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Abstract

Omega-3 (n-3) and omega-6 (n-6) polyunsaturated fatty acids (PUFAs) are essential fatty

acids with antagonistic inflammatory functions that play vital roles in metabolic health and

immune response. Current commercial swine diets tend to over-supplement with n-6

PUFAs, which may increase the likelihood of developing inflammatory diseases and affect

the overall well-being of the animals. However, it is still poorly understood how n-6/n-3 PUFA

ratios affect the porcine transcriptome expression and how messenger RNAs (mRNAs) and

microRNAs (miRNAs) might regulate biological processes related to PUFA metabolism. On

account of this, we selected a total of 20 Iberian × Duroc crossbred pigs with extreme values

for n-6/n-3 FA ratio (10 high vs 10 low), and longissimus dorsi muscle samples were used to

identify differentially expressed mRNAs and miRNAs. The observed differentially expressed

mRNAs were associated to biological pathways related to muscle growth and immunomodu-

lation, while the differentially expressed microRNAs (ssc-miR-30a-3p, ssc-miR-30e-3p, ssc-

miR-15b and ssc-miR-7142-3p) were correlated to adipogenesis and immunity. Relevant

miRNA-to-mRNA regulatory networks were also predicted (i.e., mir15b to ARRDC3; mir-

7142-3p to METTL21C), and linked to lipolysis, obesity, myogenesis, and protein degrada-

tion. The n-6/n-3 PUFA ratio differences in pig skeletal muscle revealed genes, miRNAs and

enriched pathways involved in lipid metabolism, cell proliferation and inflammation.

Introduction

Dietary concentration of polyunsaturated fatty acids (PUFAs) can potentially affect and

change the gene expression profile of key tissues such as skeletal muscle or fat compartments,
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Codina A, Mármol-Sánchez E, Castelló A, Sánchez
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with relevant implications for their commercial transformation and consumption [1]. These

alterations, due to nutritional interventions, may rewire multiple regulatory networks in nutri-

ent metabolism, thus affecting messenger RNA (mRNA) transcription, splicing, trafficking

and further synthesis of derived proteins [2,3]. Gene expression regulation can also be medi-

ated through post-transcriptional regulation, of which microRNAs (miRNAs) are key effec-

tors. miRNAs are small non-coding RNAs of ~22 nucleotides long that are able to bind to

specific sequences of the 3’ untranslated regions (3’ UTRs) of targeted mRNAs and trigger

their degradation and/or inhibit their translation [4]. Thousands of miRNAs can be found on

online databases such as miRBase, a searchable collection of published miRNA sequences and

their annotation. As of its release v22.1, there are 38,589 miRNA entries published over 271

species, including 408 precursors and 457 mature miRNAs for Sus scrofa (pig) [5]. Besides, the

development of next generation sequencing (NGS) technologies has provided a better under-

standing of the genome organization, structure, function, and evolution in livestock animals.

Nowadays, it is commonly used to study complex traits to improve livestock production effi-

ciency and reproductive health [6].

Pigs are one of the most important agricultural livestock animals for meat production,

accounting to a total of 122.5 million tons globally in 2021. Food and Agriculture Organization

(FAO) also highlighted that the recent expansion of world meat output was mainly driven by

the increase in pork output [7]. Porcine fatness or leanness are considered as relevant target

traits for selection since they could impact productive and reproductive performance, as well

as meat quality [8]. Specific porcine breeds, such as Landrace, have been extensively selected to

increase lean meat production and reduce fat deposition [9]. Although this may improve over-

all pig production efficiency, such breeding programs may negatively affect meat quality traits

like juiciness, tenderness, flavor and overall sensory quality of pork [10]. For a more efficient

production, fats and oils are supplemented on diets, as they contain 2.25 times more energy

than cereal grains, which further increases energy density and reduces feed intake [11]. Addi-

tionally, the fatty acid content of the carcass is directly influenced by the dietary fats ingested

by pigs, mimicking the fatty acid composition of the diet [12]. However, there is still limited

knowledge on how mRNAs and miRNAs interact to regulate fatty acid metabolism pathways,

or how diet and fatty acid content might influence their expression profiles, especially on Ibe-

rian pigs [13]. Moreover, as the excessive supplementation of omega-6 (n-6) PUFAs becomes

more prevalent on commercial pig diets, this pro-inflammatory PUFAs can impose risk of

developing inflammatory diseases such as cardiovascular diseases, diabetes or obesity [14,15].

