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Abstract
The final infection size is defined as the total number of individuals that become
infected throughout an epidemic. Despite its importance for predicting the fraction of
the population that will end infected, it does not capture which part of the infected
population will present symptoms. Knowing this information is relevant because it is
related to the severity of the epidemics. The objective of this work is to give a for-
mula for the total number of symptomatic cases throughout an epidemic. Specifically,
we focus on different types of structured SIR epidemic models (in which infected
individuals can possibly become symptomatic before recovering), and we compute
the accumulated number of symptomatic cases when time goes to infinity using a
probabilistic approach. The methodology behind the strategy we follow is relatively
independent of the details of the model.

Keywords Final infection size · Symptomatic population · Reproduction number

1 Introduction

A main challenge in mathematical epidemiology is to be able to predict the evolution
of a given epidemic depending on the measures taken. The final goal would be to find
strategies that minimize the social and economic impact of the epidemic. The severity
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of an epidemic is assessed using different indicators. Among these indicators, there
are two that are particularly important. One of them is the final size of the epidemic
(for those infectious diseases that are not endemic), which gives the total number
of individuals that will become infected during an epidemic. The other is the basic
reproduction number (Diekmann et al. 1990), which gives the expected number of
secondary infections produced by a typical infected individual at the beginning of the
epidemic (when basically the entire population is susceptible and the infected popula-
tion grows exponentially). It is clear that both indicators depend on the particularities
of the infectious agent and the host population. Prevention and/or control measures
seek to modify these particularities so that the epidemic is as mild as possible.

In certain epidemiological models, the two previous indicators are related in the
sense that one can be deduced from the other. For instance, in the SIR model given by
the ODE system

⎧
⎨

⎩

Ṡ = −βSI ,
İ = βSI − γ I ,
S(0) = S0, I (0) = I0,

(1)

the basic reproduction number is R0 = β/γ and the fraction of infected population
at the end of the epidemic, denoted by π , is the unique solution of the equation

π = 1 − e−R0π . (2)

This type of relationship has been found in other,more elaboratemodels than system
(1) (see, for instance, Ma and Earn 2006; Arino et al. 2007; Diekmann et al. 2013;
Inaba 2014; Magal et al. 2016, 2018; Almeida et al. 2021). As suggested in Diekmann
and Heesterbeek (2000) and explained in more detail in Miller (2012), for a relation
of the form (2) to exist the infection probability from an individual to another must be
independent of the moment in which the first individual becomes infected. The term
“probability” in the above condition may suggest that this is a condition valid only
for stochastic epidemiological models. The truth is, however, that it can be applied
in deterministic models like system (1) simply by considering one of its possible
underlying stochastic models (i.e. a stochastic process whose expected dynamics is
explained by the deterministic system (1) when the total population is large enough).

When a significant portion of the infected population is asymptomatic, the impact
of the epidemic that may be measured is more related to the number of individuals
who will develop symptoms than to the final size of the infection. In these situations,
therefore, it can be useful to study an indicator that gives the expected number of
symptomatic cases that will occur throughout the epidemic, what we will call the
final symptomatic size. Different models that distinguish between asymptomatic and
symptomatic infected have been analysed, for instance, in Inaba and Nishiura (2008);
Cushing and Diekmann (2016); Leung et al. (2018); Liu andWebb (2021); Barril et al.
(2021b); Fitzgibbon et al. (2020). The aim of this article is to give analogous formulas
to the relationship (1) in which the fraction of symptomatic population at the end of
the epidemic (instead of the total fraction of infected) intervenes.
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In Sect. 2 of this paper, the relationships between the basic reproduction number and
the final symptomatic size are derived. In order to do this, we calculate the probability
that a susceptible individual chosen at random at the beginning of the epidemic, what
is called a test individual, ends up getting infected and showing symptoms. In order to
introduce the ideas progressively, we distinguish three scenarios of increasing com-
plexity: homogeneous populations (in which all individuals behave in the same way),
populations where there is heterogeneity only among the susceptible, and populations
where heterogeneity is present in both the susceptible and the infected individuals.
Each of these scenarios is presented in its own subsection. In Sects. 3, 4 and 5, the
results of Sect. 2 are applied to three examples covering the three possible scenarios.
Specifically, in Sect. 3 we give an example of a homogeneous population in which the
infected individuals are structured by their age of infection. We note that, despite the
fact that the infected population is structured, the population is homogeneous since
even though the behaviour of each infected individual varies throughout its life (it will
be more or less infectious depending on the age of the infection), the way in which
this behaviour varies is common to all infected individuals. Section 4 is devoted to an
example of a heterogeneous population in which there are a finite number of different
classes (typologies), both infected and susceptible. Section 5 generalizes this example
by considering the susceptible and infected classes structured by a continuous variable.

2 Does a Test Individual Present Symptoms?

As it was shown inMiller (2012) (and beforehand suggested inDiekmann andHeester-
beek 2000), the proportion of infected individuals in an outbreak can be computed as
the probability that an individual chosen at random is infected at some instant during
the epidemic. Under certain conditions on the population structure, this probability can
be expressed in terms ofR0, that is, the expected number of new infections produced
by an infected individual in a fully susceptible population. A systematic procedure to
computeR0 is based on the so-called next-generation operator, denoted by G, which
gives the distribution of secondary infections as a function of the distribution of the
primary infected individuals. It can be shown thatR0 coincideswith the spectral radius
of G (see Diekmann et al. 1990; Inaba 2017; Barril et al. 2018).

In order to give a formula not for the size of the infected compartment, but for
the proportion of individuals that have presented symptoms, it is enough to multiply
the probability that a test individual is infected by the probability that this individual
manifests the disease. In the following, we will discuss some general scenarios in
which these two probabilities can be computed explicitly.

2.1 Homogenous Population

Let us recall from Miller (2012) the derivation of the final infection size when all
the individuals in the population are equivalent and the susceptibility level of an
individual does not change during the epidemic (here by susceptibility level we mean
the probability that a susceptible becomes infected per time unit and infected individual
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in the population). Notice that under this hypothesis, all susceptible individuals are
equally likely to be infected by a random infected individual. That is, if we take a test
individual from the susceptible population, then all infected individuals will infect this
test individual with the same probability. On the contrary, if the susceptibility-level
changes, then not all infected individuals will infect the test individual with the same
probability. For example, if people change their social habits due to a high prevalence
of the disease, then it will be more probable that the test individual gets the infection
from an individual infected at the beginning of the epidemic (when people don’t adopt
prevention measures) than from an individual infected later when the prevalence is
high (when people adopt prevention measures). A simple ODE system in which the
susceptibility level changes is:

{
S′(t) = − 1

N β(I (t))S(t)I (t)
I ′(t) = 1

N β(I (t))S(t)I (t) − γ I (t)
,

whereβ is a decreasing function and N denotes the total population. As far aswe know,
it is not possible to derive the final infection size of this kind of systems (when the
susceptibility level changes in time) without integrating the trajectories of the system
(it is possible, however, to derive bounds of the final infection size taking into account
the maximum and minimum values that β can take (Arino et al. 2007), and to derive
analytical expressions for the final infection size in models in which the susceptibility
level changes from one value to another permanently after the spread of the epidemics
reaches some threshold (Gog and Hollingsworth 2021). This is why in this work we
restrict ourselves to the case in which the susceptibility level of individuals is constant
in time.

