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Purpose: The purpose of this study was to measure distal radioulnar joint (DRUJ) dislocation and radi-
oulnar displacement associated with sequential sectioning of the different bands of the interosseous
membrane and triangular fibrocartilage complex in the simulation of a Galeazzi fracture dislocation.
Methods: Twelve fresh-frozen cadaver forearms were dissected. We examined the anatomy and function
of the forearm interosseous membrane. Each forearmwas then mounted onto a biomechanical wrist and
forearm device. In the control group, radial osteotomy was performed and the degree of DRUJ
displacement with progressive loads was measured. In addition to radial osteotomy, in group 1, the
central band (CB) was sectioned; in group 2, the CB, distal membranous portion of the interosseous
membrane, and distal oblique bundle were sectioned; and in group 3, the CB, distal membranous portion
of the interosseous membrane, distal oblique bundle, and triangular fibrocartilage complex were
sectioned.
Results: The radioulnar displacement (mm) at 25 N, 50 N, and 75 N was recorded. In group 1, applying
progressive loads resulted in an average DRUJ displacement of 4.3, 5.9, and 7.9 mm, respectively. In group
2, the displacement was 5.2, 5.7, and 6.9 mm, respectively. In group 3, the displacement was 6.2, 8.1, and
9.9 mm, respectively. Our study showed a correlation between increase in the load applied to the same
injury and the degree of displacement (P ¼ .001). In group 3, the degree of DRUJ displacement was
statistically increased compared to the other groups (P ¼ .04).
Conclusions: Migration of the radius under loads implies disruption of both the CB and triangular
fibrocartilage complex. The distal oblique bundle by itself does not seem to have a relevant role in
radioulnar displacement at the DRUJ.
Clinical relevance: This study provides insights into the interosseous membrane and stability of the DRUJ,
which can contribute to a better understanding of Galeazzi fracture-dislocations.
Copyright © 2023, THE AUTHORS. Published by Elsevier Inc. on behalf of The American Society for Surgery of the Hand.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
Introduction in adults.2 Most Galeazzi fractures can be treated with open
Fractures of the shaft of the radius associated with distal radi-
oulnar joint (DRUJ) injury are known as Galeazzi-type injuries.1,2

These injuries account for nearly 7% of all fractures of the forearm
have been received or will be
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reduction internal fixation of the radius alone; however, some
remain unstable at the DRUJ.3,4 Rigid osteosynthesis does not al-
ways achieve stability of the distal ulna.5 Distal radioulnar joint
instability can produce significant disability manifested as chronic
pain, weakness, and restricted range of motion.5,6 As shown by the
numerous reconstructive procedures described in the literature,
restoration of stability and joint function has not been consistently
achieved.6,7 The forearm unit consists of the radius and ulna, which
are bound proximally by the proximal radioulnar joint, centrally by
the interosseous membrane (IOM), and distally by the DRUJ.7 Axial
stability of the forearm is attributed primarily to the radial head
and secondarily to the IOM and triangular fibrocartilage complex
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Figure 1. Anatomic dissection of the forearm. The anatomic insertions of the main
bands on the radius and ulna as well as the pronator quadratus muscle can be
observed. AB, accessory band.

Figure 2. Biomechanical forearm device used. The specimen was mounted onto a
servo-hydraulic testing machine.
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(TFCC).8 In addition to longitudinal forearm stability, Watanabe
et al9 demonstrated that the IOM resists volar and dorsal trans-
lation of the distal radius at the DRUJ and that TFCC and IOM
disruption is required for DRUJ dislocation to occur. The function
of the IOM to provide transverse (radioulnar) stability was studied
by Pfaeffle et al,10 who identified transverse force vectors within
the IOM that help to pull the radius and ulna together, thus pre-
venting radioulnar splaying. The forearm IOM plays an important
role in DRUJ stability. The TFCC appears to be the major soft-tissue
stabilizer.3,11 When the joint remains dislocated after fixation of
the radius in Galeazzi fracture, temporary stabilization of the
reducible but unstable DRUJ with the forearm in supination is
indicated.3,5 The purpose of this anatomic and biomechanical
study was to measure DRUJ radioulnar (transverse) displacement
and instability associated with sequential sectioning of the
different parts of the IOM of the forearm in the simulation of a
Galeazzi fracture-dislocation.

