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Abstract: The isolation and structural characterization of a unique Cu(II) isonicotinate (ina) material
with 4-acetylpyridine (4-acpy) is provided. The formation of [Cu(ina)2(4-acpy)]n (1) is triggered by
the Cu(II) aerobic oxidation of 4-acpy using O2. This gradual formation of ina led to its restrained
incorporation and hindered the full displacement of 4-acpy. As a result, 1 is the first example of a 2D
layer assembled by an ina ligand capped by a monodentate pyridine ligand. The Cu(II)-mediated
aerobic oxidation with O2 was previously demonstrated for aryl methyl ketones, but we extend
the applicability of this methodology to heteroaromatic rings, which has not been tested so far.
The formation of ina has been identified by 1H NMR, thus demonstrating the feasible but strained
formation of ina from 4-acpy in the mild conditions from which 1 was obtained.

Keywords: Cu(II) polymers; 2D materials; aerobic oxidation; isonicotinic acid; 4-acetylpyridine

1. Introduction

The discovery of graphene foregrounded the outbreak of 2D materials, which was
triggered by their fascinating electrochemical, mechanical, and optical properties. Their
better performance over 0D and 1D materials fostered the rapid development of 2D-based
technologies for electrochemical devices, renewable energy storage, and production or
for catalysis. Especially in these fields, the aim is, per se, to encounter clean, renewable,
and inexpensive sources, so Cu(II)-based materials were expected to be one of the most
promising candidates since Cu(II) combines high natural abundance with low toxicity [1].

Within this frame, our group has previously reported the synthesis and characteri-
zation of Cu(II) complexes with carboxylic acids and pyridine derivatives [2–4]. During
the assays to further extend this research with 4-acetylpyridine (4-acpy), we performed its
reaction with Cu(NO3)2·3H2O in acetonitrile (ACN) as a solvent. From this reaction, the
serendipitous formation of single crystals, which were isolated and characterized, revealed
the formation of an isonicotinate (ina) ligand, which further coordinated to the Cu(II)
center and fostered the formation of complex [Cu(ina)2(4-acpy)]n (1). Therefore, in this
contribution, we present the serendipitous formation of a Cu(II) isonicotinate (ina) material
starting from Cu(NO3)2·H2O and 4-acpy.

Interestingly, the elucidation of its crystal structure revealed the arrangement of
a 2D isonicotinate material. Indeed, isonicotinic acid (ina) has been vastly employed
as an archetypal linker for the construction of extended networks. In particular, Cu(II)
isonicotinates have presented from 0D to mostly 3D structures, benefiting from the great
variety of coordination modes of ina ranging from monodentate to bridging. Within this
plethora of available structures, Cu(II) ions mainly present square pyramidal geometry
and lead to the assembly of highly stable 3D nets [5] featured by [Cu(ina)2]n [6]. This
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tendency of forming 3D nets is only broken either by introducing polydentate chelate or
bridging ligands that are able to compete with the coordination of ina, which lowers the
dimensionality to 1D [7] or 2D materials [8,9], or the isolated example of a 0D structure by
combining ina with a chelate linker, coordinated chloride ions, and bulky counterions [10].
Therefore, the dimensionality of Cu isonicotinates is biased towards 3D nets, and no
previous examples have been reported with monodentate pyridine derivatives, which are
probably triggered by its lower coordination ability. Additionally, hydrothermal conditions
promoted the formation of mixed valent Cu(I)-Cu(II) isonicotinates rather than guiding
a tunable dimensionality [11]. Therefore, the slow formation of ina, in combination with
the excess 4-acpy, provided access to a network that has not been achieved by direct
self-assembly [6].

Since the formation of ina seemed to be triggered by Cu(II) with molecular oxygen as
the oxidizing agent, we tried to demonstrate the feasible formation of ina from 4-acpy in
the mentioned conditions. Within the palette of available first-row transition metals, Cu(II)
was already known to promote C-N, -S, and -O bond formation, avoiding air moisture
sensitivity and providing elevated functional group tolerance [12]. However, despite the
promising advantages, the early stages of this research with limited examples hitherto
found triggered the use of Pd(II) with the consequent overshadowing of Cu(II). Conversely,
during the last few decades, the course of Cu(II) research was shifted by the buoyant results
that emerged.