Let K (N ) denote the number of individuals that will become infected during an
epidemic in a population of N individuals. In general, K (N ) is a random variable. Let
us assume that

lim
N→∞

K (N )

N
= π ∈ [0, 1] in probability. (3)

The constant π , referred to as the final infection size from now on, represents the
proportion of accumulated infected individuals at the end of the epidemics when the
initial susceptible population is sufficiently large.

The previous assumptionmeans that, for large population sizes, the randomvariable
can be approximated by π . More precisely, that for all ε > 0, the random variables
K (N ) satisfy

lim
N→∞ P

(∣
∣
∣
∣
K (N )

N
− π

∣
∣
∣
∣ ≥ ε

)

= 0.

Under this hypothesis, it can be shown (as an application of the Poisson limit theorem)
that

lim
N→∞ P

(

Bin

(

K (N ),
λ

N

)

= k

)

= P(Poiss(λπ) = k). (4)
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where Bin(n, p) denotes the binomial distribution with parameters n ∈ N and p ∈
[0, 1] and Poiss(λ) denotes the Poisson distribution with parameter λ > 0.

Since we are supposing that all infected individuals can infect a test individual u
with the same probability, it follows that the probability that such a test individual
becomes infected is

P (u infected) = P

(

Bin

(

K (N ),
R0

N

)

≥ 1

)

= 1 − P

(

Bin

(

K (N ),
R0

N

)

= 0

)

since each infected individual (from the total K (N )) can infect the test individual
u with a probability R0/N , where, as said before, R0 is the expected number of
secondary infections that a primary infected individual produces when the population
is fully susceptible. Then, in the limit N → ∞, we have P(u infected) = π , and on
the other hand due to assumption (3) via (4)

lim
N→∞ P

(

Bin

(

K (N ),
R0

N

)

= 0

)

= P (Poiss (πR0) = 0) = e−R0π ,

so that

π = 1 − e−R0π . (5)

The previous formula for the final infection size can be used to derive the number of
symptomatic cases that the epidemic will cause. Indeed, if psym denotes the proba-
bility that an infected individual presents symptoms, then the probability that the test
individual u presents symptoms is

πsym := psymP (u infected) = psymπ. (6)

The probability πsym coincides with the proportion of symptomatic individuals at the
end of the epidemic.

It can be shown that, if R0 > 1, Eq. (5) has a unique positive solution, which we
denote by π(R0). Moreover, π(R0) is an increasing function ofR0, which means that
the larger R0 is, the larger the final infection size. As πsym is an increasing function
of π , we also conclude that πsym is an increasing function of bothR0 and psym.

2.2 Heterogeneous Susceptible Population

Inmore realistic situations, the susceptibility is not the same for all individuals because
there are physiological or behavioural differences between them. For instance, a proba-
bility of infection higher than average could be observed in immunosuppressed people
(a physiological trait) or in promiscuous people (a behavioural trait). Epidemiological
models capture this heterogeneity by structuring the population into compartments or
classes, describing the population by a density function with respect to the structuring
variable (Almeida et al. 2021; Inaba 2014; Lorenzi et al. 2021; Peng and Zhao 2012;
Wang and Zhao 2012).
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When the susceptibility level of individuals does not change during the epidemic
and all infected individuals are equivalent, a generalization of (5) can be derived (Miller
2012). Structuring the susceptibility classes according to a variable x , we can define
R0(x) > 0 as the number of secondary infections an infected individual causes to
susceptibles of type x . In particular, this definition implies that

R0 =
∫

R0(x)dx .

Let s0(x) be the normalized density of susceptibles within class x at the beginning of
the epidemic (i.e. s0(x)N is the density of susceptibles of type x at that moment). Let
K (N ) be, as in Sect. 2.1, the number of individuals that will become infected during
the epidemic in a population of N individuals. Then, using again (4), the probability
that a test individual of type x becomes infected (for large N ) can be expressed in
terms of R0(x) as:

P (u infected|u is of type x) = lim
N→∞ P

(

Bin

(

K (N ),
R0(x)

s0(x)N

)

≥ 1

)

= lim
N→∞ 1 − P

(

Bin

(

K (N ),
R0(x)

s0(x)N

)

= 0

)

= 1 − P

(

Poiss

(R0(x)

s0(x)
π

)

= 0

)

= 1 − e
−R0(x)

s0(x) π
,

since each infected individual (from the total K (N )) can infect the test individual of
type x with probability R0(x)

s0(x)N
. Now we can define πs(x) so that Nπs(x) gives the

density of susceptible individuals of type x that will become infected at some point
during the epidemic. Then, one has (interpreting P(u is of type x) as the probability
density of u being of type x)

πs(x) = P (u infected|u is of type x) P(u is of type x) =
(

1 − e
−R0(x)

s0(x) π
)

s0(x)(7)

and in particular

π =
∫

πs(x)dx =
∫ (

1 − e
−R0(x)

s0(x) π
)

s0(x)dx = 1 −
∫

e
−R0(x)

s0(x) π
s0(x)dx . (8)

where we have used that
∫
s0(x) = 1. This formula gives the final infection size of

the epidemic. In order to know the final number of symptomatic cases, we have to
introduce psym(x) as the probability that a susceptible individual of type x presents
symptoms after becoming infected, and then, the probability that a test individual of
type x shows symptoms is

π
sym
s (x) := psym(x)πs(x).
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Since, from (7),

π
sym
s (x) = psym(x)

(

1 − e
−R0(x)

s0(x) π
)

s0(x), (9)

we obtain that the number of symptomatic cases that will be produced during the
epidemic is:

πsym =
∫

π
sym
s (x)dx =

∫

psym(x)

(

1 − e
−R0(x)

s0(x) π
)

s0(x)dx . (10)

Therefore, if s0(x),R0(x) and psym(x) are known, the fraction πsym can be obtained
by solving first (8) in order to obtain π , and afterwards solving (10). Notice that,
in addition to π and πsym, formulas (7) and (9) can be used to compute πs(x) and
π
sym
s (x), which may give information on the susceptibles that are more vulnerable.

2.3 Heterogeneous Susceptible and Infected Population

Let us now consider heterogeneity in both populations, susceptible and infected. As
before, let s0(x) be the density of susceptibles within class x at the beginning of the
epidemic (i.e. s0(x)N is the number of susceptibles of type x at that moment). Let
us define R0(x, y) > 0 as the number of secondary infections a primary infected
individual of type y causes to susceptibles of type x . Notice thatR0(x, y) depends on
s0(x). Indeed, if there are no susceptibles of class x (i.e. if s0(x) = 0) then necessarily
R0(x, y) = 0.

Let us assume there is a finite number n of susceptible classes and a finite number
m of infected classes. That is, if x and y denote the type of susceptible and infected
individuals, respectively, then x ∈ {x1, x2, . . . , xn} and y ∈ {y1, y2, . . . , ym}. The
class a susceptible belongs to is fixed, in the sense that its class remains the same
until it becomes infected. The same is assumed for infected individuals: the class an
infected individual belongs to is always the same until it recovers. In analogy to K (N )

in the previous subsections, let K (N , yi ) be the accumulated infected individuals of
type yi when the epidemic ends, and let us assume that

lim
N→∞

K (N , yi )

N
= π(yi ) ∈ [0, 1] in probability. (11)

Here, π(yi ) can be interpreted as the proportion of accumulated infected individuals
of type yi at the end of the epidemic when N is large enough.
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In this case, the probability that a test individual of type x becomes infected is
(using property (4) once more)

P(u infected |u is of type x) = lim
N→∞ 1 − P(u not infected |u is of type x)

= lim
N→∞ 1 −

m∏

i=1

P

(

Bin

(

K (N , yi ),
R0(x, yi )

s0(x)N

)

= 0

)

= 1 −
m∏

i=1

e
−R0(x,yi )

s0(x) π(yi ) = 1 − e
−∑m

i=1
R0(x,yi )
s0(x) π(yi ).

