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Introduction: Malaria is one of the most prevalent infectious diseases in sub-
Saharan Africa, with 247 million cases reported worldwide in 2021 according to 
the World Health Organization. Optical microscopy remains the gold standard 
technique for malaria diagnosis, however, it requires expertise, is time-consuming 
and difficult to reproduce. Therefore, new diagnostic techniques based on digital 
image analysis using artificial intelligence tools can improve diagnosis and help 
automate it.

Methods: In this study, a dataset of 2571 labeled thick blood smear images were 
created. YOLOv5x, Faster R-CNN, SSD, and RetinaNet object detection neural 
networks were trained on the same dataset to evaluate their performance in 
Plasmodium parasite detection. Attention modules were applied and compared 
with YOLOv5x results. To automate the entire diagnostic process, a prototype 
of 3D-printed pieces was designed for the robotization of conventional optical 
microscopy, capable of auto-focusing the sample and tracking the entire slide.

Results: Comparative analysis yielded a performance for YOLOv5x on a test 
set of 92.10% precision, 93.50% recall, 92.79% F-score, and 94.40% mAP0.5 
for leukocyte, early and mature Plasmodium trophozoites overall detection. 
F-score values of each category were 99.0% for leukocytes, 88.6% for early 
trophozoites and 87.3% for mature trophozoites detection. Attention modules 
performance show non-significant statistical differences when compared to 
YOLOv5x original trained model. The predictive models were integrated into a 
smartphone-computer application for the purpose of image-based diagnostics 
in the laboratory. The system can perform a fully automated diagnosis by the 
auto-focus and X-Y movements of the robotized microscope, the CNN models 
trained for digital image analysis, and the smartphone device. The new prototype 
would determine whether a Giemsa-stained thick blood smear sample is positive/
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negative for Plasmodium infection and its parasite levels. The whole system was 
integrated into the iMAGING smartphone application.

Conclusion: The coalescence of the fully-automated system via auto-focus 
and slide movements and the autonomous detection of Plasmodium parasites 
in digital images with a smartphone software and AI algorithms confers the 
prototype the optimal features to join the global effort against malaria, neglected 
tropical diseases and other infectious diseases.

KEYWORDS

malaria, malaria diagnosis, convolutional neural networks, artificial intelligence, 
robotized microscope, smartphone application, YOLOv5, thick blood smears

1 Background

Malaria is a vector-borne disease caused by parasites of the genus 
Plasmodium (1). It is transmitted to humans by the bite of an infected 
female mosquito of the species Anopheles and has a high prevalence 
in tropical regions worldwide (Talapko et al., 2019). According to 
World Health Organization (WHO) estimates, 247 million cases of 
malaria were reported globally in 2021, increasing from 245 million 
in 2020 (World Health Organization, 2022). Malaria heavily affects the 
African Region with about 95% of all cases and 96% of all deaths 
(World Health Organization, 2022). There are five species of 
Plasmodium parasites that can infect humans: P. falciparum, P. vivax, 
P. ovale, P. malariae, and P. knowlesi (Talapko et al., 2019).

Microscopic visualization of blood smears is still the gold-standard 
method for malaria diagnosis (Calderaro et al., 2021). The examination 
of thick and thin blood smear samples by traditional optical microscopy 
allows the visualization of active parasitic forms in peripheral blood 
(WHO, 2022). Differentiation of parasite species is performed by the 
visualization of thin blood smears with Giemsa staining (WHO, 2016). 
Thick blood smear is a 20-40-fold more sensitive technique compared 
with thin smears and, therefore, can visualize lower parasite levels 
(Wangai et  al., 2011). Microscopy is an inexpensive and efficient 
technique that allows the identification of Plasmodium parasites at the 
species level, the determination of different developmental stages of the 
parasites, and the quantification of parasite density. It is widely used in 
endemic and low-income areas from Sub-Saharan Africa and reference 
laboratories worldwide. However, it is an expert-dependent technique, 
can generate diagnostic mistakes due to the consecutive visualization 
of a high number of samples, and can lead to diagnostic inaccuracies 
due to fatigue and workload.

Rapid Diagnostic Tests (RDTs) are blood antigen detecting tests 
with an immunochromatographic lateral flow device that allows the 
diagnosis of malaria parasites (Cunningham et al., 2019). The limit of 
detection of malaria RDTs is about 100–200 parasites/μL of blood 
(Berzosa et al., 2018; Acquah et al., 2021). However, the emergence of 
gene deletions coding for the HRP2/3 proteins is causing an increase 
in false-negative results due to the lack of the detection antigen with 
consequences for the final diagnosis (Jejaw Zeleke et  al., 2022). 
Polymerase Chain Reaction (PCR) for malaria diagnosis (i) is a highly 
sensitive technique (Leski et  al., 2020); (ii) allows to distinguish 
between Plasmodium species (van Bergen et al., 2021); (iii) requires 
specific material, and (iv) is costly and relatively complex (Fitri et al., 
2022). Quantitative Buffy Coat (QBC), Flow cytometry, or biomarker 

identification are used to complement traditional methods (Calderaro 
et al., 2021). Nevertheless, malaria diagnosis is still an issue in some 
regions, which could lead to misdiagnosis and generate several 
complications due to the difficulty of implementing these techniques 
in resource-poor settings (Boyce and O’Meara, 2017). The lack of 
resources and health care personnel in malaria-endemic areas are a 
limitation for accurate diagnosis (Wambani and Okoth, 2022). 
Moreover, traditional diagnostic techniques are time-consuming and 
require high-level trained professionals. Thus, the development of 
accessible, low-cost, automated diagnostic techniques is a major 
challenge for malaria parasite detection and would be a supportive 
complement to traditional techniques.

