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Abstract: The use of high-pressure technologies is a hot topic in food science because of the potential
for a gentle process in which spoilage and pathogenic microorganisms can be eliminated; these
technologies also have effects on the extraction, preservation, and modification of some constituents.
Whole grapes or bunches can be processed by High Hydrostatic Pressure (HHP), which causes
poration of the skin cell walls and rapid diffusion of the anthocyanins into the pulp and seeds in a
short treatment time (2–10 min), improving maceration. Grape juice with colloidal skin particles of
less than 500 µm processed by Ultra-High Pressure Homogenization (UHPH) is nano-fragmented
with high anthocyanin release. Anthocyanins can be rapidly extracted from skins using HHP and cell
fragments using UHPH, releasing them and facilitating their diffusion into the liquid quickly. HHP
and UHPH techniques are gentle and protective of sensitive molecules such as phenols, terpenes, and
vitamins. Both techniques are non-thermal technologies with mild temperatures and residence times.
Moreover, UHPH produces an intense inactivation of oxidative enzymes (PPOs), thus preserving
the antioxidant activity of grape juices. Both technologies can be applied to juices or concentrates; in
addition, HHP can be applied to grapes or bunches. This review provides detailed information on
the main features of these novel techniques, their current status in anthocyanin extraction, and their
effects on stability and process sustainability.

Keywords: anthocyanins; HHP; UHPH; grape; wine; clean labels

1. Introduction

Anthocyanins are flavonoid pigments with variable colors from yellow-orange (490 nm)
to red-blue (540 nm), with healthy nutritional properties widely distributed in fruits and
flowers and with useful properties as food pigments [1–5]. Anthocyanins can act as antioxi-
dants, phytoalexins, or antimicrobial compounds [6,7]. Anthocyanins behave as weak acids,
hard and soft electrophiles, nucleophiles, and metal ion binders [8]. The main degradation
effects that can affect anthocyanins are oxidative yield processes, which can be accelerated
by temperature [9]. Anthocyanins can also be affected by light (photooxidation) [10] and oxi-
dized by oxygen directly or via enzymes such as polyphenol oxidases and peroxidases [9,10].
Stability and color are also affected by pH, SO2 bleaching, copigmentation, or the forma-
tion of polymers with other flavonoids, such as catechins or proanthocyanidins (Figure 1).
Non-thermal emerging technologies such as high-pressure processing by High Hydrostatic
Pressure (HHP) or Ultra-High Pressure Homogenization (UHPH) can be used to gently
extract and preserve juice anthocyanins, increasing extraction rates and stability [11,12].
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Figure 1. Reactions that can affect anthocyanins as a function of pH, hydration, SO2 concentration, 
and flavonoid content. 

High Hydrostatic Pressure (HHP) is the application of pressure to food by a pressur-
izing fluid, usually water, inside a highly resistant steel vessel (Figure 2). Initially, the ves-
sel is filled with water using a high-flow, low-pressure pump, and later, the water is pres-
surized to a typical range of 500–600 MPa using a special pump called a pressure intensi-
fier (Figure 2). Under these pressure conditions, the water and the food inside are com-
pressed by about 4%. The pressurization is produced with some temperature increase due 
to adiabatic heat compression, which is typically lower than 4 °C/100 MPa (<3.4 °C water, 
<3.8 °C orange juice, [13]), producing a global heating of up to 24 °C at 600 MPa. The 
temperature increase also depends on the composition, which is higher for oil compo-
nents. HHP is a technique that can be considered a non-thermal technology because of 
this soft heating, without any degradative effect on thermally sensitive molecules such as 
pigments or aromatic compounds [14,15]. Low adiabatic heating can be additionally con-
trolled by cooling the vessel with heat exchangers. 

 
Figure 2. HHP system scheme with steel vessel, low-pressure pump, and high-pressure intensifier. 
Arrows around the grape cluster simulate the hydrostatic effect of the pressure. 

