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Abstract: Kirsten rat sarcoma (KRAS) is a small GTPase which acts as a molecular switch to regulate
several cell biological processes including cell survival, proliferation, and differentiation. Alterations
in KRAS have been found in 25% of all human cancers, with pancreatic cancer (90%), colorectal
cancer (45%), and lung cancer (35%) being the types of cancer with the highest mutation rates.
KRAS oncogenic mutations are not only responsible for malignant cell transformation and tumor
development but also related to poor prognosis, low survival rate, and resistance to chemotherapy.
Although different strategies have been developed to specifically target this oncoprotein over the
last few decades, almost all of them have failed, relying on the current therapeutic solutions to
target proteins involved in the KRAS pathway using chemical or gene therapy. Nanomedicine can
certainly bring a solution for the lack of specificity and effectiveness of anti-KRAS therapy. Therefore,
nanoparticles of different natures are being developed to improve the therapeutic index of drugs,
genetic material, and/or biomolecules and to allow their delivery specifically into the cells of interest.
The present work aims to summarize the most recent advances related to the use of nanotechnology
for the development of new therapeutic strategies against KRAS-mutated cancers.

Keywords: KRAS; KRAS mutation; nanotechnology; nanomedicine; cancer treatment; delivery
systems

1. Introduction

KRAS is one of the most studied and challenging targets in cancer research, mainly
due to the enormous difficulty of treating KRAS-mutated cancers. For several years, KRAS
was considered an untargetable and undruggable target, and KRAS-mutated cancer was
considered untreatable. Recently, a few therapeutic strategies demonstrated efficacy in
targeting this molecule. Since this is a field in clear expansion, in the present work, the
most recent studies aiming to treat KRAS-mutated cancers using nanotechnology-based
approaches able to target KRAS will be presented.
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KRAS in Cancer

KRAS is a small guanosine triphosphate (GTP)-binding protein (21 kDa) belonging to
a large group of RAS-like GTPases also known as RAS superfamily proteins. KRAS works
as a molecular switch in the guanosine diphosphate-GTP (GDP-GTP) cycle, transducing
signals via a simple binary on–off mechanism changing from an inactive GDP-bound to
an active GTP-bound [1,2] (Figure 1). KRAS regulation is mediated by guanine nucleotide
exchange factors (GEFs; e.g., SOS1), which promote nucleotide exchange and produce the
RAS-GTP active state, and GTPase-activating proteins (GAPs; e.g., neurofibromin) that
stimulate the hydrolysis of the bound GTP, leading to its inactive RAS-GDP form. Under
normal physiological conditions, KRAS is predominantly inactive. In response to extracel-
lular stimuli, such as growth factors or GEF activation, GTP binds to KRAS and undergoes
conformational changes, which activates the protein. Activated KRAS-GTP binds and
activates a spectrum of catalytically downstream effector proteins that regulate important
cellular processes and a diversity of intracellular signaling networks and pathways, in-
cluding the mitogen-activated protein kinase (MAPK) pathway [3–5], PI3K/AKT/mTOR
signaling cascade [6,7], and the Ral-GEF pathway [8,9]. These pathways are involved in
cell survival, proliferation, differentiation, migration, and apoptosis processes.

Figure 1. Schematic of the KRAS mutations mechanism and KRAS targeting therapies. Created in
BioRender.com. Abbreviations: GAP—GTPase-activating protein, GDP—guanosine diphosphate,
GEF—guanine nucleotide exchange factor, GTP—guanosine triphosphate, Pi—inorganic phosphate.

Oncogenic mutations in KRAS protein, presented in approximately 90% of pancreatic
cancers, 45% of colon cancers, and 35% of lung cancers, impair GAP-stimulated GTP
hydrolysis activity, which hampers the protein in switching between active and inactive
states, rendering RAS in constitutively active GTP-bound status [2,10,11] (Figure 1). This
permanent activation causes an overstimulation of downstream cascades, resulting in a
promotion of tumorigenesis by mechanisms such as increased proliferation, apoptosis
suppression, migration, altered metabolism, changes in the tumor microenvironment,
dysregulation of membrane vesicle trafficking and cytoskeleton organization, immune
system response evasion, and metastasis development [1,12–14].

Cancer-associated RAS genes are characterized by single-base missense mutations,
which are predominantly found at codons glycine-12 (G12), glycine-13 (G13), and glutamine-
61 (Q61) [2,15]. While KRAS-G12 mutations are frequent in pancreatic (91% of KRAS-
mutated cases), colorectal (CRC) (68%), and lung (85%) cancers, KRAS-G13 mutations are
common in gastrointestinal cancers (20% in CRC), and KRAS-Q61 alterations are common
in human melanomas (85%) [9,16]. Nonetheless, although 98% of all RAS mutations are
located at these canonical codons, other infrequent mutations at non-canonical codons,
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such as 19, 22, 59, 117, and 146, have also been described, showing the biological complexity
related to these oncogenes [12,17].

KRAS mutations negatively affect the patient’s prognosis, survival, and response to
chemotherapy [1,15], being associated with resistance to chemotherapy. For these reasons,
KRAS is commonly used as a biomarker for treatment selection. Different RAS mutations
may display distinctive functional and biological outcomes depending on (i) the tissue of
origin, (ii) the type of RAS isoform, (iii) the mutated codon, (iv) the amino acid substitutions,
and (v) the presence of post-transduction alterations; accordingly, RAS proteins are able
to anchor in different subcellular membranes and activate different signaling pathways.
Despite these small differences, the negative impact on patients’ clinical outcomes is similar.
Thus, to achieve effective treatment in oncologic patients that present a KRAS mutation, it
is of utmost importance to develop therapeutic strategies targeting the KRAS protein.

