre fR/fR striatum, subdividing the striatum in four regions (as in Figure 3). (C–F) Quantification of the density of PV+
interneurons indicated no differences between the control and Cre fR/fR mice (n = 4). (G,H) Representative images of PV immunostaining in the
striatum of control and TgRln mice. Quantification of PV immunohistochemistry indicated an increase in the density of PV positive cells in the VL
striatum of TgRln mice (n = 4–5) (K) with no differences in the other striatal regions (I,J,L). Scale bar: (A,B,G,H), 500 µm; high magnification insets
50 µm. Statistical analyses were performed using Student’s t-test; *p < 0.05. Data are represented as means ± SEM.

Finally, we also wanted to quantify synaptic boutons of striatal
dopaminergic projections. Thus, we determined the density of TH-
positive synaptic boutons in the DS, NAcc, and OT, dividing the DS
into dorsal and ventral regions. In the Cre fR/fR mice, the density
of synaptic boutons in all the regions was similar to that of control
mice (DS dorsal: fR/fR 0.28 ± 0.017 vs. Cre fR/fR 0.30 ± 0.014; DS
ventral: fR/fR 0.27 ± 0.016 vs. Cre fR/fR 0.27 ± 0.023; NAcc: fR/fR
0.26 ± 0.013 vs. Cre fR/fR 0.25 ± 0.034; OT: fR/fR 0.24 ± 0.013
vs. Cre fR/fR 0.25 ± 0.018; n = 4 mice/genotype, mean ± SD).
In contrast, the density of dopaminergic synaptic boutons were
all increased in the tested regions (Figures 6A–L), but only the
NAcc showed a statistically significant increase (Figures 6C, G, K)
in the TgRln mice as compared to controls. These results suggest

that higher Reelin levels might modulate dopaminergic fibers and
synaptic boutons, mainly in the NAcc.

4. Discussion

Variations in Reelin expression levels have been shown to
be important for the development of neuropsychiatric disorders
(Impagnatiello et al., 1998; Fatemi et al., 2000, 2001, 2005; Persico
et al., 2001; Grayson et al., 2005; Torrey et al., 2005; Ruzicka
et al., 2007; Ovadia and Shifman, 2011; Wang et al., 2014;
Baek et al., 2015; Lammert and Howell, 2016); however, we still
lack a precise understanding of the mechanistic insights of this
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FIGURE 5

Increased levels of Reelin elevates dopaminergic projections in the ventral striatum. (A,B) Immunohistochemistry for TH to stain dopaminergic
projections in coronal sections of the DS, NAcc, and OT of control and Cre fR/fR mice. TH intensity remains constant in the striatum (C), NAcc (D),
and OT (E) of Cre fR/fR mice compared to controls (n = 4). (F,G) Immunohistochemistry for TH in control and TgRln mice. After quantification,
increased TH immunoreactivity was detected in the NAcc (I) and OT (J), but not in the DS (H) of TgRln mice compared to controls (n = 8–14). Scale
bar: (A,B,F,G), 500 µm. NAcc, nucleus accumbens; OT, olfactory tubercle. Statistical analyses were performed using Student’s t-test; **p < 0.01;
***p < 0.001. Results represent the means ± SEM.
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FIGURE 6

Increased number of dopaminergic synaptic boutons in the NAcc of TgRln mice. (A–H) Immunohistochemistry for TH staining dopaminergic
synaptic boutons in the dorsal (A,E) and ventral regions (B,F) of the DS, NAcc (C,G), and OT (D,H) of TgRln mice and its controls. (I–L) Quantification
of the density of dopaminergic boutons evidenced a higher density of synaptic boutons in the NAcc (K) of TgRln mice compared to its controls
while no differences were observed in the rest of the analyzed structures (I,J,L). Scale bar: (A–H), 20 µm. DS, dorsal striatum; NAcc, nucleus
accumbens; OT, olfactory tubercle. Statistical analyses were performed using Student’s t-test; *p < 0.05. Data are represented as means ± SEM.

