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Transport of pigs between sites occurs frequently as part of genetic improvement

and age segregation. However, a lack of transport biosecurity could have

catastrophic implications if not managed properly as disease spread would be

imminent. However, there is a lack of a comprehensive study of vehiclemovement

trends within swine systems in the Midwest. In this study, we aimed to describe

and characterize vehicle movement patterns within one large Midwest swine

system representative of modern pig production to understand movement trends

and proxies for biosecurity compliance and identify potential risky behaviors that

may result in a higher risk for infectious disease spread. Geolocation tracking

devices recorded vehicle movements of a subset of trucks and trailers from

a production system every 5min and every time tracks entered a landmark

between January 2019 and December 2020, before and during the COVID-19

pandemic. We described 6,213 transport records from 12 vehicles controlled by

the company. In total, 114 predefined landmarks were included during the study

period, representing 5 categories of farms and truck wash facilities. The results

showed that trucks completed the majority (76.4%, 2,111/2,762) of the recorded

movements. The seasonal distribution of incoming movements was similar across

years (P > 0.05), while the 2019 winter and summer seasons showed higher

incoming movements to sow farms than any other season, year, or production

type (P < 0.05). More than half of the in-movements recorded occurred within the

triad of sow farms, wean-to-market stage, and truck wash facilities. Overall, time

spent at each landmark was 9.08% higher in 2020 than in 2019, without seasonal

highlights, but with a notably higher time spent at truck wash facilities than any

other type of landmark. Network analyses showed high connectivity among farms

with identifiable clusters in the network. Furthermore, we observed a decrease in

connectivity in 2020 compared with 2019, as indicated by the majority of network
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parameter values. Further network analysis will be needed to understand its impact

on disease spread and control. However, the description and quantification of

movement trends reported in this study provide findings that might be the basis

for targeting infectious disease surveillance and control.
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Introduction

Ground transportation of pigs between sites within a

production system occurs frequently for age category and

production phase segregation because it has been shown to increase

production efficiency and animal health. Although trucks and

trailers are designed to load batches of animals with protocols

that safeguard animals’ wellbeing, health, and safety, it is well-

established that animal movements are a source of transmission

of infectious disease within the swine industry (1–6), and vehicles

which transported animals need to be correctly cleaned and

disinfected before loading the next batch of pigs to prevent the risk

of pathogen spread (7, 8).

With the intent to mitigate the risk of potential disease

spread among pig farms, biosecurity practices such as isolation

of incoming breeding stock, testing before commingling animals,

shower-in/shower-out, disinfection, and drying rooms for supply

entry are recommended among others (9). In addition, cleaning

and disinfection of trucks and trailers transporting pigs between

loads is an area of focus especially when vehicles transport gilts,

boars, recently weaned pigs, and culled animals. Although all these

biosecurity measures are useful, they are not completely effective as

these depend on a combination of standardized processes and their

consistent implementation (9). As an example, it has been described

that washing and disinfecting vehicles without the appropriate

drying has a similar risk for disease transmission as unwashed

vehicles (7, 8). Furthermore, a recent study indicated that PRRSv

transmission associated with movements of trucks used for feed

and personnel transportation is not negligible (4), adding a layer

of complexity when understanding disease spread and designing

risk-mitigation (e.g., biosecurity) practices for the swine industry.

Social network analysis has proven to be a useful tool for

understanding infectious disease dissemination among populations

by analyzing pig movement patterns among animal production

systems (10–14). Disease surveillance and control have been

traditionally assessed by tracing animal movements as a source of

disease spread since infected animals are the most frequent way

to spread pathogens to susceptible populations. Furthermore, the

potential impact of pathogen dissemination through animals in

the US has been assessed in silico using retrospective shipment

records (4) that can introduce bias in the analysis, when dealing

with missing or incomplete data. Limited studies have focused

on understanding the potential roles that the vehicles used for

feed transport and the personnel involved may have on pathogen

dissemination (4, 15, 16), but in fact, the majority of studies have

overlooked the role that trucks may have on pathogen spread or

assumed zero risk for disease transmission when vehicles visit a site

after stopping in a cleaning station (i.e., truck wash station) (4, 6).

