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Abstract

INTRODUCTION:Our previous antibody-based cerebrospinal fluid (CSF) proteomics

study showed that Thimet oligopeptidase (THOP1), an amyloid beta (Aβ) neuropepti-
dase, was increased in mild cognitive impairment with amyloid pathology (MCI-Aβ+)
and Alzheimer’s disease (AD) dementia compared with controls and dementia with

Lewy bodies (DLB), highlighting the potential of CSF THOP1 as an early specific

biomarker for AD.We aimed to develop THOP1 immunoassays for large-scale analysis

and validate our proteomics findings in two independent cohorts.

METHODS: We developed in-house CSF THOP1 immunoassays on automated Ella

and Simoa platforms. The performance of the different assays were compared using

Passing–Bablok regression analysis in a subset of CSF samples from the discovery

cohort (n= 72). Clinical validation was performed in two independent cohorts (cohort

1: n= 200; cohort 2: n= 165) using the Ella platform.

RESULTS: THOP1 concentrations moderately correlated between proteomics analy-

sis and our novel assays (Rho > 0.580). In both validation cohorts, CSF THOP1 was

increased in MCI-Aβ+ (>1.3-fold) and AD (>1.2-fold) compared with controls; and

betweenMCI-Aβ+ andDLB (>1.2-fold). Higher THOP1 concentrations were detected

in AD compared with DLB only when both cohorts were analyzed together. In both

cohorts, THOP1 correlated with CSF total tau (t-tau), phosphorylated tau (p-tau), and

Aβ40 (Rho> 0.540) but not Aβ42.
DISCUSSION: Validation of our proteomics findings underpins the potential of CSF

THOP1 as an early specific biomarker associated with AD pathology. The use of

antibody-based platforms in both the discovery and validation phases facilitated

the translation of proteomics findings, providing an additional workflow that may

accelerate the development of biofluid-based biomarkers.
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1 BACKGROUND

Alzheimer’s disease (AD) is themost common form of dementia world-

wide, affecting over 50million people, with numbers rising every year.1

The underlying neuropathology of AD, the accumulation of amyloid

beta (Aβ) plaques, neurofibrillary tangles (NFTs), and overall neurode-

generation can bemeasured in the cerebrospinal fluid (CSF) to support

AD diagnosis.2 However, other dementia types such as dementia with

Lewy bodies (DLB) can have AD co-pathology and overlapping clinical

features, which lead to up to 15% of ADmisdiagnosis.3,4 Furthermore,

biological therapies targeting distinct pathological mechanisms of AD

have recently become available in the United States.5,6 Therefore, sev-

eral biomarkers will likely be required to cover different contexts of

use in clinical settings and trials (e.g., differential diagnosis, progno-

sis, disease stage and monitoring, patient selection and stratification,

monitoring of treatment effects).

Unraveling novel fluid biomarkers is a long and multidisciplinary

process including many phases, starting from biomarker discovery, fol-

lowed by analytical (including immunoassay development) and clinical

validation, and finally, by implementation in clinical settings.7–10 To

date, unbiased mass spectrometry (MS) proteomics discovery studies

have uncovered numerous CSF biomarker candidates.11–13 However,

only a few of these biomarker candidates have made it through the

thorough analytical and clinical validation phases (or so-called quali-

fication and verification).14,15 This might be explained by the use of

different technological platforms between the biomarker discovery

(e.g., MS) and validation phases (e.g., antibody-based immunoassays).

Although MS identifies peptides from trypsinized proteins, antibody-

based technologies detect proteins in their native conformation, which

may explain to some extent the cross-technology translational gap

often encountered in biomarker studies.8 The emergence of antibody-

based proteomics platforms (e.g., proximity extension assays; PEA

technology) together with the use of more sensitive and automated

immunoassay-based technologies may smoothen the development

of optimal immunoassays for high-throughput screening and facil-

itate the validation and ultimately clinical implementation of fluid

biomarkers.7,8,16–19

Wepreviously used antibody-basedmultiplex arrays tomap theCSF

proteomeofADand a group of non-ADdementias, which revealed that

Thimet oligopeptidase 1 (THOP1) is increased in patients with mild

cognitive impairment (MCI) and AD dementia compared with other

dementia groups (e.g., DLB and frontotemporal dementia [FTD]) and

controls. In addition, a data-drivenmodeling approach selectedTHOP1

within a CSF biomarker panel that discriminated AD from a group

of non-AD dementias.18 THOP1 is a neuropeptidase able to cleave

Aβ peptides among others.20,21 It co-localizes with Aβ plaques and

NFTs in the brain from AD-disease models and patients with AD.22,23

Moreover, THOP1 concentrations were increased in temporal cortex

tissue with AD pathology compared to controls, suggesting that pro-

tein concentrations in CSF could reflect brain-specific changes.22 The

increased concentrations in MCI and AD stages, and the brain-specific

changes observed previously, underpin the potential of THOP1 as a

RESEARCH INCONTEXT

1. Systematic review: We have previously performed

an large antibody-based CSF proteomics study, which

showed increased concentrations of the amyloid-beta

neuropeptidase THOP1, in MCI-Aβ+ and AD compared

with controls and patients with DLB. Increased THOP1

levelswere also detected inADpost-mortembrain tissue,

highlighting the potential use of CSF THOP1 as an early

specific biomarker for AD.