Nowadays, Artificial Intelligence (AI) is a disruptive technology 
with a high impact on health-related goals. Convolutional Neural 
Networks (CNNs) are artificial neural network models commonly 
used to analyze and classify images with deep learning tools; and they 
have improved traditional image-processing techniques through their 
faster and highly automated procedure. Novel diagnostic techniques 
based on AI are being developed and optimized for the detection of 
Plasmodium parasites in thick and thin blood smear digital images 
(Sankaran et  al., 2017; Fatima and Farid, 2020; Yang et  al., 2020; 
Abubakar et  al., 2021; Islam et  al., 2022). CNN-based malaria 
detection algorithms able to detect P. falciparum parasites in Giemsa 
stained thick blood smear slides were developed and demonstrate 
robustness with a wide variety of field-prepared samples (Mehanian 
et al., 2017a,b). As another example, DeepMCNN system was able to 
calculate parasitaemia estimations by counting parasites and 
leukocytes as recommended by the WHO (Manescu et al., 2020). 
Algorithm analysis is a crucial step to correctly evaluate and 
implement machine learning solutions for clinical usage with effective 
metrics (Delahunt et al., 2022).

Mobile software applications are used to integrate the technology 
and provide a fast and efficient diagnosis for Plasmodium detection 
(Rosado et al., 2016; Vasiman et al., 2019). However, smartphones 
have several limitations that should be  addressed such as: image 
resolution required for malaria diagnosis, optical attachment and 
adaptation to the microscope, high number of fields-of-view (FoVs) 
for diagnosis, and the need for focused images and Z-stacks 
(Mehanian et al., 2017a,b; Delahunt et al., 2022).

Moreover, automation of the entire process, including 
autofocusing and slide tracking movements, would be of significant 
help to obtain an optimal diagnostic tool. Robotized microscopes that 
move the slide and capture images are usually expensive and not 
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designed for implementation in malaria-endemic countries. 
Observational studies to evaluate the performance of automated 
detection systems for malaria diagnosis were performed in in-field 
settings with promising results, such as EasyScan Go and Autoscope 
(Torres et al., 2018; Horning et al., 2021; Das et al., 2022). This type of 
device could be a useful diagnostic tool, not only for malaria diagnosis, 
but also for other infectious or Neglected Tropical Diseases (NTDs), 
such as schistosomiasis, trypanosomiasis, and filariasis. However, 
specific peculiarities in terms of optical train, number of FoVs for 
diagnosis, parasite sizes and sample preparation should be considered.

In this study, we trained multiple computational state-of-the-art 
deep learning models for malaria parasite detection in thick blood 
smear digital images. A malaria-labeled image database was created 
and employed to train the CNN models. We  compared the 
performance of different neural networks with the same dataset, and 
applied attention modules. In addition, a low-cost robotized 
microscope was designed to automate the image auto-focus and slide 
movements. Arduino controllers, 3D-printed pieces, and servo motors 
were used to create a single prototype for the universal automation of 
optical microscopes. The system does not need internet connection 
and was power supplied by portable solar batteries. Finally, the 
diagnosis technology has been integrated into a smartphone 
application called iMAGING, which controls the microscope’s slide 
movements and detects malaria parasites in digital images via trained 
CNNs on a computer. According to our knowledge, it is the first fully 
automated low-cost system for malaria diagnosis with artificial 
intelligence tools, and specially designed for low-income regions and 
malaria endemic regions. We consider that the development of this 
novel digital image diagnosis technology would contribute to 
erradicate malaria and other neglected tropical diseases, and would 
join the global effort to fight against infectious diseases of poverty.

2 Materials and methods

2.1 Convolutional neural network 
algorithms

To generate the malaria digital image database and train CNN 
algorithms, the following methodologies, summarized in Figure 1, 
were employed. The same dataset was used to train the different CNN 
models. This methodology follows quality standards and was the same 
for all experiments. This type of work allows us to standardize the 
methods thus obtaining reliable and comparable results between the 
neural network models employed.

2.1.1 Image acquisition
Giemsa-stained thick blood smear samples were used to capture 

microscopic digital images for further image labeling and 
identification. Thick blood smear biological samples were provided by 
the (i) Vall d’Hebron University Hospital (Barcelona, Spain), (ii) 
Drassanes-Vall d’Hebron International Health and Infectious Diseases 
Centre (Barcelona, Spain), (iii) Malaria collection samples of 
Drassanes-Vall d’Hebron, and (iv) Saint John of God Hospital (Lunsar, 
Sierra Leona). Parasites of P. falciparum, P. vivax, P. ovale, and 
P. malariae species were visualized in the samples used to correctly 
detect Plasmodium infection. Samples were validated by three expert 
clinical parasitology microscopists from Drassanes-Vall d’Hebron 

International Health and Infectious Diseases Centre Laboratory. All 
thick blood smear samples were positive for Plasmodium infection 
with parasite levels ranging from 80 to +10,000 parasites/μL. A Leica 
ICC50W integrated digital microscopy camera (5.0 MP) and the 
digital camera of a Samsung Galaxy S20 (64 MP, 0.8 μm, f/2.0, OIS) 
smartphone device were employed for image acquisition. Image pixel 
size (resolution) was 3,024 × 4,032 pixels for smartphone-captured 
images, and 2,992 × 1944 pixels for the Leica ICC50W digital camera. 
An adapter 3D bracket attached to the ocular lens of the microscope 
was used to standardize the image-capturing procedure with the 
smartphone device. Both, integrated camera and smartphone images 
were captured by the visualization of blood smear samples through a 
Leica DM750 microscope lens with 1,000x total magnification (10x 
ocular; 100x immersion oil objective).

2.1.2 Image pre-processing
The images were cropped to highlight the area of interest and 

eliminate the black borders typical of acquisition with a smartphone 
device. Cropping was only performed in smartphone-acquired images 
to remove the outer edges without losing information. Original 
smartphone images were cropped automatically (Python script) to 
obtain a 4:3 image in the center, and subsequently rotated 90° for 
image reorientation. With this procedure, it is possible to crop an 
image regardless of its dimensions and number of pixels, as 
proportions were used to perform the cropping. The cropped images 
have the same 4:3 image proportion as those acquired with the 
microscope-integrated camera. Cropping confers a recomposition of 
the image that may positively affect the final results, providing a 
clearer image and removing elements irrelevant to the prediction and 
identification functions of the neural networks (Cheng et al., 2022). 
Pre-processed images were used for image annotation and 
CNN training.