To date, Cu(II) catalytic systems have shown the ability to oxidize a plethora of organic
substrates using molecular oxygen. Among the major findings of special mention are the
benzylic oxidation to alcohols [13], or mixtures of alcohols and ketones [14]; the oxidation
of alkanes to alcohols and ketones [15]; the oxidation of alcohols to aldehydes [16,17],
or to mixtures of aldehydes and ketones [18], the oxidation of primary and secondary
alcohols to aldehydes and ketones [19,20]; the oxidation of phenols to ortho-quinones,
biphenols, or benzoxepines [21], and the oxidation of amines to imines and nitriles [22], not
to mention Baeyer–Villiger oxidation [23]. Indeed, the catalytic oxidation of aryl methyl
ketones to mixtures of aldehydes and carboxylic acids using molecular oxygen as an oxidant
was tested several years ago [24], but recently, some methodologies for the isolation of
aldehydes [25], esters [26], and carboxylic acids [27,28] have been published.

Thus, we present the serendipitous formation of 1 promoted by the slow catalytic
oxidation, using molecular oxygen, of the acetyl group of 4-acpy to the carboxylate function-
ality in ina. The single-crystal X-ray diffraction of 1 displayed a 2D coordination polymer
assembled by ina and 4-acpy ligands, which was subsequently characterized by EA and
FTIR-ATR spectroscopy. Additionally, we demonstrated the feasibility of the formation
of ina from 4-acpy, and we tried to obtain some insights into the effect of changing the
synthetic conditions (changing the Cu(II) salt, the solvent, and the O2 pressure) of the
resulting product. These experiments were traced by 1H NMR spectroscopy.

2. Experimental Section
2.1. Materials and General Methods

Copper(II) nitrate trihydrate (Cu(NO3)2·3H2O), copper(II) acetate hydrate (Cu(OAc)2·H2O),
and 4-acetylpyridine (4-acpy) as reagents and acetonitrile (ACN) and N,N-dimethylformamide
(DMF) as solvents were purchased from Sigma-Aldrich. In addition, deuterated ACN
(ACN-d3) and DMF (DMF-d7) were used for the 1H NMR experiments. Reagents and
solvents were used as received without further purification. Elemental analysis (C, H, and
N) was measured in a Euro Vector 3100 apparatus. FTIR-ATR spectrum was measured in a
diamond window in the range from 4000 to 500 cm−1 in a Tensor 27 (Bruker) spectrometer
equipped with an attenuated total reflectance (ATR) accessory (model MKII Golden Gate).
1H NMR spectra were acquired using a Bruker Ascend 400 MHz spectrometer either in
ACN-d3 or DMF-d7 at room temperature. All the chemical shifts (δ) are given in ppm.
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2.1.1. Synthesis of [Cu(ina)2(4-acpy]n (1)

To an ACN solution (6 mL) of Cu(NO3)2·3H2O (12.0 mg, 0.050 mmol), liquid 4-acpy
(23 µL, 0.317 mmol) was added. The reaction was stirred under reflux for 16 h and then was
transferred to a vial and left to slowly evaporate for 1 month. After this period, suitable
green crystals of 1 were grown.

1. Elemental Analysis calcd(%) for C19H15CuN3O5 (428.88 g/mol): C 53.21; H
3.53; N 9.80; found: C 52.42; H 3.29; N 9.52. FTIR-ATR (wavenumber, cm−1): 3072(w),
2908(w), 2795(w), 1695(m), 1631(m), 1608(w), 1590(s), 1500(m), 1489(m), 1436(s), 1384(s),
1360(s), 1323(m), 1255(s), 1239(s), 1216(m), 1170(m), 1112(m), 1074(m), 1033(s), 964(w),
933(m), 919(s), 883(m), 840(w), 831(w), 819(m), 804(s), 774(s), 767(s), 722(m), 682(m), 668(s),
590(s), 554(m).

2.1.2. X-ray Crystallographic Data

A green prism-like specimen of 1 was used for the crystallographic data collection. The
X-ray intensity data were measured on a D8 Venture system equipped with a multilayer
monochromator and a Mo microfocus. The frames were integrated with the Bruker SAINT
software package, using a narrow-frame algorithm. The integration of the data with a
0.70 Å resolution gave an average redundancy of 7.101, a completeness of 99.7%, and an
Rsig of 4.05%. From this integration, 3135 (82.33%) independent reflections were greater
than 2σ(|F|2).