correlation. Here we focused our attention on the striatum as a
key region participating in the pathogenesis of psychiatric diseases
(McCutcheon et al., 2021). We thus characterized specific striatal
neuronal populations as well as the dopaminergic mesolimbic
innervation in two different mouse models either overexpressing
or deficient for Reelin. In previous studies we reported that
TgRln mice were more resilient to stressors implicated in the
genesis of psychiatric diseases (chronic stress and psychostimulant
administration) (Teixeira et al., 2011), suggesting a role for Reelin
in preventing behavioral symptoms related with these disorders.
Here we show that Reelin-depletion at adult stages does not
lead to significant changes either in the striatal composition or
in dopaminergic innervation, suggesting that during adulthood
Reelin is not essential for the maintenance of striatal organization.
However, postnatal Reelin overexpression increases interneuron
populations as well as the density of dopaminergic striatal
projections from the VTA, suggesting the participation of postnatal
Reelin expression in the fine structural tuning of the striatal area
(Figure 7).

4.1. A role for Reelin in the striatum

The role of Reelin in the cortex and the hippocampus
has been extensively studied including the expression pattern

in GABAergic interneurons and the regulation in glutamatergic
synapses (Alcántara et al., 1998; Herz and Chen, 2006; Jossin, 2020).
Indeed, it has been shown that Reelin controls several structural
and functional properties of the glutamatergic synapses including
the strength of glutamate neurotransmission (Beffert et al., 2005;
Qiu et al., 2006b), protein composition of presynaptic boutons
(Hellwig et al., 2011), structural properties of dendritic spines
(Bosch et al., 2016) as well as trafficking of glutamate receptor
subunits (Sinagra et al., 2005; Groc et al., 2007). Several studies
also support a key role of Reelin in the correct organization of
the basal ganglia. Blockade of Reelin or its signaling pathway
leads to a severe disorganization of the tangentially migrating
midbrain dopaminergic (mDA) neurons, which fail to reach their
final position in the SN pars compacta (SNc) and accumulate
instead in the VTA, resulting in a conspicuous reduction of mDA
neurons in the SNc, despite no overall changes in the number of
mDA neurons (Nishikawa et al., 2003; Kang et al., 2010; Sharaf
et al., 2013; Bodea et al., 2014). Interestingly, alterations in the
radial and tangential fibers that guide migrating mDA neurons have
been described in reeler mice (Nishikawa et al., 2003; Kang et al.,
2010) and specific inactivation of Reelin signaling in mDA neurons
indicates a direct role of Reelin by promoting fast-laterally directed
migration and stabilization of their leading process (Vaswani et al.,
2019). Despite these organization abnormalities in the SNc, no
significant alterations have been described in the nigrostriatal
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FIGURE 7

Schematic summary of the striatal organization in different Reelin mouse models. (A) Summary table indicating the main changes observed in striatal
organization in the different strains. (B) Graphic summary of the striatal organization per strain. Density of striatal MSNs is preserved between the
control, Cre fR/fR, and TgRln striatums. Although the density of striatal PV+ and ChAT+ interneurons is maintained between control and Cre fR/fR
mice, it is increased in the DS of TgRln mice. Increased numbers of ChAT+ interneurons are present in the dorsal striatum and higher numbers of
PV+ interneurons are distributed in the ventral medial striatum sub-region. Dopaminergic projections are represented with different gradient of
brown color, showing a specific increase of TH fibers in the NAcc and OT of the TgRln mice compared with controls.