HHP, unlike thermal treatments, does not have enough energy to affect covalent 
bonds; therefore, small molecules with sensory impact are protected, and HHP can be 
considered a gentle technology. The formation of unexpected molecules has not been ob-
served during HHP processing [16]. Furthermore, HHP is a pressure process produced in 
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Figure 1. Reactions that can affect anthocyanins as a function of pH, hydration, SO2 concentration,
and flavonoid content.

High Hydrostatic Pressure (HHP) is the application of pressure to food by a pres-
surizing fluid, usually water, inside a highly resistant steel vessel (Figure 2). Initially, the
vessel is filled with water using a high-flow, low-pressure pump, and later, the water is
pressurized to a typical range of 500–600 MPa using a special pump called a pressure
intensifier (Figure 2). Under these pressure conditions, the water and the food inside are
compressed by about 4%. The pressurization is produced with some temperature increase
due to adiabatic heat compression, which is typically lower than 4 ◦C/100 MPa (<3.4 ◦C
water, <3.8 ◦C orange juice, [13]), producing a global heating of up to 24 ◦C at 600 MPa. The
temperature increase also depends on the composition, which is higher for oil components.
HHP is a technique that can be considered a non-thermal technology because of this soft
heating, without any degradative effect on thermally sensitive molecules such as pigments
or aromatic compounds [14,15]. Low adiabatic heating can be additionally controlled by
cooling the vessel with heat exchangers.
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Figure 2. HHP system scheme with steel vessel, low-pressure pump, and high-pressure intensifier.
Arrows around the grape cluster simulate the hydrostatic effect of the pressure.

HHP, unlike thermal treatments, does not have enough energy to affect covalent
bonds; therefore, small molecules with sensory impact are protected, and HHP can be
considered a gentle technology. The formation of unexpected molecules has not been
observed during HHP processing [16]. Furthermore, HHP is a pressure process produced
in a closed vessel where aeration and oxidative processes are minimized, thus reducing
damage to anthocyanins.

Many studies have shown that using HHP at room temperature preserves nutritional
value and has a very low effect on the levels of anthocyanins in fruits and vegetables [17].
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The HHP-treated juices show good color stability, better phenolic content, and higher
antioxidant activity [18].

Ultra-High Pressure Homogenization (UHPH) is a high-pressure technology in which a
fluid is pumped at more than 200 MPa (typically 300 MPa) through a thin, high-resistance steel
pipeline and later depressurized via a special valve made of a high-resistance alloy [19,20]. The
valve is often made of tungsten carbide and is usually coated with nanolayers of extremely
resistant carbon polymers. Inside the valve, fluids are subjected to extreme shear forces
and impacts, causing nanofragmentation of microorganisms, colloids, and biopolymers to
100–500 nm [20,21] (Figure 3).
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Figure 3. Effect of impact and shear forces on colloid nanofragmentation and temperature in a UHPH
valve (adapted from http://www.ypsicon.com/ (accessed on 15 July 2023)).

Some interesting effects of submicron nanofragmentation are the elimination of mi-
croorganisms, inactivation of enzymes (including oxidative polyphenol oxidases, PPOs),
increase in antioxidant activity, and better colloidal stability [20–23]. Additionally, UHPH
is very gentle with sensory quality. No degradation of terpenes [21], anthocyanins [22], or
thermal markers such as hydroxymethyl furfural was observed during the processing of
grape juices [21].

2. Main Features of HHP and UHPH

High-pressure techniques can be considered gentle, non-thermal technologies with
specific features to preserve the nutritional and sensory quality of food products. However,
they have several specifications regarding the processing conditions (pressure, residence
time, and temperature), the requirements of the products to be processed (particle size and
liquid/solid), the antimicrobial capacity (pasteurization or sterilization), the inactivation of
enzymes, and the effects on molecules with sensory impact (Table 1). Microbial inactivation
in HHP depends on the pressure and residence time, with maximum efficacy being achieved
at 500–600 MPa for 1–10 min [16]. In UHPH, it is also dependent on pressure, valve design,
and in-valve temperature, with better results obtained at 300 MPa and sterilization at
in-valve temperatures of 140–150 ◦C [19,20].