Here, as a first step to understanding the role of trucks

transporting pigs or empty-unwashed trucks in the spread of

diseases, we described and analyzed for the first time the vehicle

movement patterns and network structure of one of the largest

multi-site pig production systems in the Midwestern US using

GPS trackers and including vehicles in the network, regardless

of the load status or origin/destination of the movement. We

assessed the utility of GPS trackers as a reliable source to record

truck movements, characterized vehicle network before and during

the COVID-19 pandemic, fidelity (defined as the consistency of

vehicle movements over time), and time spent at each site, with the

ultimate goal of understanding movement trends that will help to

identify potential risky behaviors and spatio-temporal variabilities

that can inform epidemic-preparedness and support decisions to

improve biosecurity practices and compliance for reducing the

spread of diseases compromising swine health.

Materials and methods

Population and data source

Data were collected from a pig-producing company

participating in the University of Minnesota Morrison Swine

Health Monitoring Project (MSHMP) (17) that voluntarily agreed

to participate in the study. The selected company is a typical

multi-site system representative of modern pig production systems

in the US This company accounts for approximately 1% of the

swine production in the country. The system agreed to have a

selected subset of 12 out of 128 owned pig transportation vehicles

monitored through geolocation-tracking devices installed on seven

trucks transporting only recently weaned pigs and five trailers that

transport either gilts or culled sows. On the trailers, the Verizon

Networkfleet Asset Guard was attached through screws, whereas

the Verizon Networkfleet 5000 Series Model 5500N4VL was

connected to the onboard diagnostics (OBD) port on the tractor

cab. These devices (Figure 1) are designed to endure long periods

of outdoor or other rugged environments while maintaining

communication and GPS signal during the journey and through

vehicle washing.

Vehicle movement monitoring occurred between January

2019 and December 2020. A total of 6,213 records of vehicles

entering 114 georeferenced pig sites were initially considered

for this study over the study period (3,659 and 2,554 in
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FIGURE 1

Geolocation tracking devices installed in the vehicles (A, B). Full description of the devices is available online at: https://www.verizon.com/about/

news/verizon-expands-asset-tracking-portfolio-introduction-networkfleet-asset-guard-0.

2019 and 2020, respectively). Connections among sites (i.e.,

vehicle movements) were recreated based on the time and date

of entry to each of the geofences and the trajectory of the

vehicles tracked.

Spatiotemporal characterization of the
movements

We described the frequency of incoming movement patterns

yearly, seasonally, and weekly over the study period by source farm

(e.g., farm production type) and time spent by the vehicles at each

site. Farm production type was categorized as either sow, nursery,

finisher, wean-to-market, or gilt development unit. Differences

in the frequency of movements were assessed with univariable

and multivariable negative binomial regression which allowed

adjusting for over-dispersed data (e.g., frequency of incoming

movements mean= 18.71, variance= 274.47) (18) and adjusted for

multiple comparisons. We described the proportion of movement

performed between pairs of sites grouped by production category

(e.g., sow to nursery, sow to sow) and vehicle fidelity over time.

Incoming movement density was mapped by year to identify areas

of major movement activities.

Network nomenclature and metrics
definition

A yearly static directed non-weighted network was constructed

for the complete period (2019–2020). Network nodes or vertices

(i.e., elements or units of the network) (19) were polygons created

within the extension of preexisting system site locations (i.e.,

landmarks), which included the abovementioned five different

categories of farms and truck wash facilities. The movement of

vehicles was captured when tracking devices located in the vehicles

that entered or exited each predefined polygon, and thus, the time

spent within the polygon was recorded for each vehicle and node.