Materials and Methods

This study was conducted with approval of the ethics
committee of our institution (Protocol record IIBSP-GAL-2018-
75, Ref: 18/258, ClinicalTrials.gov identifier: NCT03798496).
Twelve fresh-frozen cadaver forearms were dissected, and the
different parts of the IOM were measured. There were six men
and six women, with a mean age of 74 years. We examined
the anatomy of the forearm IOM, and the different anatomic
bands were identified. The insertions of the main bands on
the radius and ulna were described. The number and location
of the central band (CB) and accessory bands were noted
(Fig. 1). The distance of the radial and ulnar attachments of
the CB and proximal bands from the distal end of the radius
and ulna, respectively, were recorded and expressed as a
percentage of the length of each bone. These measurements
were taken using a Series 500 Digimatic Absolute Calliper
(Mitutoyo UK Ltd). After dissection, the end of the specimen
was mounted onto a servo-hydraulic testing machine (Mul-
tiTest 2.5-d, Mecmesin Corp) (Fig. 2). The radiocarpal joint was
stabilized in the neutral position using an external fixator
(dynamic joint distractor II; Stryker Trauma AG). The other
end was fixed to a 1,000-N dynamometer (Advanced Forced
Gauge; Mecmesin Corp). The experiment was performed in
neutral forearm rotation. A preload of 2 N was applied three
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Figure 3. Anatomic dissection showing the DIOM with the DOB. The DOB fibers run
along the distal ulnar shaft toward the DRUJ and insert into the inferior rim of the
sigmoid notch of the radius.

Table
Load Data and Degree of Displacement*,y

Force (N) Displacement Mean (mm) SD P valuez

1 þ 25 1.41 0.79 .071
1 þ 50 2.60 1.26 .062
1 þ 75 3.47 1.78 .042
1 þ 100 4.17 0.83 .004x

2 þ 25 3.35 1.80 .108
2 þ 50 4.94 1.45 .144
2 þ 75 6.20 1.46 0.045x

2 þ 100 7.27 1.20 N/A
3 þ 25 4.08 1.19 .039x

3 þ 50 5.98 1.90 .079
3 þ 75 7.56 1.37 N/A
3 þ 100 8.14 N/A N/A
4 þ 25 6.06 1.44 .045x

4 þ 50 7.70 1.90 .001z

4 þ 75 9.60 1.60 N/A
4 þ 100 11.21 N/A N/A

N/A, not applicable.
* The values of displacement (mm) at 25 N, 50 N, and 75 N were taken. Failure of

the system was observed from 75 to 100 N.
y 1 indicates the control group: specimen with radial osteotomy; 2 indicates

group 1: specimen with radial osteotomy plus CB rupture; 3 indicates group 2:
specimen with radial osteotomy plus CB plus DIOM plus DOB rupture; 4 indicates
group 3: specimen with radial osteotomy plus CB plus DIOM plus DOB plus TFCC
rupture.

z Linear and multiple regression analysis.
x Statistically significant.
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times to precondition the construct and ensure a consistent
starting point. The temperature of the room was kept stable at
21 �C throughout the experiment, with an SD of 1 �C. The
samples were loaded with a continuous force from 0 to 100 N.
A diaphyseal radius fracture, at the same level in all speci-
mens, was made using a power saw. Because the length of the
radius in the forearm of each specimen was different, radial
osteotomy was performed at the distal third of the total
length of the radius of the forearm. After radial osteotomy was
performed in each specimen, we divided the simulated in-
juries into three groups. In the control group, only a radial
osteotomy was performed and the degree of DRUJ displace-
ment with progressive loads was measured. In group 1, in
addition to radial osteotomy, the CB was sectioned; in group 2,
in addition to radial osteotomy, sectioning of the CB, the distal
membranous portion of the interosseous membrane (DIOM)
and distal oblique bundle (DOB) were sectioned; and in group
3, in addition to radial osteotomy, sectioning of the CB, DIOM,
and DOB, the TFCC was also sectioned. We measured the de-
gree of DRUJ radioulnar displacement (mm) at 25, 50, 75, and
100 N. Usually, from 75 to 100 N, failure of the system was
observed, and testing was terminated. The load data (N) were
correlated with the displacement data (mm) in all groups.
VectorPro is software for use with compatible Mecmesin force
test systems. This servo-hydraulic testing machine assessed
the force, in Newtons, needed to create a displacement of 2
mm or more; the displacement generated with a 25-, 50-, 75-,
and 100-N load; and the yield force (defined as the peak force
before the first descent of the load-displacement curve), ulti-
mate force (defined as the peak force before the last descent of
the load-displacement curve), total displacement (mm), total
time to failure (seconds), and stiffness (N/mm) (defined as the
tangent of the linear ascending part of the load-displacement
curve). In the load-failure test, bony avulsion or breakage was
defined as failure in all specimens.12