2.1.3 Image annotation
Both, integrated digital camera and smartphone camera acquired 

images were labeled by experts of the Drassanes-Vall d’Hebron 
International Health and Infectious Diseases Centre. Parasite forms, 
leukocytes, and artifacts were labeled in malaria thick blood smear 
digital images. A personalized annotation software was developed 
with the Python programming language for digital image labeling 
(Python Software Foundation, 2019). For image annotation, the area 
of interest was selected by creating a bounding box with the object 
inside. Labels were considered single-object detections on digital 
database images, therefore an image contains multiple annotations. 
Parasite forms (malaria blood stage cycle) as early trophozoites and 
mature trophozoites were labeled. Leukocytes were annotated in 
digital malaria images for further parasite density calculations. 
Artifacts and confusing forms due to illumination issues, sample 
preparation, Giemsa staining reagents, or image capturing were also 
labeled. The annotation procedure is represented in Figure 1. Once 
labeling is finished, the Annotation App software creates a json file 
with annotations linked to the original image file, in which the 
coordinates of the labeled objects are specified.

2.1.4 Convolutional neural networks training
A comprehensive comparative study to evaluate the performance 

of several state-of-the-art object-detection CNN models was designed. 
The comparison of the convolutional neural networks has been 

https://doi.org/10.3389/fmicb.2023.1240936
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org


Maturana et al. 10.3389/fmicb.2023.1240936

Frontiers in Microbiology 04 frontiersin.org

designed based on previous similar studies (Dong et  al., 2017; 
Pattanaik et al., 2019). Pre-trained YOLOv5 (Redmon et al., 2016), 
Faster R-CNN (Ren et al., 2017), SSD (Liu et al., 2016), and RetinaNet 
(Pardede et al., 2020) models with the COCO dataset (Dataset, n.d.) 
were fine-tuned with our malaria thick blood smear positive 
Plasmodium infection samples dataset. CNNs were trained for multi-
class classification with three categories: early trophozoites, mature 
trophozoites, and leukocytes. Their performances were evaluated by 
precision, recall, F-score, and mAP0.5 descriptive values with 
validation and test sets. The malaria dataset was split into the same 
proportions for each CNN model: 80% images for training, 15% for 
validation and 5% for testing. Images/samples for each subset were the 
same to standardize and compare performances under equal training 
conditions, preserving patient-level structure.

2.1.5 Attention modules
Preliminary tests to check attention modules perfomance in our 

malaria dataset with the same proportion split (80% train / 15% 
validation / 5% test) were carried out. In particular, we have trained 
the YOLOv5x with the Squeeze and Excitation (SE) attention module, 
as well as the Convolutional Block Attention Module (CBAM) as 
stated in Hu et al. (2018) and Woo et al. (2018) respectively. Their 
performances were evaluated by precision, recall, F-score, and 
mAP0.5 descriptive values with test set and compared with YOLOv5x 
results as demonstrated in other studies (Gong et al., 2022).

2.1.6 Statistical analysis
Statistical analyses to determine significant differences between 

validation and test subset performance for each CNN model was 
performed. Metric means were calculated individually for each CNN 
model and subset (validation/test) by t-test analysis (p < 0.05). To 
evaluate significant statistical differences between CNNs models and 
attention modules a paired t-test analyses (p < 0.05, t-value > 2/−2), 
mean (M) and standard deviation (SD) were employed. Statistical 
analyses were performed with IBM SPSS Statistics environment.

2.2 Microscope automation and 
smartphone application

2.2.1 Design of a 3D-printed prototype for 
microscopy automation

An Ender-3 Creality 3D printer was used to build Polylactic Acid 
(PLA) and Polyethylene terephthalate glycol (PETG) pieces for 
microscope focus automation. The entire prototype was designed with 
Tinkercad Open Source specialized software and Ultimaker Cura 
software (Ultimaker Cura: software de impresión 3D potente y fácil de 
usar | Ultimaker, n.d.). Autofocusing and two-dimensional X-Y track 
slide movements were performed by low-cost servo and step-by-step 
motors. Power requirements are: servo motor 9G / 5 V and 500 mA 
each; stepper motor Rohs 28BYJ-48 / 5 V and 240 mA; and Arduino 
MKR Wifi 1,010 / 5 V and 700 Ma. The whole system requirements are 
5 V and 2A.

2.2.2 Auto-focus algorithm
In our mechanism we have employed the variance of Laplacian 

as a reference method for image auto-focusing. This method allows 
the calculation of a value for each image, which indicates the level 
of focusing of the acquired picture. Therefore, the analysis of 
variance of Laplacian values would determine which is the best 
focused image for each Field of View (FoV) (Salido et al., 2020). The 
variance calculation is performed in each FoV determined by X-Y 
movements of the robotized microscope. In a single FoV the 
smartphone camera observes different focused images by the 
continuous movement of the step-by-step motor on the fine 
adjustment wheel. The smartphone device by Bluetooth (BLE) 
connection with the controllers guides the step-by-step motor to 
move the wheel in both directions of rotation (30 position units of 
movement in each direction) in order to focus the biological 
sample. During the auto-focusing process a Laplacian variance 
value is computed to each of the images. The system visualizes the 
centroid of the original image by creating a new cropped image for 

FIGURE 1

Sequential procedure of CNN algorithm generation for malaria parasite detection in thick blood smear digital images. 1. Images were acquired through 
the microscope lens with an ICC50W integrated digital camera or a smartphone camera. 2. Smartphone-acquired images were pre-processed to 
eliminate black borders from the surroundings of the original raw image by image cropping and rotation. New images have a 4:3 proportion, emulating 
integrated camera-acquired images. 3. Image labeling by image annotation software. Parasites, leukocytes, and artifacts were labeled for further CNN 
training. JPG (image) and JSON (labels linked to image) files were generated. 4. Split image dataset into 80% training, 15% validation, and 5% testing. 
Train and compare YOLOv5x, Faster R-CNN, RetinaNet, and SSD performances.
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Laplacian analysis. This procedure allows the observation of only 
the center of the image, without the black borders produced by the 
ocular lens attachment. Once the image scanning in the two 
directions of rotation has been completed, the mechanism is able to 
return to the position of highest focus by analyzing the variance 
values. An image was captured in the focused position by the 
smartphone camera for further image analysis.

