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Introduction: The increasing burden on mental health has become a worldwide
concern especially due to its substantial negative social and economic impact. The
implementation of prevention actions and psychological interventions is crucial to
mitigate these consequences, and evidence supporting its effectiveness would
facilitate a more assertive response. Heart rate variability biofeedback (HRV-BF)
has been proposed as a potential intervention to improve mental wellbeing
through mechanisms in autonomic functioning. The aim of this study is to
propose and evaluate the validity of an objective procedure to assess the
effectiveness of a HRV-BF protocol in mitigating mental health symptoms in a
sample of frontline HCWs (healthcare workers) who worked in the COVID-19
pandemic.

Methods: A prospective experimental study applying a HRV-BF protocol was
conducted with 21 frontline healthcare workers in 5 weekly sessions. For
PRE–POST intervention comparisons, two different approaches were used to
evaluate mental health status: applying (a) gold-standard psychometric
questionnaires and (b) electrophysiological multiparametric models for chronic
and acute stress assessment.

Results: After HRV-BF intervention, psychometric questionnaires showed a
reduction in mental health symptoms and stress perception. The
electrophysiological multiparametric also showed a reduction in chronic stress
levels, while the acute stress levels were similar in PRE and POST conditions. A
significant reduction in respiratory rate and an increase in some heart rate
variability parameters, such as SDNN, LFn, and LF/HF ratio, were also observed
after intervention.

Conclusion:Our findings suggest that a 5-session HRV-BF protocol is an effective
intervention for reducing stress and other mental health symptoms among
frontline HCWs who worked during the COVID-19 pandemic. The
electrophysiological multiparametric models provide relevant information
about the current mental health state, being useful for objectively evaluating
the effectiveness of stress-reducing interventions. Further research could

OPEN ACCESS

EDITED BY

Rui Min,
Beijing Normal University, China

REVIEWED BY

Richard Gevirtz,
Alliant International University,
United States
Alireza Mani,
University College London,
United Kingdom

*CORRESPONDENCE

Thais Castro Ribeiro,
thais.castro@uab.cat

RECEIVED 18 January 2023
ACCEPTED 24 April 2023
PUBLISHED 10 May 2023

CITATION

Castro Ribeiro T, Sobregrau Sangrà P,
García Pagès E, Badiella L,
López-Barbeito B, Aguiló S and Aguiló J
(2023), Assessing effectiveness of heart
rate variability biofeedback to mitigate
mental health symptoms: a pilot study.
Front. Physiol. 14:1147260.
doi: 10.3389/fphys.2023.1147260

COPYRIGHT

©2023 Castro Ribeiro, Sobregrau Sangrà,
García Pagès, Badiella, López-Barbeito,
Aguiló and Aguiló. This is an open-access
article distributed under the terms of the
Creative Commons Attribution License
(CC BY). The use, distribution or
reproduction in other forums is
permitted, provided the original author(s)
and the copyright owner(s) are credited
and that the original publication in this
journal is cited, in accordance with
accepted academic practice. No use,
distribution or reproduction is permitted
which does not comply with these terms.

Frontiers in Physiology frontiersin.org01

TYPE Original Research
PUBLISHED 10 May 2023
DOI 10.3389/fphys.2023.1147260

https://www.frontiersin.org/articles/10.3389/fphys.2023.1147260/full
https://www.frontiersin.org/articles/10.3389/fphys.2023.1147260/full
https://www.frontiersin.org/articles/10.3389/fphys.2023.1147260/full
https://www.frontiersin.org/articles/10.3389/fphys.2023.1147260/full
https://crossmark.crossref.org/dialog/?doi=10.3389/fphys.2023.1147260&domain=pdf&date_stamp=2023-05-10
mailto:thais.castro@uab.cat
mailto:thais.castro@uab.cat
https://doi.org/10.3389/fphys.2023.1147260
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org/journals/physiology#editorial-board
https://www.frontiersin.org/journals/physiology#editorial-board
https://doi.org/10.3389/fphys.2023.1147260


replicate the proposed procedure to confirm its feasibility for different samples and
specific interventions.
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1 Introduction

In recent years, mental health has become a global concern. The
increasing prevalence of mental health disorders also impairs
physical health, causing disability and negative economic and
social impacts (Flores et al., 2018). The World Health
Organization (WHO) recognizes that mental healthcare is an
essential part of comprehensive care, thus supporting the need
for actions to promote mental wellbeing and implement
prevention interventions (World Health Organization, 2022).
There is substantial literature regarding psychological
interventions (Purtle et al., 2020), although there is scarce
evidence supporting their validity, and limited quantitative
outcomes have been considered (Ahmed et al., 2021; Cairns
et al., 2021).

To advance in the field of mental health, it is crucial to establish
reliable tools that allow to objectively assess the patient’s affectability
and the effectiveness of applied interventions. The measurement of
electrophysiological variables provides information about the
functioning of the autonomic nervous system (ANS) and permits
estimating the stress level non-invasively, being an extended
quantitative approach for this purpose (Ahmed et al., 2022).

A sustained stress response generates an ANS imbalance as the
body tends to hyperactivate the sympathetic nervous system (SNS)
and the hypothalamus–pituitary–adrenal axis (HPA), leading to
hormonal and physiological adaptations for a “fight-or-flight
response.” The parasympathetic nervous system (PNS) typically
facilitates the recovery of stress responses, giving flexibility to
adapt to different daily situations, although under a chronic
stress condition, this function is compromised (McCraty and
Shaffer, 2015).

Cardiac function is strongly regulated by the brain through
dynamic interactions between the SNS and PNS (Tonhajzerova
et al., 2012). Heart rate variability (HRV), which reflects the
fluctuation in time intervals between adjacent heartbeats, and its
metrics have become widely used indices of these interactions, and
hence, of psychological wellbeing. Low HRV has been associated
with a diminished regulation capability of the ANS, cardiovascular
outcomes, impairment of the immune system, aging, and other
conditions. Moreover, high HRV has been linked with better
performance, health, and adaptability (Kim et al., 2018).
Nevertheless, evidence showed limitations when interpreting
HRV parameters in a simplistic binary way (sympathetic and
parasympathetic) and highlighted the complexity of this system
and influencing factors, such as age and respiratory rate (Billman,
2013; Hernando et al., 2016; Hayano and Yuda, 2019).