2. Actual Therapeutic Strategies against KRAS

Since the discovery of mutations in the KRAS gene in the early 1980s, many researchers
have worked on targeting this protein to effectively treat cancer. Unfortunately, this has
shown to be a hard task with more failures than successes, which could be explained by the
molecular complexity and small size of the KRAS protein and its smooth structure missing
deep pockets where drugs can be bound [18]. Moreover, KRAS possesses considerable
post-transcriptional modifications, binding tightly to GTP, making the blockage of its
hyperactivation difficult in the case of KRAS-mutated cancers [19]. For these reasons,
KRAS was considered an “undruggable” target for many years. The majority of strategies
for treating KRAS-mutated cancers are based on indirect therapies targeting, for example,
the nucleotide exchange, membrane receptors, metabolic rewiring, and other effectors (RAF,
MEK, PI3K, mTOR, FAK, EGFR, etc.) of signaling pathways in which KRAS is involved
such as MAPK or EGFR [20–22].

Nonetheless, with a better understanding of the KRAS protein structure and dynamics
observed in the last 10 years, some light appears at the end of the tunnel for treating
KRAS-mutated cancers, since some compounds targeting specific KRAS mutant forms have
been developed and enrolled in clinical trials [18,19,23]. These KRAS-targeted therapies
include AMG510 (sotorasib) and MRTX849 (adagrasib).

Sotorasib (Lumakras/Lumykras, Amgen, Inc., Thousand Oaks, CA, USA) was the first
(2021) compound approved by both the FDA and EMA (based on CodeBreaK 100 clinical
trial NCT03600883) for treating KRAS-mutated (G12C) locally advanced or metastatic
non-small cell lung cancer (NSCLC) [24,25]. Sotorasib binds covalently and irreversibly to a
cysteine, leading to the blockage of the protein and its biological activity [24,26]. On Decem-
ber 2022, adagrasib (Krazati, Mirati Therapeutics, Inc., San Diego, CA, USA) was granted
accelerated approval by the FDA (based on KRYSTAL-1 clinical trial NCT03785249) [27].
Like sotorasib, adagrasib binds irreversibly to G12C-mutated KRAS, being approved to
treat locally advanced and metastatic NSCLC [28]. Other KRAS G12C form inhibitors have
been developed, including MRTX1257 [29], ARS-853 [30], ARS-1620 [31], LLK-10 [32], and
analogs [33,34] of the last two.

Despite the encouraging results obtained so far, these strategies focus on the G12C mu-
tation, and the other KRAS-mutated forms remain untargeted. For this reason, compounds
targeting other KRAS forms and pan-KRAS inhibitors are being developed. KRpep-2d [35]
and KS-58 [36,37] were developed to target KRAS G12D mutation, while 12VC1 [38] is able
to selectively recognize the active state of both G12V and G12C forms. VS-6766 (Avutome-
tinib) is a dual RAF–MEK inhibitor that showed good therapeutic activity against KRAS
G12V mutation and is under clinical evaluation (NCT03875820, Phase I, NCT04625270,
Phase II) for different types of KRAS-mutated cancers [39].

Examples of pan-KRAS inhibitors are BBP-454 (BridgeBio Pharma, preclinical eval-
uation), BI 1701963 (Boehringer Ingelheim, NCT04111458, Phase I) [40], and AZD4785
(AstraZeneca, Inc., Cambridge, UK, NCT03101839, Phase I) [41]. AZD4785 is a high-affinity
constrained ethyl-containing therapeutic antisense oligonucleotide (ASO) proposed to
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target all KRAS isoforms [42], while BI 1701963 interferes with KRAS binding to SOS1, a
guanine nucleotide exchange factor essential in activating KRAS [40,43].

The use of non-small molecules such as antibodies, peptides, or oligonucleotides for
targeted therapies has also been proposed. However, the difficulty for such molecules to
reach the intracellular compartment in their active form is the major handicap of using and
translating such strategies from the bench to the bedside.

It is worth mentioning the development of advanced cell therapies and cancer vaccines
targeting mutated KRAS that are also under development and clinical assessment [44].
For example, peripheral blood lymphocytes with modified mTCR targeting KRAS G12D
(NCT03745326, Phase I/II) and KRAS G12V (NCT03190941, Phase I/II) mutations are
under clinic evaluation for rectal and pancreatic cancer, respectively [41,44]. In addition,
mutant KRAS G12V-specific TCR transduced T cells were developed for pancreatic cancer
treatment (NCT04146298, Phase I/II) [41]. Regarding vaccines, an mRNA-based cancer
vaccine (V941) targeting KRAS mutations (G12D, G12V, G12C, and G13D) is under clinical
trials to treat solid tumors (NCT03948763, Phase I). A KRAS peptide vaccine (NCT04117087,
Phase I), and a dendritic cell-based vaccine targeting the KRAS G12C, G12D, G12R, and
G12V forms (NCT03592888, Phase I) are also under development for CRC and pancre-
atic cancer treatment [41]. Other advanced therapies, in this case using cell derivative
nanoparticles that are under clinical evaluation (Phase I), comprise iExosomes, extracellular
vesicles loaded with siRNA for the specific inhibition of KRAS G12C in pancreatic cancer
(NCT03608631) [45].

Notwithstanding the promising results obtained with the proposed strategies, un-
fortunately, some compounds on the pipeline are failing to reach the desired endpoints
during clinical assessment. This is the example of AZD4785 which was discontinued
after completing Phase I clinical assessment due to insufficient KRAS-lowering capacity,
according to AstraZeneca [37]. In addition, JNJ-74699157 (Janssen) targeting KRAS G12C
mutation was discontinued after Phase I studies (NCT04006301) due to an unfavorable
safety profile [46]. Moreover, despite the recent approval, the development of resistance
to the KRAS G12C inhibitors has already been reported, limiting the therapeutic efficacy
and clinical application of such drugs to treat KRAS-mutated cancers [47,48]. Thus, it is
necessary to develop innovative formulations able to surpass the limitations of the therapies
currently approved and under development.