2.2.3 Integration of trained CNN models into 
computer software

A Lenovo ThinkPad intel Core i5 computer was employed to run 
CNN algorithms. A smartphone app was developed with the official 
open-access integrated development environment, Android Studio 
(Android Developers, 2021). The iMAGING smartphone app confers 
the possibility of integrating CNN and automated microscope 
technology into a single software. To increase computational power 
and speed up neural network detection, images captured from the 
smartphone device are sent via a BLE connection to the computer for 
further analysis by CNN models. This type of transmission does not 
depend on an internet connection.

3 Results

A novel automated diagnostic method for malaria parasite 
detection in thick blood smear digital images was developed and 
integrated into a smartphone app. The flowchart of the operational 
procedure is represented in Figure 2.

3.1 Convolutional neural network

3.1.1 Malaria thick blood smear image database 
analysis

Once all images were captured and labeled, a digital image 
database of malaria thick blood smears was generated; a total of 148 
thick blood smear samples were used for image database generation. 
Between 10 and 20 images of different microscopy fields were 
captured for each sample employed. A total of 2,571 labeled images 
were imported into the database for further CNN training and 
diagnosis algorithm generation. Annotation numbers for each label 
class were: 24437 leukocytes, 37,820 early trophozoites and 1,641 
mature trophozoites were labeled taking into account all database 
images. A total of 2,238 images were captured with the integrated 
microscope camera LEICA ICC50W and 333 images were acquired 
with the Samsung Galaxy S20 smartphone camera. Malaria thick 
blood smear image database summary information is represented 
in Table 1. The total number of images and labels employed for 
CNN training was decided considering other similar studies 
(Mehanian et al., 2017a,b; Torres et al., 2018; Yang et al., 2020), and 
were conditioned by the number of Plasmodium infection samples 
available in the laboratory and CNN algorithms proven 
performance results.

3.1.2 Convolutional neural network comparison
Object-detection state-of-the-art CNNs were trained and 

compared to evaluate their performance. Table  2 shows the most 
relevant metrics to evaluate the performance of YOLOv5x, Faster 

R-CNN, SDD, and RetinaNet with validation and test data image 
subsets. Results of the t-test analysis indicated that there was a 
non-significant statistical difference between neural network 
performance with validation and test data subsets, as expected 
(Table 2).

Precision test values ranged between 0.8913–0.9562, setting 
considerably optimized results with all trained CNN models. 
Precision parameter analysis indicates that all CNNs have an 
optimized identification algorithm, with low rates of failures when 
parasite and leukocyte detections were performed. Analysis of recall 
(sensitivity) test values generated a wide range of values: 0.4789–
0.9331. These remarkable differences between CNNs indicate that 
YOLOv5x and Faster R-CNN, with recall values of 0.9350 and 
0.9638, respectively, were the optimal CNNs for these type of 
detections. Low recall values, as for SSD, indicate that the algorithm 
could not detect all objects of interest and, therefore, high levels of 
false-negative results were obtained.

The F-score is the harmonic mean of precision and recall 
(Equation 1); therefore, F-score analysis of the different trained 
CNNs was relevant to determine the model with the best 
performance. The highest F-score value was 0.9279, corresponding 
to the YOLOv5x neural network. The Faster R-CNN F-score value 
was just lower than that of YOLOv5x, with a final result of 0.9261. 
Both neural networks were optimal in terms of accuracy and, 
therefore, with high precision and recall values. In 
Supplementary Figure 1, the precision-recall graph of the YOLOv5x 
algorithm demonstrates the aforementioned results.

 
F score precision recall

precision recall
=

+
2 ·

·

 
(1)

Equation (1): F-score value calculation.
Finally, mAP values were between 0.9133–0.9489, indicating a 

high accuracy value for the trained object-detection models.
Once all descriptive parameters were analyzed, we concluded that 

YOLOv5x and Faster R-CNN were the best CNNs based on object 
detection for our image database. Results of the paired t-test indicated 
that there was a non-significant difference between YOLOv5x 
(M = 0.9; SD = 0.02) and Faster R-CNN (M = 0.9; SD = 0.03), t(7) = 0.8, 
p = 0.429. The low recall values for the SSD model indicate a 
non-reliable algorithm for parasite detection. The RetinaNet model 
had acceptable results, although not as positive as YOLOv5x and 
Faster R-CNN. As a result, we present several digital labeled images of 
a test data subset in Figure  3, and predictions performed by the 
YOLOv5x trained model.

Finally, in order to evaluate the multi-class model for each 
category, results of YOLOv5x were shown in Table  3. Descriptive 
parameters of each class are important to evaluate the model for each 
category. Leukocytes have higher predictive values than early and 
mature trophozoites for all descriptive metrics.

3.1.3 Attention modules comparison
Attention modules results of SE and CBAM training with 

YOLOv5x algorithm are shown in Supplementary Table 1. Precision 
values of CBAM (0.9350) are slightly better when compared with 
original YOLOv5x (0.9210) and SE (0.9040). In the particular case 
of recall values, SE showed the best performance (0.9380) just 
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higher than that of YOLOv5x (0.9350). Therefore, F-score and 
mAP0.5 values of attention modules were similar to the original 
YOLOv5x trained model. Results of the paired t-test analysis 
indicated that there is a non-significant difference between 
YOLOv5x (M = 0.9, SD = 0.01) and CBAM (M = 0.9, SD = 0.01), 
t(3) = 0.3, p = 0.779; and that there is a non-significant difference 
between YOLO (M = 0.9, SD = 0.01) and SE (M = 0.9, SD = 0.02), 
t(3) = 1.1, p = 0.348. These results lead us to conclude that the 
application of attention modules in our database could help to 
obtain comparable results, although they did not improve on the 
performance of the original YOLOv5x CNN.