The structure was solved and refined using the Bruker SHELXTL Software Package
(version-2018/3) [29]. The final cell constants and volume are based upon the refinement of
the XYZ-centroids of reflections above 20 σ(I). Data were corrected for absorption effects
using the multi-scan method (SADABS). Crystal data and relevant details of structure
refinement are reported in Table 1. The entire X-ray data of 1 can be found via the CCDC in
.cif format, using the code 2252448. The X-ray structure was worked with Mercury 4.3.1
software, and molecular graphics were rendered using the POV-Ray image package [30].
Color codes used for the molecular graphics are orange roughy (Cu), red (O), light blue
(N), grey (C) and white (H).

Table 1. X-ray crystallographic data of complex 1.

Sample 1

Empirical Formula C19H15CuN3O5
Formula weight 428.88

T (K) 254 (2)
Wavelength (Å) 0.71073

System, space group Orthorhombic, Pbca
Unit cell dimensions

a (Å) 12.6673 (11)
b (Å) 11.7649 (9)
c (Å) 24.118 (2)
α (◦) 90
β (◦) 90
γ (◦) 90

V (Å3) 3594.4 (5)
Z 8

Dcalc (mg/m3) 1.585
µ (mm−1) 1.253

F (000) 1752
Crystal size (mm−3) 0.180 × 0.173 × 0.076

hkl ranges
−16 ≤ h ≤ 16
−14 ≤ k ≤ 14
−30 ≤ l ≤ 30
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Table 1. Cont.

Sample 1

θ range (◦) 2.332 to 26.747
Reflections collected/unique/[Rint] 27,042/3808/0.0405

Completeness to θ (%) 99.6
Absorption correction Semi-empirical from equivalents
Refinement method Full-matrix least-squares on |F|2

Data/restraints/parameters 3808/1/229
Goodness-of-fit on F2 1.034

Final R indices [I>2σ(I)] R1 = 0.0525,
wR2 = 0.1293

R indices (all data) R1 = 0.0662,
wR2 = 0.1397

Extinction coefficient n/a
Largest diff-peak and hole (e. Å−3) 1.037 and −0.914

The geometry evaluation of the Cu(II) center in the complex has been performed using
version 2.1 of SHAPE [31] software, which is based on the low continuous-shape measure
(CShM) value S [32]. It is a generalizable structural descriptor used to quantitatively
evaluate distortion in terms of symmetry and distance from any ideal geometry. The
corresponding atomic coordinates have been directly extracted from .cif data and the
S values have been computed for any potential geometric accommodation within the
corresponding coordination number five: vOC-5 = vacant octahedron; TBPY-5 = trigonal
bipyramid; SPY-5 = square pyramid; JTBPY-5 = Johnson trigonal bipyramid.

3. Results and Discussion
3.1. Synthesis and General Characterization

The complex [Cu(ina)2(4-acpy)]n was synthesized by mixing in ACN the Cu(NO3)2·3H2O
and the 4-acpy ligand in a 1:6 molar ratio, stirring under reflux, and then leaving it to
stand for a month (Scheme 1). During this period, suitable green crystals of 1 were grown.
The product was characterized by elemental analysis (EA), FTIR-ATR spectroscopy, and
single-crystal X-ray diffraction.
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Scheme 1. Ouline of the synthetic conditions to the formation of 1.

The EA of 1 agrees with the proposed formula. The displayed signals within the
FTIR-ATR spectrum are attributable to vibrations from both ligands, ina and 4-acpy
(S.I: Figure S1). The most characteristic vibrations from 4-acpy are found at 2908 and
2795 cm−1, assigned to [ν(C-H)]al, and at 1695 cm−1 from the [ν(C=O)] of the acetyl
group. Vibrations over 3000 cm−1 belong to [ν(C-H)]ar from the aromatic rings of both
ligands, whereas signals from [ν(C=C/C=N)]al can be found between 1631 and 1436 cm−1.
The formation and further coordination of the ina ligand cause the raising of vibrations
from the carboxylate functionality. Bands at 1590 and 1384 cm−1 have been attributed
to [ν(COO)]as and [ν(COO)]s, respectively. Indeed, the coordination mode of the car-
boxylate in the Cu(II) complex can be inferred from the difference between these bands
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(referred to as the ∆ value) [33,34]. In 1, the ∆ of 206 cm−1 suggests a monodentate coor-
dination mode. Additional bands from the aromatic rings attributed to [δ(C=C/C=N)]
between 1360 and 1239 cm−1, [δ(C-H)]ip at 1033 cm−1, and [δ(C-H)]oop at 774 cm−1 have
also been identified [35].