Edges were created by linking nodes sequentially visited by

each vehicle. We selected those nodes in which a stop was

recorded for more than 5min as these were considered an

“operational stop”, such as loading/unloading animals or washing

the vehicle. When vehicles showed a recorded stop in a node

for <5min, this was considered a drive-by or an incorrect

record (i.e., a result of rearranging vehicles for loading/unloading

animals or inaccurately captured by the geofences surrounding

the nodes-polygons when the vehicle was circulating close to

the polygon boundaries). Furthermore, movements recorded by

vehicles entering sequentially onto the same node-polygon for a

period of <15min within an hour and without visiting any other
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FIGURE 2

Weekly in-movement distribution by farm categories (proportion) and in total (%) for 2019 (left) and 2020 (right).

node in between were merged and analyzed as one movement

(i.e., loop to the same node). Additionally, those vehicles stopping

for more than 24 h at the nodes were considered as “parked”

and not performing an “operational activity” as they could be

under maintenance or quarantine (e.g., downtime). The latter

situation was included in the network analysis but excluded from

our temporal analysis since they did not represent daily routine

operation and the time spent at each node can be overestimated.

Network characteristics and features were described by the

calculation of (a) network parameters, including the number of

nodes and edges, average path length, diameter, edge density, and

clustering coefficient, and (b) centrality metrics, such as degree (in

and out), closeness (in and out), and betweenness for each node

in the networks created. Definitions for each network parameter

and metrics have been reviewed and described in a previous study

by Martínez-López et al. (19). In brief, average path length is the

average number of additional nodes contacted or visited in the

trajectory to go from nodei to nodej in the network, diameter is the

length of the shortest path within the two most distant nodes in the

network (i.e., nodes that need the largest number of intermediate

nodes to be able to connect each other), edge density indicates the

proportion of contacts that occur in the network over the potential

ones happening, and clustering coefficient (i.e., transitivity) is the

frequency of loops connecting nodes reciprocally between each

other (5). The degree is the number of contacts that each node

has overall and, when directionality is applied, the number of

connections originated (out-degree) or received (in-degree) by that

node. Closeness is an estimate of how closely one node is connected

to every other node in the network based on all incoming (in-

closeness) or outgoing (out-closeness) connections, and betweenness

represents the number of times certain node lies on the shortest

paths when all the shortest paths are traced between nodes in

the network.

To identify cohesive groups in the network, we recognized fully

connected nodes in the network (i.e., cliques) and densely

connected nodes (i.e., communities) across the networks

constructed. Communities were detected using the algorithm base

on propagating labels as an efficient and ease-of-implementation

algorithm (20). In brief, unique labels are assigned initially to each

node, and after each iteration of the algorithm, new labels are

adopted by the nodes, based on the most frequent labels of the

neighbors until they converge into one label which represents the

community. In the case of ties among neighboring labels, one is

randomly selected before the next algorithm iteration.

All statistical analyses were performed using R Studio

v4.1.0 software (21). Network creation, description, parameter

calculations, and visualization were performed via the igraph

package v1.2.6 (22).

Results

Site and movement descriptive results

From the predefined 114 sites (i.e., nodes), 12 vehicles moved

among them within 2 years of the study period, comprising 12

sow farms, 8 gilt development units (GDU), 17 nurseries, 71

wean-to-market (WTM), 4 finishers (i.e., sites/unique nodes), and

2 truck wash facilities. The nodes were located in Minnesota,

South Dakota, Nebraska, and Iowa. After excluding 26% of the

movements recorded as described earlier, 4,579 movements were

analyzed, with 60% (2,749/4,579) of them occurring in 2019 and

the remaining 40% (1,830/4,579) in 2020.
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TABLE 1 Frequency of in-movements by farm-type (%). Graded scale colors represent a higher (red) and lower (white) percentage of movements across

dyad connections in the 2 years of study (2019–2020).