UHPH has the advantage of being continuous [20] with high antimicrobial [19] and
antioxidant effects [21,23,24] due to the efficient control of oxidative enzymes (PPOs).
However, it can only be used for liquids (grape juice) with a particle size of less than
500 µm. Although high temperatures can be generated in the valve by mechanical effects,
often higher than 75 ◦C, UHPH can be considered a non-thermal technology because, at
300 MPa, the fluid flows in the valve at Mach 3 for less than 0.2 s, which is insufficient

http://www.ypsicon.com/
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for thermal degradation of small molecules with sensory impact. After the valve, the
intense nanofragmentation reduces the average size of the colloidal particles as a function
of pressure and temperature. The dimensions have been measured in grape juice by laser
diffraction and atomic force microscopy, giving values in the range of 100–400 nm [21] and
235–744 nm (average 457 ± 140 nm), respectively [22].

HHP is a discontinuous or batch process but can be applied to whole grapes, bunches,
or grape pomace [25,26]. The effect of HHP on enzymes is variable. In the case of PPOs,
which can strongly affect the stability of anthocyanins, inactivation depends on the condi-
tions (pressure, time, and temperature) [27]. For example, in raspberry and strawberry food
products, at least 400–600 MPa and 5–10 min at room temperature are required [28–30].

Industrial scale-up of high-efficiency UHPH systems is now possible with existing
UHPH pumps capable of continuous operation at 300 MPa or higher with a pressure
imbalance of 1 MPa (<1%). UHPH pumps are available from 60 L/h to 10,000 L/h, covering
the range from pilot systems to industrial devices (https://www.ypsicon.com/ (accessed
on 24 August 2023)). The special high-strength tungsten carbide valves with ceramic or
carbon nano coverings can be scaled up to several of these flow ranges. The electric motor
of UHPH pumps, which is the most important consumption range, is 11–18 kW for pumps
of 60–150 L/h (personal communication, Ypsicon, Barcelona, Spain).

There are currently several companies (Hiperbaric (Burgos, Spain), Avure (Chicago,
IL, USA), Uhde (Hagen, Germany), Kobelco (Livonia, MI, USA) and others [16]) working
on industrial HHP systems capable of operating at up to 600 MPa with vessels ranging
from 55 to 525 L suitable for processing 270–3210 kg/h of food products (https://www.
hiperbaric.com/en/hpp-technology/ (accessed on 24 August 2023)). There are also semi-
continuous bulk HHP systems for liquids able to work at over 4000 L/h ([16], https:
//www.hiperbaric.com/en/hpp-technology/equipment/hpp-in-bulk/ (accessed on 24
August 2023)).

Table 1. Main features of UHPH and HHP.

Characteristics HHP References UHPH References

Mode Batch or semi-continuous

[13,14,16]

Continuous

[19,20,31]

Temperature −20–60 ◦C 70–160 ◦C

Pressure range
Optimal pressure

200–600 MPa
500–600 MPa

200–600 MPa
300 MPa

Residence time 2–10 min <0.2 s

Increment of temperature
during processing <4 ◦C/100 MPa 70–90 ◦C

Size requirements Smaller than the vessel diameter Particle size < 500 µm

Antimicrobial Pasteurization
Sterilizing variable if T > 100 ◦C [32] Sterilizing if T > 140 ◦C [20]

Enzymes

Variable
Sometimes activation at low pressure

(200 MPa) and inactivation at 400–600 MPa
In some conditions, suitable inactivation of

PPOs 1

[16,27,32,33] Inactivation, highly effective
of PPOs 1 [21,23,24,34]

Terpenes unaffected

[14,15,17,25]

unaffected

[21–23]Thiols unaffected unaffected

Anthocyanins Protected Protected

Pyranoanthocyanins Higher formation of Vitisin A [35,36]
Similar formation during

fermentation of grape juice
processed by UHPH

[22]

Polymeric anthocyanins Formation in some conditions in model
solutions [35] Unknown

1 PPOs: Polyphenol oxidases.

https://www.ypsicon.com/
https://www.hiperbaric.com/en/hpp-technology/
https://www.hiperbaric.com/en/hpp-technology/
https://www.hiperbaric.com/en/hpp-technology/equipment/hpp-in-bulk/
https://www.hiperbaric.com/en/hpp-technology/equipment/hpp-in-bulk/
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Both technologies have been proposed to replace or reduce the SO2 content in grapes
and wines due to their antimicrobial and antioxidant properties [21,23,25]. In the case of
grapes or whole bunches, they can be processed directly without packaging and, after
depressurization, destemmed, crushed, and pressed to obtain a juice with a higher concen-
tration of anthocyanins and other compounds such as phenols or aroma. Alternatively, the
crushed grape can be pumped into a tank for red winemaking to ferment the juice.