Statistical analysis

Statistical analysis was performed using IBM SPSS Statistics,
version 21.0 (SPSS Inc). Statistical data were evaluated using
descriptive methods. We evaluated differences in variables using
the Student t-test and analysis of variance for the groups. A P value
of less than .05 was considered significant, with a 95% CI.

Results

In the specimens, the average radial length was 23.4 cm and the
average ulnar length was 25.5 cm. The IOM arose from the radius
and extended distally and obliquely to insert distally at 25% of the
ulna. The IOM is divided into three parts: the middle ligamentous
complex as well as the distal and proximal membranous portions.
The middle ligamentous complex includes the CB, which is a stout
structure and is always present. In our study, the average length of
the CB of radial origin was 13 cm and that of the CB of ulnar origin
was 5.7 cm. The CB had an average width of 2.4 cmwhen measured
perpendicular to its fibers and 3.6 cm when measured perpendic-
ular to the long axis of the forearm. The remaining ligaments
adjacent to the CB were the accessory bands. The proximal mem-
branous portion had two ligaments: the proximal oblique cord and
the dorsal oblique accessory cord. The DIOM includes the distal
oblique bundle; however, the DOB was inconsistently present. In
our specimens, the DOB originated from around the distal one-
sixth of the ulnar shaft and was present in only 5 of 12 speci-
mens (41%). The DOB fibers ran along the distal ulnar shaft toward
the DRUJ and inserted into the sigmoid notch of the radius (Fig. 3).

In group 1, the application of progressive loads (25, 50, or 75 N)
resulted in a mean DRUJ displacement of 4.3, 5.9, and 7.9 mm,
respectively. In group 2, the mean DRUJ displacement was 5.2, 5.7,
and 6.9 mm, respectively. In group 3, the mean DRUJ displacement
was 6.2, 8.1, and 9.9 mm, respectively. The CB of the IOM



Figure 4. A, B Example of Galeazzi fracture-dislocation. Posteroanterior and lateral radiograph. Migration of the radius equal to or greater than 6.2 mm, in our study, implies rupture
of all DRUJ stabilizing structures.
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contributed 70% to themechanical stiffness of the forearm, whereas
the TFCC contributed 20%. The DOB contributed 10% and did not
appear to have a relevant role in the transverse stability in the
forearm. There was a statistically significant correlation between
the increase in the load applied to the same injury and the degree of
displacement (P ¼ .001). In group 3, the degree of DRUJ displace-
ment was statistically increased compared with that in the other
groups (P ¼ .04) (Table).

Discussion

Chronic pain, reduced range of motion, and DRUJ instability are
some of the consequences of sub-optimal treatment of a DRUJ
injury associated with a Galeazzi fracture.1,3,13 Two years after
surgical treatment of a Galeazzi fracture, the mean loss of supina-
tion strength was 16.1 kg, corresponding to a loss of 12.5%. The
mean loss of pronation strength was 19.1 kg, corresponding to a
loss of 27.2%. The loss of supination strength is associated with
worse clinical scores.13 van Duijvenbode et al4 evaluated 17 patients
with a diaphyseal fracture of the radius, with a mean of 19 years of
follow-up. Of these patients, seven had concomitant dislocation of
the DRUJ (Galeazzi fracture). The authors concluded, with this small
sample size, that internal fixation of the diaphyseal radius fractures
with and without associated DRUJ dislocation have comparable
long-term results.4 Distal radioulnar joint stability is provided by
the bony anatomy of the sigmoid notch, in addition to the soft
tissues surrounding the joint; the IOM; and the TFCC.1,14e16