Regulation of n-6 PUFA-derived metabolites can be done through balancing the ratio between

these and omega-3 (n-3) PUFAs, which counteract pro-inflammatory responses elicited by the

excess of n-6 PUFAs [16].

In order to better understand putative regulatory relationships between mRNAs and miR-

NAs related to changes in the n-6/n-3 PUFAs muscle composition in pigs, we identified differ-

entially expressed (DE) mRNAs and miRNAs in skeletal muscle tissue from a population of

Iberian × Duroc pigs with high and low values of n-6/n-3 PUFAs ratio. Additionally, we char-

acterized putative mRNA-miRNA transcriptomic interactions using computational prediction

and regulatory network analyses.

Materials and methods

Animal material

A total of 20 longissimus dorsi (LD) skeletal muscle samples were obtained from an experimen-

tal backcross population of Iberian and Duroc pigs, as previously described by Martinez-Mon-

tes et al. [17]. Pigs were housed following standard intensive system according to European
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directives on animal welfare, and were fed ad libitum with a cereal-based commercial diet.

Muscle samples were collected immediately after slaughter, snap-frozen in liquid nitrogen and

stored at -80ºC until further use. Fatty acids profiling was performed by using gas chromatog-

raphy of methyl esters protocol on 200 g of LD muscle. Sampled animals were selected based

on their analyzed values for n-6/n-3 PUFAs ratio and a total of 10 with highest (H) and 10

with lowest (L) n-6/n-3 ratio values were kept for further analyses [18]. A similar number of

males and females were present in each group (S1 Table) and the use of siblings within each

group was avoided. A summary of the measured phenotypes in the selected animals is available

at S1 Table.

Ethics statement. All animal procedures were performed according to the Spanish Policy

for Animal Protection RD1201/05, which meets the European Union Directive 86/609 about

the protection of animals used in experimentation. The protocol was approved by the Com-

mittee on the Ethics of Animal Experiments of the Instituto Nacional de Investigación y Tec-

nologı́a Agraria y Alimentaria CEEA (Permit Number: 2014/026).

RNA isolation, library preparation, and sequencing of total and small

RNAs

Total RNA. The LD skeletal muscle samples were submerged in liquid nitrogen, pulver-

ized using a mortar and pestle, and subsequently homogenized in 1 ml of TRI Reagent

(Thermo Fisher Scientific, Barcelona, Spain). The RiboPure kit (Ambion, Austin, Texas, USA)

was used to isolate the total RNA fraction, and its concentration and purity were determined

with a Nanodrop ND-1000 spectrophotometer (Thermo Fisher Scientific, Barcelona, Spain).

RNA integrity was assessed with a Bioanalyzer-2100 equipment (Agilent Technologies Inc.,

Santa Clara, California, USA), using the Agilent RNA 6000 Nano Kit (Agilent Technologies,

Inc., Santa Clara, California, USA). Libraries were prepared with the TruSeq SBS Kit v3-HS

(Illumina Inc., California, USA) and a minimum of 30 million hits of 75 bp-length paired-end

reads were acquired per sample using an Illumina HiSeq 3000/4000 equipment (CNAG-CRG,

Barcelona, Centro Nacional de Análisis Genómico; https://www.cnag.crg.eu).

Small RNA. The extraction of total RNA, including miRNA and small RNA, was per-

formed with the same muscle tissue material employed for total RNA sequencing and using

the miRNeasy Kit (QIAGEN, Germantown, Maryland, USA) following manufacturer’s spe-

cifications. More specifically, approximately 50 mg of tissue per sample was disrupted and

homogenized in 700 μl of QIAzol Lysis Reagent (QIAGEN, Germantown, Maryland, USA)

using 2ml Lysing matrix D tubes (MP Biomedicals, Santa Ana, CA) and a Precellys 24 instru-

ment (Bertin Technologies, Rockville, MD). After RNA isolation following the miRNeasy pro-

tocol, the extracted RNA molecules were eluted in 30 μl of water. The concentration, purity,

and RNA integrity were assessed as per aforementioned for total RNAs. A minimum of 10 mil-

lion hits of 50 bp-length single-end read were acquired per sample using the same sequencing

equipment used for mRNA libraries.