3.2. Crystal Structure of [Cu(ina)2(4-acpy)]n (1)

[Cu(ina)2(4-acpy)]n (1) crystallizes in the orthorhombic Pbca space group and con-
tains Cu(II) centers bearing a [CuO2N3] core with a distorted square pyramidal geometry
(S = 0.942 for SPY, 4.456 for TBPY, 1.006 for vOC, and 7.824 for JTBPY) [31,36]. These units
are composed of four bridging (µ2:η1:η1-) ina ligands and a monodentate (µ1:η1-) 4-acpy lig-
and (Figure 1a), which are orthogonally connected by ina ligands, being 4-acpy sequenced
in pairs by pointing upwards and downwards along each chain (Figure 1b). This linkage re-
sults in the formation of 2D layers along the (030) plane holding an sql topology (Figure 1c).
Selected bond lengths and angles are provided in Table 2. The equatorial Cu-O and
Cu-N bond lengths from isonicotinate ligand in 1 are comparable to those extracted from
[Cu(ina)2]n (Cu-O, 1.962(3)–2.306(2) Å and Cu-N, 2.010(5)-2.026(2) Å) [6]. Instead, the apical
site is occupied by 4-acpy with an elongated Cu-N bond length of 2.351(3) Å, which is prob-
ably driven by a marked Jahn–Teller effect [37]. This length is surprisingly long compared
to the Cu(II) complexes with 4-acpy reported to date (Cu-N 2.016–2.198(2) Å) [38–43].
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Table 2. Bond lengths, angles, and intermolecular interactions in complex 1.

Bond lengths

Cu(1)-O(1) 1.949(3) Cu(1)-N(1)#2 2.038(3)

Cu(1)-O(3) 1.957(2) Cu(1)-N(3) 2.351(3)

Cu(1)-N(2)#1 2.036(3)

Bond Angles

O(1)-Cu(1)-O(3) 179.76(12) N(2)#1-Cu(1)-N(1)#2 167.80(13)

O(1)-Cu(1)-N(2)#1 88.25(12) O(1)-Cu(1)-N(3) 90.49(12)

O(3)-Cu(1)-N(2)#1 91.92(11) O(3)-Cu(1)-N(3) 89.32(11)

O(1)-Cu(1)-N(1)#2 89.66(12) N(2)#1-Cu(1)-N(3) 99.33(12)

O(3)-Cu(1)-N(1)#2 90.21(12) N(1)#2-Cu(1)-N(3) 92.71(13)

π···π interactions

Cg(I)···Cg(J) Cg···Cg a A b β, γ c Cg(I)_Perp, Cg(J)_Perp d Slippage e

Cg(1)···Cg(2) 3.868(2) 6.7(2) 18.3, 24.6 3.5170(18), 3.6727(17) 1.213

C-H···π interactions

C-H···Cg(J) H···Cg(J) f H-Perp g Γ c X···Cg(J) h X-H, π i

C18-H18···Cg(1) 2.98 2.87 15.70 3.849(5) 74

C15-H15···Cg(3) 2.96 2.70 23.86 3.777(5) 68

C19-H19B···Cg(3) 2.92 2.87 10.47 3.702(7) 59

#1 x + 1/2, −y + 3/2, −z + 1; #2 x − 1/2, y, −z + 1/2; a Cg···Cg = distance between ring centroids given in Å;
a Cg···Cg = distance between ring centroids (Å); b α= dihedral angle between planes I and J (◦); c offset angles:
β = angle Cg(I)-Cg(J) and normal to plane I (◦), and γ = angle Cg(I)-Cg(J) and normal to plane J (◦) (β = γ, when
α = 0); d perpendicular distance (Å) of Cg(I) on plane J and perpendicular distance (Å) of Cg(J) on plane I (equal
when α = 0); e slippage = horizontal displacement or slippage between Cg(I) and Cg(J) (equal for both centroids
when α = 0); Cg(1) = N2-C8-C9-C10-C11-C12; Cg(2) = N3-C14-C15-C16-C17-C18; Cg(3) = N1-C2-C3-C4-C5-C6.;
f distance between H atom and ring centroid J (Å); g perpendicular distance of H to ring plane J; h distance of X to
ring centroid J (Å); i angle of the X-H bond with the Cg(J) plane.