3. The Importance of Nanotechnology

Conventional cancer therapies present several limitations due to the lack of drug speci-
ficity to the tumor site, insufficient penetration capacity, low solubility, and the development
of drug resistance, among others. Most of these drawbacks can be overcome by nano-sized
drug delivery systems (nanoDDSs), leading to an improvement in the therapeutic index of
drugs [49–51].

Generally, nanoDDSs passively target and accumulate at solid tumor sites and in-
flamed tissues through the enhanced permeability and retention (EPR) effect, which is a
result of abnormal tumor angiogenesis. During tumor formation, tumor cells rapidly recruit
new blood vessels in order to receive more oxygen, nutrients, and other growth factors.
Because of this fast and imperfect angiogenesis, newly formed blood vessels present an
immature and discontinuous epithelium, where fenestrations are larger than 100 nm [50,51].
These gaps between tumor endothelial cells allow particles to be extravasated from vessels
to the interstitial tumor space. In addition to these structures, tumor tissues are also charac-
terized by the lack of adequate drainage of lymphatic systems, which allows compounds
to be retained for longer periods than observed in normal tissue, increasing the therapeutic
efficacy [52]. Contrary to tumors, healthy tissues do not exhibit large fenestrations and
have functional lymphatics. Therefore, nanoparticles (NPs) will not be able to extravasate
into normal tissues, reducing the level of adverse effects [50,52].

Nevertheless, there are a number of factors that prevent the efficient accumulation
of nanoDDSs in tumor tissues via the EPR effect at the required therapeutic doses, such
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as high interstitial fluid pressure in tumors, poor lymphatic drainage, tissue penetration,
nonvascular tumor tissue, and liver and spleen accumulation [52]. Concerning the last
problem, it is essential to consider the particle’s size, charge, and shape. The optimal NP
size is between 10 and 100 nm since particles smaller than 10 nm rapidly undergo renal
clearance, and those higher than 100 nm accumulate in the liver and spleen due to their
vascular fenestrations (200–500 nm). Regarding the shape, non-spherical NPs, such as
cylindrical and needle particles, can accumulate less in the liver, spleen, and kidney and
more in the tumor. By contrast, spherical NPs are taken up by the cells more efficiently
under fluid flow conditions [51,53]

To further improve the accumulation and retention of NPs in tumors beyond the EPR
effect, active targeting can be used. The active targeting strategy consists of decorating the
NP surface with different moieties, which interact specifically with biomarkers or receptors
overexpressed on the tumor cells. Diverse tumor-targeting ligands have been proved
for NP functionalization, involving, among others, monoclonal antibodies, nanobodies,
peptides, and carbohydrates [54].

Another challenging factor for applying NPs to the cancer field is their rapid metabolism
and clearance from the bloodstream by reticuloendothelial system (RES) cells. To overcome
this drawback, the NP surface is coated with an inert hydrophilic polymer; polyethylene
glycol (PEG) is mainly used, but others such poly(2-oxazoline) (POx) or poly(zwitterions)
are also used. These stealth polymers produce a reduction in opsonization, prevention of
aggregation, and steric hindrance to block the binding of RES cells. In this way, the covering
with PEG increases the in vivo circulation time of NPs and the probability of reaching and
accumulating in tumors [55,56].

Several types of NPs have been explored for cancer treatment, including in the develop-
ment of new anti-KRAS therapies, such as liposomes, solid lipid nanoparticles, dendrimers,
polymeric micelles, polymeric nanoparticles, inorganic particles, and extracellular vesi-
cles [49,57]. The advantages and limitations of each type of nanoplatform are shown in
Table 1.

Table 1. Examples of nanoparticles used in the development of anti-KRAS-based therapies, their
advantages, disadvantages, and diagram representation.

Type Advantages Disadvantages Diagram

Liposomes

Biocompatibility.
Biodegradability.

Co-loading of drugs with
different polarities.

Difficult and high production costs.
Storage stability.

Leakage of drugs.
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Table 1. Cont.

Type Advantages Disadvantages Diagram

Polymeric Micelles
Co-loading of drugs with

different polarities.
Easy and cheap preparation.

Loading limitations to some drugs.
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Figure 2. Schematic representation of the different strategies based on nanotechnology for KRAS-
mutated cancer treatment. Created in BioRender.com. Abbreviations: AKT—protein kinase B,
CRISPR/CAS—clustered regularly interspaced short palindromic repeats/CRISPR associated nucle-
ase, ERK—extracellular signal-regulated kinase, GAP—GTPase-activating protein, GDP—guanosine
diphosphate, GEF—guanine nucleotide exchange factor, GTP—guanosine triphosphate, KRAS—
Kirsten rat sarcoma viral oncogene homolog, KRAS-Ab—antibody against KRAS, MEK—mitogen-
activated protein kinase, mRNA—messenger RNA, mTOR—mammalian target of rapamycin, NF-
κB—nuclear factor kappa B, P—phosphate, PI3K—phosphoinositide-3-kinase, RAF—NFKB1 nuclear
factor kappa B subunit 1, Ral-GEF—Ras-like small GTPase, RISC—RNA-induced silencing complex,
siRNA—small interfering RNA, TBK1—TANK-binding kinase 1, TF—transcription factor.