Origin/ destination GDU NURSERY SOW TRUCK WASH WTM FINISHER

FINISHER 0.07 0.02 0.04 0.07 0.00 0.00

GDU 1.62 0.07 1.81 0.07 0.02 0.00

NURSERY 0.20 1.62 1.18 3.49 0.28 0.00

SOW 1.27 4.02 5.48 5.87 19.76 0.00

TRUCKWASH 0.50 0.63 20.92 2.42 2.07 0.00

WTM 0.02 0.44 7.29 14.48 1.05 0.00

GDU, Gilt development unit, WTM, Wean to Market.

FIGURE 3

Density of incoming movements within the study area. Higher (dark) and lower (light) density areas (movements per county) are represented for 2019

and 2020, respectively.

Spatiotemporal results

The monthly and seasonal in-movement counts were similar

across 2019 and 2020 (negative binomial regression P > 0.05), with

10–15% of the sites performing at least one movement weekly. The

lowest frequency of movements was observed in weeks 70–78 of

the study (i.e., May and June 2020, Figure 2). Movements toward

sow farms in the winter and summer of 2019 were significantly

higher (P < 0.05) than movements toward any other farm category

or season-year with mean risk ratios ranging from 1.10 to 2257.34.

Furthermore, there were fewer movements to finishers in spring

2020 (P < 0.01) than any other category or season-year, with

risk ratios ranging from 0.0018 to 0.5 (Supplementary Table 1).

The seven trucks performed the majority of the movements in

both years studied, with 76.8% (2,111/2,749) in 2019 and 66.99%

(1,226/1,830) in 2020, while the five trailers did the rest of the

movements, 638 in 2019 and 604 in 2020.

In-movements classified by production type dyad indicated

that 55.43% of the in-movements were performed by three dyads,

sow farm to WTM sites (19.76%/4,579), WTM to truck wash

(14.48%), and truck wash to sow farm (20.92%). The remaining

in-movements were performed by multiple dyads (Table 1 and

Supplementary Table 2). The spatial distribution of movements

was consistently higher in the central area of the Midwest states

analyzed for both years mapped (Figure 3).

Overall, time spent in the nodes was higher (RR: 1.1, P < 0.03)

in 2020 than in 2019, with higher time spent at truck wash sites in

2020 but without any significant variation observed when analyzed

by season (Table 2). However, time spent at truck wash facilities

was significantly higher (P < 0.001) than any other site categories,

with the occurrence of this category being 3.32, 5.83, 14.86, 16.00,

and 21.19 times higher, on average, than sow farms, GDU, finishers,

nursery, and WTM sites, respectively.

Network characterization

Descriptive statistics for network parameters and centrality

metrics for the complete network and the network constructed

for 2019 and 2020, respectively, are shown in Table 3. For the

global network, on average, every site can be reached typically

in three steps (average path distance), with less than a one-step

reduction in 2019 and an increase in 2020, respectively. Although

less than approximately 35% of the potential connections that
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TABLE 2 Median (max-min) minutes spent in each node (i.e., sites) overall by production type and by season during the study period.

Production type FINISHER GDU NURSERY SOW TRUCK
WASH

WTM Overall

Stop time Median
(Min, Max)

n Median
(Min, Max)

n Median
(Min, Max)

n Median
(Min, Max)

N Median
(Min, Max)

n Median
(Min, Max)

n Median
(Min, Max)

n

Winter19a 44.0

(6.00, 602)

25 36.0

(14.0, 76.0)

66 28.0

(6.00, 1,220)

215 162

(11.0, 1,360)

173 26.0

(9.00, 75.0)

150 36.0

(6.00, 1,360)

629

Spring19 50.0

(50.0, 50.0)

1 64.0

(6.00, 478)

25 36.0

(9.00, 60.0)

32 26.0

(8.00, 1,290)

246 149

(9.00, 1,410)

195 22.0

(6.00, 146)

167 32.0

(6.00, 1,410)

666

Summer19 NA 60.0

(18.0, 160)