3. Extraction of Anthocyanins by HHP

The extraction of anthocyanins by HHP is influenced by the intensity of pressure,
temperature, and polarity (ethanol content) [26]. In addition, the substitution pattern
in the anthocyanin ring also affects the extraction, depending on the -OCH3 and -OH
substituents [26]. We have observed that after HHP treatment of grapes, even if the external
appearance remains unaffected, perhaps just a little more brilliant, the surface looks as if
it has been pored; the migration of anthocyanins into the pulp can be observed because
of the red color (Figure 4) [25]. The permeability of the cells increases, and the diffusion
of anthocyanins is improved [37]. The anthocyanins are released from the vacuoles in the
skins and later migrate to the pulp, but also to the seeds during the HHP treatment, and
the effect is pressure-dependent. The higher the pressure, the more intense the extraction,
reaching higher concentrations of anthocyanins in the juice of the grapes processed at
550 MPa/10 min compared to the 200 and 400 MPa treatments [25]. A similar effect
was observed in total polyphenols but with a less pressure-dependent behavior when a
comparable extraction was observed at pressures in the range of 200–550 MPa. The increase
in the extraction of total polyphenols was in the range of 20–25% [25]. The extraction of
anthocyanins can range from 20 to 80%, depending on the processing parameters (pressure,
time, temperature, and polarity) and the conditions of the grape (ripeness, skin thickness
and resistance, and previous processes) or grape by-products [25,26,34].
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color extraction with a treatment of 550 MPa for 10 min.

HHP has shown a protective effect on several anthocyanins with low degradation
after treatment (Table 2) and protection of antioxidant capacity [33,38,39]. The protective
effect on anthocyanins is better when pre-processing is carried out at low oxygen levels [40].
Inertization by a nitrogen atmosphere in the pre-processing of berries probably reduces the
effect of residual PPO activity on anthocyanin oxidation. Color retention is usually better
in HHP treatments than in conventional thermal processing (80–90 ◦C) [41], probably due
to the intensification of oxidation.

The protective effect on anthocyanins in preserving the antioxidant capacity and the
partial inactivation of PPOs make HHP a gentle technique for extracting anthocyanins from
fruits or vegetable tissues. The subsequent stability of the extracted anthocyanins under
refrigeration favors the stability and valorization of these pigments to be used in the food
industry, obtain wines with faster macerations, or even fermentations in the absence of
skins, facilitating winemaking.



Antioxidants 2023, 12, 1746 6 of 14

Table 2. Effect of different HHP treatments on the extraction and stability of anthocyanins in various
fruits, juices, or by-products.

Fruit Anthocyanins HHP Parameters Effects References

Muscadine grape juice
(Vitis rotundifolia)

Delphinidin, Petunidin,
Peonidin and Malvidin

3,5-diglucosides (D35G, Pt35G,
Pn35G, M35G)

400–550 1 MPa, 15 min
Anthocyanin loss of 70%

(400 MPa) and 46% at
(550 MPa)

[42]

Merlot grape juice
(Vitis vinifera L.)

C3G, Pt3G, Pn3G & M3G, acetyl
C3G, acetyl Pn3G, acetyl M3G 600 MPa, 10 ◦C, 3 min

Higher anthocyanin content in
HHP treatments compared to

controls
[43]

Grape pomace from
Dornfelder variety

(Vitis vinifera L.)
D3G, C3G, Pt3G, Pn3G & M3G

200–600 MPa, ethanol
(20–100%), 30–90 min, and

temperature 20–70 ◦C

Higher extraction at 600 MPa,
50 ◦C, 100% ethanol (+23%)

and related to the higher
number of -OCH3 and -OH

groups in the flavylium
nucleus, extraction of M3G >
Pn3G > Pt3G > D3G > C3G

[32]

Tempranillo grapes
(Vitis vinifera L.)