4.1. Chemical Therapy

As mentioned above, only two small drugs have recently been approved for clinical
use, and not much research has been conducted to develop nanoformulations with this
type of drug. The majority of studies using nanomedicines to target KRAS-mutated
cancers are based on indirect therapies as mentioned in Section 2. For example, regarding
metabolic rewiring, KRAS-mutated cancer cells possess a high endocytic activity mainly
via micropinocytosis to allow a high intake of nutrients. Based on this, Liu, X, et al. (2019)
proposed albumin-based nanoparticles that are taken up by macropinocytosis as a good
approach to deliver pharmacological compounds preferentially to KRAS-mutated cells [58].
Similar behavior was also reported by Li, R, et al. (2021) with nanoparticulate albumin-
bound paclitaxel [59] and Dou, L, et al. (2022) with β-lapachone albumin nanoparticles [60].

Regarding the downstream effectors, afatinib, an irreversible tyrosine kinase inhibitor,
initially approved as first-line treatment of late-stage metastatic NSCLC, was encapsulated
into inhaled polylactic-co-glycolic acid (PLGA) nanoparticles [61]. The encapsulation of
afatinib improved its efficacy against KRAS-mutated NSCLC cell lines (A549, H460) and its
penetration into 3D spheroids. In addition, the aerosol presents appropriate aerodynamic
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properties for deep lung deposition. Binimetinib is a MEK 1/2 inhibitor that has shown
clinical therapeutic efficacy against KRAS-mutated cancers such as acute myeloid leukemia,
colorectal cancer, melanoma, and NSCLC, especially when in combination with other
drugs [62–64]. Binimetinib has a high plasma protein binding and a short half-life, thus
being a good candidate for nanoencapsulation. In fact, Bikhezar, F, et al. (2022) efficiently
encapsulated binimetinib into polymersomes of poly(butadiene-b-ethylene oxide) block
copolymers [65]. Another drug that has been proposed for indirect therapy of KRAS-
mutated cancers due to its RAF kinase inhibitory activity is sorafenib, approved for the
treatment of advanced hepatocellular carcinoma [66,67]. Due to its poor water solubility and
rapid metabolization and clearance, sorafenib has also been encapsulated in different types
of nanoparticles, from PLGA/PEG to liposomes, albumin nanoparticles, carbon nanotubes,
or polymeric micelles [68–70]. In addition, since in KRAS mutant cells, B-raf inhibition
activates upstream proteins leading to ERK activation through an alternative pathway,
sorafenib should not be used as single-agent therapy in KRAS-mutated cancers [23,71], and
nanoparticles offer the possibility for simultaneous delivery of different agents. Following
this research line, co-nanoencapsulation of sorafenib with other compounds has been
proposed [72–74].

To study the therapeutic potential of doxorubicin (DOX) to treat KRAS-mutated cells,
DOX was loaded into gold nanoparticles (AuNP) modified with polyethylene glycol (PEG)
and polyethylenimine (PEI) (AuPPPy-DOX) [75]. This system was able to reduce the vi-
ability of DLD-1 and HCT-116 cell lines (both KRAS-mutated) and to promote cell cycle
arrest in the G2 phase. Moreover, in a DLD-1 subcutaneously implanted mice model, a
statistically significant inhibition of the tumor growth (superior to 65%) was observed in
animals treated with AuPPPy-DOX compared to the 30% inhibition observed with animals
treated with free DOX. In addition, no signs of toxicity were noticed during the experimen-
tal period. In another study, camptothecin was encapsulated into nanoparticles composed
of hydroxyethyl starch conjugated with lauric acid and L-leucine [76]. The system pref-
erentially released the drug at the pH of the tumor microenvironment and significantly
inhibited the expression of KRAS in an in vivo transgenic zebrafish model of hepatic cancer.
The development of systems that respond to the pH of the microenvironment was also
explored by Kong, C, et al. (2019) to deliver triptolide to KRAS-mutated pancreatic can-
cer cells [77]. Poly-(ethylene glycol)-block-poly(dipropylaminoethyl methacrylate) block
copolymer (PEG-b-PDPA) micelles are spherical at pH 7.4 and suffer protonation and
dissociation into unimers, with the consequent release of the drug, at pH 5.0. Thus, they
promote a preferential release of the drug at the tumoral site. In an orthotopic KRAS mutant
MIA PaCa-2 cell-derived xenograft mouse model, the pH-responsive micelles promoted a
higher inhibition of the tumor growth and induced the apoptosis of tumor cells to a higher
extent than the non-responsive system. More importantly, the treatment suppressed the
formation of liver metastasis and prolonged the survival of animals (Figure 3).
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Figure 3. Antitumor efficacy of triptolide-loaded micelles in an orthotopic KRAS mutant MIA PaCa-2
cell-derived xenograft mouse model. (a) Scheme of treatment of different formulations. Mice were
intravenously administrated with either gemcitabine (GEM) (50 mg/kg) for three doses or triptolide
prodrug-loaded non-pH-sensitive micelles (T-NPSM) (0.3 mg/kg), ultra-pH-sensitive micelles (UPSM)
(10 mg/kg), and triptolide prodrug-loaded UPSM (T-UPSM) (0.3 mg/kg) every other day for a total
of four doses. (b) Bioluminescence images of anesthetized mice before (day 19) and after (day 47)
treatments. Day 0 was designated as the day after injection of MIA PaCa-2-luc cells. (c) Ex vivo
tumor pictures and (d) tumor weights after mice were randomly selected and sacrificed at the end
of the experiment. Data are presented as the mean ± SD (n = 6). * p < 0.05, ** p < 0.01, *** p < 0.001,
two-tailed t test. (e) Percentages of liver metastasis in different treatment groups. (f) Representative
images of ex vivo histological (H&E and TUNEL staining) analyses of tumor sections. The areas
surrounded by a white dotted line (marked with T) represent metastatic tumors. Scale bar: 50 µm.
(g) Quantity analysis of apoptosis density in TUNEL staining by ImagePro Plus (n = 6 random fields).
Data are presented as the mean ± SD (*** p < 0.001, **** p < 0.0001, two-tailed t test). (h) Kaplan–Meier
survival curve of orthotopic xenograft models (n = 6 for saline, UPSM, and T-UPSM; n = 11 for
GEM and T-NPSM) after treatment with the above formulations. Statistical significance for survival
analysis was calculated using the log-rank test: ** p < 0.01, *** p < 0.001. Reprinted from [77] with
permission of American Chemical Society.