3.1.4 YOLOv5x negative sample validation
Analysis and validation tests were performed to evaluate the 

reliability of YOLOv5x model with confirmed negative samples. 
Thick blood smear samples from asymptomatic individuals (healthy 
control) from malaria endemic areas were (n = 5) provided by the 
Drassanes-Vall d’Hebron International Health and Infectious 
Diseases Centre with a negative RT-PCR result for Plasmodium 
infection (RealStar® Malaria Screen & Type PCR kit 1.0, Altona, 
22,767 Hamburg, Germany). A total of 166 images were acquired 
from thick blood smear samples and analyzed by the trained 
YOLOv5x model (confidence threshold 0.5). The employed images 

were not used for CNN algorithms training. A minimum number of 
200 leukocytes were detected in each sample to emulate microscopy 
examination. After analysis, 161/166 digital images (96.98%) were 
negative for Plasmodium infection, and five false-positive results 
were reported (five artifacts detected as early trophozoites). A total 
of 1,008 leukocytes were detected in all digital images. Validation 
tests were crucial to evaluate the reliability of the system and 
illustrate the importance of clinical validation by professionals to 
report a final diagnosis. Inspection by laboratory professionals is 
desirable to conclude that the sample was negative and discard false-
positive results.

3.1.5 YOLOv5x Low-parasite density validation
Analysis and validation tests were performed to evaluate the 

reliability of YOLOv5x model with confirmed low parasite density 
Plasmodium infected samples. Thick blood smear samples (n = 5) 
provided by the Drassanes-Vall d’Hebron International Health and 
Infectious Diseases Centre with a positive microscopy examination 
result (<800 parasites/μL) for Plasmodium infection were analyzed 
(confidence threshold 0.5). A total number of 50 Plasmodium 
positive images (10 images/sample) were acquired. Low-parasite 
images with a single Plasmodium parasite were analyzed to detect 
false-negative results. 47/50 images (94%) were correctly analyzed, 

FIGURE 2

Flowchart of the malaria diagnostics procedure by iMAGING technology. The robotized microscope and smartphone were used as an emulation of 
traditional microscopic examination. 1. The smartphone captures images via its camera using the iMAGING app. Images of the system prototype were 
represented. 2. Images are cropped to eliminate areas of no interest for imaging diagnosis. Images are sent by a Bluetooth (BLE) connection to a 
computer for further analysis. 3. Images are analyzed by computational technology and Convolutional Neural Network models for parasite detection. 
4. Finally a malaria diagnosis report containing clinical information is generated.
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with a total of three false-negative results (undetected mature 
trophozoites in a single sample). Final validation by laboratory 
professionals is desirable to conclude that the sample was positive 
and discard false-negative results.

3.1.6 Automated parasite density calculations
The parasite level calculation procedure was based on the 

Centers for Disease Control and Prevention (CDC) 
recommendations for parasite density calculation in thick blood 
smear samples (CDC – DPDx – Diagnostic Procedures – Blood 
Specimens, n.d.). The system can acquire images and detect the 

number of parasites and leukocytes in each microscopic field. Once 
the system has quantified 200 leukocytes, a parasite density result 
is obtained. The number of Plasmodium parasites and leukocytes 
was simultaneously counted to obtain a quantitative result. The 
CDC estimates that 1 μL of blood contains 8,000 leukocytes (CDC 
– DPDx – Diagnostic Procedures – Blood Specimens, n.d.), 
therefore, an automatic calculation of parasite number per 
microliter could be  performed. In cases where less than 200 
leukocytes were counted, an approximate value would be obtained 
with the same calculation. Equation (2) represents the algorithm for 
automatic parasite density calculation by image analysis.

TABLE 1 Summary of Malaria thick blood smear sample/image database.

Category Sub-Total Total

Sample source Drassanes-Vall d’Hebron International Health and Infectious Diseases 

Centre (Barcelona, Spain)

55 (samples/patients) 148 (samples/patients)

Malaria collection samples of Drassanes-Vall d’Hebron (Barcelona, Spain) 82 (samples/patients)

Saint John of God Hospital (Lunsar, Sierra Leona) 13 (samples/patients)

Plasmodium species P. falciparum 47 (samples) 80 (samples)

P. vivax/P. ovale 24 (samples)

P. malariae 7 (samples)

Mixed infection 2 (samples)

Parasite density Low (<1,000 p/μL) 57 (samples) 148 (samples)

Medium (10,000–1,000 p/μL) 57 (samples)

High (+10,000 p/μL) 34 (samples)

Image acquisition type Integrated camera (ICC50W Leica) 2,238 (annotated images) 2,571 (annotated images)

Smartphone (Samsung Galaxy s20) 333 (annotated images)

Annotations category Early trophozoites 37,820 (labels) 63,898 (labels)

Mature trophozoites 1641 (labels)

Leukocytes 24,437 (labels)

p, parasites; μL, microliter. Organizational database scale: Patient > Sample > Annotated Image > Annotation.

TABLE 2 Comparative table of object-detection CNN models’ performance.

CNN 
model

Validation dataset Test dataset

Precision Recall F-score mAP 0.5 Precision Recall F-score mAP0.5 p-value

YOLOv5x 0.8975 0.9197 0.9085 0.9490 0.9210 0.9350 0.9279 0.9440 0.157

Faster 

R-CNN

0.8753 0.9331 0.9033 0.9194 0.8913 0.9638 0.9261 0.9412 0.144

SSD 0.9501 0.4789 0.6368 0.8491 0.9562 0.5599 0.7063 0.9133 0.354

RetinaNet 0.9369 0.8155 0.8720 0.9180 0.9407 0.8719 0.9050 0.9489 0.187

Descriptive parameter values of Precision, Recall, F-score, and Mean Average Precision (mAP0.5) are represented for Validation and Test datasets. YOLOv5x: You Only Look Once version 5 
model x, Faster R-CNN: Faster R-Convolutional Neural Network, SSD: Single Shot Detector. Statistical analysis (t-test) to compare the performance of CNN models with validation and test 
data subsets (p < 0.05). Bold values represent the higher values of each parameter, in validation and test datasets.
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Equation 2: Parasite density calculation in thick blood smear 
samples by image analysis. The number of Plasmodium parasites 
and leukocytes detected in several digital images would  
determine the number of parasites per microliter of blood. A total  
number of 8,000 leukocytes were assumed in 1 μL of 
peripheral blood.