In the literature, the outcomes more frequently selected to
evaluate the effect of mental health interventions are as follows:
a) psychometric questionnaires to subjectively estimate the anxiety
state, stress level, and severity of depression, among others (Lehrer

et al., 2020); b) HRV parameters to assess ANS functioning (Heiss
et al., 2021); and c) electrodermal activity (EDA) indexes to evaluate
sympathetic activation (Scavone et al., 2020). We hypothesize that
use of subjective measures and single-objective indices limits the
understanding of the stress response; hence, a multimodal approach
is being proposed in the current study. Indices derived from
electrocardiogram (ECG), EDA, peripheral skin temperature and
respiration collectively may provide a more comprehensive
information on physiological behavior and stress response
(Garzón-Rey, 2017; Arza et al., 2018; García Pagès et al., 2023).
Our research group has suggested combined models that include a
set of electrophysiological variables, which were constructed from
statistical models based on the usual clinical psychological
assessment (self-reported questionnaires), thus providing a more
robust estimation (Garzón-Rey et al., 2017; Aguiló Mir et al., 2021).

The heart rate variability biofeedback (HRV-BF) is a proactive
intervention that allows easy multimodal signal recording and
quantitative measurements, besides being broadly applied for
mental health issues (Moss and Shaffer, 2017). One of the HRV-
BF mechanisms is based on the physiological relation between
cardiovascular and respiratory systems, which is mediated by the
vagus nerve, also known as respiratory sinus arrhythmia (RSA),
where the heart rate accelerates during inhalation and decelerates
during exhalation. Breathing at a certain respiratory rate—in general
between 4.5 and 6.5 cycles per minute (resonance frequency)—
stimulates the cardiovascular system’s resonant properties,
producing larger oscillations of heart rate, leading to higher HRV
in individuals and other beneficial effects, such as better gas
exchange (Yasuma and Ichiro Hayano, 2004).

The other mechanism of HRV-BF is the stimulation of the
baroreflex, which is also vagally regulated and responsible for
blood pressure (BP) homeostasis. Upon an increase in BP, the
baroreflex induces a rapid adjustment in heart rate, reducing the
blood flow and, subsequently, lowering BP (Lehrer, 2013). Again,
when breathing at the resonance frequency, the RSA stimulates
the baroreflex, thus strengthening its sensitivity. Therefore,
HRV-BF training stimulates parasympathetic activity through
both RSA and baroreflex, thus enhancing autonomic functioning
(Lehrer, 2013).

The HRV-BF applications are diverse; importantly, it has been
considered an effective intervention to reduce stress and anxiety (Yu
et al., 2018; Kennedy and Parker, 2019), to mitigate posttraumatic
stress symptoms (Schuman and Killian, 2019), and to reduce
symptoms of depression (LinMei et al., 2019; Pizzoli et al., 2021).
It was also proposed as a promising intervention to reduce
physiological distress in healthcare workers (HCWs) in the
COVID-19 pandemic (Aristizabal et al., 2020); however, there is
no evidence in this context yet. Seeking to fill this gap and
considering that frontline HCWs constitute a vulnerable group,
especially with the emergence of the COVID-19 pandemic
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(Giorgi et al., 2020; Pappa et al., 2020; Sobregrau Sangrà et al., 2022),
the current study applied an HRV-BF protocol in this population.

The main aim of this study is to propose and validate an objective
procedure to easily assess the effectiveness of mental health
interventions, specifically in this study of a personalized HRV-BF
protocol in mitigating mental health symptoms in frontline HCWs
whoworked in the COVID-19 pandemic. For this purpose, we designed
a PRE and POST experimental study based on two different approaches
of psychological assessments. First, considering the gold-standard
psychometric questionnaires and second, applying a recently
developed electrophysiological multiparametric model that has been
validated to assess chronic stress levels. As a secondary objective, we
propose to investigate whether an acute stress model can distinguish the
different stages of physiological response assessment (baseline, stress
exposure, and recovery), and also the most relevant variables for this
purpose in this population.

2 Methods

2.1 Participants

Twenty-one frontline HCWs were included in this study
between March and July 2021, recruited from two Spanish
tertiary hospitals: Hospital Clínic of Barcelona and Hospital del
Mar of Barcelona. The study was conducted at the Hospital Clínic of
Barcelona, and the protocol was approved by its Ethics Committee.
All participants gave a written informed consent.

The inclusion criteria were to be a HCW directly involved with
care of COVID-19 patients during the pandemic. The selection was
made according to a high risk of developing post-traumatic stress
disorder or a moderate perception of stress and/or anxiety according
to cutoff points of current gold-standard questionnaires (i.e., a score
of 30 or higher on PCL5; 14 or higher on PSS; and 10 or higher on
STAI-S) and voluntarily agreeing to participate.

2.2 Experimental procedure

The HRV-BF protocol was designed based on (Lehrer et al.,
2013) and comprises 5 weekly in-person sessions of 45–60 min,
including specific instructions for daily practices. Each session was
held individually in a quiet room conducted by a trained
professional and scheduled according to participant availability. If
a participant could not attend one of the sessions, it was rescheduled
for as soon as possible in order to complete the protocol and to
prevent a longer interval between sessions from compromising
adherence to practice. Figure 1 shows the organization of the
overall protocol by sessions.

Participants provided information on demographics, working
conditions, psychological background, use of medication, and social
habits. Self-reported psychometric questionnaires (yellow blocks
shown in Figure 1) were collected, and a physiological response
measurement (salmon-colored blocks) was carried out prior to
(PRE) and immediately after (POST) the HRV-BF training to
perform comparisons.