Gemcitabine is a nucleoside analog and a first-line therapy for pancreatic cancer.
However, its therapeutic efficacy is limited due to poor penetration into tumors and the
development of resistance [78,79], which makes it a good candidate for nanodelivery.
For that, Das, M, et al. (2020) developed liposomes with calcium phosphate for delivery
of gemcitabine to improve the treatment of KRAS-mutated pancreatic cancer [80]. The
formulation allowed the bypass of the hallmarks of gemcitabine chemoresistance and
led to robust tumor regression in an aggressive and clinically relevant pancreatic ductal
adenocarcinoma (PDAC) model.

Combined chemo- and immunotherapy using nanostructured irinotecan and an anti-
PD-1 compound to treat PDAC was also assessed [81]. The encapsulation of irinotecan into
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lipid bilayer-coated mesoporous silica nanoparticles (silicasome) led to an improvement of
the delivery and therapeutic efficacy both in vitro and in vivo in KRAS-induced pancreatic
cancer cell models. Irinotecan promotes lysosomal alkalization, leading to the inhibition
of autophagy and immunogenic cell death induction. A synergic effect in the immune
response was observed with a concomitant administration of an anti-PD-1 compound.
In vivo, the combined therapy significantly improved the survival of animals compared to
the monotherapy of both compounds (Figure 4). Similar results were obtained with the
same system but substituting irinotecan with platinum-based compounds [82].

Figure 4. Animal survival study in an orthotopic KRAS-induced pancreatic cancer (KPC) model,
treated with irinotecan (IRIN) silicasome plus anti-PD-1 antibody. (A) Explanation of the KPC model,
including orthotopic implant in the pancreas and technical development of the primary tumor and
metastases that can be followed by IVIS imaging. Animals were sacrificed according to the established
moribund criteria. (B) Details of the survival experiment in tumor-bearing mice (n = 5–7), which were
treated with free IRIN or the silicasome at an IRIN dose equivalent of 40 mg kg−1 IV every 3 or 4 days,
with or without IP administration of 100 µg anti-PD-1 antibody, for a total of six administrations.
Please notice that the antibody was administered two days after IRIN injection. Saline and anti-
PD-1 alone were used as controls. Kaplan–Meier plots were used to display the survival rate of the
different animal groups (* p < 0.05, log-rank test). (C) Summary of the median survival time (MST)
and percentage of increase in life span (%ILS) for each group. Reprinted from [81] with permission of
John Wiley and Sons under Creative Commons Attribution License (CC BY 4.0).
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4.2. Biotechnological/Biopharmaceutical Therapy

Biological products, also referred to as “biologics” or “biopharmaceuticals”, contain
an active substance derived from or extracted from a biological system (living organism),
including animal and plant cells, bacteria, yeast, or viruses. However, nowadays it is more
common to produce them using recombinant DNA technologies [83]. The first approved
biopharmaceutical obtained through biotechnology-based techniques was the recombi-
nant human insulin in 1982, and at the moment there are more than 300 distinct active
biopharmaceutical ingredients already approved. The field of biopharmaceutics includes
monoclonal antibodies, vaccines, hormones, interferons, blood factors, hematopoietic
growth factors, genetic material, and thrombolytic agents [83,84]. Amongst the different
types of biopharmaceuticals, monoclonal antibodies correspond to approximately 50%
of biopharmaceuticals under development, under approval, and approved for clinical
practice [84,85].

Given the higher specificity of this type of therapy and the increasing need for more
personalized medicines, the use of these products in clinical practice has grown expo-
nentially, with a consequent decrease in the use of conventional drugs [84]. However,
due to their high sensitivity, lack of stability, and difficulties in crossing biological mem-
branes, it is of major importance to find the perfect solution to protect and deliver biologic
products in their active form into the cell of interest. In this sense, nanotechnology-based
formulations are a good alternative to improve the stability and permeability of biological
compounds. Moreover, nanoparticles allow the efficient internalization of these products in
the target cells, becoming a great tool in the development of new biopharmaceutical-based
formulations [86].

4.2.1. Peptide/Protein-Based Compounds

Over the last few years, different antibodies, peptides, nanobodies, and affimers have
been designed to selectively bind to KRAS and its mutated forms in order to block its
biological activity in a specific manner [87–93]. In order to improve their internalization
into the cells, different approaches have been used. An example of that is the recent work
of Rafael, D, et al. (2023) in which Pluronic F127-based polymeric micelles were used
for the encapsulation of anti-KRAS antibodies (PM-KRAS) [87]. They demonstrated high
efficacy in vitro in terms of proliferation and colony formation inhibition for colon and
pancreatic cancer cells. These results demonstrate not only a strong downregulation of the
RAS/MAPK pathway, but also a stemness phenotype in the cell, as demonstrated by the
gene expression levels. Moreover, in an in vivo colon cancer model, they demonstrated a
significant reduction in tumor growth for the animals treated with the micelles encapsulat-
ing the anti-KRAS antibody in comparison with the animals receiving the empty micelles
(Figure 5) [87]. This work was a clear example of how the antibodies have great poten-
tial not only for extracellular targets but also for intracellular targets, especially the ones
considered undruggable or untargetable using other therapeutic options. Other groups
are also pursuing the intracellular delivery of anti-KRAS antibodies. For example, Libera
Bio patented a nanocapsule system based on an oil core and a hydrophilic polymeric shell
(MPN technology) to deliver an anti-KRAS antibody targeting the G12V mutation [94].
In vivo, the system promotes a reduction in tumor volume [94,95].