pathway of reeler, reeler-like mutants or heterozygous reeler mice
(Nishikawa et al., 2003; Sharaf et al., 2013; Vaswani et al., 2019).
In contrast, defects in cortico-striatal plasticity (Marrone et al.,
2006) and in the dopaminergic system (Matsuzaki et al., 2007)
have been reported in reeler mice. Moreover, decreased levels of
Reelin have been associated with alterations in striatal composition,
such as reductions in the number of striatal PV+ neurons along
the rostro-caudal axis (Marrone et al., 2006; Ammassari-Teule
et al., 2009), decreases in TH immunoreactivity in the striatum,
VTA, and NAcc (Ballmaier et al., 2002; Nullmeier et al., 2014)
and increases in the density of ChAT (Sigala et al., 2007) and the
expression of D1, D2, and serotonin 5-HT2A receptors (Matsuzaki
et al., 2007; Varela et al., 2015). Importantly, it is still controversial
whether these striatal alterations are attributable either to a role
of Reelin during development or to an acute effect at adult stages.
Given that very few studies have addressed this issue (Matsuzaki
et al., 2007), here we use a conditional KO model (Cre fR/fR)
in which neurodevelopment is preserved, which allowed us to
specifically analyze the contribution of adult Reelin expression
to the cellular and anatomical organization of the striatum. Our
results indicate no significant changes either in the cell densities

of CHAT+ and PV+ interneurons or in the density of DARPP32+
MSNs, suggesting that Reelin expression is critical for striatal
composition during development, but not for the maintenance of
cellular pools during adulthood. Moreover, mapping of the TH+
immunoreactivity in DS, VTA, and NAcc areas in Cre fR/fR mice
showed no differences from controls, although there was a trend in
the OT, supporting that at adult stages Reelin is largely dispensable
for the maintenance of the dopaminergic innervation from the
SN/VTA to the striatum.

4.2. Reelin, psychiatric behavioral
phenotypes, and drug sensitization

Alterations in Reelin levels have been associated with
psychiatric-related behavioral phenotypes in rodents, including
visual attention-related deficits in reversal learning (Brigman
et al., 2006), decreased inhibition, emotionality, and motor
impulsivity starting from adolescence (Ognibene et al., 2007),
sensorimotor gating impairments (Barr et al., 2008) or altered
latent inhibition (Ammassari-Teule et al., 2009), although these
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results are controversial since many labs have failed to reproduce
them (Podhorna and Didriksen, 2004; Teixeira et al., 2011; Lossi
et al., 2019). Interestingly, pharmacological supplementation or
genetic overexpression of Reelin, prevent some of these deficits
(e.g., associative learning, sensorimotor gating) (Teixeira et al.,
2011; Rogers et al., 2013) and support the idea of boosting Reelin
levels as a therapeutic approach in psychiatric disorders. Moreover,
several studies relate Reelin deficits with exacerbated behavioral
abnormalities in response to drug consumption (Romano et al.,
2014; Iemolo et al., 2021; de Guglielmo et al., 2022) and we
have previously reported that Reelin overexpression prevents
psychomotor effects associated with chronic psychostimulant
administration (Teixeira et al., 2011), supporting a role for Reelin
in drug sensitization. Importantly, there is a high comorbidity
between substance use disorders (cannabis, nicotine, alcohol, and
stimulants) and schizophrenia, with an estimated prevalence of
41.7% (Hunt et al., 2018).