FIGURE 1
Scheme of the 5-session experimental protocol. The colors identify the different steps in each of the sessions. Those marked in gray represent the
biofeedback training.
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In the first session, preceding the training, the individual’s
resonance frequency (RF), i.e., the optimal breathing rate, was
determined based on the following criteria: phase synchrony
between respiration and HR and signal smoothness, maximal
HRV (higher peak–trough amplitude), greater power in low-
frequency (LF) band, and a peak around 0.1 Hz on the LF band
(Lehrer et al., 2013; Shaffer and Meehan, 2020). RF was revised and
fine-tuned in the following sessions (lilac-colored blocks).

In sessions 2, 3, 4, and 5, the biofeedback training (gray blocks)
was focused on specific breathing techniques, such as pursed lips and
diaphragmatic breathing, guided by respiration and heart rate
variability real-time waves displayed by using BioTrace +
software (Mind Media, 2018 version). Participants were
instructed to practice specific breathing exercises daily for
10–20 min (blue blocks). For home practice, the given
recommendations increased the difficulty level at each session:
week 1: starting with brief periods of slow breathing practice
with a pacer to correctly follow the rhythm of the individual’s
resonance frequency. The pace of breathing would become more
fluid and comfortable for the participant, and the practice time
would be gradually increased; week 2: same as the previous one and
adding diaphragmatic breathing awareness exercises, such as placing
one hand over the abdomen and the other over the chest and
breathing in such a way that the hand over the abdomen moves and
the other is as still as possible. It could be performed lying down to
facilitate the perception of the movement; week 3: performing the
same exercise as before without using the hands andmore frequently
in a sitting position. One must start practicing using the pacer and
then performing brief periods of free practice; week 4: performing
breathing without using the pacer whenever they feel safe following
the already incorporated rhythm; then one must start applying it on
day-to-day activities. In case of insecurity to do it freely, they should
start the practice with the pacer and try to perform in short free
periods and gradually increase the duration; week 5: it is
recommended to continue performing slow breathing on a daily
basis and applying it in everyday situations, especially after or before
a stressful event. The importance of daily practice to achieve
physiological and long-term benefits is emphasized to engage the
participants. The use of free applications on their mobiles was
encouraged to practice RF at home with a pacer (Paced Breathing
for Android and Awesome Breathing: Pacer Time for iOS).

2.3 Study outcomes

2.3.1 Self-reported psychometric questionnaires
Self-reported psychometric questionnaires consisted of gold-

standard psychological questionnaires in validated Spanish versions
to examine stress, anxiety, and depression under PRE–POST
conditions. Stress was examined using the Perceived Stress Scale
(PSS) (Remor, 2006) and the Visual Analog Stress Scale (VASS)
(Lesage et al., 2012). The Posttraumatic Stress Disorder Checklist for
DSM-5 (PCL5) was applied as a screening for post-traumatic stress
disorder (PTSD) symptoms (Blevins et al., 2015). Anxiety symptoms
were evaluated using the State-Trait Anxiety Inventory (STAI)
(Spielberger et al., 1983), while to assess depression, the Patient
Health Questionnaire-9 (PHQ9) was used (Diez-Quevedo et al.,
2001). All instrument descriptions are given in Table 1.

The reliability of these questionnaires was assessed for the study
sample by Cronbach’s alpha, and estimates were all above 0.85, thus
showing a high degree of internal consistency (O’Rourke and
Hatcher, 2013).

2.3.2 Physiological variables
Physiological monitoring provided an insight into differences in

autonomic functioning in a stress-inducing situation before and
after the intervention. The participants were asked to be seated in a
comfortable chair with armrests and eyes open. The physiological
response measurement was analyzed in three different stages: 1)
baseline measurement (BM), taken as a reference when the
participant is in a resting state; 2) stress exposure (SE), to
evaluate the physiological reactivity facing stressors; and 3)
recovery measurement (RM) to assess resilience after stressors.

The SE stage included three different stressors: a) 2-min Stroop
task (originally Stroop, 1935), with an incongruent stimulus, in
which the colors were written in an ink that does not match the
color-word, and the participant should inform the color of the ink;
b) 2-min mental arithmetic task (Kirschbaum et al., 1993), which
consisted of performing mental calculations as quickly and
accurately as possible; in case of an error, the participant should
start over; c) 2-min telling about the experience of working on the
frontlines of the COVID-19 pandemic and the feelings they could
report (detailed in Figure 2). Differences between stressors were not
analyzed in this study.

2.3.2.1 Data acquisition
The electrophysiological data were recorded using the NeXus-10

MKII device (Mind Media BV, Herten, Netherlands) and the real-
time waves displayed by Biotrace+ software (Mind Media,
2018 version) during each of the sessions. Electrocardiogram
(ECG), photoplethysmogram (PPG), electrodermal activity
(EDA), skin temperature (ST), and respiration (Resp) were
signals simultaneously gathered. The electromyogram (EMG) of
the upper trapezius muscle was monitored only for bringing
awareness of muscular activation during breathing, although this
signal was not included in the study analyses.

For the EDA, disposable electrodes were affixed to the palmar
surface of the middle phalanges of the second and fourth digits; for
PPG, the clip sensor was placed on the middle finger, and on the
fingertip of the fifth finger was attached the ST sensor. The electrode
was placed in the non-dominant hand to avoid excessive movements
and possible large artifacts.

For lead 1 of the ECG signal, electrodes were placed below the
right collarbone and below the left rib cage, whereas for lead 2,
electrodes were placed on the fifth intercostal space along the mid-
axillary line on the left and the other symmetrically on the right side.
The reference electrode was placed on the left collarbone.

To monitor the Resp signal, an adjustable elastic band was
placed over the abdomen and over clothing. This sensor detects
abdominal expansion/contraction; for instance, when inhaling, the
device stretches, and during exhalation, the sensor returns to its
neutral position.

Simultaneously, the PPG, EDA, and ST signals were monitored
through the Empatica E4 wearable wristband (Empatica Boston,
United States). These data will be explored in further analysis
looking for a more easy and unobtrusive way to assess the
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effectiveness of interventions, considering the number of HRV-BF
sessions and the interval between them.