Pharmaceutics 2023, 15, 1686 12 of 24

Figure 5. Therapeutic efficacy of polymeric micelles loaded with anti-KRAS antibody (PM-KRAS) in
subcutaneous HCT116 tumors. (A) Tumor growth in animals treated intravenously with 300 mg/kg
empty polymeric micelles (PMs) or PMs encapsulating anti-KRAS antibody (PM-KRAS) (300 µg/kg).
Tumor volume was measured on the treatment days. (B) Ex vivo tumor weight at the end point of the
treatment. (C) Protein levels in selected tumors of PM- and PM-KRAS-treated mice. Results are pre-
sented as mean ± SEM, n = 10, * denotes significant differences (p < 0.05) in tumor volume and tumor
weight between both groups. Reprinted from [87] with permission of American Chemical Society.
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Peptides against KRAS may also benefit from the use of nanoDDSs. Sakamoto, K, et al.
(2023) nanoformulated the K-Ras(G12D)-inhibitory bicyclic peptide KS-58 into micelles that
demonstrated antitumor activity against colon and pancreatic tumors [88]. Their results
show that the KS-58 nanoparticles accumulated into tumors and suppressed the growth of
CT26 and PANC-1 tumors in vivo.

4.2.2. Gene Therapy

Since KRAS presents a variety of already known mutations, in order to promote
a mutation-specific treatment, many research groups have been putting efforts into de-
veloping new therapeutic solutions based on gene therapy that in most cases require
nanoformulation. This, together with the small amount of small molecule/chemical in-
hibitors discovered so far, explains why most nanoparticulated anti-KRAS therapies are
non-viral vectors developed to be used alone or in combination with chemotherapy [96–99].
The use of nanotechnology to create non-viral vectors for gene therapy allows the substi-
tution of viral vectors and their associated toxicity. The development of non-viral vectors
for KRAS-mutated cancer treatment has exponentially grown in the last decade [100–102],
with the aim of (i) suppressing gene expression at the mRNA level (RNA interference
strategies), (ii) artificially increasing gene expression, or (iii) correcting defective genes
(gene modification). The advantage over other treatment approaches is that it is highly
specific and suitable for developing mutation-specific treatment strategies.

Gene Silencing

Several types of nanoparticles have been used as non-viral gene delivery vectors;
the ones with a lipidic nature are the most commonly used both in clinical research and
clinical practice. Regarding nanomedicines for targeting KRAS-mutated cancers, a lipid
nanoparticle comprising an siRNA therapeutic against glutathione S-transferase P (NBF-
006) was able to promote a tumor regression and a prolongation in the survival rate of
animals in a surgically implanted orthotopic NSCLC tumor model [103]. This system
was recently enrolled in a Phase I clinical trial (NCT03819387) with NSCLC, CRC, and
pancreatic cancer patients. Another example is the work of Shahidi, M, et al. (2022) on
the design of a liposome coated by cationic chitosan (CS) using a controlled layer-by-layer
(LbL) process to deliver simultaneous siKRAS, miRNA, and 5-Fluorouracil (5-FU) into
CRC cells [99]. MiR-532-3p acts as a sensitizer to 5-FU in CRC through its activating effects
on p53 overcoming treatment resistance. In vitro, the LbL NPs were able to internalize
and promote cytotoxicity, suppressing cancer cell migration and invasion. In vivo, there
was reduced tumor growth in treated SW480-tumor-bearing mice models. The strategy
exhibited significant tumor inhibition efficiency without remarkable changes in body
weight and organ toxicity (Figure 6). Compared to the free 5-FU formulation used alone,
the co-delivery of the 5-FU and miR-532-3p/si-KRAS greatly improved antitumor efficacy.
This new nanoDDS is expected to be a good system with great potential for the synergic
treatment of CRC.

Extracellular vesicles (EVs), which present some structural similarities to liposomes,
represent a promising alternative as a gene delivery platform. They are relatively inert, non-
immunogenic, biodegradable, and biocompatible [104] and can be used for targeting KRAS
by different strategies (Figure 7). Mendt, M, et al. (2018) proposed KRAS G12D inhibition
by the administration of EVs isolated from mesenchymal stromal cells and loaded with a
specific siRNA [105]. This strategy has been proven efficacious in reducing tumor burden
in pancreatic cancer models and is fully scalable [106]. Of note, this system is currently
undergoing Phase I clinical trials (NCT03608631) [45].
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Figure 6. In vivo antitumor evaluation of LbL formulation in tumor-bearing mice after intravenous
injection with PBS, free 5-FU, and HA-LbL NPs (n = 5/each group). (A) Body weight curve. (B) Tumor
volume curve. (C) Relative expression of KRAS. (D) Relative expression of miR-532-3p. (E) Immunos-
taining of Ki67. (F) H&E staining of liver, spleen, and lung. ** p < 0.01, *** p < 0.01, **** p < 0.01.
Abbreviations: HA: hyaluronic acid, LbL NP: layer-by-layer nanoparticle, 5-FU: 5-Fluorouracil), PBS:
phosphate buffer solution. Reprinted from [99] with permission of Frontiers Media under Creative
Commons Attribution License (CC BY 4.0).
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Figure 7. EV potential uses for enabling KRAS targeting. (A). Schematic representation of EV
secretion from mammalian cells accompanied by a detailed TEM image of EVs after isolation by
size exclusion chromatography. (B). Pathways to target KRAS using EVs as nanotechnology drug
delivery systems.