D3G, C3G, Pt3G, Pn3G and M3G
and acylated derivatives (acetyl,

caffeoyl and p-coumaroyl)

200–550 MPa, 20 ◦C,
10 min

Migration of anthocyanins
from skins to pulp and seeds.

Increased extraction +80%.
Higher concentration after

fermentation.

[29]

Concord grape puree
(Vitis labrusca) Total monomers 600 MPa, 5 ◦C, 3 min,

Higher contents that the
control and enough stability

for 4 months
[39]

Raspberry (Rubus idaeus) Cyanidin-3-glucoside (C3G)
Cyanidin-3-sophoroside (C3S)

200–800 MPa, 18–22 ◦C,
15 min. Stored at: 4, 20, 30

◦C for 9 days

Higher stability for 800 MPa
stored at 4 ◦C [44]

Strawberry
(Fragaria × ananassa, cv.

Elsanta)

Pelargonidin-3-glucoside (P3G)
Pelargonidin-3-rutinoside (P3R)

200–800 MPa, 18–22 ◦C,
15 min. Stored at: 4, 20,

30 ◦C for 9 days

Higher stability for 800 MPa
stored at 4 ◦C [45]

Blackcurrant
(Ribes nigrum)

Delphinidin-3-rutinoside (D3R)
Cyanidin-3-rutinoside (C3R)

200–800 MPa, 18–22 ◦C,
15 min. Stored at: 5, 20,

30 ◦C for 7 days

Higher stability for
600–800 MPa stored at 5 ◦C [46]

Lonicera caerulea C3G, p-coumaroyl D3G, and
D3R

200–600 MPa, 20 ◦C,
10 min

Anthocyanins protected,
higher antioxidant activity [33]

Blueberry pulp
(Vaccinium spp.)

Delphinidin3-galactoside
(D3Gal), D3G,

Cyanidin-3-galactopyranoside
(Cy3Gal),

Delphinidin-3-arabinoside
(D3A), C3G,

Petunidin-3-galactoside (Pt3Gal);
Peonidin-3-galactoside (Pn3Gal),
Cyanidin-3-arabinoside (C3A),

Pt3G, Pn3G,
Malvidin-3-galactoside (M3Gal),
Peonidin-3-arabinoside (Pn3A),
Malvidin-3-arabinoside (M3A).

500 MPa, 5 min
HHP with low oxygen shows
higher anthocyanin content

and protective effect on color
[40]

Blueberry (Vaccinium spp.)
puree

D3Gal, D3G, Cy3Gal, C3G, C3A,
Petunidin-3-arabinoside (Pt3A),

M3Gal, M3G, M3A

200–600 MPa, 20 ◦C,
20 min

Protective effect on color.
At 300MPa was obtained the

higher concentration of
anthocyanins

[41]

Aronia (Aronia
melanocarpa) berry purée Total anthocyanins 200–600 MPa, 21–33 ◦C,

2.5–5 min

Preservation of anthocyanins,
phenols and color. Antioxidant

capacity unaffected
[38]

Strawberry
(Fragaria × ananassa

Duch.) cv. Senga Sengana
purée and juice

Total monomeric anthocyanins 400–600 MPa, 20 ◦C,
1.5–3 min

Good stability of anthocyanins
specially in juices [47]

1 MPa: Mega Pascal.
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4. Extraction of Anthocyanins by UHPH

Anthocyanins are essential for the color, antioxidant properties, and sensory quality
of berry juices and their fermentative products, such as wine. After juice extraction,
anthocyanins can remain entrapped or adsorbed in colloidal particles of the pulp and are
also more exposed to the action of PPOs than in the whole berry. Mechanical action and
nanofragmentation in the UHPH valve are powerful tools to release the anthocyanins from
the colloidal fragments and to avoid the effects of PPOs by inactivating them.