2.3.2.2 Data processing
The different electrophysiological raw signals mentioned were

analyzed in a 1-min window using BioSig browser in MATLAB
software (Garzón-Rey et al., 2017), and several variables were
extracted from each one of them as described in Table 2. For
comparisons, the mean of all 1-min segments was computed as a
single value per stage for each subject.

In this study, the PPG signal will be used in conjunction with
that of ECG to extract pulse arrival time (PAT) parameters. To
extract HRV parameters, the ECG signal was chosen since it
provides more accurate measurements.

From the ECG signal, the beat was detected through a discrete
wavelet transform (Martínez et al., 2004). Given the robustness of
the algorithm and the visual inspection of the quality of the ECG
signals, no type of filtering was applied. Afterward, the existence of
ectopic beats or false QRS detections was verified and fixed using the
algorithm reported in Mateo and Laguna (2003) prior to the

computation of the RR series. The algorithm searches for sudden
changes in interbeat intervals, performs an interpolation where it
has found non-normal beats, and based on this, proposes a
correction to them. Segments of up to three interpolated/
corrected beats have been accepted and are assumed to be
normal. Following this, a time-domain analysis was performed to
extract the mean heart rate (HRV-HR) in beats per minute; the
standard deviation of differences between adjacent normal peak
intervals (HRV-SDNN); and the root mean square of successive
differences between beat intervals (HRV-RMSSD). For the
frequency-domain analysis, the low- and high-frequency absolute
powers (HRV-LF and HRV-HF, respectively) were computed from
the spectral density of the HRV signal, calculated using Fourier
transform. The HRV signal is obtained by subtracting from the
instantaneous HR signal, a low-pass-filtered HR signal (cutoff
frequency of 0.03 Hz), which mainly explains the changes in
mean HR. The HRV–LF/HF ratio was computed by the ratio
between absolute power in low- and high-frequency bands,
i.e., HRV-LF/HRV-HF. The HRV-LFn and HRV-HFn represent
the low- and high-frequency power normalized, respectively.

TABLE 1 Self-reported instruments used to assess the outcomes.

Outcome Instrument Description

Stress perception Visual Analog Stress Scale (VASS) Visual 100-point scale (0, not at all; 100, absolutely stressed)

Perceived Stress Scale (PSS) 10-item Likert scale (0, never; 4, very often)

Risk of PTSD Post-traumatic Stress Disorder Checklist for DSM-5 (PCL-5) 20-item Likert scale (0, not at all; 4, extremely)

Current level of anxiety State Anxiety Inventory (STAI-S) 40-item Likert scale (1, not at all; 4, very much so). Each subscale includes 20 items

Trait anxiety Trait Anxiety Inventory (STAI-T)

Depression Patient Health Questionnaire-9 (PHQ9) 9-item Likert scale (0, not at all; 3, nearly every day)

FIGURE 2
Schematic procedure for physiological response measurement PRE- and POST-intervention.
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The PPG signal was filtered using a low-pass FIR filter with a
cut-off frequency of 35 Hz (order 50) and, then, a high-pass FIR
filter with a cut-off frequency of 0.3 Hz (order 5000). PPG artifacts
were suppressed through a Hjorth-parameter-based PPG artifact
detector described in Gil et al. (2009). Pulses were detected from the
PPG signal on those time slots without artifacts by an algorithm
based on Lazaro et al. (2014). Subsequently, the mean time
difference between the R peak in the ECG signal and the point
of 50% increase, corresponding to the pulse detected on the finger by
the PPG signal, was considered the pulse arrival time (PAT), and its
standard deviation (stdPAT) was also calculated.

The respiratory rate (RR) was estimated as the frequency to
which the maximum peak (Pk) of the power density spectrum
corresponds, estimated by means of fast Fourier transform
(Lázaro et al., 2014). When the Pk was greater than 65%, then
the RR was accepted as the respiratory rate. The respiration wave
was filtered with an FIR passband filter with cutoff frequencies of
0.03 and 0.9 Hz. In 10 participants, the Resp parameters could not be
calculated during the SE because they did not meet the condition
aforementioned, probably due to the speech during the task, which

affects the signal quality. The missing values were replaced by
median imputation to perform the comparisons between stages.

The EDA signal was visually inspected to delete motion artifacts
and linearly interpolated. The windows with interpolated segments
larger than 25% were discarded, and the signal was then resampled
at 4 Hz. Then, EDA was processed in two different ways. First, a
time-domain analysis was conducted using a convex optimization
model, called cvxEDA (Greco et al., 2016), which decomposes the
signal as a linear combination of the tonic and phasic components
(i.e., the skin conductance level and response, respectively) and some
noise (incorporating the error of the model, artifacts, and other
measurement errors). The average value of the tonic (Tonic) and
phasic (Phasic) components and the area under the curve of the
phasic component (aucPhasic) were calculated. The second way was
a frequency-domain analysis of EDA, proposed to assess
sympathetic tone through a parameter named EDASymp
(Posada-Quintero et al., 2016). In this analysis, the EDA signal
was filtered with an FIR bandpass filter with 0.01 and 0.9 Hz cutoff
frequencies, and the power of the electrodermal response in the band
0.045–0.25 Hz (EDASymp) was computed. This bandwidth has

TABLE 2 Description of extracted parameters from electrophysiological variables.