15 29.0

(10.0, 46.0)

62 26.0

(6.00, 1,280)

267 149

(8.00, 1,440)

210 20.0

(6.00, 101)

171 32.0

(6.00, 1,440)

725

Fall19 20.0

(20.0, 20.0)

1 44.0

(10.0, 148)

34 30.0

(8.00, 76.0)

43 27.5

(6.00, 1,260)

244 152

(6.00, 1,390)

187 20.0

(10.0, 64.0)

167 32.0

(6.00, 1,390)

676

2019 35.0

(20.0, 50.0)

2 54.0

(6.00, 602)

99 32.0

(8.00, 76.0)

210 27.0

(6.00, 1,290)

992 150+

(6.00, 1,440)

779 22.0

(6.00, 146)

668 34.0

(6.00, 1,440)

2,750

Winter20b 70.0

(8.00, 167)

25 26.0

(6.00, 60.0)

39 28.0

(6.00, 1,270)

173 870

(11.0, 1,420)

137 24.0

(10.0, 179)

116 34.0

(6.00, 1,420)

490

Spring20 NA 98.0

(26.0, 229)

13 22.0

(16.0, 128)

12 31.0

(6.00, 1,280)

112 127

(10.0, 1,350)

73 20.0

(10.0, 66.0)

43 42.0

(6.00, 1,350)

253

Summer20 NA 110

(38.0, 155)

15 31.0

(14.0, 88.0)

24 43.5

(6.00, 1,240)

218 733

(6.00, 1,430)

125 24.5

(6.00, 94.0)

120 45.0

(6.00, 1,430)

502

Fall20 32.0

(9.00, 58.0)

7 77.0

(44.0, 167)

16 31.0

(6.00, 77.0)

40 51.0

(7.00, 1,330)

233 459

(6.00, 1,440)

136 26.0

(8.00, 80.0)

144 47.0

(6.00, 1,440)

576

Winter21c 110

(110, 110)

1 25.0

(24.0, 26.0)

2 44.5

(18.0, 1,260)

30 185

(12.0, 1,350)

13 28.0

(14.0, 59.0)

17 44.0

(12.0, 1,350)

63

2020 32.0

(9.00, 58.0)

7 81.0

(8.00, 229)

70 26.0

(6.00, 128)

110 40.0

(6.00, 1,330)

746 345+

(6.00, 1,440)

470 24.0

(6.00, 179)

427 42.0

(6.00, 1,440)

1,830

Overall 32.0

(9.00, 58.0)

9 60.0

(6.00, 602)

169 30.0

(6.00, 128)

320 32.0

(6.00, 1,330)

1,738 176∗

(6.00, 1,440)

1,249 22.0

(6.00, 179)

1,095 36.0

(6.00, 1,440)

4,580

n, number of stops per season and production type. Multivariate negative binomial is significantly different (P < 0.05), (∗) from other production types overall or between estimates from 2019 and 2020 (+). GDU, Gilt development unit, WTM, Wean to Market. a,

Winter 19 includes January and February 2019; b, Winter 20 includes December 2019, January and February 2020; c, Winter 21 includes December 2020.
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could occur really occurred (edge density) in the complete network

when assessing it on a per-year basis of the study period, the

proportion doubled in 2019 compared with 2020 (43.5 vs. 25.6%).

Furthermore, degree, in-degree, and out-degreewere higher for 2019

than 2020 with important higher outliers observed, corresponding

to truck wash facilities and sow farms. A similar tendency was

observed for centrality closeness. However, betweenness showed

higher values for 2020 than 2019, and the nodes with the highest

values were the two truck wash facilities (Figure 4B, red and

orange circles).

Complete network cluster analysis recognized three

communities, and 85.3% (2,808/3,292) of the cliques observed were

fully connected in pairs (i.e., cliques’ size of two). When yearly

analyses were performed, larger cliques with up to seven nodes fully

interconnected were identified each year (Table 4). Furthermore,

two and four communities were observed in 2019 and 2020,

respectively, after excluding those with two or fewer members.