It has been widely described that the mesolimbic system is
the major neurochemical pathway controlling the rewarding
effects of drugs of abuse (Wise and Rompre, 1989). Disturbances
in the dopaminergic mesolimbic system including altered
immunoreactivity and mRNA levels of TH and dopamine
receptors (D2 and D3) in the VTA and the VS have been reported
in heterozygous reeler mice (Ballmaier et al., 2002) and could be
related to some of the behavioral deficits observed in this model.
In this regard, our results show an increased immunoreactivity of
dopaminergic fibers in the NAcc and OT of the TgRln mice which
could be indicative of increased dopamine (DA) release from the
VTA. The NAcc, is one of the main projection sites of the VTA,
and the release of DA in this region is associated with reward and
motivated behaviors (Robison et al., 2020). The OT, on the other
hand, is markedly connected with sensory and arousal/reward
centers and is critical for multisensory integration and hedonic
responses (Wesson and Wilson, 2011). Human imaging studies,
pharmacology and preclinical models indicate that the integration
of the reward circuitry is affected in schizophrenia (Robison
et al., 2020) and a higher reactivity of dopamine release appears
to play a role in schizophrenia positive symptoms through its
action on D2 receptors, including the NAcc (see Simpson et al.,
2022 for a review). Importantly, there are studies involving other
striatal elements, such as the striatal patch-matrix organization
and striatal interneurons, in the control of reward and drug abuse,
making the characterization of the striatal organization in TgRln
mice essential to further understand the mechanisms underlying
drug sensitization. Despite the fact that the gross structure of
the striatal architecture was not altered in TgRln mice, the study
of striatal interneurons, which represent 5–10% of the striatal
cell population, clearly suggests that Reelin is able to modulate
interneuron densities. Reelin overexpression leads to increased
densities of PV+ and ChAT+ cells, suggesting a specific response
of these neurons to increased amounts of Reelin. Noteworthy,
schizophrenic patients present reduced densities of ChAT+
interneurons in the caudate nucleus, the VS and in the striatum as
a whole (Holt et al., 1999, 2005).

Decreased density of PV+ interneurons in the dorsomedial
and ventromedial striatum of heterozygous reeler mice have been
paralleled with deficits in some behaviors strongly disrupted in
schizophrenic patients (Ammassari-Teule et al., 2009). Moreover,
cocaine sensitization correlates with transient increases in the

number of PV+ neurons in striatum, which is reduced below
the normal number after a 2-week cocaine withdrawal period
(Todtenkopf et al., 2004). The fact that TgRln mice, which show
reduced sensitization to cocaine, also show increased densities
of PV+ interneurons could appear contradictory; nevertheless,
here the increased number of PV+ interneurons is sustained,
while upon cocaine administration the increase is transient, and
eventually, related to compensatory responses. In addition, recent
data suggest that increased acetylcholine signaling reduces the
acute and sensitized motor responses to cocaine (Lewis et al.,
2020) supporting the idea that the increased PV+ and ChAT+
interneuron density observed in TgRln mice could be involved
in the reduction of cocaine sensitization described in these mice
(Teixeira et al., 2011).

It has been described that after cocaine administration, there
is an specific increase in the ERK pathway in striatonigral MSNs
(Bertran-Gonzalez et al., 2008), a pathway that is also activated
by Reelin (Simó et al., 2007; Lee et al., 2014). Interestingly, an
increased Fos activation in the dorsal medial striatum but not in
the NAcc of heterozygous reeler mice after the administration of
cocaine has been reported (de Guglielmo et al., 2022). Increases in
Fos activation are thought to be the result of the cocaine-induced
upregulation in dopamine levels in the striatum (Di Chiara and
Imperato, 1988), which is hypothesized to alter the activity of
MSNs by activating D1 and D2 receptors. Experiments in mice
lacking D1 receptor indicate a clear role for this receptor in
the psychomotor effects of cocaine. In this study we describe a
preferential expression of Reelin mRNA in a specific subpopulation
of MSNs of the striatum, the D1 neurons, corroborating previous
studies using FISH (de Guglielmo et al., 2022) or genome-wide
translatome (Montalban et al., 2022). The fact that the expression
of both Reelin and its main downstream effector Dab1 are higher
in striatonigral D1 MSNs than in striatopallidal D2 MSNs, suggests
that Reelin may function in an autocrine manner in D1 MSNs and
could be somehow modulating its function and hence influencing
cocaine-induced psychomotor effects which are reduced in Reelin
overexpressing mice (Teixeira et al., 2011) and increased when
Reelin levels are reduced (de Guglielmo et al., 2022).