In particular, if whenever a susceptible individual of type x j is infected, it becomes an
infected individual of type y j (that is, if there is a one-to-one correspondence between
classes of susceptible and infected, which implies m = n), one then has

π(y j ) = πs(x j ) :=P(u infected |u is of type x j )P(u is of type x j )

=
(

1 − e
−∑n

i=1
R0(x j ,yi )
s0(x j )

π(yi )
)

s0(x j ),
(12)

where πs(x j ) represents the fraction of susceptible individuals of class x j infected
during the epidemic.

More generally, if whenever a susceptible individual of type x j is infected, it
becomes an infected individual of type yk with probability px j→yk we have, for all
k ∈ {1, . . . ,m},

π(yk) =
n∑

j=1

P(u infected |u is of type x j )P(u is of type x j )px j→yk

=
n∑

j=1

(

1 − e
−∑m

i=1
R0(x j ,yi )
s0(x j )

π(yi )
)

s0(x j )px j→yk ,

(13)

and in this case πs(x j ), for j ∈ {1, . . . , n}, can be expressed in terms of π(yk) as

πs(x j ) = P(u infected |u is of type x j )P(u is of type x j )

=
(

1 − e
−∑m

i=1
R0(x j ,yi )
s0(x j )

π(yi )
)

s0(x j ).

Let us note that, for both the particular case (12) and the general case (13), in order to
find the vector πππ := (π(y1), . . . , π(ym)) we have to solve an equation of the form

πππ = F(πππ)

with F : R
m → R

m , where the image of F corresponds to the right-hand side of
equations (13) for the different values of k, i.e. for w ∈ R

m and k ∈ {1, . . . ,m},
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Fk(w) is defined by:

Fk(w) =
n∑

j=1

(

1 − e
−∑m

i=1
R0(x j ,yi )
s0(x j )

wi

)

s0(x j )px j→yk . (14)

If F has a unique fixed point πππ with nonnegative entries and the sequence of iterates
Fl(πππ0) → πππ when l → ∞ for all πππ0 with positive entries, then (13), interpreted as
a fixed point equation, gives a method to obtain the infection final size vector. The
following result guarantees exactly that.

Theorem 1 LetR0 be the reproduction number associated with the model considered.
Then,

• ifR0 < 1, then 0 is the only fixed point of F in the positive cone and Fl(w) → 0
when l → ∞ for all w in the positive cone,

• ifR0 > 1, then there exists a fixed pointπππ �= 0 of F in the positive cone such that
Fl(w) → πππ when l → ∞ for all w satisfying

wi ≥
n∑

k=1

s0(xk)pxk→yi ∀i ∈ {1, . . . ,m}.

If πππ is the only nonzero fixed point of F in the positive cone, then Fl(w) → πππ

when l → ∞ for all w �= 0 of the positive cone.

Proof See Appendix. 	


Generically, whenR0 > 1, F has only one nonzero fixed point in the positive cone.
The degenerate cases with multiple nonzero fixed points correspond to scenarios in
which the infection may not be able to spread to all infected classes. This occurs, for
instance, if the secondary cases caused by an infected individual are always of the
same class as the primary infection. In this case, there are multiple final infection sizes
depending on the initial distribution of infected individuals. From now on, we assume
that F has only one nonzero fixed point.

The vector πππ = (π(y1), . . . , π(ym)) then gives the fraction of infected individuals
of different types at the end of the epidemic and allows to compute the proportion of
infected individuals in the population at the end of the epidemic, since

π =
m∑

k=1

π(yk). (15)
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Let us note that

m∑

k=1

π(yk) =
m∑

k=1

n∑

j=1

(

1 − e
−∑m

i=1
R0(x j ,yi )
s0(x j )

π(yi )
)

s0(x j )px j→yk

=
n∑

j=1

(

1 − e
−∑m

i=1
R0(x j ,yi )
s0(x j )

π(yi )
)

s0(x j )
m∑

k=1

px j→yk

=
n∑

j=1

(

1 − e
−∑m

i=1
R0(x j ,yi )
s0(x j )

π(yi )
)

s0(x j ) =
n∑

j=1

πs(x j )

as expected since the sum of infected individuals must coincide with the sum of all
susceptible individuals that became infected.

The previous arguments cannot be applied when the set of infected classes is not
finite. If the possible infected classes form an open set of an Euclidean space, denoted
by�Y , then K (N , y) could be 0 almost surely for all y ∈ �Y . To address this problem,
instead of K (N , y) one must consider K (N , ω) defined as the accumulated number
of infected individuals of types y ∈ ω ⊂ �Y at the end of the epidemics (where ω is
a Lebesgue measurable set), and assumption (11) should be replaced by

lim
N→∞

K (N , ω)

N
= π(ω) ∈ [0, 1]

in probability for all Lebesgue-measurable ω ⊂ �Y .
In this case, π(ω) corresponds to the proportion of accumulated infected individuals
with types y ∈ ω at the end of the epidemic when N is large enough.

From now on, let us restrict ourselves to models in which the function π can be
written in terms of an integrable function π̃ : �Y → R as

π(ω) =
∫

ω

π̃(y)dy.

Notice that if �Y = [0, 1], such a function π̃ exists provided the mapping y �→
π([0, y]) (which is increasing) is continuous. The fraction of infected population at
the end of the epidemic when N tends to infinity (i.e. the final infection size) is

π = lim
N→∞

K (N ,�Y )

N
= π(�Y ) =

∫

�Y

π̃(y)dy.

Consider now a random variable Y with density

fY (y) = π̃(y)

π
. (16)
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Then, since the accumulated number of infected individuals when the epidemic ends
is K (N ,�Y ) =: K (N ), it follows

P(u infected |u is of type x) = 1 − P(u not infected |u is of type x)

= lim
N→∞

⎛

⎝1 −
K (N )∏

i=1

(

1 − R0(x,Yi )

s0(x)N

)
⎞

⎠ (17)

for all x ∈ �X , where �X is the set of all susceptible classes, s0(x) is the initial
distribution of susceptibles and Yi are independent random variables with density
given by (16). Notice that, when x takes values in a continuum, then both s0(x)N and
R0(x, y) could be densities of individuals with respect to the susceptible structuring
variable x (and not individuals as in the case of a finite number of susceptible classes).

In order to rewrite the right-hand side of (17) in terms of π̃ , notice that

lim
N→∞

K (N )∏

i=1

(

1 − R0(x,Yi )

s0(x)N

)

= exp

⎛

⎝ lim
N→∞

K (N )∑

i=1

log

(

1 − R0(x,Yi )

s0(x)N

)
⎞

⎠

= exp

⎛

⎝ lim
N→∞

K (N )∑

i=1

∞∑

j=1

−1

j

(R0(x,Yi )

s0(x)N

) j
⎞

⎠

= exp

⎛

⎝ lim
N→∞

K (N )∑

i=1

∞∑

j=1

−1

j

( R0(x,Yi )

s0(x)K (N )

) j (K (N )

N

) j
⎞

⎠

= exp

⎛

⎝−E(R0(x,Y ))

s0(x)
π + lim

N→∞

K (N )∑

i=1

∞∑

j=2

−1

j

( R0(x,Yi )

s0(x)K (N )

) j (K (N )

N

) j
⎞

⎠ .