RNA-Seq and miRNA-Seq data processing

Raw mRNA and miRNA sequences were subjected to quality control through the FastQC tool

[19]. In order to remove the Illumina adapters used during library preparation and sequenc-

ing, reads were trimmed using the Cutadapt software v0.9.5 [20]. RNA-Seq data sequence

alignment was performed against the reference pig genome (Sscrofa11.1) by using the STAR

[21] aligner with default parameters. Sequences were then quantified with the RSEM software

[22]. On the other hand, for miRNA-Seq data, sequence alignment was performed against

the reference pig genome (Sscrofa11.1 and miRBase 22.1) by using Bowtie23 aligner and the

PLOS ONE Identifying miRNA-mRNA regulatory networks on extreme n-6/n-3 polyunsaturated fatty acid ratio in pigs

PLOS ONE | https://doi.org/10.1371/journal.pone.0283231 May 4, 2023 3 / 16

https://www.cnag.crg.eu
https://doi.org/10.1371/journal.pone.0283231


following specifications for aligning short miRNA reads were taken into consideration: 1)

allowing no mismatches in the alignment, 2) removing reads with more than 20 putative map-

ping sites, and 3) reporting first single best stratum alignment (bowtie -n 0 -l 25 -m 20 -k 1—

best—strata) [23,24]. Quantification of aligned miRNA reads were performed using HTSEQ

software [25]. Only mRNAs and miRNAs with an overall expression across all samples higher

than 20 counts were considered for subsequent differential expression analyses [26].

Differential gene expression analyses between the H and L groups from both RNA-Seq and

miRNA-Seq data were performed with the DESeq2 software [26], including sex and batch

effects as covariates in the linear model (S1 Table). Both mRNAs and miRNAs from differen-

tial expression analyses were considered significant at an absolute fold-change (FC) > 1.5 and

adjusted p-value< 0.05. We considered the H group as reference, meaning that any gene upre-

gulation would imply its overexpression in the L group, resulting in a positive fold change, and

vice versa.

Gene ontology and pathway enrichment analysis

Differentially expressed mRNA genes analyzed between H and L groups were subjected to

Gene ontology (GO) and pathway enrichment analyses using Cytoscape v3.7.1 software

with the ClueGO v.2.5.4 plug-in application to determine enriched Biological Process terms

[27,28]. Identification of enriched terms was done using a one-sided hypergeometric test of

significance, with a false discovery rate approach for multiple testing correction [29].

Co-expression network analysis between mRNAs and miRNAs

A co-expression network between mRNA and miRNA expression profiles was built according

to the established pipeline as previously reported by Mármol-Sánchez et al. [24]. The Partial

Correlation with Information Theory (PCIT) network inference algorithm was used to recog-

nize meaningful gene-to-gene interactions by employing first-order partial correlation coeffi-

cients obtained for each trio of genes in conjunction with an information theory technique

[30,31]. To do so, we calculated the Pearson pairwise correlation coefficients (r) for each

expressed miRNA and DE mRNA between H and L groups. Assuming that miRNAs can bio-

logically suppress mRNA expression, we reported only those co-expressed miRNA-to-mRNA

pairs showing an r value < -0.50. To further retain only relevant miRNA-to-mRNA correla-

tions with biological meaning, the seed of the annotated porcine mature miRNAs (7mer-m8,

from 2nd to 8th 5’ nucleotides) were reverse-complemented and interrogated along the anno-

tated 3’ UTRs (Sscrofa 11.1; http://www.ensembl.org./biomart) of porcine mRNA genes, by

making use of the SeqKit toolkit [32]. We also investigated whether the mRNAs predicted to

interact with miRNAs showed meaningful expression correlations with other mRNA-encod-

ing genes. We only kept the mRNA pairs with |r|> 0.7 as determined by the PCIT algorithm.

The more stringent threshold imposed for mRNA-to-mRNA expression associations as com-

pared to miRNA-to-mRNA predicted interactions (r< -0.50) was motivated by the fact that

the expression correlation between mRNA pairs is commonly of great magnitude than that of

miRNA-to-mRNA interactions [33].