2. Interpretation: Our findings show that THOP1 could

be a useful biomarker to detect an early neuroprotec-

tive response against AD pathology or as part of a CSF

protein panel to discriminateAD fromother neurodegen-

erative dementia. The use of antibody-based platforms

in both the discovery and validation phases facilitated

the translation of proteomics findings, providing an addi-

tional workflow that may accelerate the development of

fluid biomarkers.

3. Future directions: The clinical context of use for THOP1

should be explored in future studies.

novel and specific CSF biomarker increasing along the symptomatic

continuum of AD.

In this study, we aimed to develop specific CSF THOP1 immunoas-

says and validate our discovery findings using two independent clinical

cohorts. This approach allowed us to additionally evaluatewhether the

use of immunobased platforms for both discovery and validation can

accelerate the biomarker development workflow using CSF THOP1 as

an example.

2 METHODS

2.1 Patient cohorts

To evaluate the analytical performance of our in-house immunoassays,

we selectedpatients fromtheAmsterdamDementiaCohort (ADC) also

included inouroriginal discovery study; 24AD,24DLB, and24controls

(Additional File 1; Table S1).18,24 For clinical validation of CSF THOP1

changes, we selected two independent clinical cohorts: the Sant Pau

Initiative on Neurodegeneration cohort (SPIN; total = 200, including

53 controls, 50 MCI-Aβ+, 47 AD, and 50 DLB) and the ADC (total =

165, including 33 controls, 44 MCI-Aβ+, 34 AD, and 54 DLB. A subset

of the DLB cases (n= 27) were selected from the DEmEntia with LEwy

bOdies Project (DEvELOP).24–27

All participants in each center, including patients withMCI, AD, and

DLB were diagnosed according to consensus guidelines as described

previously.28–30 Concentrations of Aβ42, Aβ40, phosphorylated tau
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TABLE 1 Patient characteristics validation cohorts.

Validation cohort 1

Control MCI-Aβ+ AD DLB

N 53 50 47 50

Sex= F (%) 32 (60.4) 24 (48.0) 30 (63.8) 18 (36.0)

Age (years) 61 (58–66)a-c 72 (68–75)c,d 73 (68–76)c,d 78 (74–80)a,b,d

MMSE 29 (29–30)a-c 26 (25–28)b,c 23 (19–25)a,d 23 (19–24)a,d

Aβ42 (pg/mL) 1194 (903–1397)a-c 518 (425–648)c,d 521 (413–621)c,d 677 (497–943)a,b,d

Aβ40 (pg/mL) 12346 (9800–15103) 12290 (10348–14734) 13116 (10332–14494) 10452 (9063–14799)

t-tau (pg/mL) 257 (194–309)a-c 610 (489–862)c,d 762 (556–966)c,d 409 (283–761)a,b,d

p-tau (pg/mL) 36 (27–48)a-c 98 (82–135)c,d 125 (82–158)c,d 64 (41–115)a,b,d

APOE ε4 carrier (%) 13 (24.5) 25 (50.0) 22 (46.8) 17 (34.0)

Validation cohort 2

Control MCI-Aβ+ AD DLB

N 33 44 34 54

Sex= F (%) 11 (33.3) 19 (43.2) 14 (41.2) 9 (16.7)

Age (years) 58 (54–61)a-c 67 (64–71)d 66 (62–68)c,d 69 (66–73]b,d

MMSE 28 (27–29)a-c 26 (25–27)b-d 20 (18–23)a,c,d 24 (22–26)a,b,d

Aβ42 (pg/mL) 1491 (1292–1700)a-c 835 (672–976)d 649 (543–786)c,d 841 (659–1140)b,d

t-tau (pg/mL) 154 (134–182)a-c 288 (241–358)c,d 327 (253–470)c,d 187 (145–248)a,b,d

p-tau (pg/mL) 16 (12–64)a,b 86 (80–93)c,d 86 (76–99)c,d 29 (16–71)a,b

APOE ε4 carrier (%) 7 (21.2) 33 (75.0) 24 (70.6) 28 (51.9)

Note: Continuous data are represented as median ± interquartile range and dichotomous data as the number of cases with a percentage of the total (%).

Differences between groups were determined using the Kruskal–Wallis test with Bonferroni correction or the chi-square test.