In particular, if the moments ofR0(x,Y ) are finite (for all x ∈ �X ), we have

lim
N→∞

K (N )∑

i=1

∞∑

j=2

−1

j

( R0(x,Yi )

s0(x)K (N )

) j (K (N )

N

) j

= lim
N→∞

∞∑

j=2

−1

j

E(R0(x,Y ) j )

s0(x) j K (N ) j−1

(
K (N )

N

) j

= 0,

and

P(u infected |u is of type x) = 1 − e
−E(R0(x,Y ))

s0(x) π = 1 − e
− ∫

�Y

R0(x,y)
s0(x) π̃(y)dy

.

Therefore,with an argument analogous to the one used in the finite case, if a susceptible
individual of type x , once infected, becomes an infected individual of type y with
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probability 1, we have (interpreting P(u is of type x) as the probability density of u
being of type x)

π̃ (y) = π̃s(x) :=P(u infected |u is of type x)P(u is of type x)

=
(

1 − e
− ∫

�Y

R0(x,y)
s0(x) π̃(y)dy

)

s0(x).
(18)

In general, if pi (x, y) denotes the probability density that a susceptible individual of
type x , once infected, becomes an infected individual of type y, then

π̃(y) =
∫

�X

π̃s(x)pi (x, y)dx =
∫

�X

(

1 − e
− ∫

�Y

R0(x,z)
s0(x) π̃(z)dz

)

s0(x)pi (x, y)dx .

(19)

From this integral equation, one could, at least numerically, find π̃ (y) (and in particular
the fraction π = ∫

�Y
π̃(y)dy of infected individuals during the epidemic).

In order to be able to compute the fraction of symptomatic cases, one more ingre-
dient should be introduced in the problem, meaning the probability that an infected
individual of type y formerly susceptible of type x develops symptoms. Let psym(x, y)
denote this probability. Then, πs(x)pi (x, y)psym(x, y) will be the distribution of
symptomatic individuals with respect to the infected and susceptible types, and the
total fraction of symptomatic individuals during the epidemic will be

πsym =
∫

�Y×�X

π̃s(x)pi (x, y)psym(x, y)dy dx . (20)

In the particular case that the probability of having symptoms only depends on the
class to which the infected individual belongs, i.e., if psym(x, y) = psym(y), then,
using (19) the following identity holds for πsym

πsym =
∫

�Y

π̃(y)psym(y)dy. (21)

In the case of finite classes of both susceptible and infected individuals, formula (20)
reduces to

πsym =
n∑

i=1

m∑

j=1

πs(xi )pxi→y j psym(xi , y j ).

In fact, one could define

π
sym
s (xi ) =

m∑

j=1

πs(xi )pxi→y j psym(xi , y j ) ∀i ∈ {1, . . . , n}
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and

πsym(y j ) =
n∑

i=1

πs(xi )pxi→y j psym(xi , y j ) ∀ j ∈ {1, . . . ,m},

in such a way that π
sym
s (xi ) is the fraction (with respect to the total population N )

of susceptibles in class xi that will end up developing symptoms and πsym(y j ) is the
fraction (also with respect to the total population N ) of individuals that will end up
showing symptoms and that during the asymptomatic phase were infected individuals
of type y j .

When the classes of susceptible and infected individuals are equivalent (that is, if
n = m and pxi→y j = 1 if i = j and 0 otherwise, implying πs(xi ) = π(yi )), one has

π
sym
s (xi ) = πsym(yi ).

Moreover, in this case the probability of an infected individual developing symptoms
does not depend on its type as susceptible (since this is already determined). Thus,
defining psym(yi ) = psym(xi , yi ), formula (21) becomes

πsym =
n∑

i=1

πsym(yi ) =
n∑

i=1

π(yi )psym(yi ). (22)

3 Age of InfectionModel

Let us consider the following age of infection structured model considering both
asymptomatic and symptomatic individuals:

S′(t) = − 1

N

(

S(t)
∫ T

0
β1(τ )i(t, τ )dτ + β2S(t)J (t)

)

,

∂t i(t, τ ) + ∂τ i(t, τ ) = −γ1(τ )i(t, τ ),

i(t, 0) = 1

N

(

S(t)
∫ T

0
β1(τ )i(t, τ )dτ + β2S(t)J (t)

)

,

J ′(t) = pi(t, T ) − γ2 J (t),

(23)

where the state variables S, i and J represent the density of susceptibles, infected
asymptomatic and infected symptomatic individuals, respectively. The total popula-
tion is denoted by N and is constant in time. The infected asymptomatic individuals
are structured by the age of infection, denoted by τ , i.e. the time that has passed since
the individual became infected. The parameters β1 and β2 are the transmission rates
of asymptomatic and symptomatic individuals, respectively, and γ1 and γ2 are the
recovering rates of asymptomatic and symptomatic individuals, respectively. Infected
individuals that reach age of infection T develop symptoms with probability p. There-
fore, an infected individual can recover without presenting symptoms if the recovering
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happens before the age of infection attains T or if at age of infection T it recovers
with probability 1 − p. For more details, see Barril et al. (2021b).

Although in this system the infected individuals are structured by the age of infec-
tion, the system can be analysed as if there were no differences between the infected
individuals. This is so because all infected individuals have the same properties.
Therefore, following the homogeneous population formalism described in the pre-
vious section, in order to determine the final infection size and the final symptomatic
size, denoted by π and πsym, respectively, we must compute the reproduction number
associated with the model (R0) and the probability that an infected individual presents
symptoms at some point (psym).

The probability psym can be computed noticing that for an infected individual to
become symptomatic, it should not recover before age of infection T , and then, it
should present symptoms, which occurs with probability p. Since γ1(τ ) is the recov-
ering rate of asymptomatic individuals with age of infection τ , the probability that an
asymptomatic individual does not recover before age of infection T is:

e− ∫ T
0 γ1(τ )dτ ,

so that

psym = e− ∫ T
0 γ1(τ )dτ p.

Now we compute R0, understood as the expected secondary asymptomatic cases
produced by an asymptomatic primary case. The expression for R0 was given but
not derived in Barril et al. (2021b). In order to compute it, we follow the formalism
developed in Diekmann et al. (1990) (see also Barril et al. 2018, 2021a, b) whereR0 is
obtained as the spectral radius of the so-called next-generation operator. Specifically
we linearize system (23) around the disease-free steady state (N , 0, 0) to obtain the
following equations for the dynamics of the infected population:

∂t i(t, τ ) + ∂τ i(t, τ ) = −γ1(τ )i(t, τ ),

i(t, 0) = ∫ T
0 β1(τ )i(t, τ )dτ + β2 J (t),

J ′(t) = pi(t, T ) − γ2 J (t).