Electrophysiological signal Sample
frequency (Hz)

Extracted
parameters

Description

Electrocardiogram (ECG) 1024 HRV-HR, bpm Mean heart rate

HRV-SDNN, s Standard deviation of normal beat intervals

HRV-RMSSD, s Root mean square of successive differences between beat intervals

HRV-sdsd, s Standard deviation of differences between adjacent R–R peaks intervals

HRV-VLF, s-2 Absolute power of the very low-frequency band (0.003–0.04 Hz)

HRV-LF, s-2 Absolute power of the low-frequency band (0.04–0.15 Hz)

HRV-HF, s-2 Absolute power of the high-frequency band (0.15–0.4 Hz)

HRV-LF/HF ratio Ratio of low-frequency to high-frequency power

HRV-LFn, nu Relative power of the low-frequency band normalized

HRV-HFn, nu Relative power of the high-frequency band normalized

Electrocardiogram (ECG) and
photoplethysmography (PPG)

1024 PAT, ms Mean pulse arrival time, the time between the beat detected by ECG and
the pulse by PPG

stdPAT, ms Standard deviation of pulse arrival time

Respiration (Resp) 512 RR, Hz Respiratory rate

Pk, Hz Respiratory rate peak in the power spectrum

Electrodermal activity (EDA) 512 Tonic, µS Average value of the tonic component, i.e., slowly changing level of
conductance of the skin, also known as skin conductance level (SCL)

Phasic, µS Average value of the phasic component, i.e., fast-changing responses
typically associated with short-term events, also known as skin

conductance responses (SCR)

aucPhasic, µS·s Area under the curve of the phasic component, related to SCR

EDASymp, µS Electrodermal response in the power spectrum (0.045–0.25 Hz)

Skin temperature (ST) 512 TFinger, °C Mean finger temperature

TGradient, °C Mean gradient of finger temperature

TPower, °C2 Mean power of finger temperature
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been reported to correspond to sympathetic dynamics in non-
exercise conditions.

Finally, for the skin temperature signal, visual inspection showed
that the recorded signals did not contain significant artifacts;
therefore, no pre-processing was needed. Apart from the skin
temperature average value (TFinger), the gradient of the
successive differences of TFinger every 10 s was calculated
(TGradient), indicating the speed of temperature change. In
relation to the amplitude, the power of the signal calculated as
the mean of the square of the signal (TPower) is used.

2.3.3 Multiparametric chronic and acute stress
models

For a more robust estimation of the stress level, we used two
different models a) to assess the chronic stress level (Aguiló Mir
et al., 2021), called electrophysiological signal-based stress model
(ESBSm) and b) to assess the acute stress level, called ES3 (Garzón-
Rey, 2017). These models were calculated from the variables
extracted from the electrophysiological signals explained in the
previous section.

The chronic stress level model (ESBSm) was designed to
match up with a reference scale including psychometric
questionnaires and biochemical variables, taken as a gold-
standard indicator of stress response. ESBSm includes
11 standardized parameters extracted from ECG, Resp, and
EDA and a few quadratic terms. Some parameters are
previously logarithmically transformed to avoid data skewness
effects. In the present study, this model is applied as an
instrument to assess the effectiveness of the HRV-BF protocol
since it allows detecting changes in the chronic stress level
over time.

The acute stress level model (ES3) also fits the results of
psychometric questionnaires and biochemical biomarkers in a
sample subjected to an induced acute stress task. The
ES3 includes four parameters extracted from ECG, EDA, and ST.
In the present study, ES3 is used to assess whether changes occur
between the different stages (BM, SE, and RM). As with the previous
model, the analysis was also performed comparing values in PRE
and POST conditions.

2.4 Statistical analysis

A descriptive statistical analysis was performed to summarize
the sample characteristics. Continuous variables are presented as
mean and standard deviation (SD), and categorical variables are
presented as frequency and percentages.

For the psychometric questionnaires and chronic stress model
(ESBSm) data, differences in PRE–POST intervention were
evaluated with paired t-tests or Wilcoxon signed-rank tests,
according to data distribution.

For the electrophysiological variables, in order to compare
conditions (PRE and POST) and stages (BM, SE, and RM), a
mixed model (repeated measures analysis of variance, ANOVA)
was used. The compliance of the application criteria was assessed
with the analysis of model residuals. Skewed variables were analyzed
using log-transformation.

TABLE 3 Clinical and sociodemographic characteristics of participants.

Characteristics Mean
(SD)

N (%)

Age (years) 37.7 (±11.7)

Protocol completion time (days) 36 (±11.4)

Daily practice accomplishment (%) 62.3 (±19.1)

BMI (kg/m2) 24.2 (±3.8)

Normal (18.5–24.9) 12 (57.2%)

Overweight (≥25) 6 (28.6%)

Obesity (≥30) 3 (14.3%)

Physical activity

Rarely 5 (23.8%)

Occasional 11 (52.4%)

Regular 5 (23.81%)

Increased substance use

Yes 10 (52.4%)

No 11 (47.6%)

Working hours per week (hours) 38.3 (±3.6)

Professional category

Clinicians 6 (28.6%)

Nurses 13 (61.9%)

Auxiliary nurses 2 (9.5%)

Working unit

COVID-19 wards 6 (28.6%)

Emergency service 13 (61.9%)

ICU 2 (9.5%)

Employment category

Fixed-term 14 (66.7%)

Open-ended 7 (33.3%)

Living with people at high risk of COVID-19
infection

Yes 7 (33.3%)

No 14 (66.7%)

Psychological support requested

Yes 3 (14.3%)

No 18 (85.7%)

Working leave due to COVID-19

Yes 11 (52.4%)

No 10 (47.6%)

Increase in weekly working hours

Yes 9 (42.9%)

No 12 (57.1%)

Current stress-related medication

Yes 4 (19%)

No 17 (81%)

Previous affective disorders

Yes 7 (33.3%)

No 14 (66.7%)

(Continued on following page)
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Post-hoc tests with Tukey’s correction were performed to assess
the time and stage effects on physiological variables and on the acute
stress model (ES3). A p < 0.05 was considered statistically significant.
Statistical analysis was performed using SAS® v9.4 (SAS Institute,
Cary, NC, United States).

3 Results

3.1 Sample characteristics

The study sample consisted of 21 female participants who
completed the protocol in an average of 36 ± 11.4 days. The
daily practice accomplishment was 62.28% (±19.1) regarding
overall target home practice of 28 days. The mean age was 37.7 ±
11.7 years (range: 19–59 years), with an average body mass index of
24.2 ± 3.8 kg/m2. Most of the participants were nurses (61.9%),
followed by physicians (28.6%) and auxiliary nurses (9.5%). All
sociodemographic and clinical information is detailed in Table 3.