Abbreviations: AD, Alzheimer’s disease; Aβ40, amyloid beta 1-40; Aβ42, amyloid beta 1-42; DLB, dementia with Lewy bodies; F, female; MCI-Aβ+, mild

cognitive impairment with amyloid pathology;MMSE,Mini-Mental State Examination; p-tau, phosphorylated tau; t-tau, total tau.
ap< 0.05 compared toMCI.
bp< 0.05 compared to AD.
cp< 0.05 compared to DLB.
dp< 0.05 compared to controls.

(p-tau), and total tau (t-tau) (i.e., core AD CSF biomarkers) were used

to support AD diagnosis and measured in each center using com-

mercially available kits (SPIN: Lumipulse G β-Amyloid 1-42, β-Amyloid

1-40, Total Tau and pTau 181 on Lumipulse G600 automated plat-

form, Fujirebio Ghent, Belgium; and ADC: Innotest ELISA INNOTEST

Aβ(1-42), hTAUAg, pTau (181P), or Elecsys Aβ42, t-tau and p-tau

(181P) CSF assays [Roche Diagnostics], and Lumipulse G Amyloid 1-

40). In the ADC, enzyme-linked immunosorbent assay (ELISA) CSF

concentrations were corrected for the drift in biomarker concentra-

tions that occurred over the years.31 Patients with AD dementia were

included if all the classicalCSFbiomarkerswerepositive (SPIN: 0.062<

Aβ42/Aβ40 ratio, tTau > 456 pg/mL and pTau > 63 pg/mL; ADC ELISA:

Aβ42< 813 pg/mL, pTau> 52 pg/mL, and tTau> 375 pg/mL; ADCElec-

sys: Aβ42< 1000 pg/mL, pTau> 19 pg/mL, and tTau> 235 pg/mL).32,33

Controls with subjective cognitive decline were included if no signs of

dementia were present during the diagnostic work-up. All the controls

included in the study were negative for any of the classical AD CSF

biomarkers.32,33 Informed consent was obtained from all participants

or their authorized representatives, following the ethical consent by

the VU University Medical Center Amsterdam and with the Helsinki

Declaration of 1975. Patient characteristics of the validation cohorts

are summarized in Table 1.

CSF was collected and biobanked according to established

protocols,34,35 CSF samples from the discovery cohort had two

freeze and thaw (f/t) cycles prior to analysis.

2.2 In-house immunoassay

We sought to determine whether we were able to set up a THOP1

immunoassay for measurements in CSF. Therefore, we first devel-

oped two immunoassays on different analytical platforms (i.e., Ella and

Simoa); both assays have the same antibody setup. The capture anti-

body was a polyclonal anti-human THOP1 antibody (1 mg/mL, R&D

systems, AF3439), and the biotinylated polyclonal anti-human THOP1

antibody (0.2 mg/mL, R&D systems, BAF3439) was used as a detec-

tion antibody. For both assays, the calibration curve was prepared

with THOP1 recombinant human protein (aa2-aa689, 0.4mg/mL, R&D

systems, 3439-ZN-010). To continue clinical validation, the platform

with the lowest coefficients of variation (CV)%, higher sensitivity, and
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stronger correlation with PEA-based proteomics results was consid-

ered to perform best.

2.3 THOP1 Ella assay

An automated Ella immunoassay for the detection of THOP1 con-

centrations in CSF was developed following manufacturer’s instruc-

tions (ProteinSimple, Bio-Techne, San Jose, California, USA).36 First,

THOP1 capture antibody (1 mg/mL, R&D systems) was conjugated to

digoxigenin-N-hydroxysuccinimide ([NHS] 0.67 mg/mL, Sigma-Aldrich,

Saint-Louis,USA)using sodiumbicarbonate (75mg/mL, Sigma-Aldrich),

which will bind the anti-digoxigenin antibodies in the 48-Digoxigenin

cartridges (ProteinSimple) by incubating reagents for 1 hour in the

dark at room temperature. Thereafter, unreacted digoxigenin-NHS

molecules were removed by purification across the Zeba Spin Desalt-

ing Columns (40K MWCO, Thermo Fisher Scientific, Waltham, USA).

The concentration from conjugated THOP1 antibodies was measured

by Nanodrop Spectrophotometer (Isogen Lifescience, Utrecht, The

Netherlands) and stored at 4◦C until further use.