These layers are assembled by π···π and C-H···O and C-H···π interactions resulting in
a 3D supramolecular net. The aromatic ring between ina and 4-acpy ligands are stacked at
3.868(2) Å supported by C-H···O interactions between the uncoordinated O carboxylate
and the ortho-H of a vicinal ina ligand (Figure 2a). Furthermore, each 4-acpy is embedded
into a pocket of ina ligands and displays three C-H···π interactions (Figure 2b).

3.3. Catalytic Conversion

As previously mentioned, the aerobic oxidation of aromatic methyl ketones to car-
boxylic acids using Cu(II) as the catalyst has been previously reported, but no examples
have been found using the analogous heteroaromatic molecules. After the obtention of
complex 1, we tried to follow the conversion from 4-acpy to ina by 1H NMR spectroscopy.
To this aim, we tested the oxidation of 4-acpy to ina, modifying the precursor, the solvent,
and the O2 pressure. These results have been summarized in Table 3.

As a general procedure adapted from [27], 0.100 mmol of the Cu(II) salt (24.16 mg
of Cu(NO3)2·3H2O or 19.96 mg of Cu(OAc)2·H2O) and 0.6 mmol of 4-acpy (68 µL) were
placed in a vial and dissolved in either 2 mL of ACN or DMF, and the resulting dark blue
solution was degassed. Then, the vials were filled with 2.1 bars of O2 pressure, sealed, and
put in the furnace at 120 ◦C for 18 h. Then, the reaction crude was dried and dissolved in
DMF-d7 or ACN-d3 for the 1H NMR experiments.
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Table 3. Summary of the results and conditions employed for the catalytic conversion of 4-acpy to
ina and/or 4-fopy. Outline of the conversion with the tested conditions.
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regardless of the employed Cu(II) salt. Therefore, it seemed that the catalytic performance 
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ketones behaves similarly to their aryl analogues. Then, the formation of mixtures with 4-
fopy when modifying the synthetic conditions is also provided probably as a result of 
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Precursor Quantity (mmol) Solvent O2 Pressure (bar) Product

Cu(NO3)2·3H2O 24.16 mg (0.1)

DMF atm n.r.
ACN atm 4-fopy + ina
DMF 2.1 n.r.
ACN 2.1 ina

Cu(OAc)2·H2O 19.96 mg (0.1) DMF 2.1 n.r.
ACN 2.1 4-fopy + ina

Experimental conditions: 2 mL of the corresponding solvent at 120 ◦C for 18 h using 68 µL of 4-acpy. n.r. = no
reaction; ACN = acetonitrile; DMF = N,N-dimethylformamide.

First, aiming to demonstrate the feasibility of the catalytic conversion from 4-acpy to
ina under similar experimental conditions from which 1 was isolated, the reaction between
Cu(NO3)2·3H2O and 4-acpy was carried out in ACN under autogenous pressure at 120 ◦C
for 18 h. Reactions were conducted using a closed vessel based on previous examples,
evincing a boost in the reaction rate to achieve faster conversion [27].

The 1H NMR in ACN-d3 of the resulting products revealed the recovery of 4-acpy and
the mixtures of the corresponding aldehyde (4-formylpyridine, 4-fopy) and ina, therefore
verifying that the Cu(II) catalytic oxidation of 4-acpy to ina is attainable (Figure 3a). Then,
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to further extend these results, we scrutinized different synthetic conditions to evaluate
this process. To this end, two different solvents were employed: ACN and DMF. It should
be mentioned that reactions performed in DMF resulted in the recovery of 4-acpy without
any trace of 4-fopy nor ina, regardless of the Cu(II) precursor or the addition of 2.1 bars
of O2 pressure (S.I: Figure S2). In addition, the use of Cu(OAc)2·H2O in ACN leads to the
recovery of 4-acpy and mixtures of 4-fopy and ina (Figure 3b), yielding a similar result to
that of Cu(NO3)2·3H2O without O2 pressure.
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Interestingly, employing Cu(NO3)2·3H2O and 4-acpy in ACN at 2.1 bars of O2 pressure
and heating up to 120 ◦C for 18h were found to be the best experimental conditions since
only ina has been identified and no traces of additional products are present (Figure 3c).
This is in agreement with the previous results with aromatic methyl ketones [27]. It should
be mentioned that, from this reaction, a blue powder was isolated. After the filtration of
the reaction crude and washing with 10 mL of DMF, the remaining solid was identified as
[Cu(ina)2(H2O]n (S.I: Figure S3). This agrees with the two requirements needed to achieve
the formation of 1: the gradual formation of the ina ligand and a sufficient amount of
4-acpy that remains unreacted. Thus, it is reasonable to suggest that the heteroaromatic
analogue follows the same catalytic pathway [28], and the presence of 4-fopy is due to the
incomplete conversion of 4-acpy into ina (Scheme 2).
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Scheme 2. Mechanistic pathway for the conversion of 4-acpy into ina or 4-fopy. The orange square
highlights the two products identified: ina and 4-fopy. Adapted from [28].