Results

Differentially expressed genes and miRNAs

Out of 11,521 porcine mRNAs detected as sufficiently expressed, a total of 432 differentially

expressed genes (DEGs) were obtained between H and L pigs according to their n-6/n-3

PUFA ratio (S2 Table), with 157 and 275 mRNAs being upregulated and downregulated in L
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pigs with respect to H pigs, respectively (Fig 1). From the 457 annotated porcine miRNAs, a |

FC|> 1.5 threshold for changes in expression between H and L pigs showed no DE miRNAs

for the PUFA ratio trait. When a less stringent FC threshold was considered (|FC|> 1.2), 4

DE miRNAs were identified: ssc-miR-15b, ssc-mir30a-3p, ssc-miR-30e-3p and ssc-miR-7142-3p
(S3 Table).

Functional analysis and pathway enrichment of DEGs

A total of 80 significant unique GO terms (adjusted p-value< 0.05) were detected for DEGs

related to H and L pigs for the n-6/n-3 PUFA ratio trait. A full list of enriched GO terms is

shown in S4 Table. The significant biological processes highlighted were related to muscle

Fig 1. Volcano plot showing differentially expressed mRNA genes (DEGs) with an absolute fold change> 1.5 and adjusted p-

value< 0.05 after comparing pigs with High (H) and Low (L) profiles of n-6/n-3 PUFAs ratio in longissimus dorsi skeletal muscle.

Upregulated genes (in green) correspond to genes overexpressed in L pigs, and vice versa.

https://doi.org/10.1371/journal.pone.0283231.g001
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structure development (GO:0061061), positive regulation of skeletal muscle cell differentiation

(GO:2001016), SREBP signaling pathway (GO:0032933) and adrenergic receptor signaling

pathway (GO:0071875), among others, as shown in Fig 2.

mRNA-miRNA co-expression regulatory network

A total of 196 miRNAs were detected as significantly co-expressed (r< -0.50) with the differ-

entially expressed mRNA genes for n-6/n-3 PUFAs ratio (S5 Table). Among the 196 detected

miRNAs, we focused on the 4 DE miRNAs previously highlighted (see Results above, S3

Table) and used them for predicting binding sites of their mature miRNA seeds to the 3’ UTR

region of putative DE mRNA targets (S6–S8 Tables). Almost half (214 out of 432, 49.54%) of

the DEGs showed putative binding sites in their 3’ UTRs for the seed region of the 4 DE miR-

NAs (Table 1 and S3 Table).

Further combining relevant miRNA-mRNA expression correlations according to the PCIT

algorithm (r< -0.50) and 3’ UTR region seed matching, 2 out of the 4 DE miRNAs showed

meaningful co-expression with two DEGs: ssc-miR-15b was predicted to bind to the 3’ UTR

of the arresting domain containing 3 (ARRDC3) gene, while ssc-miR-7142-3p was predicted to

bind the 3’ UTR of the methyltransferase-like 21C (METTL21C) gene (S9 Table).

Fig 2. Enriched gene ontologies using DEGs after comparing RNA-Seq gene expression profiles of H and L pigs and their related biological

processes. Significant unique GO terms (adjusted p-value< 0.05) are obtained from the ClueGO plug-in embedded on the Cytoscape software.

https://doi.org/10.1371/journal.pone.0283231.g002
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Several other genes were also significantly associated with the expression of these two DEGs

(ARRDC3 and METL21C, S10 and S11 Tables). As shown in Fig 3, the ARRDC3 gene showed

meaningful correlation with 41 differentially expressed mRNAs (S10 Table), whereas the

METTL21C gene was significantly correlated with 5 DEGs (S11 Table). The related functions

and associations to lipid metabolism, immunity, and/or inflammation of these DEGs aresum-

marized in S12 Table.

Discussion

DEGs and their relationship to lipid-mediated expression and

immunomodulation

Our results after GO enrichment analyses of DEGs (S4 Table) showed GO terms mostly related

to muscle growth and differentiation, glucose and lipid metabolism. Some of the genes related

to muscle tissue and structure development pathways were also reported in human, mice and

ruminants (i.e. cattle, sheep, lamb). The aryl hydrocarbon receptor nuclear translocator like

Table 1. Number of putative targeted DE mRNAs (DEGS) with predicted binding sites for DE miRNAs between

pigs with High (H) and Low (L) n-6/n-3 PUFAs ratio in longissimus dorsi skeletal muscle.