3.2 Microscopy automation and 
smartphone application

3.2.1 Universal microscopy automation prototype
A low-cost prototype was designed to automatically capture and 

detect malaria parasites in thick blood smear images on a 
conventional optical microscope. The main aim of microscope 
automation was to move the X-Y axis of the microscope stage and the 
auto-focus of the sample.

For the X-Y axis, an adapter was constructed to fit onto the 
microscope stage and hold the sample easily. Two servo-motors, one for 
each axis, capable of horizontal and vertical movements by means of 
toothed rotors, were attached to the same part. These pieces allow the 
movements across the sample, thus emulating the tracking of 
conventional microscopy. The X-Y control of the slide movement allows 
microscopic images to be  captured for malaria diagnosis without 
overlapping each other. Each digital image corresponds to a microscopic 

field. The servo motors are controlled by Arduino controllers and 
connected via Bluetooth (version 5.0) to the smartphone device.

A step-by-step motor with an adapter arm was used for sample 
auto-focus. This was also monitored by Arduino controllers and 
connected via BLE to the smartphone device. For sample autofocusing 
the Variance of Laplacian has been employed (Salido et al., 2020). 
Additionally, an external cage was designed to store Arduino 
controllers, cables, and electronic parts. All 3D parts were designed as 
generic adapters by using measurements from various conventional 
optical microscopes commonly employed in laboratories (see Figure 2).

The motors used were finally controlled by a smartphone device, 
which captures microscopic images of different microscopy fields to 
detect biological forms in digital images. Image-capturing optimization 
was crucial for correct image acquisition. A smartphone adapter was 
designed to correctly attach the mobile phone lens to the ocular lens.

The whole 3D prototype was able to move the sample on the 
microscope stage, auto-focus the preparation, and capture digital 
images by means of a smartphone device. This mechanism allows 
automation of malaria diagnosis by the observation of thick blood 
smears and detection of parasite forms, thus emulating conventional 
microscopy. The smartphone device, step-by-step and servo motors, 
and controllers are powered by portable solar batteries.

3.2.2 Autofocus evaluation
An auto-focus experiment was performed to calculate the time of 

focus and prediction time of YOLOv5x CNN. A total number of 50 FoV 
of thick blood smear samples were auto-focused and analyzed by 
iMAGING prototype system. Results show an average time of focus of 
8,144 ± 56 ms/FoV; and an average analysis time by YOLOv5x CNN and 
a Lenovo ThinkPad intel Core i5 of 2,126 ± 179 ms/image. Analyzed 
images show 6.2 ± 2.3 leukocytes/image and 7.1 ± 2.7 trophozoites/
image (ring stange and mature), with a total of 13.3 ± 3.9 objects/image.

3.2.3 Imaging app software for malaria diagnosis
The imaging app software for smartphone devices was developed 

using the Android Studio development environment (Android 
Developers, 2021). The application allows the integration of all the 
technology developed for autonomous diagnosis. The smartphone, via the 

FIGURE 3

(A) Labeled test images by Vall d’Hebron-Drassanes professionals. (B) YOLOv5x trained model predictions of a test image subset with confidence 
values.

TABLE 3 YOLOv5x model parameters for each label classification 
category.

Category Precision Recall F-score mAP0.5

Leukocytes 0.989 0.993 0.990 0.994

Early 

Plasmodium 

trophozoites

0.908 0.866 0.886 0.938

Mature 

Plasmodium 

trophozoites

0.838 0.912 0.873 0.905
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application, could control and guide the movements of the microscope 
slide via a BLE v5.0 connection and capture digital images in each 
microscopic field. Therefore, the mobile device acts as the key element of 
the process and is responsible for capturing the images that will 
subsequently be analyzed by the trained CNN models on the computer. 
Mobile phone devices are relatively low-cost and available worldwide; for 
this reason, they are ideal for imaging diagnostics and might be a suitable 
option for implementation in areas with resource-poor settings.

4 Discussion

CNNs have been employed for the detection of Plasmodium 
parasites in thick and thin blood smear microscopic images. However, 
whole procedure automation, huge labeled image datasets, system 
implementation in clinical laboratories and effectiveness are some of 
the major issues of these technologies.

To address some of the main limitations, we have developed a fully 
automated diagnostic system for the detection of Plasmodium 
trophozoites and leukocytes in thick blood smear digital images by using 
AI tools and a low-cost robotized microscope. Training results showed 
optimal performance for early trophozoite, mature trophozoite, and 
leukocyte detection in a test dataset with the YOLOv5x and Faster 
R-CNN algorithms. Moreover, the adaptor 3D pieces confer the 
microscope the possibility to auto-focus the sample, scan the entire slide, 
and capture digital images with a smartphone camera for further image 
analysis and diagnosis. However, the system still has some limitations: (i) 
the need of trained personnel to prepare the Giemsa stain; (ii) it is able 
to detect Plasmodium spp. infection for malaria diagnosis, although it is 
not able to differentiate between Plasmodium species; and (iii) the 
difficulties that might appear in the field for its routinely implementation.

In our study, thick blood smears were used as reference samples for 
Plasmodium parasite detection. Thick blood smears should be the first 
step in microscopic visualization for malaria parasite detection, resulting 
in a positive/negative result for the sample analyzed (Maturana et al., 
2022). Its observation is crucial to perform a malaria diagnosis and is 
widely employed in resource-poor settings due to its accessibility, 
conferring a valuable feature to the system. The detection of Plasmodium 
parasites and leukocytes by CNN algorithms provides a fast and efficient 
diagnosis. Moreover, species identification should be complemented 
with thin blood smear visualization for a complete diagnosis. Several 
studies demonstrate the possibility of detecting malaria parasites in thick 
(Kaewkamnerd et al., 2012; Rosado et al., 2016; Yang et al., 2020) and 
thin blood smear samples (Mushabe et al., 2013; Fatima and Farid, 2020), 
although few distinguish between species. The major limitation for 
Plasmodium species differentiation is the morphological similarities 
between them such as P. ovale and P. vivax (CDC, 2013), and the large 
image database required for the proper development of algorithms 
capable of differentiating between species (Krishnadas et  al., 2022). 
Differentiation between P. falciparum and P. vivax could be the first step 
toward the generation of new models capable of detecting malaria 
parasites at the species level (Penas et al., 2017).