Discussion

This study, to the best of our knowledge, was the first

description of vehicle movements using GPS data of a typical

pig production system in the Midwestern US. Moreover, we have

provided the first comparison between networks from a typical year

of production (2019), and 2020, a year in which the swine industry

was strongly affected due to the temporary decline in slaughter rates

as a result of the COVID-19 pandemic in the USA (23).

A total of 74% of the records were accurate and used

in these analyses. Data generated by vehicle-tracking devices

have shown to be a robust tool to understand connectivity

among farms, which can give a more in-depth picture of the

vehicle trajectory, sites visited, and time spent at each stop.

This data can serve as a proxy for compliance regarding times

dedicated to animal loading/unloading, vehicle flow and vehicle

cleaning, and disinfection and downtime procedures (7). The

majority of the movements were performed in 2019, with a 20%

reduction during the following year and strong fluctuations in

the proportion of farms with weekly movements in 2020 (5–20%

of the sites performing weekly movements). As expected, trucks

that performed the majority of movements were those used

for transporting weaned piglets that, according to production

management practices, were weaned from sow farms more than a

week ago. The highest reduction of vehicle movements was during

spring 2020, with a follow-up increase in mid-2020, mostly due

to sow and WTM movements. One potential explanation could

be the limitations associated with the high rates of COVID-19

illness among workers at slaughter plants, limiting the capacity

for slaughter in abattoirs during the spring of 2020 (24) and, in

other cases, the temporary shutdown of major slaughter plants in

the region during April and May 2020 (23). Although, movements

to slaughter were not included in this study, limitations on pig-

slaughter is expected to affect the pig flow within the systems in

the initial levels of production, which will recover later in that year.

Another potential explanation could be an increase in sites covered

by the trucks in response to the initial movement reduction,

despite only 5 extra nodes being observed in 2020 compared to

2019 (85/80). T
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FIGURE 4

Network representation of the complete period analyzed (2019–2020). Heat scale colors represent (A) closeness and (B) betweenness relative values

for each node, with the highest (red) and lowest (white) node values for each centrality metric, respectively. The five di�erent categories of nodes

and their connections are shown in di�erent colors as reference (C).

TABLE 4 Cliques and communities identified by the year of study (2019 and 2020).

2019 2020

Cliques (N = 805) Community Nodes
member
(N = 80)

Cliques (N = 594) Community Nodes
member
(N = 85)

Size n n (n/N) Size n n (n/N)

2 250 1 66 (0.825) 2 220 1 36 (0.424)

3 297 2 10 (0.125) 3 205 2 10 (0.118)

4 178 4 109 3 12 (0.141)

5 62 5 44 4 24 (0.282)

6 16 6 14

7 2 7 2

Communities with one or two members (i.e., nodes) are not included in this table.

As expected, a level of “fidelity” was observed within sites, with

vehicles connecting sow, WTM, and truck wash facilities in the

direction indicated by the production system. We observed that

approximately 20% of the movements were performed from truck

wash facilities to sow farms and from sow farms to WTM farms.

However, approximately 14.5% of movements were connecting

WTM to truck wash instead of the approximately 20% expected,

which seemed to be balanced with movements fromWTM to other
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sites, such as sow farms and WTM. Although WTM to WTM

movements are common when pigs need to be finished in different

sites, the movements of WTM to sow farms at the commercial level

are rare as their terminal genetic makeup of the commercial market

pig populations is not suitable if these animals were to be used

as replacement breeding stock. Additionally, commercial growing

pigs housed in WTM facilities are usually located in highly dense

regions where the prevalence of endemic pathogens is high, which

will represent a risk to the sow farm if these were to be introduced.

