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Abstract: Cerium oxide nanoparticles (CeO2NPs) have exceptional catalytic properties, rendering
them highly effective in removing excessive reactive oxygen species (ROS) from biological envi-
ronments, which is crucial in safeguarding these environments against radiation-induced damage.
Additionally, the Ce atom’s high Z number makes it an ideal candidate for utilisation as an X-ray
imaging contrast agent. We herein show how the injection of albumin-stabilised 5 nm CeO2NPs
into mice revealed substantial enhancement in X-ray contrast, reaching up to a tenfold increase at
significantly lower concentrations than commercial or other proposed contrast agents. Remarkably,
these NPs exhibited prolonged residence time within the target organs. Thus, upon injection into the
tail vein, they exhibited efficient uptake by the liver and spleen, with 85% of the injected dose (%ID)
recovered after 7 days. In the case of intratumoral administration, 99% ID of CeO2NPs remained
within the tumour throughout the 7-day observation period, allowing for observation of disease
dynamics. Mass spectrometry (ICP-MS) elemental analysis confirmed X-ray CT imaging observations.

Keywords: nanoceria; CeO2 nanoparticles; X-ray CT imaging; reactive oxygen species scavengers

1. Introduction

The precise enhanced medical imaging powered by contrast agents has become a
universal diagnosis tool, especially in the case of techniques employing X-rays, which
show high spatial resolution but relatively low sensitivity [1]. Currently, 40% of all
X-ray medical images use contrast agents to improve diagnosis [2]. Iodine compounds are
generally employed due to their biocompatibility and high Z number [3]; however, they
are not exempt from limitations: ions are removed rapidly from the bloodstream making
the imaging time window very short, so high doses are needed. These ions are filtered
in the kidney, ultimately producing nephrotoxicity [4], the third more common cause of
hospital-acquired acute renal injury [5].

Intense research has prompted for the last 20 years to develop new contrast agents
that overcome these limitations and allow new imaging applications [6,7]. Among them,
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high Z number nanoparticles (NPs) have been proposed since their altered biodistributions
and longer residence times permit extending the available imaging window and reducing
administration volumes [8], opening the opportunity to study disease dynamics [9]. Ini-
tially, NPs are captured by the liver and the spleen, allowing advanced imaging in these
organs [10]. Remarkably, NPs biodistribution is sensitive to disease. Thus, NPs are also
prone to maximise their accumulation in lymph nodes [11], solid tumours [12,13], and
inflammation areas [14,15] via enhanced permeability and retention (EPR) effects [12,15,16].
Consequently, NPs containing heavy atoms have been employed to image hepatocellular
carcinoma in the liver [17] and tumours in the lymph nodes [18,19] or the brain [20], where
NPs biodistribution depends on size, surface charge, surface structure and the presence of
targeting moieties [21], allowing for site-directed imaging [8,10]. Thus, several NPs have
been studied as an alternative to the iodinated molecules, including Gold [22], Bismute [23]
or Ytterbium [24] based NPs at 100 mg/mL, 75 mg/mL and 70 mg/mL, respectively. They
all show good contrast efficiency. They are non-toxic and biocompatible.

Despite low doses being used during X-ray imaging, about 700 traditional images
are taken for a CT 3D reconstruction which is not exempt from side effects, especially in
children. Several studies have reported the induction of chromosome aberrations, changes
in gene expression and a significant increase in γ-H2AX foci levels in patients, which
is indicative of DNA damage [25,26]. X-ray radiation can induce DNA damage at the
molecular level, together with the ionisation of water and the generation of a large amount
of reactive oxygen species (ROS), which ultimately accounts for 40% to 60% of the produced
damage [27,28]. Unfortunately, it has been reported that the use of contrast agents during
CT scans increases the radiation dose and toxicity [29]. This becomes even more dramatic
when metallic NPs can catalyse the generation of free radicals, further increasing indirect
damage [30].