Although the mechanisms by which Reelin overexpression
leads to increased numbers of PV and CHAT neurons remain
unknown, it is important to remark that CAMKII promoter
drives expression of Reelin in the striatum from the end of
the first postnatal week onward (P5–P10) (Pujadas et al., 2010).
Hence, we discard direct actions of Reelin overexpression on
neurogenesis and migration, since those processes take place
mainly at embryonic stages (Knowles et al., 2021). Several recent
studies using conditional Reelin inactivation either from postnatal
stages or specifically targeting interneurons, have indicated that
Reelin participates in the fine tuning of cortical and hippocampal
layering (Pahle et al., 2020; Vílchez-Acosta et al., 2022) and
in dendritic growth control of specific interneuronal subsets
through the regulation of presynaptic neurotransmitter release and
Ca2+ influx (Hamad et al., 2021). It has been recently reported
that PV+ and ChAT+ striatal interneurons undergo extensive
apoptosis during the first and second postnatal weeks, with the
main changes occurring between P5 and P10 (Sreenivasan et al.,
2022), coinciding with the onset of Reelin overexpression in our
model. The survival of these particular interneuronal populations
has been related with their specific afferent connectivity, being
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PV+ interneurons controlled by long-range cortical inputs whilst
local inputs from MSNs control ChAT+ interneurons. Our data
indicate that Reelin overexpression does not influence the total
number of DARPP-32+ MSNs, however, as described in other brain
regions such as the hippocampus (Pujadas et al., 2010), Reelin
overexpression could be modulating neuronal activity levels and
hence affecting interneuron survival. Moreover, it is also possible
that Reelin influences positively the maturation and survival of
these interneurons, through Reelin/Dab1 associated pathways that
are known to influence these processes (Simó et al., 2007; Lee
et al., 2014). Nevertheless, since PV and ChAT expressions can
be modulated by many factors, we cannot completely exclude the
possibility that Reelin overexpression might be increasing PV and
ChAT expression and therefore making visible interneurons that
otherwise express very low marker levels in control mice.

4.3. Reelin as a possible therapeutic
target for psychiatric diseases

Reelin has been placed as a top candidate gene associated
with several neuropsychiatric diseases. This link is supported by
several studies showing that Reelin levels are reduced in patients
with schizophrenia, bipolar disorder, and autism spectrum disorder
(Impagnatiello et al., 1998; Fatemi et al., 2000, 2001, 2005; Persico
et al., 2001; Grayson et al., 2005; Torrey et al., 2005; Ruzicka
et al., 2007; Ovadia and Shifman, 2011; Wang et al., 2014; Baek
et al., 2015; Lammert and Howell, 2016). Excitatory/inhibitory
unbalances have been widely reported in schizophrenia patients
and mouse models (Gao and Penzes, 2015). Current data indicates
decreased GABA and increased glutamate levels in schizophrenic
patients (Rowland et al., 2013; Song et al., 2014; Chiu et al.,
2018) that most likely lead to hyperexcitability in certain brain
circuits. Interestingly, the increased density in GABAergic PV+
and ChAT+ interneurons observed in TgRln mice presumably
intensifies the inhibitory input onto striatal MSNs, reducing in turn
the excitability in the striatal circuitry and perhaps counteracting
in part the excitatory/inhibitory imbalance typically found in
schizophrenia.

It is interesting to note that the striatal changes observed in
TgRln mice are opposite to those found in patients with Tourette’s
syndrome which present a clear decrease in the density of PV+
and ChAT+ interneurons in the DS with no alterations in the
density and number of MSNs (Kataoka et al., 2010). The fact that
GWAS studies have identified RELN genetic variants in Tourette’s
syndrome (Li et al., 2012) together with our findings in the TgRln
model suggest that Reelin overexpression could reverse some of
the symptoms of this disorder, although altered Reelin expression
or signaling should be explored in patients affected by Tourette’s
syndrome.
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