In the application of UHPH, the juice is pressurized by pumping with a special pump
that works at >200 MPa (usually at 300 MPa); the capillary pipeline section is smaller than
1 mm so that any fluid with a colloid size higher than 500 µm cannot be processed [20].
Grapes or raw grape skins cannot be processed directly because of the previous size
limitation, but UHPH can be applied to the unsettled must obtained by pressing after
cold soaking or enzyme treatments of the crushed grape [22]. It would also be possible to
mechanically process the skins with the pomace using a milling system and later apply
UHPH to the puree.

A high efficiency of UHPH to disaggregate and destroy biofilms by mechanical effects
has been observed [48]. The processing of plant matrices by UHPH produces a better and
more stable colloidal structure [49], which can be measured by particle settling produced
by centrifugation [50]. In addition, higher viscosity and turbidity can be observed due
to the formation of stable colloidal nanoparticles [51]. What can be observed after the
UHPH processing at pressures higher than 200 MPa is the nano-fragmentation of all
the microorganisms and colloidal fragments from the plant tissues (Figure 5). In the
raw juice of unsettled Tempranillo grape (Vitis vinifera L.), yeast cells and large colloidal
fragments can be observed (Figure 5A), which are nano-fragmented during UHPH by the
impact and shear forces generated in the valve and a thinner and more regular colloidal
structure can be observed (Figure 5B–D). In addition, the colloids are slightly colored red
by the anthocyanins (Figure 5A (Tempranillo), Figure 5E (Cabernet sauvignon)), which
disappear from them in the UHPH-treated juice (Figure 5B–D,F) [22]. Using Atomic Force
Microscopy (AFM), the average colloid size in Cabernet sauvignon juice before and after
UHPH treatment was measured to be 1.32 ± 0.46 µm (predominantly super-micron scale)
and 0.46 + 0.14 µm (nanometric scale), respectively [22]. Previously, and in agreement with
this value, a similar size range of 100–400 nm was measured in grape juice treated with
UHPH using laser light scattering [21]. Nanofragmentation at a size greater than 100 nm is
relevant because lower values may have nanosafety implications due to the possibility of
crossing plasmatic barriers.

Applying UHPH produces a highly effective nano-fragmentation of the plant tissues
and cells, releasing the anthocyanins from them and facilitating high and rapid extraction
(Figure 5) [22]. Therefore, the application of UHPH is a powerful, gentle technology not
only to eliminate microorganisms but also to release pigments [22], thus protecting the
color [51,52] and other nutrients, antioxidants, and nutraceutical compounds [51–55].

Several significant works have been carried out on the use of High-Pressure
Homogenization (HPH) or UHPH for the processing of juices or plant-based bever-
ages [21,23,34,49–51,56–58], but not too much in the processing of red grape juice or
berries rich in anthocyanins. However, there are some recent works at 150–300 MPa with
important results, including the release of anthocyanins from plant cells or fragments,
the protection of color and the control of browning, the specific effect on acylated
anthocyanins, the inactivation of PPOs and the preservation of antioxidant activity
(Table 3) [22,59,60], together with effective control of microbial loads. Conversely, a
33–38% reduction in anthocyanins was observed in mulberry juice processed at 200 MPa
with a pilot UHPH system at a flow rate of 10 L/h, which the authors associate with
uncontrolled peroxidase or polyphenol oxidase, but which can be avoided with ascorbic
acid [61]. Most of the studies reporting a reduction in anthocyanin content work at
lower pressures (50–200 MPa) and in multi-cycle mode (2–5 passes) [60,62,63], which
increases the possibilities of oxidation and damage by mechanical effects during several
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passes through the UHPH valve. Furthermore, at a pressure of 200 MPa or less, we
are at the limit of UHPH and work more in the HPH range. In these conditions, the
inactivation of PPOs is lower [20]. An intense inactivation of PPOs (>90%, [21]) has been
observed at 300 MPa, and therefore, the oxidative damage to anthocyanins will be more
intense, especially in a longer multipass process. The design shape and nanocoating of
the valve and seat valve is another key aspect to enhance the mechanical effects and
inactivation [20,31]. From our experience, working at 300 MPa in a single pass, the
inactivation of PPOs, the antimicrobial effect, and the stability of anthocyanins are opti-
mal, with strong protection of the color and better antioxidant activity [22]. In general,
several works have observed a clear effect on particle size and viscosity after (U)HPH,
which affects the extraction of molecules such as anthocyanins, phenolic aroma, and
other nutrients, as well as the colloidal stability of the juice [62]. The effect on size is
pressure-dependent, as observed by optical microscopy and light scattering [62] and
AFM microscopy [22].