In the meantime, CeO2NPs have been extensively studied due to their radiopro-
tective properties, degrading radiation-induced toxic free radicals (ROS) into innocuous
species, which has been translated into protection from indirect radiative damage [31–36].
CeO2NPs have a high capacity to buffer electrons in redox environments [37,38], followed
by the capture or release of oxygen. It means that CeO2NPs act as a free-radical scav-
enger of ROS molecules such as OH• and H2O2 [39]. Despite that Ce has a higher atomic
number, Z number (58), than I (53), its potential as a CT contrast agent has been rela-
tively unexplored [40]. Interestingly, recent studies have focused on the potential use of
gadolinium-doped CeO2NPs as contrast agents for magnetic resonance imaging with high
T1 relaxivity [41,42]. Our study demonstrates the significant benefits of CeO2NPs as a
contrast agent for CT imaging, primarily due to their high X-ray attenuation, excellent
biocompatibility, and radioprotective properties. Importantly, these CeO2NPs exhibit slow
biodegradation into innocuous species and efficient excretion, further enhancing their safety
profile [43,44]. This combination of properties positions CeO2NPs as a highly competitive
contrast agent, offering improved safety for CT imaging.

2. Results and Discussion

Non-aggregated highly soluble CeO2NPs at 10 mg Ce/mL have been synthesised with
an average size of 5.1 ± 1.4 nm (Figure 1). A size of ~5 nm was chosen to maximise their
catalytic activity [45]. The as-synthesised NPs were immediately conjugated to an excess of
Murine Serum Albumin (MSA), preventing them from aggregation. Conjugation with MSA
increases biocompatibility and solubility in biological media [46], preventing rapid renal
clearance [47] and avoiding aggregation in the highly ionic physiological media [48,49].
The colloidal solution presents a UV-Vis absorption peak at 290 nm, indicative of Ce4+, a
ζ potential value of −28.2 ± 0.73 mV (conductivity 0.74 ± 0.02 mS/cm at pH 7.4) and a
hydrodynamic diameter of 38.7 ± 1.9 nm (Figure S1). DLS analysis shows a monomodal
peak stable over time, indicative of good colloidal stability and lack of large aggregates [50].
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Figure 1. Characterisation of CeO2NPs conjugated with murine serum albumin (10 mg Ce/mL).
(A) TEM image taken at 150,000× magnification showing CeO2NPs of 5.1 ± 1.4 nm average size;
(B) HRTEM image taken at 450,000× magnification, (C) representative diffraction pattern; and
(D) HRTEM of a single CeO2NPs.

To evaluate the use of CeO2NPs as contrast agents for safe X-ray CT imaging, 200 µL of
a CeO2NPs-MSA solution (10 mg Ce/mL vs. standard Iodine at 175 mg/mL concentrations)
was injected intravenously through the tail vain into awakened female athymic nude mice
of 7 weeks of age bearing xenografted subcutaneous sarcoma tumours of A-673 human
cancer cells in the right rear flank. Five animals with tumour volumes above 700 mm3

were selected for the assay four weeks post-tumour inoculation. After NP administration,
supervision of the animals and body weight measurement were performed every day,
which did not indicate any symptoms of toxicity. Clinical observations included possible
changes in skin, eyes, mucous membranes, alterations in respiratory pattern, behaviour,
posture, response to handling or abnormal movements. Seven days after NP’s injection,
animals were sacrificed. Blood, primary tumours and several organs -liver, spleen, kidneys,
lung, heart and brain- were excised, weighed and kept at −20 ◦C for ICP-MS measurements.
Obtained results (Table 1) show how CeO2NPs-MSA exhibited efficient uptake by the liver
and spleen upon injection into the tail vein, with 85%ID being recovered after 7 days.

Table 1. ICP-MS analysis of Ce mass in mice organs (7 days post-i.v. injection), the weight of organs,
total Ce mass in each organ and the corresponding %ID (2040 ± 98 mg Ce).