DE miRNAs Number of targeted DEGsa % over total DEGs

ssc-mir-15b 125 28.94%

ssc-miR-30a-3p 130 30.09%

ssc-miR-30e-3p
ssc-miR-7142-3p 54 12.50%

aDifferentially expressed genes (DEGs) = 432 in total; The ssc-miR-30a-3p and ssc-miR-30e-3p have the same mature

miRNA seed (7mer-m8, from 2nd to 8th 5’ nucleotides).

https://doi.org/10.1371/journal.pone.0283231.t001

Fig 3. Meaningful co-expression network between miRNA-to-mRNA and mRNA-to-mRNA genes. r = Pearson correlation value; lines in red for

miRNA-to-mRNA interactions denote a negative correlation.

https://doi.org/10.1371/journal.pone.0283231.g003
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(ARNTL), a gene that regulates the circadian release of PUFAs and modulates feeding behavior

in mice, alongside with forkhead box N2 (FOXN2), are associated with obesity [34,35].

Another interesting gene was the diaphanous related formin 1 (DIAPH1), which is regulated

upon nutritional intervention with long chain PUFAs (n-6 and n-3) and it is reported to be

involved in lipid metabolism in cattle [36]. Supplementation of flaxseed or fish oil can increase

the expression of the guanidinoacetate N-methyltransferase (GAMT) gene, which is involved

in folate-homocysteine metabolism in embryos and liver of pregnant mice [37]. The absence

of n-3 PUFA in rodents (i.e. DHA) has been reported to affect cognitive brain function and a

few of its synaptomes including homer scaffold protein 1 (HOMER1) [38]. The Kruppel like

factor 5 (KLF5) gene regulates muscle differentiation in myoblasts and controls lipid metabo-

lism in mature skeletal muscle in mice [39,40]. In addition, GWAS analyses in human meta-

bolic syndrome discovered the association of the strawberry notch homolog 1 (SBNO1) gene

on plasma high-density lipoprotein cholesterol concentration, whereas the vestigial like family

member 2 (VGLL2) gene was linked to the fatty acids profile in sheep [41,42]. The T-

box transcription factor 1 (TBX1) gene, together with miR-193a-3p/TGF-β2, was found to

drive iron-dependent cell death ferroptosis through the accumulation of lipid peroxides in

neonates [43,44]. Abundancy on n-3 PUFA in cattle is reported to increase the gene expression

of insulin-like growth factors such as the insulin-like growth factor binding protein 5 (IGFBP-
5) and further influence reproductive performance [45]. Other genes like the glycerophospho-

choline phosphodiesterase 1 (GPCPD1), 3-hydroxy-3-methylglutaryl-CoA reductase

(HMGCR), or phosphoglucomutase 5 (PGM5), are related to glycophospholipid formation,

cholesterol synthesis and glycolysis [46–49].

Another relevant GO term that can be highlighted from our results is the SREBP signaling

pathway. Sterol regulatory-element binding proteins (SREBPs) are transcription factors that

regulate the expression profiles of genes that are involved in lipid synthesis, energy storage and

cholesterol regulation. When these proteins are activated, they can trigger lipid-mediated cel-

lular stress that can cause metabolic diseases such as obesity, atherosclerosis, diabetes mellitus,

inflammation, and organ fibrosis [50,51].

On the other hand, our enrichment analyses also emphasized the adenylate cyclase-activat-

ing adrenergic receptor signaling pathway based on the DEGs involved. Adrenergic receptors

play a vital role in mediating stress-induced signals, in immunomodulation and in stress-

related behavioral changes [52,53]. This pathway also triggers the formation of cyclic-adeno-

sine 30,50-monophosphate (cAMP), which regulates intracellular metabolism and it is linked to

glycolysis [54,55]. Stimulation of both SREBP signaling pathway and adrenergic receptor sig-

naling pathway could also be related to the pro-inflammatory role of n-6 PUFA. Addition of

n-6 PUFA increased the β-adrenergic receptor binding and adenylate cyclase activity in pig

adipocyte plasma membrane [56]. Furthermore, it was also reported that over supplementa-

tion of n-6 PUFAs in swine diets can stimulate the innate immune response and acute inflam-

matory response [57].