Moreover, the creation of a large database of thick blood smear 
labeled images (a total number of 63,898 labels) by professionals from an 
international health reference center confers an additional value to the 
diagnosis system. The employment of clinical biological samples is of vital 
importance for the acquisition and labeling of digital images as they more 
accurately emulate the practice of a microbiological diagnostic laboratory. 
In this study, there was an imbalance in label proportions between 

parasite stage forms due to biological reasons and the type of samples 
used. When thick blood smears were observed for Plasmodium parasite 
detection, the most common forms were early trophozoites or immature 
trophozoites (Phillips et al., 2017). In addition, most samples employed 
for database generation contain P. falciparum parasites, in which the 
majority of parasitic forms in peripheral blood are early trophozoites. 
Therefore, YOLOv5x, Faster R-CNN, SDD, and RetinaNet CNN models 
were trained with leukocyte, early trophozoite, and mature trophozoite 
image data labels. Generated models can detect the most common 
parasitic forms in thick blood smear samples and count leukocyte 
numbers to calculate parasite levels. Thus, trained CNNs could determine 
whether a sample is positive or negative for Plasmodium infection. F-score 
values are an optimal descriptive metric to evaluate or determine the best 
CNN model in cases of unbalanced data (Lopez-Nava et al., 2020). In 
cases of low-parasite levels a laboratory expert would be required to 
determine if the sample is positive/negative for Plasmodium infection. As 
demonstrated, with samples under 800 parasites/μL the system could 
trigger false-negative results (6%). Considering WHO guidelines in 
microscopy diagnosis, a parastitaemia of 80–200 parasites/μL are defined 
as difficult detection samples for certified WHO microscopists. Therefore, 
our system performance would be  acceptable, although it should 
be evaluated following WHO microscopy diagnosis guidelines in clinical 
validation studies. RDTs might have a higher sensitivity and could also 
complement the final diagnosis (Slater et al., 2022).

Parasite density estimations by thick blood smear samples are 
performed following CDC recommendations to obtain autonomous 
calculations (CDC – DPDx – Diagnostic Procedures – Blood 
Specimens, n.d.). Parasite levels are crucial in Plasmodium infection 
and could determine the severity of malaria disease; therefore, 
leukocyte labeling is important and could provide valuable descriptive 
diagnostic information.

Descriptive metrics (precision, recall, F-score) can be compared 
with other predictive models based on CNNs for malaria parasite 
detection. When thick blood smear algorithms were compared with our 
predictive models, in most cases, F-score values (0.92–0.93) were very 
similar to the state-of-the-art reported in the literature (Yang et al., 2020; 
Kassim et al., 2021). In addition, a remarkable characteristic of our 
database is the heterogeneity of samples/images from different 
laboratories, preparation procedures, staining, smartphone/integrated 
camera acquisition, and Plasmodium species. Most studies used 
samples/images from a single laboratory or a single Plasmodium specie, 
commonly P. falciparum. In contrast, the addition of different images in 
terms of visual differences would affect the final descriptive parameters 
of the algorithm, although it would confer robustness to detect diverse 
preparations (Maron et al., 2021). Thin blood smear algorithms for 
parasite detection usually have higher values of precision, recall and, 
consequently, F-score, when compared with thick blood smears (Loddo 
et al., 2022; Magotra and Rohil, 2022). In addition, the customization of 
CNNs to improve detection results is generating optimal algorithms, 
such as the REONet method (modified ResNet-18) to classify malaria 
parasites on thin blood smears with 96.68% specificity, 94.79% 
sensitivity, and a 95.69% F-score (Zhu et al., 2022). This fact would 
explain the higher values of descriptive parameters in that type of study. 
Another important aspect was the comparative study of different object-
detection CNNs. As demonstrated, the neural network model is crucial 
to obtain a reliable diagnosis, and the different structures and processing 
of each one would determine the final results. The same dataset was 
evaluated with different object detection CNNs, demonstrating optimal 
results with the YOLOv5x and Faster R-CNN models. The most efficient 
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neural network is YOLOv5, however, the recall values of the Faster 
R-CNN model are slightly higher, and may perform better for the 
detection of samples with low parasite concentrations. In our study, 
YOLOv5x has the highest F-score value (92.79%) in comparison with 
other evaluated CNNs and attention modules, and is the most balanced 
neural network in terms of descriptive metrics. In addition, it is the 
model that best fits with our technology, as the processing and analysis 
of the images are fast (Li et al., 2022), and allows it to be integrated into 
the software of smartphone devices (Liu et al., 2022). By analyzing the 
metrics, speed and applicability of the YOLOv5x neural network, 
we could determine that it is the most suitable option for our system. 
However, the Faster R-CNN model could be a similar alternative with 
comparable results, at the expense of the RetinaNet and the SSD models. 
In the medical field, the minimization of false positive and negative 
results is an added value for the diagnosis. The neural network with the 
best sensitivity and recall, and consequently F-score, is the one that will 
generate the lowest errors. This factor reaffirms the choice of the 
YOLOv5x model for our system. Recent studies demonstrated that 
modification by increasing the feature scale and adding detection layers 
to the YOLOv3 and YOLOv4 algorithms could be an optimal solution 
to improve their performance in thick blood smear images 
(Abdurahman et al., 2021). Modified YOLOv4 obtains a mAP value of 
96.32% for the detection of early trophozoites in thick blood smear 
digital images. When compared with our database results, their 
performance is slightly better, although mature trophozoites were not 
included for training and detection. Finally, single category results 
demonstrate that the detection of leukocytes is superior (F-score 0.990) 
when compared with early and mature trophozoites (F-scores of 0.886 
and 0.873 respectively). YOLOv5x is demonstrated to be better with the 
detection of larger objects in digital images, as our results confirmed and 
in concordance with other studies (Liu et al., 2022). SE and CBAM 
attention modules were applied to YOLOv5x model, although they did 
not improve its final performance as demonstrated in statistical analysis. 
However, precision values of CBAM and recall values of SE were slightly 
better when compared to YOLOv5x, leading to a lowest ratio of false-
positive and false-negative results, respectively. As an alternative to 
CNNs, there are transformer-based methods such as Detection 
Transformer (DETR) which are a transformer encoder-decoder 
architecture and a set-based global loss that forces unique predictions 
via bipartite matching for object detection (Carion et al., 2020).