3.2 Primary outcomes

3.2.1 Self-reported psychometric questionnaires
Figure 3 shows the classification PRE- and POST-intervention of

each psychometric questionnaire according to the cut-off points of
previous studies (Aguiló Mir et al., 2021; Pedrozo-Pupo et al., 2020;
Blevins et al., 2015; Kroenke et al., 2001). The classification is
generally in three categories considering the degree of severity as
low, moderate, or high, and in two categories for the PCL5 that
classifies those with high or low risk of developing PTSD.

In the PRE-intervention condition, the study sample presented
predominantly high anxiety trait scores (47.6%), moderate anxiety
state (71.4%), and moderate perceived stress (71.4%) and showed
increased risk of developing PTSD (71.4%). Regarding the
depression level, most were classified within the low range
(57.1%), while two individuals (9.5%) showed scores for severe
depression. After intervention, all these profiles improved; the
risk of PTSD reduced to 28.6%, the majority presented low
symptoms of depression (81%), while the moderate group
showed reduction from 33.3% to 19%. In addition, substantial
shifts from high to moderate anxiety and perceived stress can be
observed.

From the bivariate analysis, the psychometric questionnaires
showed a reduction in all scores after intervention, with exception of
the STAI-T, which did reduce even though without statistical
significance (p = 0.147). Comparisons between PRE- and POST-
intervention are shown in Table 4.

As exploratory analyses, we examinedwhether PRE–POST changes
are influenced by age, BMI, physical activity, and daily practice. There
are no significant findings. However, there is an effect related to the
initial condition, i.e., those with high initial scores are more likely to
show improvement in self-reported questionnaires (VASS: p = 0.003;
PSS: p = 0.016; PCL5: p = 0.036; PHQ9: p = 0.016; STAI-S: p < 0.001),
apart from STAI-T (p = 0.081).

3.2.2 Chronic stress measurement
For PRE–POST comparisons, the baseline measurement (BM)

was considered to mimic the conditions of the ESBSm chronic stress
study. Figure 4 illustrates a reduction (77.6 vs. 62.8) found in the
chronic stress level in POST-intervention when compared to PRE-
intervention (paired t-test, p = 0.01), while the variance increased.

Similar to self-reported questionnaires, there is a significant
effect related to the initial condition in the ESBSm results (p = 0.016),
and no effect for age, BMI, or physical activity.

3.3 Secondary outcomes

3.3.1 Physiological variables
The bivariate analysis revealed some significant differences

(Table 5), such as a decrease in mean respiratory rate from
0.259 to 0.222 Hz (i.e., 15.5 to 13.3 breaths per minute) and an
increase in HRV-SDNN, HRV-LF/HF, and HRV-LFn, with no
differences for HRV-RMSSD.

No significant changes in PAT and peripheral temperature
parameters were observed. For EDA, the phasic component
showed an increase (p = 0.012), whereas the average of the tonic
component decreased POST intervention, although not significantly
(p = 0.199).

3.3.2 Acute stress measurement
Differences in physiological response measurement,

i.e., between the baseline measurement (BM), stress exposure
(SE), and recovery measurement (RM), were analyzed to visualize
possible changes in the behavior of the signals during a stress-
induced task. All mean values and respective p-values could be seen
in Supplementary Table S1. The most relevant variables are
illustrated on the following plots. Some of them were log-
transformed for a better visual representation and were indicated
with (log) in the axis title.

The resting heart rate (HRV-HR) and pulse arrival time (PAT)
showed significant differences in BM and RM stages when compared to
SE (p < 0.001) under both conditions (Figures 5A, D, respectively). The
HRV-SDNN changed its pattern, where BM differed from RM and SE
stages in the PRE-intervention condition, which was not seen after
intervention (Figure 5B). In the POST-intervention condition, SDNN
values at baseline increased significantly (p = 0.027).

Figure 5C shows the behavior of the power in low-frequency
band (HRV-LF), revealing differences between RM and SE at PRE-
intervention, which did not occur after intervention.

TABLE 3 (Continued) Clinical and sociodemographic characteristics of
participants.

Characteristics Mean
(SD)

N (%)

Pharmacological treatment for stress

Yes 16 (76.2%)

No 5 (23.8%)

Previous treatment with psychotropics

Yes 4 (19%)

No 17 (81%)

Key: BMI, body mass index; ICU, intensive care unit; SD, standard deviation.
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Figure 6 shows the pattern of EDA and ST parameters. The tonic
component (Tonic) of EDA showed differences between the BM and
the other stages (p < 0.001) in both conditions (Figure 6A);

furthermore, values at SE and RM reduced significantly POST
intervention (p = 0.047 and p = 0.021, respectively). The phasic
component (Phasic) and EDASymp differed between stages (p ≤

FIGURE 3
Severity classification of subjects based on the psychometrics cut-off points at PRE- and POST-intervention. (A) Stress perception with the Visual
Analog Stress Scale (VASS), (B) risk to develop PTSD with Posttraumatic Stress Disorder Checklist for DSM-5 (PCL5), (C) perceived stress with the
Perceived Stress Scale (PSS), (D) anxiety state with State Anxiety Inventory (STAI-S), (E) anxiety trait with Trait Anxiety Inventory (STAI-T), and (F) depression
with Patient Health Questionnaire-9 (PHQ9).

TABLE 4 PRE–POST psychometric questionnaire scores and corresponding statistical analysis.