Association of differentially expressed porcine miRNAs to adipogenesis

and inflammation

We obtained a total of 4 DE miRNAs (ssc-miR-30a-3p, ssc-miR-30e-3p, ssc-miR-15b and ssc-
miR-7142-3p) between high and low n-6/n-3 PUFA ratio contrast on porcine skeletal muscle.

The expression of miR-30a in pigs has been associated to adipocyte formation, fat deposition,

myogenic differentiation and immune system [58–62]. miR-30a may also be related to cellular

response to infection, immune modulation and pathological processes since it was detected

on multiple pig-related viral studies concerning porcine parvovirus, porcine reproductive and
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respiratory syndrome virus or H1N1 swine influenza A virus [63–65]. A study on a minipig

obesity model also demonstrated how miR-30a could regulate the expression of genes related

to adipogenesis and low-grade chronic inflammation in obesity [58,66,67]. This was in accor-

dance to a previous report by our team, in which we predicted that miR-30a could potentially

bind to and regulate the mRNA of porcine ELOVL fatty acid elongase 6 (ELOVL6) gene, which

is responsible of the elongation of PUFAs and de novo lipogenesis [68]. However, the ELOVL6
gene was not among the detected DEGs in the current study (S2 Table), thus suggesting that

differences in miR-30a expression are not affecting the ELOVL6 mRNA levels, but might

inhibit its translation. As a member of miR-30 family, ssc-miR-30e also targets mRNA genes

that are related to skeletal muscle growth, energy metabolism and increased feed efficiency in

swine [69,70]. A few reports on pigs have also elucidated the role of miR-30e on binding to

mRNA transcripts from genes related to pathogenesis, virus-host interactions and immune

response [71–73].

On the other hand, mir-15b is mainly associated to blood vessel formation (angiogenesis),

tumor growth and cellular ATP level modulation. Metabolites obtained from n-6 PUFAs

could promote angiogenesis by increasing expression of transcription growth factors (i.e.

TGF-β), whereas n-3-PUFA-derived substances contain anti-angiogenic, anti-inflammatory

and antitumor properties [74–76]. Besides, ssc-mir-7142-3p is a mirtron located in the intronic

fraction of the microtubule affinity regulating kinase 2 (MARK2) gene. This miRNA has been

detected in lung tissue infected with Actinobacillus pleuropneumoniae and its differential

expression has been associated to the overexpression of the retinol binding protein 4 (RBP4)

gene [77,78]. RBP4, mainly secreted by the liver and adipocytes, is a transporter of vitamin A

and it is involved in various pathophysiological processes, such as obesity, insulin resistance

and cardiovascular diseases, demonstrating a strong association of this mirtron to inflamma-

tory-related processes [78].

Meaningful miRNA-to-mRNA regulatory networks affected by changes in

n-6/n-3 ratio

Co-expression network analyses between DE miRNAs and DEGs highlighted 2 miRNAs that

could potentially bind to and inhibit the expression of 2 DE mRNAs when comparing pigs

with high and low n-6/n-3 PUFA ratio in skeletal muscle. The upregulated DE miRNA ssc-
miR-15b was predicted to bind to the 3’ UTR of the arrestin domain containing 3 (ARRDC3)

gene. Arrestins are a small family of multi-faceted protein trafficking adaptors that bind to

membrane proteins, which regulate signal transduction at G protein-coupled receptors

(GCPR) and promote endocytosis. ARRDC3 is a known α-arrestin and its activation could

be due to nutrient excess or cellular stressors [79,80]. Our results showed that this gene was

involved in a few biological processes such as adrenergic receptor signaling pathway, negative

regulation of G protein-coupled receptor signaling pathway, negative regulation of behavior

and regulation of ubiquitin-protein transferase activity. ARRDC3 was reported to co-immu-

noprecipitate and interact with β2-adrenergic receptors and facilitate its ubiquitination

and degradation [81–83]. In addition, this gene is also involved in obesity development,

insulin resistance, body mass regulation, glucose metabolism, adiposity and energy expendi-

ture [84–86].