Then, defining as an infection event the moment in which an individual becomes
asymptomatic we can consider the following birth/infection operator

B : L1(0, T ) × R −→ 〈δ0〉
(
i
J

)

�−→
(∫ T

0
β1(τ )i(τ )dτ + β2 J

)

δ0

and the mortality/transition operator

M : DM ⊂ L1(0, T ) × R −→ L1(0, T ) × R
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(
i
J

)

�−→
(
i ′(·) + γ1(·)i(·)
−p i(T ) + γ2 J

)

with

DM =
{
(i, J ) ∈ W 1,1(0, T ) × R : i(0) = 0

}
. (24)

The space 〈δ0〉 is the space generated by a Dirac delta centred at 0. Due to the fact that
the range of B is not a subspace of its domain, i.e. 〈δ0〉 � L1(0, T ) × R, R0 cannot
be defined as the spectral radius of the next-generation operator defined by BM−1.
However, as shown in Barril et al. (2021a), in the present case R0 can be computed
as:

R0 = lim
k→∞ B̃M−1ϕk

where B̃ is the functional from L1(0, T ) × R to R defined as

B̃

(
i
J

)

=
∫ T

0
β1(τ )i(τ )dτ + β2 J

and {ϕk}k∈N ⊂ L1(0, T ) × R is any sequence converging to the pair (δ0, 0), or more
specifically, it is any sequence such that

lim
k→∞ M−1ϕk = GM (·, 0)

where GM (·, 0) is the Green function of the operator M associated to the impulse
(δ0, 0). In particular, since B̃ is continuous, thenR0 can be expressed as

R0 = B̃GM (·, 0).

Therefore, to compute GM (·, 0), first we determine the preimages of ϕk = (îk, Ĵk) ∈
L1(0, T ) × R under the linear operator M with domain given in (24). To do that, let
us consider

(
ik
Jk

)

∈ DM such that

(
ik
Jk

)

= M−1
(
îk
Ĵk

)

,

which implies, by applyingM to both sides andusing that ik(0) = 0 (because (ik, Jk) ∈
DM ),

(
i ′k(·) + γ1(·)ik(·)
−p ik(T ) + γ2 Jk

)

=
(
îk
Ĵk

)

⇒
ik(τ ) = ∫ τ

0 îk(s)e− ∫ τ
s γ1(σ )dσds,

Jk = Ĵk+p ik (T )
γ2

=
(
Ĵk + p

∫ T
0 îk(s)e− ∫ T

s γ1(σ )dσds
)

γ −1
2 .
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With these expressions we finally have, defining �1(τ ) := e
∫ τ
0 γ1(s)ds ,

GM (·, 0) = lim
k→∞ M−1ϕk = lim

k→∞

⎛

⎜
⎝

∫ ·
0 îk(s)e

− ∫ ·
s γ1(σ )dσds

(
Ĵk + p

∫ T
0 îk(s)e− ∫ T

s γ1(σ )dσds
)

γ −1
2

⎞

⎟
⎠

=
⎛

⎜
⎝

∫ ·
0 δ0(s)e− ∫ ·

s γ1(σ )dσds

(
0 + p

∫ T
0 δ0(s)e− ∫ T

s γ1(σ )dσds
)

γ −1
2

⎞

⎟
⎠ =

⎛

⎜
⎝

e− ∫ ·
0 γ1(σ )dσ

p e− ∫ T
0 γ1(σ )dσ γ −1

2

⎞

⎟
⎠

=
⎛

⎝

1
�1(·)
p

�1(T )γ2

⎞

⎠ .

The reproduction number is then:

R0 = B̃GM (·, 0) =
∫ T

0

β1(τ )

�1(τ )
dτ + p β2

�1(T )γ2
,

which is meaningful from the biological point of view since the right-hand side of the
expression above can be interpreted as the expected secondary infections produced
by an infected individual during the asymptomatic phase plus the probability that an
infected individual presents symptoms, that is psym = p/�1(T ), multiplied by the
expected secondary infections produced by a symptomatic individual, that is β2/γ2.

Once the expressions forR0 and psym in terms of the parameters of the model are
determined, equations (5) and (6) can be used to compute π and πsym, that are

π = 1 − exp

(

−π

(∫ T

0

β1(τ )

�1(τ )
dτ + p β2

�1(T )γ2

))

and πsym = p

�1(T )
π.

Remark Notice that πsym does not satisfy πsym = 1 − e−R̃0πsym where R̃0 denotes
the secondary symptomatic cases produced by a primary symptomatic individual in a
fully susceptible population. This quantity is computed (for the model above) in Barril
et al. (2021b) and is given by

R̃0 =
⎧
⎨

⎩

β2
γ2

e−�1(T ) p

1−∫ T
0 β1(τ )e−�1(τ )dτ

if
∫ T
0 β1(τ )e−�1(τ )dτ < 1

∞ if
∫ T
0 β1(τ )e−�1(τ )dτ ≥ 1

.

This means that formula (5) is not valid for arbitrary definitions of what an “infection
event” is, for instance, when considering that the “infection event" occurs when an
individual starts presenting symptoms. The reason why (5) fails in this case is that
the test individual may become immune without ever entering the symptomatic com-
partment. Specifically, the first symptomatic individual may cause the test individual
to become immune without becoming symptomatic, and in this case the probability
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that the second symptomatic individual (and the third, the fourth, etc.) causes that the
test individual presents symptoms is zero (but the test individual has never presented
symptoms!). That is, the probability that a random symptomatic individual causes
the symptoms of the test individual depends on the presence of other symptomatic
individuals: it is R̃0/N if there is only one symptomatic individual throughout the
epidemic, but it is going to be smaller than R̃0/N if number of accumulated symp-
tomatic individuals is bigger than one. In fact, such a probability decreases with the
accumulated number of symptomatic individuals at the end of the epidemics, denoted
by K̃ (N ), and this prevents us from following the reasoning of section 2.1 since then

P(u symptomatic) �= P

(

Bin

(

K̃ (N ),
R̃0

N

)

≥ 1

)

.

4 Model with Individual Heterogeneity (Finite Number of Classes)

Let us consider an epidemicmodelwith individual heterogeneitywhere the susceptible
and infected populations are structured by the discrete variables x ∈ {x1, . . . , xn} and
y ∈ {y1, . . . , yn}, respectively, and is described by the dynamical equations

S′
i (t) = − 1

N

(
Si (t)

∑n
j=1 βi j I j (t) + Si (t)

∑n
j=1 β

sym
i j J j (t)

)

I ′
i (t) = 1

N

(
Si (t)

∑n
j=1 βi j I j (t) + Si (t)

∑n
j=1 β

sym
i j J j (t)

)
− pi Ii (t) − γi Ii (t)

J ′
i (t) = pi (x)Ii (t) − γ

sym
i Ji (t)

, (25)

for i ∈ {1, . . . , n}.
Here Si (t) = S(t, xi ) denotes the susceptible population with state xi at time t ,

whereas Ii (t) = I (t, yi ) and Ji = J (t, yi ) denote, respectively, the asymptomatic and
symptomatic populations with state yi at time t . The parameter pi = p(yi ) denotes
the probability per unit of time that an infected individual with state yi develops
symptoms (it corresponds to the rate at which an infected individual presents symp-
toms), and γi = γ (yi ) and γ

sym
i = γ sym(yi ) the recovery rates of asymptomatic and

symptomatic individuals with state yi , respectively. The parameter βi j = β(xi , y j ) is
the transmission rate between asymptomatic individuals with state y j and susceptible
individuals with state xi , and β

sym
i j = βsym(xi , y j ) stands for the transmission rate

between symptomatic individuals with state y j and susceptible individuals with state
xi . Notice that the previous equations imply that after infection, a susceptible of type xi
becomes an infected individual of type yi . Notice also that we are implicitly assuming
that infected individuals start by being asymptomatic and only after some time may
become symptomatic.

The dynamics of the epidemic is supposed to be sufficiently fast, and therefore,
the demographic processes are not considered. Let N be the total population at the
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beginning of the epidemic. There is a continuum of disease-free steady states, which
are

S0i = Ns0(xi )
I 0i = 0
J 0i = 0

, for i ∈ {1, . . . , n}

with s0(xi ) ≥ 0 for all xi and

n∑

i=1

s0(xi ) = 1.