WTM to sow farmmovement exists but these are related to moving

high-health gilts from the genetic multiplication herds that tend

to have better health than commercial sow farms. Overall time

spent in truck wash facilities (∼3 h) denotes a sufficient time for

the washing and drying process recommended for animal transport

within the industry (25), with a noticeable median increase among

seasons in 2020, although maximum times remain constant. This

can indicate changes in disinfection procedures due to COVID-19

awareness which resulted in longer times at the truck wash facilities.

It is important to mention that trucks could spend more time at

the truck wash after being cleaned as they would be parked until

needed again. This could bias the parameter, overestimating the

mean time spent at the truck wash facilities overall. This metric

needs to be further studied and analyzed but is the first insight as a

proxy for biosecurity compliance. Furthermore, there were more

paths connecting truck washes in 2020, which together with the

increase in the median time at truck wash observed can indicate

that these changes in cleaning and disinfection procedures could

potentially be a result of an increase in biosecurity concerns as a

whole and affected the connectivity among the network that year.

The observed larger number of communities in 2020 could be

reflecting management practices applied to segregate the network

and avoid disease transmission between sites. While we lack data to

identify the reason for observing these nodes largely interconnected

(i.e., clusters, cliques, and communities), it exposes the potential

usefulness of these datasets when applying control or surveillance

strategies targeting groups of sites at high/low risk of infection

through vehicle movements (16, 26).

Network metrics displayed a high interconnection among

sites through vehicles, in which regardless of the geographical

distance among farms, they were only three steps away from each

other (i.e., mean distance). Areas with a high density of vehicle

movements were detected. This finding shows that movements are

not randomly distributed among all sites integrating the system,

highlighting potential target areas for disease active surveillance

when resources are limited as described in other production

systems globally (5, 27, 28). The validity of this finding in other

states is yet to be evaluated. Comparison of these network metrics

with others can be challenging since systems, data collection,

movements, inclusion criteria, and time frame can vary across

studies (5, 29, 30). However, the need to improve within-system

movement records has been reported, as it represents an important

factor in disease spread (6), and our study provides information on

one of the denser swine production regions within the USA, and

insights are representative of the Midwestern USA swine industry.

A limitation of this study is that the network characterization

was performed in one production system representative of current

pig production practices in the US and might not fully represent

patterns of different states or regions of the USA. Another

limitation is related to the number of trucks and trailers monitored,

which perhaps underestimated connectivity trends. Although a

low (9.3%) proportion of company vehicles were enrolled in the

study, these vehicles were those used the most and continuously

during 2019–2020, resulting in a robust representation of typical

movement patterns before and during the COVID-19 pandemic.

In addition, the network built in this study was composed of

breeding farms, growing pig farms, and truck wash facilities which

leave out the connectivity with slaughter plants and market-hog

transport cleaning and disinfection facilities. Furthermore, the

unusual aspects observed during the COVID-19 global pandemic

highlight a unique situation within the swine industry. However,

this analysis builds on the understanding of the complex network

interactions of vehicles within the Midwest swine industry and

gives insights into how unique events can affect the flow of the pork

supply production, informing preparedness for future infectious

disease epidemics and events.

Conclusion

In this study of vehicle movements within a pig production

system, we observed a highly connected and structured organized

network with high fidelity among the site triad of sow, WTM,

and truck wash. We also described the impact on movements and

network connectivity in 2020, when the peak of the COVID-19

epidemic was observed within the USA. The directionality

of movements among sites and time spent at truck wash

facilities represented a proxy for good biosecurity practices within

the system. Monitoring and understanding spatiotemporal and

network patterns of movements beforehand can prove useful in

identifying high-risk areas and preparedness in the face of a new

disease epidemic. The results also showed the grouping of farms

within the system when considering the vehicles, indicating that

many farms were connected by these indirect means. Knowledge

obtained from this movement characterization in the Midwest

may assist with targeting interventions, prevention, and control

strategies for infectious diseases within the swine industry, with an

emphasis on monitoring and reducing the prevalence in different

communities connected by vehicles.
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