Morphology of the sigmoid notch of the distal radius is a contrib-
uting factor for TFCC foveal injury. Flat-face type morphology was
most frequently associated with this TFCC lesion and DRUJ insta-
bility.16 To analyze the morphology of the sigmoid notch, cartilage,
and inclination of the DRUJ, magnetic resonance imaging may be
valuable before surgery.17 Despite the relevant role of the TFCC in
the stability of the DRUJ, the CB of the IOM is the stiffest stabilizing
structure of the forearm.18,19 The CB, in addition to the radial head
and TFCC, prevents proximal migration of the radius and works as a
load transmitter between the radius and ulna to redistribute
load.18e20 The CB is typically aligned at approximately 21� with
respect to the long axis of the radius and ulna.16,21 When there are
injuries, such as Essex-Lopresti lesion, in which there is disruption
of the CB, some authors advocate interosseous reconstruction to
improve results.22e25 Werner et al26 demonstrated that the CB of
IOM sectioning caused a significant increase in dorsal gapping at
the DRUJ by 2.1 mm in supination and 0.6 mm in pronation. It also
caused an increase in volar gapping by 1.3mm in supination and 0.5
mm in pronation.25 Central band reconstruction might restore load
transfer between the radius and ulna so as to unload the radial
head.27 In the same way, in Galeazzi injuries, treatment can be
improved with the stabilization of DRUJ instability by means of a
tendon graft.6 In cases of DRUJ instability, various reconstruction
techniques have been proposed.6,16,28,29 In a biomechanical study,
Wallace et al23 suggested that a graft of the palmaris longus tendon,
shown to fail at 350 N, is not strong enough to act as an effective
substitute at high physiologic loads. Petersen et al30 studied the
initial static stability provided by different tendon graft re-
constructions and compared it with the stability of intact DRUJ.
Their findings showed that all reconstructive procedures failed to
restore natural joint stability.30 Moore et al31 suggested that a radial
shortening of up to 5 mm does not require disruption of the DRUJ;
however, a radial shortening of more than 10 mm requires
disruption of the IOM in addition to disruption of the TFCC. In our
study, in group 3, all stabilizing structures had been released, and
different loads were applied. More than 6.2 mm of radial
displacement in the DRUJ suggests that there is disruption of the CB
of the IOM, DIOM, DOB and the dorsal and palmar radioulnar lig-
aments of the TFCC (Fig. 4).

In recent years, the stabilizing role of the DOB has taken on
increased importance and interest.32e34 The DOB originates from the
distal one-sixth area of the ulnar shaft, coinciding with the proximal
border of the pronator quadratus muscle, and runs distally toward
the DRUJ.35 Watanabe et al9 insisted on the importance of DOB,
which constrained the palmar and dorsal instability of the radius at
the DRUJ in all forearm rotation positions. In our study, the DOB was
present in only 5 out of 12 specimens (41%). Noda et al35 reported
that it was present in 41% of their dissections, and it was present in
29% of specimens in an anatomic study by Hohenberger et al.36



C. Lamas et al. / Journal of Hand Surgery Global Online 5 (2023) 774e778778
Despite the fact that the DOB is an inconsistently present anatomic
structure, some authors suggest that it is essential as a secondary
stabilizer of the DRUJ when the dorsal and palmar radioulnar liga-
ments of the TFCC are disrupted.20,32,37 Kitamura et al,38 in their
biomechanical study, concluded that the group with a DOB
demonstrated significantly greater DRUJ stability in the neutral po-
sition than the group without a DOB. In recent years and because of
the role as a secondary stabilizer of the DOB, other surgical tech-
niques for reconstruction of the DOB have been described.7,33,34 In a
study, Low et al34 compared DRUJ reconstruction using the Adams
technique and DOB reconstruction in 10 specimens. The authors
concluded that in terms of translation, cyclical loading, and maximal
load to failure, DOB reconstruction for DRUJ instability was similar to
Adams reconstruction.

Our study showed that the constant anatomic structures were
the CB, DIOM, and TFCC. The DOB was present in 41% of our spec-
imens. It seems clear that primary DRUJ stabilizers are the constant
structures, such as the CB and TFCC, and the DOB has a secondary
role.35,36 Clinically, in Galeazzi fracture-dislocation, if after open
reduction internal fixation of the radius fracture, DRUJ instability
persists, we propose, similar to Moritomo20 and Moritomo et al,37

the necessity of other surgical procedures.38 In our biomechanical
study, the DRUJ could not dislocate until the palmar radioulnar
ligament, dorsal radioulnar ligament, and CB of the IOM were dis-
rupted. The limitations of our study are the small size of the sample,
extrapolation of the evaluation to anatomic specimens, and in a
biomechanical study, generalization to patients with Galeazzi
fracture-dislocation.
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