Linearizing around one of these disease-free steady states, we obtain the following
equations for the dynamics of the infected population:

I ′
i (t) =

(
s0(xi )

∑n
j=1 βi j I j (t) + s0(xi )

∑n
j=1 β

sym
i j J j (t)

)
− pi Ii (t) − γi Ii (t)

J ′
i (t) = pi Ii (t) − γ

sym
i Ji (t)

,

for i ∈ {1, . . . , n}.
Clearly, the state space of the linearized system is R

n × R
n . Let us use a basis of

this space so that the states are written as pairs of n-tuples:

((I1, . . . , In)
�, (J1, . . . , Jn)

�).

Denoting by {e1, . . . , en} the canonical basis ofR
n , the basis of the state spaceR

n×R
n

is then:

{(e1, 0)�, . . . , (en, 0)
�, (0, e1)

�, . . . , (0, en)
�}.

Defining as an infection event the moment in which an individual becomes
asymptomatic we can consider the following birth/infection operator B and mor-
tality/transition operator M .

B :=
⎛

⎝
D(s0)β D(s0)βsym

0 0

⎞

⎠ , M :=
⎛

⎝
D(p + γ ) 0

−D(p) D(γ sym)

⎞

⎠ ,

where D(v) denotes a diagonal matrix whose diagonal entries are given by vector v,
where s0, γ , γ sym and p denote vectors whose i th entries are, respectively, s0(xi ), γi ,
γ
sym
i and pi , and where β and βsym are matrices whose entries (row i , column j) are

βi j and β
sym
i j respectively.
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With these two operators, we obtain the so-called next generation operator
(Diekmann et al. 1990; Inaba 2017; Barril et al. 2021b)

BM−1 = B

⎛

⎜
⎜
⎝

D
(

1
p+γ

)
0

D
(

p
(p+γ )(γ sym)

)
D

(
1

γ sym

)

⎞

⎟
⎟
⎠

=
⎛

⎜
⎝

D(s0)βD
(

1
p+γ

)
+ D(s0)βsymD

(
p

(p+γ )γ sym

)
D(s0)βsymD

(
1

γ sym

)

0 0

⎞

⎟
⎠

where, with slight abuse of notation, for any vector v with positive components, 1
v

denotes the vector whose components are the inverse of the components of v.
With the next-generation operator, we can compute the number of secondary infec-

tions an infected individual of type y j causes to susceptibles of type xi . It is enough to
apply this operator to the j th basis vector of R

n × R
n , namely (e j , 0) (this represents

the situation in which there is only one infected asymptomatic individual of type y j ,
i.e. I j = 1 and Ii = 0 for all i �= j and Ji = 0 for all i). The i th index of the first
half of the resultant vector BM−1(e j , 0) gives the number of secondary cases of type
yi produced by the primary infected individual of type y j (notice that BM−1(e j , 0)
has 2n components, but that the second half of the vector is full of zeros due to the
assumption that new infected individuals are always asymptomatic). Since all infected
individuals of type yi were susceptible of type xi , we conclude that the number of sec-
ondary infections an infected individual of type y j causes to susceptibles of type xi is
the scalar product of (ei , 0)� by BM−1(e j , 0)�, i.e.,

R0(xi , y j ) =
〈
(ei , 0)

�, BM−1(e j , 0)
�〉

=
〈

ei ,

(

D(s0)βD

(
1

p + γ

)

+ D(s0)β
symD

(
p

(p + γ )γ sym

))

e j

〉

= s0(xi )

(
βi j

p j + γ j
+ p j β

sym
i j

(p j + γ j )γ sym

)

The final infection size of the different classes, i.e. πππ = (π(y1), . . . , π(yn)) is a fixed
point of equation (12), that is

πππ = F(πππ) (26)
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Fig. 1 Comparison between the theoretical result (dashed lines) and the numerical result obtained by
integrating system (25) of Sect. 4 (continuous lines). The left plot shows the infected size of a system
with 5 different classes with respect to time (the dashed lines represent πππ ), and the right plot shows the
symptomatic size of the same system and the same classes (the dashed lines represent πππ sym). Notice that
for this particular example the class that has the largest final infected size (the class represented in purple) is
not the class that has the largest final symptomatic size (the class represented in red). Adding the different
dashed lines we would obtain the total final infected size π (in the left) and the total final symptomatic size
πsym (in the right). The parameters of the simulation are (following the notation in the main text): n = 5,
s0(xi ) = 1/n, βi j = i j/n2, βsym

i j = 0, γi = 0.1, γ sym
i = 0.2 and pi = 1.1 − i/n for i, j ∈ {1, . . . , n}

with F : R
n → R

n and the i th component function of F being defined, for a vector
v = (v1, . . . , vn), as

Fi (v) =
⎛

⎜
⎝1 − e

−∑n
j=1

(
βi j

p j+γ j
+ p j β

sym
i j

(p j+γ j )γ
sym

)

v j

⎞

⎟
⎠ s0(xi ). (27)

Once we know the final infection size of each class, we can compute the final symp-
tomatic size. To do this, we have to determine the probability that an infected individual
of type yi presents symptoms. Since the recovery rate of this individual is γi and the rate
of presenting symptoms is pi , the probability that this individual presents symptoms
is

psym(yi ) = pi
pi + γi

.

Consequently, the final symptomatic size of infected individuals of type yi (that coin-
cides with the final symptomatic size of susceptible individuals of type xi because the
classes of susceptible and infected individuals coincide, i.e., πsym(yi ) = π

sym
s (xi )) is

πsym(yi ) = π(yi )psym(yi ) = π(yi )
pi

pi + γi
.

Once πππ and πππ sym = (πsym(y1), . . . , πsym(yn)) are determined, the final infected and
symptomatic sizes can be computed using (15) and (22). In Fig. 1 , we compare the
theoretical and numerical results of a specific example of system (25).
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5 Model with Individual Heterogeneity (Continuous Trait)

Let us consider the continuous extension of themodel presented in the previous section.
Specifically let us assume that individual heterogeneity is expressed by a continuous
variable x taking values in � = [0, 1], and let us consider the equations

∂t s(t, x) = − 1

N

(

s(t, x)
∫

�

β1(x, y)i(t, y)dy + s(t, x)
∫

�

β2(x, y) j(t, y)dy

)

∂t i(t, x) = 1

N

(

s(t, x)
∫

�

β1(x, y)i(t, y)dy + s(t, x)
∫

�

β2(x, y) j(t, y)dy

)

−p(x)i(t, x) − γ1(x)i(t, x)

∂t j(t, x) = p(x)i(t, x) − γ2(x) j(t, x)

where s(t, x) denotes the susceptible, i(t, x) the asymptomatic and j(t, x) the symp-
tomatic population density with state x at time t . As a consequence, the phase space of
the above system is set to be L1(0, 1)3.Here p(x) denotes the probability of developing
symptoms, and γ1(x) and γ2(x) the recovery rates of asymptomatic and symptomatic
individuals, respectively. β1(x, y) is the transmission rate between asymptomatic indi-
viduals with state y and susceptible individuals with state x , and β2(x, y) stands for
the transmission rate between symptomatic individuals with state y and susceptible
individuals with state x .
As before, the dynamics of the epidemic is supposed to be sufficiently fast, and there-
fore, the demographic processes are not considered and N is the total population at
the beginning of the epidemic.