Ce (µg/Organ g) Organ
Weight (g) Total Ce (µg) % Injected Dose

(%ID)

Spleen 1746 ± 87 0.42 741 ± 42.3 36.3 ± 2.1%
Liver 579 ± 29 1.67 969 ± 49.1 48.1 ± 2.4%

Kidney 3.2 ± 0.2 0.38 1.22 ± 0.06 0.06%
Lung 102 ± 5.1 0.16 16.7 ± 0.84 0.8 ± 0.04%
Heart 2.3 ± 0.12 0.14 0.32 ± 0.02 0.02%
Brain 0.05 ± 0.003 0.41 0.02 ± 0.001 <0.01%

Tumour 0.60 ± 0.03 1.40 0.84 ± 0.04 0.04%

Plasma 4.41 ± 0.22 2.65 11.68± 0.63 6.01%

Total Ce (µg/g): 1754 ± 92.4 91.4 ± 4.3%

X-ray CT images were collected using a Quantum FX micro-CT instrument. A total of
512 projections were obtained in a 120 s/scan. The incident X-ray tube potential was set at
90 kVp and current at 200 µA. For the animals injected via the tail vein, X-ray CT images
were taken before injection and at various representative post-administration times using
a field of view (FOV) of 40 × 40 mm. The images were reconstructed with the Quantum
FX software, based on Feldkamp’s method. Three-dimensional rendering videos of the
intratumoral study were performed with Amide Image analysis [51], consisting of 3D
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radiodensity evaluation of different biological structures, including liver, spleen, kidney,
sub-lumbar muscle and tumour tissue. Previous to each scan, animals were anaesthetised
with Isofluorane. Once the scan was finished, animals were brought back to their cages
for recovery.

Combining the serial CT views and the quantitative analysis of contrast density
allowed us to gain insights into the distribution and behaviour of CeO2NPs within the
mice [52]. Figure 2 displays obtained results after the intravenous injection of CeO2NPs-
MSA solution via the tail vein of mice. The mice were examined at various time points,
ranging from 0 h (before injection) up to 7 days, allowing us to capture the temporal
evolution of the NPs within the mice. In the serial CT coronal views, we identified the
regions of interest: the liver, spleen, kidneys, and tumour (Figure 2A). These regions were
labelled with their initials in the first image to facilitate clear identification. The spleen was
specifically highlighted with arrowheads, while white arrows denoted the liver. Monitoring
the contrasting evolution of the spleen over time was achieved through the observation
of CT axial views (Figure 2B). In these images, the white areas correspond to the bone,
while the black regions represent air. By analysing the changes in contrast density, we
quantified the temporal evolution of CT contrast density values (HU) for the investigated
tissues (Figure 2C). Detailed information on 3D rendering and specific HU values can be
found in Figure S2 and Table S1.
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Figure 2. In vivo CT analysis of intravenous injection via tail vein of CeO2NPs-MSA solution (200 µL,
10 mg Ce/mL) in mice, at various representative times from 0 h (before injection) up to 7 days.
(A) Serial CT coronal views showing the main regions of interest, i.e., liver, spleen, kidneys, and
tumour, are indicated with their initials in the first image. Arrowheads point at the spleen, and the
white arrows indicate the liver. (B) Corresponding CT axial views show the contrasting evolution of
the spleen over time. (Other white areas correspond to the bone, and black regions correspond to air).
(C) Temporal evolution of CT contrast density values (HU) of the tissues under study. Numerical HU
values are provided in Table S1.
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Figure 3 presents a zoomed image of the liver, providing insights into the distribution
of the NPs within the liver parenchyma. The image reveals that the NPs are homoge-
neously distributed within the liver tissue without significant accumulation around the
blood vessels. These results indicate that NPs possess good solubility and dispersion in the
organ, suggesting the absence of an immune defensive response against the CeO2NPs [53]
following the non-immunogenic character of these NPs previously described in the liter-
ature [54,55]. In contrast, intravenous injection of the commercial iodine contrast agent
Iopamidol®-370 leads to a fast accumulation in kidneys (5 min post-injection) and subse-
quent quick renal excretion, with almost no remaining signal at 24 h post-administration
(Figure S3).
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Figure 3. In vivo coronal CT images after intravenous injection of (A) the commercial iodine contrast
agent Iopamidol®-370 (150 µL; 175 mg I/mL) and (B) CeO2NPs-MSA solution (200 µL, 10 mg Ce/mL)
at various representative times, from 2 min post-injection up to 24 h.