Therefore, Cu(NO3)2·3H2O can oxidize 4-acpy to ina even without O2 pressure, de-
spite having the worst performance. Among the palette of oxidative reactions from methyl
ketones with Cu(II), α-oxygenation to carboxylic acids and C-C bond cleavage to aldehydes
can occur in similar conditions. The outcome is mainly biased by the strong dependence
of the catalytic performance on the Cu(II) counterion. In this case, and as previous cat-
alytic studies have already noticed, the use of Cu(OAc)2·H2O as the catalyst led to small
quantities of the corresponding aldehyde [25]. Similarly, the absence of O2 pressure with
Cu(NO3)2·3H2O also yielded mixtures of 4-fopy and ina, which reflects the need for O2 to
boost the transformation into ina.

It should be noted that the decreased catalytic activity from Cu(OAc)2·H2O with re-
spect to Cu(NO3)2·3H2O has already been reported and can be attributed to the decreased
availability of Cu(II) ions that remain coordinated to the acetate ions. Similarly, the con-
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version of 4-acpy can be hindered by the coordination to the Cu(II) ions in contrast to aryl
methyl ketones.

4. Conclusions

We reported, for the first time, the assembly of a Cu(II) isonicotinate bearing a 2D
layered structure holding a monodentate pyridine derivative, the 4-acpy ligand. The
formation of ina has been traced back, resulting in the identification of the Cu(II) catalytic
oxidation of 4-acpy using dioxygen as the oxidant. Thus, we extended the covering of the
Cu(II)-driven oxidation of methyl ketones to a heteroaromatic molecule, suggesting an
analogous pathway to the one followed by its aryl counterparts. The use of Cu(NO3)2·3H2O
without O2 pressure or Cu(OAc)2·H2O at 2.1 bars of O2 provided a less efficient conversion,
leaving unreacted 4-acpy, which probably drove the arrangement of 1. Similarly to the
analogous reactions with aryl methyl ketones, the best results were garnered using ACN
under an O2 pressure of 2.1 bars at 120 ◦C for 18 h, from which ina was isolated. This
improved the conversion promoted by the formation of [Cu(ina)2(H2O]n that rapidly
precipitated. Therefore, the remarkable difference in the conversion after changing the
Cu(II) precursor demonstrates the significant effect of the counterion. Furthermore, the
assays in DMF did not bring any evidence of 4-fopy nor ina ligand formation regardless
of the employed Cu(II) salt. Therefore, it seemed that the catalytic performance of Cu(II)
in α-oxygenation as well as in the C-C bond cleavage of heteroaromatic methyl ketones
behaves similarly to their aryl analogues. Then, the formation of mixtures with 4-fopy
when modifying the synthetic conditions is also provided probably as a result of incomplete
conversion. It, therefore, appears that this progressive formation of ina, combined with
the excess of 4-acpy, enabled its gradual nucleation and growth, granting the formation of
suitable crystals for the X-ray diffraction of compound 1.

Supplementary Materials: The following supporting information can be downloaded at https:
//www.mdpi.com/article/10.3390/ma16103724/s1. Figure S1: FTIR-ATR spectrum of compound 1.
Figure S2: 1H NMR spectra in DMF-d6 of the catalytic assays using (a) Cu(NO3)2·2H2O in DMF at
2.1 bars of O2 pressure for 18 h at 120 ◦C and (b) Cu(OAc)2·H2O in DMF at 2.1 bars of O2 pressure
for 18 h at 120 ◦C. Figure S3: FTIR-ATR spectrum of compound [Cu(ina)2(H2O)]n.
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