Linearizing around a disease-free steady state (Ns0(x), 0, 0), with
∫ 1
0 s0(x)dx = 1,

we obtain the following equations for the dynamics of the infected population:

∂t i(t, x) = s0(x)
∫

�

β1(x, y)i(t, y)dy + s0(x)
∫

�

β2(x, y) j(t, y)dy

−p(x)i(t, x) − γ1(x)i(t, x),

∂t j(t, x) = p(x)i(t, x) − γ2(x) j(t, x)

The birth/infection operator B andmortality/transition operatorM (unlike the example
of Sect. 3 here both operators are bounded, i.e. they are defined in all L1(0, 1)2) are

B :=
⎛

⎝
s0(x̂)

∫

�
β1(x̂, ŷ) · d ŷ s0(x̂)

∫

�
β2(x̂, ŷ) · d ŷ

0 0

⎞

⎠ ,
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M :=
⎛

⎝
p(x̂) + γ1(x̂) 0

−p(x̂) γ2(x̂)

⎞

⎠ ,

and the next-generation operator is then

BM−1 =
⎛

⎝
s0(x̂)

∫

�

(
β1(x̂,ŷ)

p(ŷ)+γ1(ŷ)
+ β2(x̂,ŷ)p(ŷ)

(p(ŷ)+γ1(ŷ))γ2(ŷ)

)
· d ŷ s0(x̂)

∫

�
β2(x̂,ŷ)
γ2(ŷ)

· d ŷ

0 0

⎞

⎠ .

Here x̂ and ŷ have been used (instead of x and y) in order to avoid a notational collision
in formula (29) below.

With an analogous argument as in the previous section, we obtain the “continuous”
version of equations (26) and (27). Specifically, the final infection density is a solution
of the functional equation

F(π̃) = π̃ (28)

with F : L1(0, 1) → L1(0, 1) defined as (recall (18))

F(π̃)(x) =
(

1 − e
− ∫

�

R0(x,y)
s0(x) π̃(y)dy

)

s0(x)

=
(

1 − e
− ∫

�Y

(
β1(x,y)

p(y)+γ1(y) + β2(x,y)p(y)
(p(y)+γ1(y))γ2(y)

)
π̃(y)dy

)

s0(x)

sinceR0(x, y) is given by

R0(x, y) =
〈(

δx
0

)

, BM−1
(

δy
0

)〉

= s0(x)

(
β1(x, y)

p(y) + γ1(y)
+ β2(x, y)p(y)

(p(y) + γ1(y))γ2(y)

)

.

(29)

Finally, since the probability that an infected individual of class y presents
symptoms is:

psym(y) = p(y)

p(y) + γ1(y)
,

the final density of symptomatic cases, structured by the variable y, is

π̃sym(y) = π̃(y)psym(y) = π̃(y)
p(y)

p(y) + γ1(y)
.
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and the total number of symptomatic cases at the end of the epidemic is given by
(whenever the solution π̃ of (28) can be obtained) as

πsym =
∫

�

π̃(y)
p(y)

p(y) + γ1(y)
dy.

6 Conclusion

In this article, we used the probability for a test individual to become infected and
develop symptoms to compute the final number of symptomatic cases that the epi-
demic will cause. The obtained equations relate the final symptomatic cases with the
reproduction number of the epidemics and the probability/rates at which infected indi-
viduals present symptoms. The equations are, therefore, natural generalizations to the
well-known final infection size equations.

It has been discussed elsewhere (see, for instance, Cushing and Diekmann 2016)
that basic reproduction numbers depend on how an “infection event” is defined. From
a biological point of view, it makes sense to consider that individuals become infected
as soon as the infectious agents start to proliferate within them (a biological infection
event). However, in practical situations most infected individuals are not reported in
the course of an epidemic unless they present symptoms at some time, so that in some
sense the onset of symptoms is what defines the “infection event” in epidemiological
data (an epidemiological infection event). In this article,R0 is always associated with
the biological infection event definition, which explains why the probability of pre-
senting symptoms appears as an independent element in the final symptomatic cases
equation. A natural question (and what motivated part of this work) is what happens
when adopting the epidemiological infection event definition. More precisely, taking
into account that π = 1 − e−R0π is an equation for the final infection size in the
homogeneous case (Sect. 2.1), does an analogous formula for the final symptomatic
cases hold when the reproduction number is computed according to the epidemiologi-
cal infection event definition? That is, denoting by R̃0 such an alternative reproduction
number (which gives the secondary symptomatic cases produced by a symptomatic

individual), then does πsym = 1 − e−R̃0πsym hold? The answer is no (as shown in the
remark at the end of section 3). The reason is that the test individual argument used
to deduce (5) cannot be applied in the same way considering only the symptomatic
population and R̃0. The difference in this setting is that the test individual may gain
immunity (i.e. recover) at some point without having been part of the symptomatic
population (while in the reasoning leading to (5) the test individual stays susceptible
until it, eventually, becomes part of the infected population).

This observation has important implications on how the final infection size is
computed with the available information. Indeed, if Eq. (5) is used plugging the repro-
duction number associated with symptomatic individuals, the result would neither be
the final size of symptomatic cases nor the final infection size.

Although adding realism in terms of population structure, the formalism presented
here still relies on important simplifying assumptions, such as the time-independence
of the susceptibility level discussed in section 2.1. Recent work has analysed the
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final size for situations where there is a permanent reduction in mixing intensity (and
hence a reduction in the susceptibility level) that depends on the epidemic progression
(Gog and Hollingsworth 2021). Although the test individual trick does not seem to
be generalizable in a straightforward way in time-dependent scenarios, it is worth
studying if the trick can be extended at least to the simple model considered in Gog
and Hollingsworth (2021), for which final infection size formulas do exist. If this were
the case,maybe these formulas could be generalized to heterogeneous population (with
possibly asymptomatic individuals) proceeding as we do in this paper.
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Appendix A Proof of Theorem 1

To prove Theorem 1, we follow the ideas in Magal et al. (2018, 2016), where a
similar problem is addressed. The results stem from the theory of monotone discrete
dynamical systems (see section 5 in Hirsch and Smith 2005). First we define the
relation ≤ between elements of R

m as

u ≤ v if ui ≤ vi ∀i ∈ {1, . . . ,m},
and the interval [u, v] as the set of all w ∈ R

m satisfying u ≤ w ≤ v. In addition, we
consider the three following general results.

Proposition 2 Let F : R
m → R

m be component-wise increasing, i.e. such that F(u) ≤
F(v) if u ≤ v. Let u0 and v0 such that Fl(u0) → u∞ and Fl(v0) → v∞ as l → ∞. Let
w ∈ [u0, v0]. If w̄ is an accumulation point of the orbit ofw by F, then w̄ ∈ [u∞, v∞].
Proof Since u0 ≤ w ≤ v0, by the monotony of F we have F(u0) ≤ F(w) ≤ F(v0),
and applying this argument inductively it follows Fl(u0) ≤ Fl(w) ≤ Fl(v0) for all
l ∈ N. Now let w̄ be an accumulation point of the orbit of w by F , i.e. there exist an
unbounded subset of indices {lk}k∈N such that

lim
k→∞ Flk (w) = w̄,

which implies

u∞ = lim
k→∞ Flk (u0) ≤ w̄ ≤ lim

k→∞ Flk (v0) = v∞.
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Let F be as in Proposition 2 and let u and v be fixed points of F . A doubly infinite

sequence {xn}n∈Z in R
n is called an entire orbit from u to v if

xn+1 = F(xn), lim
n→−∞ xn = u, lim

n→∞ xn = v.