To investigate the effects of intratumoral administration, we administered 70 µL
of CeO2NPs-MSA solution directly into the tumour. Figure 4 shows serial CT coronal
view images of the mouse at 15 min, 24 h and 7 days post-injection. CT scans were
performed with a FOV of 24 × 24 mm and 60 × 60 mm for the mouse injected intratumorally.
A quantitative analysis of the 3D tomographic reconstruction is given in Table 2. The
3D rendering videos at the three representative times can be seen in Figure S4. A clear
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enhancement of contrast signal was observed in the tumour 15 min after injection (747.2 HU
compared to 75.5 HU), remaining enhanced for the 7 days of measurement. This is in
contrast with intratumoral injection of iodine compounds such as Iohexol, which disappears
from the tumour in 4 h, while the nanoparticulate polymeric Iodine, Poly(iohexol), loses
50% of the contrast also at 4 h [56].
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Figure 4. In vivo CT images after intratumoral injection of 70 µL of CeO2NPs-MSA solution
(10 mg Ce/mL) in mice at various time intervals: 15 min, 24 h and 7 days. (A) Snapshot of the
3D rendering videos (videos are provided in Figure S4). (B) Coronal view of a 2D CT projection. A
zoomed image of the tumoral area is shown in the insight of each image.

Table 2. CT contrast analysis (HU and volume) of the tumoral region after intratumoral injection of
CeO2NPs-MSA solution (70 µL, 10 mg Ce/mL).

Muscle
CT Value (HU)

Non-Contrasted
Tumour Tissue
CT Value (HU)

Ce Contrast Agent
CT Value (HU)

Ce Contrast Agent
Vol (mm3)

Tumour Vol
(mm3)

15 min 75.5 ± 3.9 75.4 ± 5.7 747.2 ± 44.9 50.2 1027.1
24 h 76.7 ± 4.1 73.9 ± 2.6 898.3 ± 35.9 42.3 1157.6

7 days 78.1 ± 1.0 72.6 ± 1.2 969.9 ± 38.7 37.4 1525.1



Nanomaterials 2023, 13, 2208 7 of 13

Long residence times of the contrast agent allow for observing the structural evolu-
tion of tumours. During the 7 days of observation, the tumour grew from 700 mm3 to
1500 mm3. Interestingly, contrast levels of the adjacent muscle remained at similar values
over time, which indicates that CeO2NPs did not spread through nearby tissues [57].

ICP-MS analyses performed after animal sacrifice on day 7 confirmed the CT observa-
tions (Table S2). No trace of Ce was detected in the mouse organs (liver, spleen, kidneys,
lungs, heart and brain) or blood plasma other than in the tumour. Tumour analysis yields a
total Ce mass of 706.6 ± 35 µg, which corresponds to 98.9 ± 4.7%ID (ID: 714 ± 36 µg Ce),
indicating that CeO2NPs-MSA remain inside the tumour for the 7 days. Analysing contrast
volume and intensity as a function of time, we observe how the measured contrasted
area gets compressed with increased contrast intensities as the tumour grows. This fact is
attributed to the interstitial stress and fluid pressure within a growing tumour [58].

Mechanical stress is an important parameter that regulates tissue oxygenation, can-
cer cell proliferation [59] and drug delivery [60] during the progression of solid tumours.
Heterogeneous mechanical solid stresses developed during tumour growth compress
blood vessels, dramatically reducing the supply of oxygen and access to drugs in inner
regions, promoting the formation of hypoxic and necrotic regions in the tumour [58]. Thus,
CeO2NPs-MSA may be used as a long-lasting probe to analyse tumour evolution over
time for disease progression prediction, especially in cases where there is a need to clearly
distinguish between pseudoprogression and tumour progression, like in glioblastoma [61].
Accurately evaluating animal models mimicking human disease is vital when translating
these studies into the clinic. Non-invasive imaging is a clinical standard and has enormous
yet underexploited benefits for advanced medical imaging and research if one can repeat-
edly evaluate host response (inflammation, tissue remodelling) and disease progression
needed to gain better insight into the dynamics of the pathology and treatment effects [9],
especially with CeO2NPs which are radioprotective [31–33], can be made safe [62] and have
been observed to slowly biodegrade [43,44].