Psychometric questionnaire PRE POST Mean difference p-value

VASS 66.57 (15.5) 31.95 (15.8) 34.62 <0.001 (a)

PCL5 35.71 (16.9) 24.43 (16.4) 11.29 0.001 (b)

PSS 19.05 (6.33) 15.43 (6.00) 3.62 0.023 (a)

STAI-S 30.33 (9.48) 18.81 (7.43) 11.52 <0.001 (a)

STAI-T 23.1 (10.6) 19.81 (8.90) 3.29 0.147 (b)

PHQ9 9.85 (5.82) 6.47 (4.80) 3.38 0.003 (b)

Key: Values represented as mean (SD). (a) Paired t-test. (b) Wilcoxon signed-rank. p< 0.05.
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0.001), but only Phasic showed difference in BM after intervention
(p = 0.012). Regarding skin temperature, the gradient (TGradient)
showed differences between the BM and RM stages in relation to the
SE, in exception to RM vs. SE under POST condition (Figure 6D).

No differences related to respiration were observed between
stages (Figure 7A), although the respiratory rate was overall reduced
after the intervention, significantly only in BM (p = 0.007). The ES3,
the model to assess acute stress, did not reveal differences between
stages, although the scores were all lower after intervention
(Figure 7B).

4 Discussion

Our study applied a new objective tool, the chronic stress
multiparametric model (ESBSm), to assess the effectiveness of a 5-
session HRV-BF protocol for HCWs presenting mental health
symptoms due to their work in the frontlines of the COVID-19

FIGURE 4
Chronic stress level at PRE- and POST-intervention measured by
the multiparametric chronic stress model (ESBSm). Key: p < 0.05.

TABLE 5 Electrophysiological measure comparisons and corresponding statistical analysis.

Parameters PRE POST p-value

ECG

HRV-HR, bpm 75.96 (9.48) 74.96 (10.01) 0.681 (a)

HRV-SDNN, s 0.044 (0.013) 0.051 (0.016) 0.027 (a)

HRV-RMSSD, s 0.012 (0.005) 0.012 (0.006) 0.801 (b)

HRV-sdsd, s 0.012 (0.005) 0.012 (0.006) 0.801 (b)

HRV-VLF, s-2 0.118 (0.087) 0.173 (0.123) 0.047 (b)

HRV-LF, s-2 0.226 (0.190) 0.288 (0.182) 0.078 (b)

HRV-HF, s-2 0.139 (0.120) 0.129 (0.120) 0.175 (b)

HRV-LF/HF ratio 204.77 (142.06) 413.15 (296.9) 0.003 (b)

HRV-LFn, nu 53.62 (13.86) 66.24 (12.65) 0.003 (a)

HRV-HFn, nu 46.38 (13.86) 33.76 (12.65) 0.003 (a)

PAT

PAT, ms 240.96 (10.29) 242.57 (12.97) 0.657 (a)

stdPAT, ms 2.31 (1.52) 2.94 (3.29) 0.775 (b)

Resp

RR, Hz 0.259 (0.07) 0.222 (0.09) 0.007 (a)

Pk, % 0.827 (0.04) 0.836 (0.06) 0.418 (a)

EDA

Tonic, µS −1.094 (0.285) −0.948 (0.487) 0.199 (b)

Phasic, µS 0.038 (0.044) 0.099 (0.143) 0.012 (b)

aucPhasic, µS 2.259 (2.644) 5.940 (8.594) 0.012 (b)

EDASymp, µS 0.092 (0.170) 0.285 (0.627) 0.212 (b)

ST

TFinger, °C 30.57 (4.06) 31.44 (2.49) 0.334 (b)

TGradient, °C 0.056 (0.058) 0.032 (0.073) 0.078 (b)

TPower, °C2 951.20 (220.41) 995.25 (151.05) 0.334 (b)

Key: Values represented as mean (SD). (a) Paired t-test. (b) Wilcoxon signed-rank. p < 0.05.
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pandemic. The improvement in mental health is corroborated by lower
scores on self-reported psychometric questionnaires after intervention,
reducing stress, risk of post-traumatic stress disorder, and symptoms of
anxiety and depression. These results are consistent with those of
previous studies that use similar instruments to assess the impact on
mental health as published in this review (Di Nota et al., 2021), with
some studies in conjunction with an enhancement of certain
physiological biomarkers, such as heart rate variability. Thus, the
results obtained in the procedure using the ESBSm support the
hypothesis that a combined electrophysiological model provides
useful and robust information about mental health state and could
be considered to assess non-invasively changes over time.

Furthermore, the acute stress model (ES3), applied to compare
physiological reactivity at baseline, stressor, and recovery
measurements, showed an overall decrease after intervention,
although nonsignificant. Unlike the chronic stress model, which
aims to find differences in cumulative stress, this model investigates
differences in acute physiological responses caused by stress-inducing
tasks. As expected, there was an increase in the ES3 score when facing a
stressor and a reduction in resting periods, in both conditions. This
behavior indicates that the intervention did not affect the acute stress
response in the studied sample.

Regarding the electrophysiological variables, a reduction in
the basal respiratory rate is observed, which indicates that the
participants were able to self-regulate their breathing, and this is

helpful to stress management and to recover the autonomic
balance. Additionally, this improvement in respiratory rate
leads to better gas exchange and less chance of
hyperventilation, which often occurs in disorders such as
anxiety (Leyro et al., 2021). Our analysis related to respiration
during the stress-inducing tasks were compromised once the
tasks involved speech, so the data did not present the expected
increase in respiratory rate which was observed in other types of
stressors, like cold or heat exposure (Tipton et al., 2017).

An improvement in some HRV parameters, such as standard
deviation of normal beats (SDNN) and power in low frequency
(LFn), was also observed. These parameters are often used to assess
the effectiveness of biofeedback intervention as they are consideredANS
biomarkers. SDNN varies especially due to RSA, which is mediated by
the parasympathetic system and precisely trained in HRV-BF, so an
increase in this parameter indicates a successful intervention (Limmer
et al., 2021). Furthermore, the LF power is influenced by both
sympathetic and parasympathetic branches of the ANS, but reflects
baroreflex activity in resting conditions (McCraty and Shaffer, 2015).
Differences on the HRV-LFn may be related to the changes in
respiratory rate since the low-frequency band (0.04–0.15 Hz) is
influenced by breathing at 9 bpm or lower (Shaffer and Ginsberg,
2017). In this sense, the increase in LF power is expected after HRV-BF
and corroborates the results shown in previous studies (Gross et al.,
2016; Hasuo et al., 2020).