Table 3. Effect of different (U)HPH treatments on the extraction and stability of anthocyanins in
various fruits, juices, or by-products.

Fruit Anthocyanins UHPH Parameters Effects References

Cabernet sauvignon
red must

(Vitis vinifera L.)

D3G, C3G, Pt3G, Pn3G and
M3G, acylated derivatives

(acetyl, caffeoyl and
p-coumaroyl), Vitisin B and

Malvidin 3-glucoside
vinylphenol (M3GvPh) and

Malvidin 3-glucoside
vinylguaiacol (M3GvG)

60 L/h, 300 ± 3 1 MPa,
inlet temperature 4 ◦C,

in-valve 78 ± 2 ◦C
(0.2 s) outlet

temperature of 15 ◦C

Higher contents of
anthocyanins in UHPH must
with a selective protection of

the acylated derivatives
+9.3% with more red-bluish

color
Absence of anthocyanins in

colloids.

[22]

Pomegranate
(Punica granatum L.)

juice

C3G, D3G, just optically
evaluated OD520nm

100–150 MPa, inlet
temperature 10 ◦C,

1–10 cycles, outlet max
42–46 ◦C

Not differences in color.
In certain conditions higher

polyphenol content and
antioxidant activity than in

the fresh juice.

[59]

Blackcurrant
(Ribes nigrum) fruit

juice
D3G, D3R, C3G and C3R

50–220 MPa, inlet
temperature 4–20 ◦C,

1–5 passes

Slight reduction of
anthocyanins. Preserve the

bioactive and
physicochemical quality.

[60]

Strawberry nectar P3G

50–200 MPa, inlet
temperature 25 ◦C,

1–5 passes,
∆T ≈ 19 ◦C/100 MPa

Anthocyanins and color
slightly affected depending

on number of cycles.
Higher polyphenol content

with multi passes at 200 MPa

[62]

Strawberry
(F. Ananassa) juice Color evaluation CieLab

60–100 MPa, inlet
temperature 4–20 ◦C,

1–5 passes

Color, anthocyanins and
antioxidant activity increases

until 2 passes. Later
degradation probably by

thermal effect.

[63]

1 MPa: Mega Pascal.
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5. HHP vs. UHPH in the Extraction and Stability of Anthocyanins

The use of HHP has the advantage of allowing the processing of solids; therefore, it
is possible to process grapes, grape pomace, or even bunches. The only limitation is that
the size of the product to be treated must be smaller than the diameter and length of the
vessel. Large HHP machines with a diameter of 0.38 m can be found on the market today.
(https://www.hiperbaric.com/en/ (accessed on 24 August 2023)). Therefore, treating
whole destemmed grape berries or bunches is perfectly possible on an industrial scale [25],
as well as processing by-products such as pomace [26]. The extraction of solids can be
obtained from the whole raw material and can be higher than in the case of UHPH, where
a previous pre-extraction is needed. However, after the pre-extraction, the intense nano-
fragmentation caused by UHPH in the colloids guarantees a better release of anthocyanins
from the colloidal plant fragments [22]. In addition, the continuous nature of UHPH
processing makes it more efficient from an industrial perspective.

Concerning anthocyanin oxidation, the main disadvantage of HHP is the variable
effect on the inactivation of oxidative enzymes [16,27,32,33]. The protective effect of UHPH
on anthocyanin color is due to its gentle action on them but also to the highly effective
control of PPOs [21,23,56], which can be considered more intense than in HHP treatment,
where inactivation is usually variable and under stronger conditions [64–70].