CeO2NPs-MSA provide good contrast levels in vivo even when injected at compara-
tively low concentrations. Moreover, the well-known antioxidant properties of CeO2NPs
(Figure S5) suppose an additional motivation for their clinical use, as they may help to
mitigate the detrimental effects of the ionising radiation used in CT scans, especially
in children.

3. Conclusions

In this study, non-aggregated colloidally stable CeO2NPs conjugated with murine
serum albumin (MSA) were synthesised and administered intravenously to mice with
xenografted subcutaneous sarcoma tumours. The distribution of the NPs was monitored
using X-ray CT imaging. The results showed that the NPs were homogeneously distributed
within the liver tissue without significant accumulation around blood vessels, indicat-
ing good solubility and dispersion. In contrast, the commercial iodine contrast agent
Iopamidol®-370 showed fast accumulation in the kidneys and subsequent renal excretion.

Furthermore, intratumoral administration of CeO2NPs-MSA resulted in a clear en-
hancement of contrast signal in the tumour, which remained enhanced for the entire 7-day
observation period and the long residence times of the contrast agent allowed for observing
structural changes in the tumour over time. Analysis of the tumour and other organs con-
firmed the presence of Ce only in the tumour, indicating that the CeO2NPs-MSA remained
inside the tumour for the entire 7-day period. This prolonged retention within the tumour
can provide valuable insights into tumour growth and dynamics.

Overall, the findings of this study demonstrate the potential of CeO2NPs-MSA as a
contrast agent for safer CT scans, offering prolonged residence times, good solubility, and
dispersion. Further research and development in this area could lead to the translation
of CeO2NPs-MSA into clinical applications for enhanced medical imaging and improved
diagnosis of diseases.
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4. Materials and Methods
4.1. Materials

Cerium (III) nitrate hexahydrate (Ce(NO3)3·6H2O), tetramethylammonium hydroxide
(TMAOH; 1M), and mouse serum albumin (MSA) (research grade, sterile filtered) were
purchased from Sigma–Aldrich (Saint Louis, MO, USA). All reagents were used as received.
Milli-Q water was used in the preparation of all solutions.

4.2. CeO2NPs Synthesis

CeO2NPs of around 5 nm were synthesised by the chemical precipitation of cerium
(III) nitrate hexahydrate (Ce(NO3)3·6H2O) in a basic aqueous solution [48]. A total of
37.5 mM of cerium (III) nitrate hexahydrate was dissolved in 50 mL Milli-Q water at room
temperature. A total of 50 mL of tetramethylammonium hydroxide (TMAOH) solution
(44 mM) was added slowly at room temperature (RT) under vigorous stirring. The mix-
ture was left under soft stirring for about 30 min. During the first minutes, the solution
is colourless, then turns progressively brownish. NPs were purified by centrifugation
(20,000× g, 45 min, RT), and the resultant reddish pellet was resuspended in 100mL aque-
ous solution of 1 mM TMAOH. As determined by the Xylenol Orange test (see below), the
final Ce concentration was 1.06 ± 0.05 mg/mL (2.6 × 1015 NPs/mL). Before concentration,
as-synthesised CeO2NPs were first conjugated with MSA. A total of 10 mg of MSA was
dissolved in 1 mL of PB 50 mM and kept undisturbed (without stirring) in the fridge until
its complete dissolution. Then, 10 mL of CeO2NPs were added dropwise to the protein
solution while applying mild stirring. The sample was kept in the fridge for 24 h to allow
the complete adsorption of MSA molecules onto the NP surface. The colloidal solution
was then concentrated through 5 cycles of centrifugal filtration (Molecular weight cut-off
30 kDa, Millipore Amico Ultra) at 2500× g for 5 min, yielding 1ml of CeO2NPs-MSA at
10.2 ± 0.5 mg Ce/mL (75.8 mM Ce, 2.6 × 1016 NPs/mL), as determined by ICP-MS and
Xylenol-orange test. Both the synthesis and concentration of NP were performed under
sterile conditions.