The final THOP1 Ella assay included THOP1 digoxigenin(dig)-

conjugated capture antibody (3.5 μg/mL), THOP1 biotinylated detec-

tion antibody (5.0 μg/mL), and calibration curve with THOP1 recom-

binant protein ranging from 1000 pg/mL to 156 pg/mL. All reagents

were diluted in 1% casein-PBS (phosphate-buffered saline; Thermo

Fisher Scientific). CSF samples were diluted four times in sample

diluent (1% casein-PBS) and measured in triplicate, automatically

performed by the technology, on the customizable 48-Digoxigenin car-

tridges (ProteinSimple). Concentrations of THOP1 were calculated

from a five-parameter logistic (5-PL) calibration curve using the Sim-

ple Plex Explorer Software (ProteinSimple, version 3.7.1.12). The assay

was validated analytically in-house for parallelism, dilutional linearity,

recovery, protein stability, and lower limit of detection (LLOD) param-

eters, following international guidelines for immunoassay validation

(Additional File 1).37

2.4 THOP1 Simoa assay

In parallel, a THOP1 immunoassay was developed on the Simoa

HD-X automated immunoassay platform (Quanterix, Billerica, Mas-

sachusetts, USA) following the manufacturer’s protocol (Quanterix).

First, the THOP1 capture antibody (1 mg/mL, R&D systems) was cou-

pled to carboxylated paramagnetic beads (Quanterix), which were

activatedwith0.3mg/mLEDC (ThermoFisher Scientific). Capture anti-

body was diluted in assay buffer, containing 0.5% casein-PBS (Thermo

Fisher Scientific) with 0.1% Tween20 (Merck Millipore, Burlington,

Massachusetts, USA) to 0.2 mg/mL. Our in-house assay followed an

automated two-step procedure. In step one, non-reactive paramag-

netic beads (Helper beads, Quanterix) at a ratio of 250K:250K (assay

bead to helper bead ratio), diluted in Bead Diluent (Quanterix), were

incubated with 250 μL sample (CSF diluted eight times or calibration

curve from 500 to 7.8 pg/mL with THOP1 recombinant protein) and

THOP1 detection antibody (1 μg/mL, R&D systems) for 60 min, all

diluted in assay buffer (0.5% casein-PBS, 0.1% Tween20). Followed by

a washing procedure, step two included incubation with streptavidin-

β-galactosidase (SβG; 50 pM, Quanterix) for 5 min and 15 s. After

a second washing procedure, resorufin-β-d-galactopyranoside (RGP,

Quanterix)was added and fluorescent imaging inAverageEnzymes per

Bead (AEB) was performed. CSF samples were measured in duplicate,

per manufacturer’s instructions, and concentrations were calculated

from a four-parameter logistic (4-PL) fit calibration curve using the

Simoa HD-X Analyzer Software (v.3.0.2003.4001). This assay was ana-

lytically validated following international guidelines for immunoassay

validation (Additional File 1).37

2.5 Statistical analysis

Data analysis was performedwith R version 4.0.3 (packages emmeans,

mcr, andpROC). 38–40 TocompareTHOP1betweenour in-houseassays

and previous PEA-based proteomics results, Spearman Rho correla-

tions analysis was performed.18 Passing–Bablok regression analysis

and Bland–Altman plots were carried out to compare THOP1 concen-

trations between the Ella and Simoa platforms.

Normal data distribution was assessed by Shapiro–Wilk test.

THOP1 concentrations were log-transformed and the influence of

covariates (age and sex) was determined by linear regression analysis.

To determine THOP1 differences between clinical groups, analy-

sis of covariance (ANCOVA) adjusted for age was performed using

log-transformed THOP1 values followed by Bonferroni post-hoc cor-

rection. Post-hoc correction was based on the number of groups in

each comparison (i.e., discovery cohort corrected for three compar-

isons and validation cohorts for six comparisons).41 To determine

whether there are THOP1 differences between AD and DLB without

ADco-pathology, subsequent analysiswasperformedby stratifying the

DLB group for amyloid status (negative amyloid status: cohort 1: CSF

Aβ42/Aβ40 ratio > 0.062; cohort 2: CSF Aβ42 > 813 pg/mL). Indepen-

dent clinical cohortswere analyzed separately. As a sensitivity analysis,

ANCOVA analysis was repeated using both cohorts together, including

the center as an additional confounder.

The associations between untransformed THOP1 concentrations

with CSF biomarkers concentrations and Mini-Mental State Exam-

ination (MMSE) scores were determined. The CSF biomarker con-

centrations on the Elecsys were first transformed to the predicted

ELISA concentrations using formulas determined previously.42 There-

after, associations were tested with Spearman Rho correlations (<0.3

= weak, 0.3–0.5 = moderate, >0.5 = strong correlation).43 p-values

<0.05were considered statistically significant.