FIGURE 5
Boxplot of HRV parameters: (A) HR, (B) SDNN, (C) LF, and (D) PAT over the stages and conditions. Key: Light gray boxes show the significant
differences between stages for each condition. (#) Differences between BM and the other stages (SE or RM). (+) Differences between RM and SE stages.
p < 0.05.
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The pulse arrival time, which is an index that varies inversely
with blood pressure, showed a decrease during the stress-inducing
task when compared to baseline and recovery measurements. This
pattern is in accordance with previous studies that demonstrated
this reactivity in healthy students during a similar protocol for stress

elicitation (Armañac et al., 2019; García Pagès et al., 2023).
Concerning the skin temperature, no differences were observed
after the intervention. All the parameters extracted from this
signal showed the same expected pattern, reducing during the
stress exposure and recovering afterward (Pisanski et al., 2018).

FIGURE 6
Boxplot of EDA and ST parameters: (A) Tonic, (B) Phasic, (C) EDASymp, and (D) TGradient, over the stages and conditions. Key: Light gray boxes show
the significant differences between stages for each condition. (#) Differences between BM and the other stages (SE or RM). (+) Differences between RM
and SE stages. p < 0.05.

FIGURE 7
Boxplot of (A) respiratory rate (RR) and (B) ES3 acute stress model over the stages and conditions. Key: p < 0.05.
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The variations of electrodermal activity (EDA) in our sample
may correspond only to central nervous system modulation related
to emotional and cognitive states of the individuals, once the
environmental temperature interference can be discarded as the
skin temperature did not vary over time (Sarchiapone et al., 2018).
The phasic component of the EDA revealed differences after the
intervention. This component, which corresponds to faster-
changing activity, increased at baseline measurement, which
indicates an augmented sympathetic arousal, on the contrary to
what was expected after the intervention (Greco et al., 2021). We
hypothesize that the participants anticipated their stress responses
once they knew the elicitation tasks they were going to perform
(i.e., Stroop test, arithmetic task, and description of feelings). Even
so, it is important to highlight that both parameters extracted from
the phasic component and the EDASymp were capable of
distinguishing between the stressor of basal and recovery
measurements. On the other hand, the tonic component of EDA
showed an awaited pattern, increasing during the stress task, and a
slower recovery time, seeming to accelerate slightly after the
intervention, but still differing significantly from the baseline
stage. During the stress exposure and recovery stages, the tonic
level reduced significantly after intervention, which suggests an
improvement in psychophysiological state and autonomic
regulation (Marzi et al., 2021).

To summarize, the multiparametric chronic stress model
comprises information of a combination of the most relevant
physiological variables altogether, and their scores were in
accordance with psychometric gold standards, therefore
demonstrating to be a simple and objective tool to assess the
effectiveness of a specific therapy. This procedure can be
especially useful and easily applied in clinical practices, thus
allowing to plan and properly combine different types of
interventions for a more assertive treatment.

In the current study, the HCWs’ adherence was
satisfactory, and they reported feeling motivated throughout
the biofeedback protocol, which reinforces the feasibility of
the intervention in this context and the importance of
implementation by the health facilities as a preventive
program. Moreover, HRV-BF is a proactive intervention
that easily allows a multimodal measurement of
electrophysiological parameters, ensuring the feasibility of
the chronic stress model to assess its effectiveness and,
more extensively, of other stress-reducing interventions.

Further research could replicate the proposed method in
case-control studies and other interventions to confirm its
efficacy for particular applications. To make the procedure
even easier and unobtrusive, a remote wearable device may be
used to monitor the mental status in real-time and to assess the
effectiveness of interventions more extensively. A remote
monitoring device would allow a longer follow-up and could
be helpful in investigating other sources of stress and identifying
protective and risk factors.

4.1 Limitations

One limitation of this study is that the recruited sample
comprises only women; therefore, it is not possible to extrapolate

our findings related to the effectiveness of HRV-BF for men. Second,
the relatively small sample size (n = 21) is analyzed, which could be
reflected in statistically nonsignificant results and thus increasing the
risk of type II error (i.e., false negatives).

The PRE–POST experimental design does not prevent us
from bias and limit the interpretation of the results. For this
reason, we could not generalize the effectiveness of the applied
intervention, which would be feasible in a case-control study,
although, as an advantage, the present study design with paired
comparisons avoids the influence of interpersonal variations of
the electrophysiological variables. In order to use the
multiparametric chronic stress model (ESBSm) proposed by
Aguiló Mir et al. (2021), we assumed that the variability and
severity of samples in both studies were similar and applied our
standardized data to calculate the chronic stress level. The
necessary corrections were also made in EDA parameters due
to calibration problems related to the measuring device.

There was no follow-up to observe if the effects remained long-
term after withdrawal of biofeedback. Further studies should be
considered to assess the durability of the effects.

5 Conclusion

Our study demonstrates that a 5-session HRV-BF protocol
is an effective intervention to reduce stress, the risk of post-
traumatic stress disorder, and symptoms of anxiety and
depression among our group of frontline HCWs who worked
during the COVID-19 pandemic. Our findings support that the
chronic multiparametric model based on electrophysiological
variables provides relevant information about the current
mental health status, being a reliable objective tool to assess
the effectiveness of HRV-BF and may be useful for other stress-
reduction interventions and contexts of burden in mental
health. The variance increase in the model’s scores after the
intervention indicates that the effectiveness of the intervention
depends on each individual; therefore, a systematic
measurement should be crucial for follow-up and treatment
decisions. Further research should examine the robustness of
these findings controlling possible confounders and, in
addition, could investigate the reliability of wearables in
providing feedback and monitoring physiological responses,
which would constitute a more unobtrusive and easier-to-use
instrument to reproduce the proposed procedure.
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