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Introduction: Fragile X-associated tremor/ataxia syndrome (FXTAS, OMIM#

300623) is a late-onset neurodegenerative disorder with reduced penetrance

that appears in adult FMR1 premutation carriers (55–200 CGGs). Clinical

symptoms in FXTAS patients usually begin with an action tremor. After that,

different findings including ataxia, and more variably, loss of sensation in

the distal lower extremities and autonomic dysfunction, may occur, and

gradually progress. Cognitive deficits are also observed, and include memory

problems and executive function deficits, with a gradual progression to

dementia in some individuals. Aquaporin 4 (AQP4) is a commonly distributed

water channel in astrocytes of the central nervous system. Changes in

AQP4 activity and expression have been implicated in several central nervous

system disorders. Previous studies have suggested the associations of AQP4

single nucleotide polymorphisms (SNPs) with brain-water homeostasis, and

neurodegeneration disease. To date, this association has not been studied in

FXTAS.

Methods: To investigate the association of AQP4 SNPs with the risk of

presenting FXTAS, a total of seven common AQP4 SNPs were selected and

genotyped in 95 FMR1 premutation carriers with FXTAS and in 65 FMR1

premutation carriers without FXTAS.

Results: The frequency of AQP4-haplotype was compared between groups,

denoting 26 heterozygous individuals and 5 homozygotes as carriers of the
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minor allele in the FXTAS group and 25 heterozygous and 2 homozygotes in

the no-FXTAS group. Statistical analyses showed no significant associations

between AQP4 SNPs/haplotypes and development of FXTAS.

Discussion: Although AQP4 has been implicated in a wide range of brain

disorders, its involvement in FXTAS remains unclear. The identification of novel

genetic markers predisposing to FXTAS or modulating disease progression is

critical for future research involving predictors and treatments.
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FXTAS, AQP4, FMR1 premutation, genetic variation, glymphatic system

Introduction

The brain is a high-energy consuming organ with a high
metabolic activity, producing a substantial amount of interstitial
waste products. Efficient clearance of the brain’s metabolic waste
is needed in order to avoid their accumulation, causing several
neurological diseases (Kaur et al., 2021). Since there is a lack of
conventional lymphoid circulation in the brain, the glymphatic
system has been postulated as an alternative clearance for the
brain waste product (Iliff et al., 2015), though evidence is still
incomplete (Hladky and Barrand, 2022).

In the glymphatic system, cerebrospinal fluid (CSF) flows
into the brain parenchyma within the periarterial spaces that
surround the penetrating cerebral arteries, also called the
perivascular spaces. Facilitated by aquaporin 4 (AQP4), CSF
flows from the periarterial space into the brain interstitium
and mixes with interstitial fluid, which, along with interstitial
solutes, travels into the perivenous spaces, draining the fluid and
its contents into the deep veins and into the basal meningeal
and cervical lymphatic vessels (Hablitz and Nedergaard, 2021).
AQP4 is the most abundant water channel in the brain, and,
since it has a role regulating fluid exchange between perivascular
spaces and the rest of the glymphatic system, it is considered
the most important element in it (Nagelhus and Ottersen, 2013;
Papadopoulos and Verkman, 2013; Szczygielski et al., 2021).

Alterations of glymphatic fluid circulation through
AQPs variations are now emerging as central elements
in the pathophysiology of different brain conditions. In
fact, dysfunction of AQP4 have been implicated in the
pathogenesis of many degenerative disorders, including
Alzheimer’s disease (AD), vascular cognitive impairment,
idiopathic normal-pressure hydrocephalus, Parkinson’s disease
dementia, frontotemporal dementia and Creutzfeldt-Jakob
disease (Zeppenfeld et al., 2017; Nedergaard and Goldman,
2020; Silva et al., 2021; Wang et al., 2022). Furthermore,
evidence indicates that genetic variation in AQP4 modulates
sleep quality and architecture, amyloid-β burden and rate
and progression of cognitive decline in AD patients (Burfeind
et al., 2017; Rainey-Smith et al., 2018; Ulv Larsen et al., 2020).