Proposition 3 (Theorem 5.11 of Hirsch and Smith 2005) Let F be as in Proposition
2 and continuous. Let u and v, with u ≤ v, be two fixed points of F. Then at least one
of the following holds:

(a) there is a third fixed point w̄ such that u ≤ w̄ ≤ v;
(b) there exists an entire orbit from u to v that is increasing;
(c) there exists an entire orbit from v to u that is decreasing.

Proposition 4 (Corollary 5.12 of Hirsch and Smith 2005) Let F, u and v as in Propo-
sition 3. If both u and v are locally asymptotically stable, then F has a third fixed
point w̄ ∈ [u, v], which is not locally asymptotically stable.

Although the dynamical behaviour of the third fixed point w̄ is not stated in Corol-
lary 5.12 of Hirsch and Smith (2005), notice that at least one fixed point in [u, v] will
not be locally asymptotically stable. To see this, let A be the set of all fixed points of
F in [u, v] which are locally asymptotically stable. Since [u, v] is compact, A is nec-
essarily finite. Otherwise there would exist an accumulation point in [u, v] of locally
asymptotically stable fixed points, which would imply that such point would converge
to infinitely many different points, which is impossible. Choose v′ ∈ A such that the
only elements of A in [u, v′] are u and v′. Then, Corollary 5.12 of Hirsch and Smith
(2005) ensures the existence of a third fixed point w̄ ∈ [u, v′] ⊂ [u, v], and w̄ is not
locally asymptotically stable because w̄ /∈ A by construction.

Before proceeding further, let us see how R0 is related to the mapping given by
F in (14). Recall that R0 can be defined as the spectral radius of the next-generation
operator G. This operator, which is a matrix when there are only finitely many classes
of infected individuals, gives the distribution of secondary infections as a function
of the distribution of primary infected individuals. In particular, if ei denotes the
i th canonical vector, the j th entry of the image vector Gei (which coincides with
the entry ( j, i) of the matrix G, i.e. G j,i ) gives the expected number of secondary
infected individuals of class y j that a primary infected individual of class yi produces.
Taking this observation into account, it is easy to construct the matrix G using the
values R0(xk, yi ) and pxk→y j . Indeed, since R0(xk, yi ) gives the expected number
of susceptible individuals of class k infected by a primary infected individual of class
i and pxk→y j gives the probability that when a susceptible of class k is infected it
becomes an infected individual of class j , it turns out that

G j,i =
n∑

k=1

R0(xk, yi )pxk→y j . (A1)

We conclude, therefore, that R0 = ρ(G) where G is the matrix whose entries are
defined in (A1).
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On the other hand, notice that 0 is a fixed point of F . It is well known that the local
behaviour of 0 is determined by the spectral radius of DF(0) (it is locally asymp-
tomatically stable if ρ(DF(0)) < 1 and it is unstable if ρ(DF(0)) > 1). A quick
computation shows that DF(0) = G, which implies that 0 is locally asymptomatically
stable if R0 < 1 whereas it is unstable if R0 > 1. To prove that 0 is in fact a global
attractor of the positive cone when R0 < 1, we need the following results:

Proposition 5 Let F be defined in (14). Then, F is component-wise increasing, i.e.
F(u) ≤ F(v) if u ≤ v.

Proof Notice that ∂i Fj (w) ≥ 0 for all w ∈ R
m and i, j ∈ {1, . . . ,m}. 	


Proposition 6 Let F be defined in (14). Let u, v ∈ R
m. If 0 ≤ u ≤ v, thenρ(DF(u)) ≥

ρ(DF(v)).

Proof First notice that the entry ( j, i) of DF(u), i.e. ∂i Fj (u), is smaller than the
entry ( j, i) of DF(v), i.e. ∂i Fj (v). This follows from the fact that ∂ki Fj (w) ≤ 0 for
all i, j, k ∈ {1, . . . ,m} and w ∈ R

m . Moreover, all entries of DF(u) and DF(v)

are nonnegative. Therefore, ‖DF(u)l‖ ≥ ‖DF(v)l‖ for all l ∈ N, and applying the
Gelfand’s formula we finally conclude

ρ(DF(u)) = lim
l→∞ ‖DF(u)l‖ 1

l ≥ lim
l→∞ ‖DF(v)l‖ 1

l = ρ(DF(v)).

	

Proposition 7 Let F be defined in (14). Define v0 ∈ R

m as

v0i =
n∑

k=1

s0(xk)pxk→yi ∀i ∈ {1, . . . ,m}.

Then,

i. the orbit of v0 converges to a fixed point of F, i.e.

lim
l→∞ Fl(v0) = v̄ and F(v̄) = v̄,

ii. for all w ≥ v̄, liml→∞ Fl(w) = v̄.

Proof To prove i. notice that Fl+1(v0) ≤ Fl(v0) for all l ∈ N, so that the sequence
{Fl(v0)}l∈N is decreasing component-wise. Since the orbit of v0 is bounded (notice
that 0 ≤ Fl(v0) ≤ v0 for all l ∈ N), it follows that the sequence {Fl(v0)}l∈N converges
to a point v̄ ∈ [0, v0] ⊂ R

m . Since F is continuous, v̄ is a fixed point of F . To prove
ii., notice that for all w ≥ v0 one has F(w) ≤ v0. Then, since F is component-
wise increasing and v0 ≥ v̄ and liml→∞ Fl(v0) = v̄ = liml→∞ Fl(v̄), by applying
Proposition 2 it follows that the accumulation points of {Fl(w)}l∈N belong to [v̄, v̄] =
{v̄}, which implies that {Fl(w)}l∈N converges to v̄. 	
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As a corollary of these results, it follows that:

Proposition 8 IfR0 < 1 then liml→∞ Fl(w) = 0 for allw ∈ R
m+, withR+ := (0,∞).

Proof This is shown by noticing that in this case the v̄ of Proposition 7 has to be
necessarily 0. Indeed, if v̄ > 0, then by Proposition 4 we have that there exists
w̄ ∈ [0, v̄] which is not locally asymptotically stable, but by Proposition 6 it follows
1 > R0 = ρ(DF(0)) ≥ ρ(DF(w̄)), which contradicts this fact. 	

Proposition 9 If R0 > 1, then liml→∞ Fl(w) = v̄ �= 0 for all w > v̄. Moreover, if 0
and v̄ are the only fixed points of F in the positive cone of Rm, then liml→∞ Fl(w) =
v̄ �= 0 for all w ∈ R

m+
Proof Since the basin of attraction of v̄ contains an open set (namely all pointsw ∈ R

m

satisfying w ≥ v̄), necessarily ρ(DF(v̄)) ≤ 1. Therefore, since R0 = ρ(DF(0)) >

1, it follows that v̄ �= 0. Applying Proposition 7, we conclude the first part of the
statement.

In order to show that the interior of the positive cone of R
m belongs to the basin of

attraction of v̄ when 0 and v̄ are the only fixed points of F in the positive cone, first
notice that by Proposition 3 there is an entire orbit from 0 to v̄ (since the existence of
an entire orbit from v̄ to 0 would imply ρ(DF(0)) ≤ 1). Therefore, for all w ∈ R

m+
we can take w− ∈ (0, v̄] from that entire orbit and w+ ≥ v̄ such that w ∈ [w−, w+].
Then, since liml→∞ Fl(w−) = v̄ = liml→∞ Fl(w+), by Proposition 2 we conclude

lim
l→∞ Fl(w) ∈ [v̄, v̄] = {v̄}.
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