It is important to note that the descriptive metrics of the neural 
networks evaluate the models generated and determine the final 
development validation of the whole prototype, however, they do not 
provide information on the sensitivity and specificity of the entire 
diagnostic system. Image auto-focusing issues, illumination changes, 
staining artifacts, or microscope model could affect the quality of the 
acquired images, therefore CNN prediction values would be negatively 
affected. In order to reliably evaluate the complete diagnostic tool, 
clinical validation tests should be pursued in reference laboratories 
and resource-poor settings. However, an earlier development phase, 
such as the one presented in this study, is crucial to provide the basis 
for future validation and implementation studies.

In addition, one of the key added values of the project is the universal 
microscope automation by means of the movement of the slide and the 
auto-focusing of the sample. The low-cost mechanism allows us to 
automate the process from beginning to end. A recent study 
demonstrated that the automation of a microscopic system for malaria 
detection could provide valuable results (Yoon et al., 2021). Yoon et al. 
(2021), developed a system with 100% sensitivity and specificity for the 

detection of P. falciparum cultures and P. vivax samples (Yoon et al., 
2021). Lower-resolution images or microscope models could explain our 
different results, however, our novel diagnostic system is affordable, easy 
to use, universally adaptable, cheap, and specifically designed for any 
type of laboratory and infrastructure. Portable solar batteries provide an 
alternative to relying on electrical power to operate our system. Other 
design proposals for robotization and implementation based on a 
3D-portable mobile microscope are of significant value to this area of 
study, and help improve and advance the development of portable and 
automated diagnostic systems (García-Villena et al., 2021).

Moreover, several studies demonstrated the utility of smartphone 
devices for the automatic diagnosis of malaria parasites via imaging 
techniques (Cesario et al., 2012; Poostchi et al., 2018; Yang et al., 2020; 
Yu et al., 2020; Zhao et al., 2020). Its powerful analog, digital, and 
telecommunication functions, combined with cloud data processing, 
confer smartphones with a wide range of diagnostic possibilities 
(Merazzo et al., 2021). Yu et al., 2023 evaluated the performance of a 
smartphone-based malaria diagnostic application in thick blood 
smear images with promising results, and could be considered as a 
milestone for further studies (Yu et al., 2023). However, parasite levels 
were not evaluated as distinct from our system.

The validation and implementation of the iMAGING prototype in 
resource-poor setting environments would be  the next step. The 
continuous loss of microscopist experts is a major problem for clinical 
laboratories, although microscopy should remain a reference method 
of high relevance in microbiological diagnosis (Bradbury et al., 2022). 
Therefore, the system was designed to be  a supportive tool for 
microscopists, in order to facilitate their routinely laboratory practice 
for malaria diagnosis and could be a suitable option for their training, 
by the continuous visualization of Plasmodium parasites in digital 
microscopy images. It is crucial to understand traditional microscopy 
to validate and implement novel diagnostic techniques based on AI. The 
direct visualization of parasites by microscopic observation of blood 
smears is an unequivocal sign of a positive diagnosis, one of the major 
strengths of this procedure compared with molecular or RDT 
techniques (Bradbury et al., 2022).

5 Conclusion

Automated malaria diagnosis is a major challenge to improve and 
support traditional microscopic techniques. Artificial intelligence 
diagnostic techniques would not only be useful for implementation in 
malaria-endemic countries but also for professional training, sample 
digitization, and diagnostic support for any laboratory, regardless of 
their resources. It is only a matter of time before novel diagnostic 
techniques based on AI and image digitalization erupt into medical 
environments to provide support for traditional microscopy. 
Microscopic visualization of thick blood smears can be  tough and 
complex, therefore, assisted diagnostic methods based on AI, such as 
the one described herein, could be a suitable supportive tool of great 
potential. The automation of the entire process by the robotization of 
conventional optical microscopes provides added value to the 
diagnostic system. The possibility of completely emulating traditional 
microscopy with its X-Y slide movements and sample autofocus issues 
is a major challenge. The system has great potential, however, it needs 
to be  refined and validated in different laboratories to evaluate its 
performance in clinical practice. Furthermore, comparison with other 
diagnostic techniques already established and regulated for malaria 
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diagnosis, such as conventional optical microscopy, RDTs, and PCR, 
would allow AI-based diagnostic techniques to be more accurately 
positioned within the currently available set of malaria diagnostic 
techniques. The diagnostic system described in this study, has 
significant value due to the automation of the process, the design of the 
prototype, the automated calculation of parasite density, and the 
support which it provides to conventional microscopy. However, the 
detection system would be optimized in terms of object detection, and 
the algorithms for differentiating the Plasmodium species should 
be implemented to provide a complete diagnosis in further studies.

In conclusion, we  are ever closer to developing an AI-based 
diagnostic method for malaria parasite detection. Recent advances 
and improvements in convolutional neural network models confer a 
promising future for this type of methodology. The development of an 
effective automated diagnostic system with AI technology for malaria 
diagnosis is still a great challenge. Therefore, the coalescence of the 
fully-automated system via auto-focus and slide movements and the 
autonomous detection of Plasmodium parasites in digital images with 
a smartphone software and AI algorithms confers the prototype the 
optimal features to join the global effort against malaria, neglected 
tropical diseases and other infectious diseases of poverty.
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