4.3. Characterisation

The resultant NPs were characterised using a combination of techniques.

4.3.1. UV-Vis Spectroscopy

UV-Vis spectra were acquired with a Cary 60spectrophotometer (Agilent Technologies,
Santa Clara, CA, USA) in the 200–800 nm range using 1.5 mL plastic cuvettes.

4.3.2. Dynamic Light Scattering (DLS) and ζ-Potential

Malvern ZetaSizer Nano ZS instrument operating with a light source wavelength of
532 nm and a fixed scattering angle of 173◦ was used to determine the colloidal stability
of the samples, the hydrodynamic diameter and ζ-potential value. Three independent
measurements were performed.

4.3.3. Transmission Electron Microscopy

Samples were prepared by drop casting 10 µL of the sample onto carbon-coated copper
grids and left to dry at room temperature. TEM images were acquired with a JEOL 1010
electron microscope (Jeol, Tokyo, Japan) operated at 80 kV accelerating voltage. HRTEM
images were acquired with an FEI Tecnai G2 F20, operated at 200kV. NPs size distribution
was determined using ImageJ software (National Institutes of Health, Bethesda, Rockville,
MD, USA) by analysing more than 500 particles.

4.3.4. Ce3+ Concentration by Xylenol Orange Test

The test performed is based on the protocol developed by Tonosaki et al. [58]; orange
forms a complex with free Ce3+ ions in a ratio of 1:1, which shows an absorption maximum
at 575 nm. Briefly, 10 µL of the sample was added to a vial containing 700 µL of Xylenol
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Orange 1 mM, 3000 µL of acetate buffer (pH = 6.0) and 1290 µL of MilliQ water. The content
of Ce3+ in an unknown sample was determined through the calibration graph obtained
previously for 0–40 µg/mL of Ce3+. Here, the supernatant of the reaction was analysed.

4.4. In Vivo Assays

Female athymic nude mice (Janvier, Le Genest Saint Isle Saint Berthevin, France and
Envigo Crs. SA, Barcelona, Spain) were kept in pathogen-free conditions and used at
7 weeks of age. Animal care was handled following the Guide for the Care and Use of
Laboratory Animals of the Vall d’Hebron University Hospital Animal Facility, and the
experimental procedures were approved by the Animal Experimentation Ethical Committee
at the institution. In vivo studies were performed by the ICTS “NANBIOSIS” at the CIBER-
BBN’s in vivo Experimental Platform of the Functional Validation and Preclinical Research
(FVPR) area (https://www.nanbiosis.es/equipments/, accessed on 26 July 2023) (Barcelona,
Spain).

A-673-Fluc cells (2 × 106) suspended in 200 µL of cell culture media were subcuta-
neously inoculated in the right rear flank of each animal. Tumour growth was monitored
twice a week by conventional calliper measurements (D × d2/2, where D is the ma-
jor diameter and d is the minor diameter). Five animals with tumour volumes above
700 mm3 were selected for the assay four weeks post-tumour inoculation. In two of them,
200 µL of CeO2NPs solution was administered intravenously through the tail vein in
awakened animals. For comparison, another two mice were injected intravenously with
a commercial iodine contrast agent (Iopamidol®-370, 150 µL of 175 µg I/mL). The fifth
animal was anaesthetised with 1.5% isofluorane (Forane, Baxter, Deerfield, IL, USA) and
administered intratumorally with 70 µL of the exact solution of CeO2NPs-MSA. After NP
administration, supervision of the animals and body weight measurement were performed
daily, indicating no symptoms of toxicity. Clinical observations included possible changes
in skin, eyes, mucous membranes, alterations in respiratory pattern, behaviour, posture,
response to handling, and abnormal movements. Seven days after NP injection, animals
were sacrificed. Blood plasma, primary tumours and several organs (liver, spleen, kidneys,
lung, heart, brain and the tumour) were excised, weighed and kept at −20 ◦C for ICP-MS
measurements.