3 RESULTS

3.1 THOP1 immunoassays show good analytical
performance and correlated with the proteomics
platform

THOP1-specific immunoassays were developed on the Ella and Simoa

automated platforms. Our THOP1 assay on the Ella platform was
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F IGURE 1 THOP1 assay was developed and analytically validated on the Ella platform. (A) The CV% of CSF samples with triplicate or
duplicatemeasurements is plotted against the average THOP1 concentration. Precision plots show that all samples had a CV%<20 and all samples
were above the LLOD of 1.78 pg/mL. (B) THOP1 Ella assay showed the THOP1 signal in CSF samples (log-transformed relative fluorescence unit;
RFU signal) following a two-fold serial dilution (reciprocal relative dilution, log-transformed) was parallel to the signal obtained from the standard
curve. (C) RFU signal of CSF samples measured in a serial dilution shows that themean%linearity of the assay is within range (85%–115%). Graph
is plotted with a log-transformed y-axis. (D) % Recovery of low, medium, and high spiked CSF samples measured on the Ella platform detects that
only themedium and high spiked CSF samples were within range. (E) THOP1 concentrations in CSF samples were normalized to reference
condition with zero freeze and thaw (f/t) cycles and presented in % as themean of three samples, which showed stable protein concentrations up
to seven f/t cycles. Dashed lines show the acceptance range of 85% to 115%. Error bars in D and E represent the standard deviation of the four and
three CSF samples measured, respectively. Abbrevations: CSF, cerebrospinal fluid; CV, coefficient of variation; LLOD, lower limit of detection;
THOP1, thimet oligopeptidase.

developed within 4 weeks, full-time, by one experienced technician

(Figure S1A) and showed optimal parallelism and dilutional linearity,

both between the acceptance criteria of 85% and 115% (Figure 1B–C).

The mean recovery of low-spiked samples was not within the accept-

able criteria; however, samples with medium or high spikes showed

acceptable recovery (Figure 1D). THOP1 concentrations were not

influenced by different f/t cycles (Figure 1E). The LLOD of this THOP1

assay was 1.78 pg/mL and precision plots show that THOP1 concen-

trations were detectable in 100% of the CSF samples (n = 72), all with

CVs below 20% (Figure 1A). Intra- and inter-assay CVs were 5.9% and

14.2%, respectively.

The THOP1 in-house Simoa assay was developed within 6 weeks,

full-time, by one experienced technician (Figure S1B) and showed opti-

mal parallelism and recovery performance (between 85% and 115%,

Figure 2B–C). Results for dilutional linearity within the lower dilu-

tions (1:4 and 1:16) were not within the acceptance criteria, whereas

in the higher dilutions (dilution 1:64 to 1:256; the range of unspiked

CSF samples) good analytical performance was observed (Figure 2D).

THOP1 concentrations on the Simoa platform were increased after

two f/t cycles but such an effectwas driven by one sample outlier and is

thus likely not reflecting changes in proteinmeasurements (Figure 2E).

The LLOD was determined as 5.2 pg/mL and precision plots show

that THOP1 concentrations were detectable in 98.6% of the CSF sam-

ples (n = 71), but three samples had a CV above 20% (Figure 2A).

Intra- and inter-assay CVs were determined as 10.2% and 19.3%,

respectively.

Next, we measured a subset of CSF samples from our discovery

cohort to verify our in-house immunoassays.Weobserved that THOP1

concentrations measured on the Ella platform showed a stronger cor-

relation to the PEA-proteomic platform compared to the Simoa assay

(Ella: Rho = 0.720, Simoa: Rho = 0.584, both p < 0.001, Figure 3A–B).

In addition, a strong correlation was observed between our novel
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F IGURE 2 THOP1 assay was developed and analytically validated on the Simoa platform. (A) The CV% of CSF samples with duplicate
measurements are plotted against the average THOP1 concentration. Precision plots show that three samples had a CV%>20 and all samples
were above the LLOD of 5.2 pg/mL. (B) THOP1 concentrations on the Simoa platform show that levels in CSF samples following a two-fold serial
dilution are parallel to the signal obtained from the standard curve. (C) AEB signals of CSF samples measured in a serial dilution show amatrix
effect in dilutions 1–4. Upon further diluting, the % linearity is within the acceptable range. Graph is plotted with a log-transformed y-axis. (D) %
Recovery of low, medium, and high spiked CSF samples measured on the Simoa platform show that all samples are within range. (E) THOP1
concentrations are stable up to two freeze and thaw (f/t) cycles. Dashed lines show the acceptance range of 85% to 115%. Error bars in D and E
represent the standard deviation of the four or three CSF samples measured, respectively. Abbrevations: AEB, average enzymes per bead; CSF,
cerebrospinal fluid; CV, coefficient of variation; LLOD, lower limit of detection; THOP1, thimet oligopeptidase.

in-house assays (Rho = 0.713, p < 0.001, Figure 3C). This was further

confirmed by Passing–Bablok regression analysis, which showed plat-

form agreement between the THOP1 Ella and Simoa assays (Figure

S2A). The Bland–Altman plot showed acceptable variation between

immunoassays (Figure S2B). Similar to our proteomics findings, we

observed that THOP1 was increased in patients with AD compared to

DLB (Ella: 1.6-fold, Simoa: 1.7-fold; both p < 0.001) and controls (Ella:

1.8-fold, p < 0.001; Simoa: 1.7-fold, p = 0.07; Figure 3D–F). Further-

more, both THOP1 assays discriminated AD from controls and DLB

patients with high accuracy (AD vs controls: Ella area under the curve

[AUC] = 0.947, 95% confidence interval [CI]: 0.892–1 and Simoa AUC

= 0.840, 95% CI: 0.703–0.977; AD vs DLB: Ella AUC = 0.927, 95% CI:

0.86–0.994, and Simoa AUC= 0.809, 95%CI: 0.668–0.950; Figure S3).

Despite both platforms showing comparable results, the THOP1 Ella

assay showed slightly lower CVs% and higher sensitivity, therefore, we

continued the clinical validation in two independent cohorts on the Ella

platform.

3.2 CSF THOP1 concentrations were highest in
MCI-Aβ+ and AD groups in both validation cohorts

Subsequently, we measured CSF THOP1 concentrations using the

Ella platform in two validation cohorts. In validation cohort 1, we

observed an increase in THOP1 concentrations in MCI-Aβ+ (1.4-fold,

p < 0.001) and AD patients (1.3-fold, p < 0.001) compared to con-

trols. CSF THOP1 concentrations were higher in MCI-Aβ+ compared

to DLB (1.2-fold, p < 0.05, Figure 4A) but there were no statistically

significant differences between AD and DLB (p > 0.05, Figure 4A). In

addition, THOP1 discriminated AD and MCI-Aβ+ from controls with

good accuracy (MCI-Aβ+ vs controls: AUC = 0.800, 95% CI: 0.713–

0.886 and AD vs controls: AUC = 0.797, 95% CI: 0.711–0.884; Figure

S4A–B) but not between AD and DLB patients (AUC = 0.620, 95% CI:

0.507–0.7334; Figure S4C). The increased CSF THOP1 concentrations

observed in MCI-Aβ+ and AD patients were also replicated in valida-

tion cohort 2 (MCI-Aβ+ vs controls: 1.3-fold, p < 0.001, AUC = 0.867,
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F IGURE 3 THOP1 concentrations are translatable across different platforms. THOP1 concentrations in CSF are increased in patients with AD
compared to controls and patients with DLB on three different platforms; antibody-based proteomics (A), Ella (B), and Simoa (C). THOP1
concentrations strongly correlated between Ella and antibody-based proteomics (D) andmoderately between Simoa and antibody-based
proteomics (E). The novel THOP1 assays correlated strongly between the automated Ella and Simoa platforms (F). Abbrevations: AD, Alzheimer’s
disease; CSF, cerebrospinal fluid; DLB, dementia with Lewy bodies; THOP1, thimet oligopeptidase. ***indicates p< 0.001.

95% CI: 0.789–0.945; AD vs controls: 1.2-fold, p < 0.05, AUC = 0.667,

95%CI: 0.531–0.803;MCI-Aβ+ vsDLB: 1.2-fold, p<0.001, ADvsDLB:

p> 0.05, AUC= 0.609, 95%CI: 0.484–0.733; Figure 4C and Figure S4).

When analyzing the THOP1 concentrations in both cohorts together,

similar results were observed with an additional significant difference

between AD andDLB (Figure S5A).

Considering the presence of AD copathology in DLB cases, we next

investigated whether CSF THOP1 concentrations could be influenced

by the development of amyloid pathology in this group. In validation

cohort 1, we observed that CSF THOP1 concentrations were higher

in DLB-Aβ+ compared with DLB-Aβ- groups (1.3-fold, p < 0.05). Fur-

thermore, CSF THOP1 concentrations were higher in AD compared to

the DLB-Aβ- but not between AD and DLB-Aβ+ (Figure S6A). These

changes were not detected in validation cohort 2 (Figure S6B). How-

ever, when both cohorts were analyzed together, increased THOP1

concentrations in MCI-Aβ+ and AD groups compared with DLB-Aβ+
andDLB-Aβ- groups were detected (Figure S5B).

3.3 CSF THOP1 concentrations correlate with
CSF markers reflecting total amyloid load and tau
pathology

To understand the relationship of CSF THOP1 with the AD patho-

logical hallmarks and cognitive scores, we next performed correlation

analysis with these markers. In the complete validation cohort 1, we

observed strong positive correlations of THOP1 with CSF concentra-

tions of Aβ40 (Rho = 0.625, p < 0.001), p-tau (Rho = 0.712, p < 0.001),

and t-tau (Rho = 0.721, p < 0.001) but not with Aβ42 (Rho = −0.09, p

> 0.05, Figure 4B). A weak negative correlation between THOP1 and

MMSE scores was observed (Rho = −0.239, p < 0.001). These findings

were similar in validation cohort 2 (Aβ40: Rho = 0.647, p < 0.001; p-

tau: Rho= 0.540, p< 0.001; t-tau: Rho= 0.656, p< 0.001; Aβ42: Rho=
−0.132, p> 0.05), although no significant correlation between THOP1

and MMSE scores was observed (Rho = −0.122, p > 0.05, Figure 4D).