Meanwhile, the mirtron ssc-miR-7142-3p might target the methyltransferase-like 21c

(METTL21C) mRNA transcripts, which encode for a protein-lysine methyltransferase

involved in regulation of myogenesis, muscle function and protein catabolism [87,88]. From

our results, there is a strong positive association between high n-3 PUFA concentration and

METTL21C expression. A decreased expression of this gene was also reported after long-term
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exercise, in which elevated levels of inflammatory cytokines, oxidative stress, and leukocytosis

could be observed [89,90]. From our results, we might hypothesize that the upregulation of

ssc-miR-15b and downregulation of ssc-miR-1472-3p, together with ARRDC3 downregulation

and METTL21C upregulation could be linked to low n-6/n-3 PUFA ratio and the production

of anti-inflammatory metabolites, stimulating receptors related to stress and immunity. How-

ever, further validation among these predicted regulatory networks should be done in order to

verify their biological importance in terms of porcine growth and immune response.

Putative mRNA-to-mRNA correlations highlight genes related to

immunity and metabolic stress

Potential correlation and interaction between the two possible target genes of DE miRNAs,

ARRDC3 and METTL21C, and DEGs were further investigated. The phosphodiesterase 4D

(PDE4D), a gene that is associated with the regulation of interleukin production and cAMP-

mediated signaling, belongs to the same adrenergic receptor signaling pathway as ARRDC3
(S4 Table). The tumor inhibition properties of ARRDC3 are presumably facilitated by linking

target substrates such as β-adrenergic receptor and integrin β4 to E3 ligase, in which these tar-

get substrates become ubiquintinated and degraded by the proteasome [91].

Both the Hes related family bHLH transcription factor with YRPW motif like (HEYL) and

EvC ciliary complex subunit 1 (EVC) genes were correlated with METTL21C, and associated

with muscle organ and structure development (S4 Table). One study looked into the changes

of gene expression on some signaling pathways that could be affected by the specific knock-

down of METTL21C, including HEYL-targeted Notch pathway. Although it did not affect the

expression of HEYL gene, they reported that METTL21C is a critical component for bone and

muscle homeostasis [92]. Our results also showed that both EVC and METTL21C were upre-

gulated in L pigs. In contrast, an upregulation EVC and downregulation METT21C, among

other differentially expressed genes, were observed in BRAF-mutant cell lines, in response to

metabolic stress through glucose withdrawal [93].

Conclusion

The high and low values of n-6/n-3 PUFA ratio on porcine skeletal muscle influence the

expression profiles, related biological pathways and transcriptomic correlations and interac-

tions between differentially expressed mRNAs and miRNAs. Predicted co-expression

regulatory networks among mRNAs and miRNAs may be attributed to the pro- and anti-

inflammatory functions of n-6 and n-3 PUFAs, respectively. Our findings highlighted mRNA

genes, miRNAs and enriched pathways that were related to lipids metabolism, cell growth and

inflammation, according to differences in muscle n-6/n-3 PUFA ratio.
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17. Martı́nez-Montes ÁM, Fernández A, Muñoz M, Noguera JL, Folch JM, Fernández AI. Using genome

wide association studies to identify common QTL regions in three different genetic backgrounds based

on Iberian pig breed. PLoS One. 2018; 13(3). https://doi.org/10.1371/journal.pone.0190184 PMID:

29522525

18. Crespo-Piazuelo D, Criado-Mesas L, Revilla M, Castelló A, Noguera JL, Fernández AI, et al. Identifica-
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the ELOVL6 gene is associated with a major QTL effect on fatty acid composition in pigs. Genet Sel

Evol. 2015 Dec 25; 47(1):20. https://doi.org/10.1186/s12711-015-0111-y PMID: 25887840

69. Jia H, Zhao Y, Li T, Zhang Y, Zhu D. miR-30e is negatively regulated by myostatin in skeletal muscle

and is functionally related to fiber-type composition. Acta Biochim Biophys Sin (Shanghai). 2017 May;

49(5):392–9. https://doi.org/10.1093/abbs/gmx019 PMID: 28338991

70. Zaragosi LE, Wdziekonski B, Le Brigand K, Villageois P, Mari B, Waldmann R, et al. Small RNA

sequencing reveals miR-642a-3p as a novel adipocyte-specific microRNA and miR-30 as a key regula-

tor of human adipogenesis. Genome Biol. 2011; 12(7):R64. https://doi.org/10.1186/gb-2011-12-7-r64

PMID: 21767385
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