The procedures for animal handling, humanitarian endpoint and animal euthanasia
described in this project have been approved by the VHIR’s Animal Experimentation Ethics
Committee (internal reference 38/17).

4.5. ICP-MS Analysis

Ce concentration in the CeO2NPs-MSA solution, blood plasma, tumour and various
organs were determined by Inductively Coupled Plasma-Mass Spectrometry (Agilent,
7500ce). Plasma samples were diluted in a solution of EDTA 0.05% (p/v) and NH3 0.5%
(v/v). The tumour and organs were dissolved in HNO3 concentrated (Merck; p.a.) and
heated in a microwave digestion oven (Milestone, Ultrawave). In parallel, a control sample
was also digested. The resultant digestions were diluted with HNO3 1% (v/v) before being
injected into the ICP-MS instrument.

4.6. CT Imaging

X-ray CT images were collected using a Quantum FX micro-CT instrument (Perkin
Elmer, Waltham, MA, USA) (see Supplementary Figure S6). A total of 512 projections were
obtained in a 120 s/scan at a maximal resolution of 0.05mm, incident X-ray tube potential
was set at 90 kVp and current at 200 µA. For the animals injected via tail vein, X-ray CT
images were taken before injection and at various representative post-administration times
(15 min, 30 min, 1 h, 2 h, 24 h and 7 days) using a field of view (FOV) of 40 × 40 mm.
CT scans were performed at 15 min, 24 h and 7 days post-injection with a FOV of
24 × 24 mm and 60 × 60 mm for the mouse injected intratumorally. Reconstruction
of the studies was performed with the Quantum FX software, based on Feldkamp’s

https://www.nanbiosis.es/equipments/
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method. Three-dimensional rendering videos of the intratumoral study were performed
with Amide [45]. Imaging data were analysed at the Preclinical Imaging Platform from the
Vall d’Hebron Research Institute. Image analysis consisted of 3D radiodensity evaluation
of different biological structures, including liver, spleen, kidney, sub-lumbar muscle and
tumour tissue. In each of these structures, at least four different regions of interest (ROIs)
were selected, and the average density was obtained. CT attenuation values are given in the
standard Hounsfield Units (HU) by calibration with water (HU = 0) and air (HU = −1000).
The CT equipment is not normalised; therefore, the density value of the sub-lumbar muscle
is used as a reference.

Before each scan, animals were anaesthetised with Isofluorane (5% during the induc-
tion phase, 2% during maintenance). Air flow was set to 0.8 L/min. Once the scan was
finished, animals were brought back to their cages for recovery. All the procedures were
performed following the institutional ethic committee.

Supplementary Materials: The following supporting information can be downloaded at: https://www.
mdpi.com/article/10.3390/nano13152208/s1, Figure S1. Characterization of CeO2NPs conjugated
with murine serum albumin; Table S1: CT contrast values (H.U.) corresponding to Figure 2 of the
main article; Figure S2. Examples of in vivo 3D rendering videos before injection of CeO2NPs and 2 h
after intravenous injection; Figure S3. CT coronal images 5 min and 24 h after intravenous injection
of CeO2NPs-MSA; Figure S4. In vivo 3D rendering videos and their corresponding snapshots were
recorded at 15 min, 24h and 7 days post-intratumoral injection; Table S2. ICP-MS analysis of organs
after intratumoral injection; Figure S5. CeO2NPs-albumin conjugated and naked CeO2NPs capacity
to scavenge hydrogen peroxide. Figure S6. (Left) Mouse anesthetized before a CT scans. (Right)
Mouse placed in the plate of the Quantum FX micro-CT instrument (Perkin Elmer, Waltham, MA).
References [57,63] are cited in the supplementary materials.
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