6. Environmental Impacts and Research Needs

Lastly, the UHPH technology is environmentally more sustainable than HHP due to the
low consumption of water used for processing and cleaning. Sustainability is currently a key
parameter in the wine industry [71–75]. The water consumption to produce 1 kg of grapes is
about 550 L [76]. In a more recent study, the water food print for a 0.75 L bottle has 632 L [77].
Only in the industry, winemaking and cleaning consume in the range of 0.2–8 L of water per
1 L of wine, depending on several parameters, especially the size of the winery [73,74,78].
With UHPH, the need for cleaning products is lower because of the small volume of
pipelines. Typical consumption is 750 L of water for 35 h of processing with 3000 L/h
UHPH systems, which means less than 0.018 L of water per liter of product in a regular
production cycle. Additionally, it has a lower consumption of energy and is not necessary

https://www.hiperbaric.com/en/
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for steam as processing or cleaning fluid. The main power consumption for UHPH is
the motor of the UHPH pump, which is 11–18 kW for 60–150 L/h. The consumption
for an industrial system of 3000 L/h is 290 kW/h. In terms of environmental impact,
high-pressure extraction is superior to conventional methods and comparable to pulsed
electric fields (PEFs), as reported in the literature [79], which is also another continuous
emerging non-thermal technology used to increase the extraction of anthocyanins [80]
and to accelerate the maceration of red wines [35,81–86]. Moreover, a better bioprotective
capacity is obtained [87]. Therefore, UHPH and HHP are similar to PEF in anthocyanin
protection and antioxidant activity [20,88]. All techniques accelerate the extraction of
anthocyanins compared to conventional methods [81–84]. UHPH and PEF are continuous
technologies and can, therefore, be applied to the product more efficiently [20,81]. HHPs
and PEFs can be used in crushed grapes, but UHPH only in liquid juice [20,22].

At the same time, the commonly used packaging materials in HHP processing,
i.e., polyethylene terephthalate, ethylene–vinyl alcohol copolymer, polyethylene, and
polypropylene, could be a negative aspect of this extraction from a sustainability and
environmental viewpoint, compared to other emerging extraction technologies such as
UHPH [20], or moderate electric field [89].

Further enhancement of high-pressure processing sustainability could be a topic for
future studies, which can be achieved by exploring the possibility of using biodegradable
packaging materials or developing strategies for re-using and recycling high-pressure
processing packaging material. Additionally, there are limited reports on combining high-
pressure extraction and other techniques [90]. The possible effects of such combined
approaches based on HPP and UHPH on anthocyanin extraction and stability could be
considered in future research. At the same time, the bioavailability of the anthocyanins
extracted by HPP and UHPH is among the information encouraged to be revealed by
researchers [91]. This expected research can help provide information that can further
promote the commercialization of HPP and UHPH so that the industry and consumers can
benefit from high-pressure-based extracted anthocyanins.

7. Conclusions

High-pressure techniques are a powerful processing tool to enhance extraction in
a gentle manner, protecting sensitive molecules such as anthocyanins and maintaining
their stability during storage. The inactivation of oxidative enzymes and the absence of
oxidation are key process parameters to achieve optimal conditions.

As mentioned above, the main advantages of UHPH are its higher antimicrobial
efficacy, better control of PPO enzymes, continuous processing, and low consumption of
water, detergents, and energy. Conversely, the main disadvantage is the need to process
liquid products and the impossibility of processing whole or crushed berries with skins.
With regard to HHP, the most interesting processing feature is the possibility to process
juice, crushed berries, or whole berries, which is optimal for the extraction of anthocyanins
from skins to juice. The main disadvantage is a more variable behavior in the inactivation
of enzymes, a less optimal batch process, and a higher consumption of water and energy.

These HP technologies open up new opportunities to obtain highly sensitive pigments
with nutraceutical properties, such as anthocyanins, or to increase their content in juices,
smoothies, purees, or derived beverages, even fermented as wines. The appropriate
inactivation of oxidative enzymes, the high antimicrobial effect, and the gentle action allow
us to reduce chemical additives such as SO2 and obtain food products with clean labels.
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