When we stratified for clinical diagnosis, similar correlations for Aβ40,
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F IGURE 4 THOP1 concentrations are
increased inMCI-Aβ+ and AD and associated
with Aβ40, p-tau, and t-tau in both validation
cohorts. THOP1 concentrations were
measured on the Ella platform, which showed
increased THOP1 concentrations in AD
compared toMCI-Aβ+ compared to controls
and patients with DLB in validation cohort 1
(A) and validation cohort 2 (C). The correlation
matrix heatmap represents Spearman’s
correlation coefficient of THOP1with the
classical ADCSF biomarkers andMMSE scores.
The blue color depicts a positive correlation
coefficient, whereas red depicts a negative
correlation coefficient. Significant correlations
between THOP1 and Aβ40, p-tau, and t-tau in
validation cohort 1 (B) and validation cohort 2
(D) were observed. Abbrevations: AD,
Alzheimer’s disease; Aβ40, amyloid beta 1-40;
Aβ42, amyloid beta 1-42; CSF, cerebrospinal
fluid; DLB, dementia with Lewy bodies;
MCI-Aβ+, mild cognitive impairment with
amyloid pathology;MMSE,Mini-Mental State
Examination; p-tau, phosphorylated tau;
THOP1, thimet oligopeptidase; t-tau, total tau.
Statistical significance is indicated as: *p<
0.05, **p< 0.01, ***p< 0.001.

p-tau, and t-tau were shown as observed in the total cohort. However,

we detected a moderate correlation between THOP1 and Aβ42 con-

centrations in controls (cohort 1: Rho= 0.536, p< 0.001, cohort 2: Rho

= 0.346, p< 0.05, Figure S7), but not in other diagnostic groups.

4 DISCUSSION

In this study, two novel THOP1 immunoassays were developed and

validated analytically on different automated platforms. We observed

increased CSF THOP1 concentrations in MCI-Aβ+ and AD stages

compared to controls, and between MCI-Aβ+ and DLB in two inde-

pendent cohorts, validating our proteomics discovery findings. This

highlights the potential of the neuropeptidase THOP1 as a specific AD

CSF biomarker in early disease stages. Furthermore, we show that the

use of immunoassay-based platforms for both discovery and valida-

tion phasesmayaccelerate thedevelopment of novel body-fluid–based

biomarkers.

THOP1 is a neuropeptidase able to cleave Aβ peptides, among

others.44 Neuronal cell culture models have shown that although

THOP1 overexpression increased Aβ degradation, downregulation of

THOP1 made neurons more vulnerable to amyloid toxicity, suggest-

ing a neuroprotective role of THOP1 against Aβ plaque toxicity.22 In

our previous discovery study, we found increased CSF THOP1 concen-

trations in MCI and AD stages compared to controls and a group of

non-AD dementias. THOP1 was also selected in a CSF protein panel

that could discriminate AD from a group of non-AD dementias with

high accuracy (AUC> 0.87), further supporting its potential as a differ-

ential diagnostic biomarker.18 Here,wehavedevelopedand technically

validated immunoassays that can be used in two different automated

and sensitive platforms (i.e., Ella and Simoa) allowing high-throughput

measurements of CSF THOP1 for further validation in independent

cohorts.We observed that CSF THOP1was increased in bothMCI and

AD patients compared to controls in two independent clinical cohorts

and when both cohorts were analyzed together, thereby validating

our previous discovery findings. Our CSF findings also concur with

previous studies that show increased THOP1 levels in AD temporal

cortex tissue compared to controls, and in early affected brain areas

(Braak III–IV).22 CSF THOP1 concentrations may thus reflect early

brain-specific changes. These changes might be the result of a neuro-

protective mechanism to cope with the increased Aβ load.21 However,
it is important to note that the increased CSF THOP1 concentrations

detected in this study do not necessarily imply an increased neuropep-

tidase activity within the brain. Understanding the enzyme activity of

THOP1 could provide additional insights into the pathophysiological

role that this protein may play in AD.

We did not observe any differences between AD and DLB patients

in both independent cohorts, which is in contrast with our previous

discovery findings.18 The overlapping clinical and pathological fea-

tures between AD and DLBmay partly explain the similar CSF THOP1

concentrations between these dementias. Indeed, in the first valida-

tion cohort, we observed that the CSF THOP1 concentrations in AD

were similar to those observed in amyloid-positive DLB cases and

higher than those detected in amyloid-negative DLB cases. However,

these differences were not detected in the second validation cohort.