Other types of nanoparticles developed for the delivery of siRNA towards KRAS-
mutated cells consist of macromolecular assemblies of biological origin such as albumin.
However, only in vitro data are available, and further studies would be necessary to assess
their potential [107]. Closely related molecules such as peptides have also shown the ability
to generate nanoDDSs for siRNA delivery. In this regard, Strand, MS, et al. (2019) were
able to generate NPs out of a p5RHH cationic peptide, engineered from natural melittin
structure. The resulting NPs were able to load a specific siRNA against KRAS, showing
significant efficacy in in vitro and in vivo PDAC models [108].

Another promising strategy of gene therapy against KRAS-mutated cancer consists
in the use of microRNAs (miRs). For example, miR-143 has been shown to act as a tumor
suppressor in NSCLC, cervical cancer, prostate cancer, ovarian cancer, colon cancer, and
leukemia, being able to silence not only KRAS but also RAS-effector signal genes Erk
and Akt [109]. In this sense, Yoshikawa, Y, et al. (2019) developed a novel chemically
modified miR-143 (miR-143#12) that exhibited a marked antitumor activity upon either
systemic or intravesical administration with a polyionic copolymer (PIC) as the carrier in
KRAS-driven bladder cancer [110]. PIC micelles can be prepared through the spontaneous
assembly of cationic block copolymers with oppositely charged miRNA. Their core–shell
architectures offer a delivery platform for vulnerable miRNA, improving their biological
activities for medicinal applications such as tumor-targeted therapy. They also used the
same nanocarrier to treat renal cell carcinoma (RCC) in Caki-1 cell-xenografted mice and
found that PIC could protect synthesized miR-143s in the blood and the treatment exhibited
a marked antitumor effect, as observed in in vitro experiments [111].

Gene Editing

CRISPR (clustered, regularly interspaced, short palindromic repeats)-associated 9
(Cas9)-based technology has emerged as a precise therapeutic tool. However, its clinical
translation remains a challenge due to difficulties in the successful and safe intracellular
delivery of the system, especially in the form of ribonucleoprotein (RNP) [112,113]. The
delivery of RNP circumvents the processes of transcription and translation, generating a
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rapid genome-editing effect both in vitro and in vivo. Furthermore, Cas9 RNP is free of
insertional mutagenesis and shows low off-target effects, making it an appealing delivery
format.

Wan, T, et al. (2021) designed a hyaluronic acid (HA)-decorated phenylboronic den-
drimer (HAPD) to deliver Cas9 RNP to target both concurrent adenomatous polyposis
coli (APC) and KRAS mutations. The systemic administration of duplex Cas9 RNP by
HAPD was able to inhibit tumor growth on xenografted and orthotopic CRC mouse
models and to prevent CRC-induced liver and lung metastasis [114]. Previously, they
had already designed a disulfide-bridged biguanidyl adamantine (Ad-SS-GD) with a β-
cyclodextrin-conjugated low-molecular-weight polyethyleneimime (CP) nanocomplex with
high efficiency for in vitro cytosolic delivery of RNP, and it was able to inhibit tumor growth
and metastasis in the tumor-bearing CRC mouse models [112].

EVs have also been used to deliver CRISPR/Cas9 vector (Figure 7), coding for Cas9
plasmid and sgRNA specific for the KRAS G12D mutation, to disrupt KRAS activity at the
gene level in in vitro and in vivo pancreatic cancer models [115].

Table 2. Examples of nanoparticles for anti-KRAS therapy in different stages of development.

Category Vehicle Cargo Application Development
Stage Reference

Chemotherapy

Amphiphilic hydroxyethyl
starch-conjugated lauric
acid and L-leucine NP

Camptothecin Hepatic cancer In vivo [76]

PLGA NP Afatinib NSCLC In vitro [61]

Gold NP Doxorubicin CRC In vivo [75]

Liposomes (DOPA, DOTAP,
Chol, DSPE-PEG) with
calcium phosphate

Gemcitabine PDAC In vivo [80]

Silicasomes (DSPC/Chol/
DSPE-PEG liposomes with
mesoporous silica)

Irinotecan and an
anti-PD-1
compound

PDAC In vivo [81]

Silicasomes (DSPC/Chol/
DSPE-PEG liposomes with
mesoporous silica)

Platinum-based
compounds and an
anti-PD-1
compound

PDAC In vivo [82]

PLGA-coated gold NP 5-Fluorouracil Lung cancer In vitro [116]

PEG-b-PDPA micelles Triptolide PDAC In vivo [77]

Cetuximab-conjugated
PEG-PLGA NP Camptothecin Pancreatic cancer In vivo [117]

Albumin NP β-lapachone PDAC In vivo [60]

PpIX-C6-PEG8-
KKKKKKSKTKC-OMe
peptidic micelles

Protoporphyrin IX Breast cancer In vivo [118]

Avidin–nucleic acid
nanoassemblies Doxorubicin Breast cancer In vivo [119]

Peptide/
protein-based
therapy

Pluronic-based micelles Anti-KRAS
antibody

CRC and
pancreatic cancer In vivo [87]

Cremophor EL-based
micelles

Bicyclic peptide
KS-58

CRC and
pancreatic cancer In vivo [88]

MPN technology
nanocapsules

Anti-KRAS
antibody PDAC In vivo [94]
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Table 2. Cont.

Category Vehicle Cargo Application Development
Stage Reference

Gene therapy

Albumin NP siKRAS Lung cancer
therapy In vitro [107,114]

p5RHH NP siKRAS Pancreatic Cancer In vivo [108]

EVs siKRAS Pancreatic Cancer Phase I [45]

Lipid NP siKRAS
and gemcitabine Pancreatic cancer In vivo [97,107]

PEI-modified
hydroxyapatite NP siKRAS Pancreatic cancer In vitro [108,120]

Cationic poly (cyclohexene
carbonate) NP siKRAS Pancreatic cancer In vitro [45,121]

Antibody-cationized gelatin
NP siKRAS NSCLC In vitro [97,122]

HA layer-by-layer
liposomes

siKRAS
miR-532-3p
5-Fluorouracil
(5-FU)

CRC In vivo [99,120]

Polyionic copolymer
nanocarrier miR-143#12 Bladder cancer and

RCC In vivo [110]

PAMAM dendrimer
miRNA Mimic
let-7b
chloroquine

NSCLC In vitro [98]

HA-decorated HAPD

Cas9 RNP
sgRNAs targeting
mutant APC and
KRAS

CRC In vivo [114]

Disulfide-bridged
biguanidyl adamantine with
β-cyclodextrin-conjugated
low-molecular-weight
polyethyleneimime
nanocomplex

Cas9 RNP
sgRNAs targeting
mutant KRAS

CRC In vivo [112]

EVs

CRISPR/
Cas9 vector
(LentiCRISPR V2
and pSpCas9(BB)-
2A-GFP
(PX458))

Pancreatic cancer In vivo [115]

Thiol-modified glycol
chitosan NP

siKRAS and
GDC-0941 Ovarian cancer In vivo [102]

Lipid NP siGSTP NSCLC, CRC, and
pancreatic cancer Phase I clinical trial [103]

Abbreviations: Chol—cholesterol, CRC—colorectal cancer, DOPA—dioleoylphosphatidic acid, DOTAP—
1,2-dioleoyl-3-trimethylammonium-propane, DSPC—1,2-distearoyl-sn-glycero-3-phosphocholine, DSPE-PEG—
N-(methylpolyoxyethylene oxycarbonyl)-1,2-distearoyl-sn-glycero-3-phosphoethanolamine, HA—hyaluronic
acid, HAPD—phenylboronic dendrimer, NSCLC—non-small cell lung cancer, NP—nanoparticle, PAMAM—
polyamidoamine, PDAC—pancreatic ductal adenocarcinoma, PEG—polyethylene glycol, PEG-b-PDPA—poly-
(ethylene glycol)-block-poly(dipropylaminoethyl methacrylate) block copolymer, PEI—polyethylenimine, PLGA—
polylactic-co-glycolic acid, RCC—renal cell carcinoma, RNP—ribonucleoprotein, sgRNA—single-guide RNA,
siGSTP—siRNA against glutathione S-transferase P.
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5. Nanomedicine Challenges

Nanomedicine offers promising opportunities for improving KRAS-mutated cancer
therapy, but there are still several limitations and challenges that must be overcome re-
lated to toxicity, targeted delivery, stability, manufacturing and scale-up, and regulatory
approval [49,123–125]. One of the main concerns with nanomedicine is the potential for
toxicity, especially when it comes to long-term exposure. While nanomaterials can be
engineered to be biocompatible, there is still a risk that they may cause accumulation and
damage to healthy cells or tissues [124]. However, since nanoparticles for treating KRAS-
mutated cells are expected to be used in short-time therapies, the efficacy/safety ratio is still
positive. Another challenge is ensuring that the nanoparticles reach the target site at thera-
peutic doses. Many types of cancer therapy require the drug to be delivered specifically to
the tumor cells, while avoiding healthy cells. However, the body’s natural defenses, such as
the immune system and the blood–brain barrier, can prevent the nanoparticles from reach-
ing their intended destination [123]. Nevertheless, although not all nanoparticles reach the
site of interest, they modify the biodistribution of a drug, improving its therapeutic index.
Stability, both under storage and in the presence of biological fluids, could be a limitation
for some nanoparticles. This can cause aggregation, opsonization, or degradation that can
affect their effectiveness or safety profile [49]. For this reason, during the development
phase, deeply studying the stability of the systems under different conditions to avoid
problems in the translation to in vivo conditions is of the utmost importance.

One of the main concerns regarding nanomedicine is related to the manufacturing
processes used and its scale-up to the industrial level [125]. Some manufacturing methods
can be complex and expensive and may not be able to fulfill the demand for large-scale
clinical trials or commercialization. In addition, at the regulatory level, despite the efforts
made in the last few years and the presence of nanomedicines in the market, there is still
a lack of standardization in the characterization and evaluation of nanomedicines that
hinders regulatory approval [125]. Additionally, the mentioned concerns around the safety
and efficacy of these therapies can further slow the approval process.

6. Conclusions and Future Perspectives

The therapeutic arsenal under development to inactivate the different KRAS mutations
is wide, including small drugs, antibodies, and gene therapy. However, the majority of
these therapies may require nanoformulation to improve their pharmacokinetic properties,
tumor specificity, and biological efficacy. Although fairly explored, the use of nanomedicine
to improve the therapies targeting mutated KRAS is a field expected to increase in the
next years. Likewise, the plethora of nanoparticulate systems that can be used is very
broad, including not only lipidic, polymeric, and inorganic synthetic nanoparticles, but
also naturally obtained EVs and biological-based particles. Presently, there is not a clear
candidate, in terms of therapeutic cargo or in terms of delivery system, for each clinical
application. In this sense, the endless opportunities that nanomedicines create to find
a newer, efficient, and specific treatment bring the hope that, in the near future, more
therapeutic options will be available against KRAS-mutated cancers, still considered an
important clinical challenge.
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