Although when both datasets were merged, significant differences
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in CSF THOP1 concentrations between AD and DLB were observed

independently of amyloid pathology. This suggests that the lack of

significance observed in the independent cohorts is probably due to

the lower sample sizes and not to the presence of amyloid comorbid

pathology in the DLB group.

Strong correlations between THOP1 with t-tau, p-tau, and Aβ40
concentrations in the total cohort were observed. The strong rela-

tionship with these biomarkers suggests that THOP1 changes are

associated with upstream and downstream mechanisms in AD such

as tau pathology, neurodegeneration, and total Aβ load.45,46 Despite

the THOP1 increases in response to Aβ neurotoxicity,22 the associ-

ation between Aβ42 and THOP1 only in the control group suggests

that THOP1 may not respond to Aβ fibril and plaque formation,

further supporting a relationship of THOP1with normal Aβ physiolog-
ical functioning.20,21 Altogether, the increased THOP1 concentrations

detected in theMCI stage and the significant correlationswith ADCSF

biomarkers may suggest that this protein could be a useful biomarker

for detecting an early neuroprotective response against AD pathology.

CSF THOP1 could also be used in a CSF protein panel that together

reflects the multifactorial nature of AD and can accurately discrimi-

nate AD from other non-AD dementias, as we showed previously.18

The immunoassays developed in this study could thus be considered

the first step in developing such a CSF protein panel using accessible

immunoassays. Theseassaysmight alsobeuseful formeasuringprotein

concentrations in other matrices and animal or cellular models aiming

to better understand the role of these proteins in AD pathogenesis.

Biomarker development is often hampered by the cross-technology

translation gap between the discovery and validation phases,

thereby limiting the successful clinical implementation of novel

fluid biomarkers.8 Our study allowed us to explore if the use of

immunobased technologies during the discovery phase facilitates the

development of the corresponding analytical assays for large-scale val-

idations in subsequent steps,18,47 providing an additional pipeline that

may smoothen the development and validation of novel biomarker

candidates. Both THOP1-specific immunoassays were developed

within 4–6 weeks. Based on our previous experience, the period for

developing and validating other in-house immunoassays for biomarker

candidates coming fromMS proteomics studies (e.g., CSF APOL1) was,

over 6 months.48 We observed that THOP1 concentrations strongly

correlated across the different THOP1 immunoassays, suggesting that

the different antibody-based platforms are likely detecting similar

protein isoforms. Noteworthy, the comparison between our in-house

immunoassays showed some outliers on the Simoa platform, which

could indicate that the assay still requires additional optimization

(e.g., higher sample dilution, or longer antibody incubation times).

Considering that our Simoa assay showed slightly higher variability

and was less sensitive, we thus continued our clinical validation on the

Ella platform. Overall, these data suggest that the use of technologies

based on the same principle (i.e., antibody-based) may have a great

translational advantage resulting in faster immunoassay development

and showing reproducible findings in subsequent validation studies.

This is further supported by the successful results we obtained in the

ongoing follow-up work from the discovery study (e.g., development

of different immunoassays to validate our AD-differential diagnos-

tic protein panel, development and validation of other biomarker

candidates including inflammatory markers related to AD as well

as specific biomarkers for DLB; unpublished data Y.S Hok-A-Hin &

K. Bolsewig).18,49 Other different factors (i.e., type of biomarker;

standard ELISA vs more-sensitive and automated Ella and Simoa plat-

forms) may also contribute to the efficient translation of our discovery

findings. Although the workflow described in this study is designed for

the analysis of novel CSF biomarkers in AD, it is likely also applicable

for the development of biomarkers in other human biological fluids

and other biomedical fields.

Among the limitations of this study is that we cannot exclude that

some of the MCI cases included in this study may ultimately progress

to another type of dementia. Still, MCI cases were selected based

on amyloid positivity and thus they are at high risk of progressing

to AD. Considering the recent advances in blood-based biomarkers

within the AD field10 it would be of interest to investigatewhether this

CSF biomarker candidate could be measured in blood. However, gene

expression levels of THOP1 were also associated with rheumatoid

arthritis,50 possibly affecting THOP1 concentrations in blood. Thus,

to what extent THOP1 changes in blood would reflect brain-specific

changes should be investigated further.

In conclusion, considering the increased THOP1 concentrations

in MCI and AD stages, CSF THOP1 might be useful as part of a

CSF protein panel to discriminate AD from other neurodegenera-

tive dementia in very early stages of the disease. Furthermore, our

data suggest that the strategy followed, using antibodies in both

discovery and validation studies, may facilitate the translation of pro-

teomics findings and accelerate the development of body-fluid–based

biomarkers.
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