Despite the relationship between glymphatic dysfunction and
neurodegenerative diseases, dysfunction of glymphatic system
has not yet been studied in Fragile X-associated tremor/ataxia
syndrome (FXTAS) and its association with AQP4 genetic
variants is unknown. FXTAS is a neurodegenerative disorder
linked to FMR1 gene premutation carriers (55–200 CGG
repeats) that is associated with cognitive loss that can evolve
into dementia. Intranuclear inclusions and increased β amyloid
load has been discovered in brains of patients with FXTAS
(Cabal-Herrera et al., 2020; Salcedo-Arellano et al., 2021a). On
the basis of these observations, we analyzed AQP4 functional
variants with the aim to investigate whether AQP4 could be a
new genetic risk factor for FXTAS.

Materials and methods

Study population

The present study was conducted on genotype data from
a total of 160 unrelated FMR1 premutation carriers (95
presenting FXTAS symptoms and 65 without FXTAS clinical
symptoms). Participants were identified through previous
fragile X syndrome research projects at Emory University
(Atlanta, GA, USA), through recruitment efforts at scientific
conferences, and through collaborations with other research
groups. All participants were enrolled from families with
members known to be affected with fragile X-associated
conditions and molecularly diagnosed. Table 1 summarizes
general demographics of the participants. FXTAS subjects were
screened for eligibility as described in Kong et al. (2022). Briefly,
case subjects were male or female premutation carriers with
symptoms of tremor or ataxia before age 65, as reviewed by
a neurologist. Control individuals, named as the no-FXTAS
group, were male premutation carriers that reached age 68
without significant tremor or ataxia symptoms, as reviewed by
a neurologist. The protocols and consent forms were approved
by the Institutional Review Board at Emory University, and
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written informed consent was obtained from all subjects
(IRB00074941).

SNPs of the AQP4 gene and haplotype
analysis

Seven tag single nucleotide polymorphisms (SNPs) across
AQP4 gene (NM_001650) were selected according to their
location and known functions, based on earlier reports on
their associations with clinical phenotypes (Ulv Larsen et al.,
2020). The SNPs were considered for those above 15% in Utah
Residents with Northern and Western European Ancestry
(CEU) population according to minor allele frequency (MAF:
0.15∼0.26). These SNPs included rs162007 (Chr18:26865883,
Upstream, MAF 0.16), rs162008 (Chr18:26865728,
5′UTR, MAF 0.20), rs63514 (Chr18:26863457, intron,
MAF 0.17), rs335931 (Chr18:26859108, intron, MAF
0.15), rs335930 (Chr18:26856961, intron, MAF 0.23),
rs335929 (Chr18:26855623, 3′UTR, MAF 0.14), rs16942851
(Chr18:26851725, downstream, MAF 0.14). The chromosome
positions are based on hg38.

Genotyping of AQP4 SNPs

Whole genome sequencing was performed on samples using
Illumina platforms at Hudson Alpha or Novogene as described
in Kong et al. (2022). All samples were mapped using PEMapper
and called using PECaller (Johnston et al., 2017). Genomic data
have been uploaded to the National Institute of Mental Health
(NIMH) Data Archive.1

Statistical analysis

To test the population homogeneity of the study subjects,
the allele frequencies were tested against Hardy-Weinberg
equilibrium (HWE) by the χ2-test. The plink v1.07 toolset was
used to perform SNP association and haplotype2 (Purcell et al.,
2007). The power analysis was performed using the “Quanto”
tool.3 Statistical analyses were performed using commercially
available software (SPSS SmartViewer, version 18.0; SPSS,
Chicago, IL, USA). P-values < 0.05 were considered statistically
significant. Association tests were corrected using the Benjamini
and Hochberg step-up False Discovery Rate (FDR) for multiple
comparisons.

1 https://nda.nih.gov/edit_collection.html?id=2380

2 https://zzz.bwh.harvard.edu/plink

3 https://bio.tools/QUANTO

Results

Genotype data from 95 FXTAS and 65 no-FXTAS
individuals were analyzed. Table 1 shows the demographic data
of FXTAS and no-FXTAS group. Significant differences were
found for the age and the CGG repeat size when comparing both
groups (p< 0.0001 and p< 0.0001, respectively). Age difference
can be attributed to a bias in the recruitment of no-FXTAS
individuals. In order to make sure that FMR1 permutations
in the no-FXTAS group did not have neurologic symptoms
older men were included in this cohort. As for the CGG repeat

TABLE 1 Description of the individuals recruited in this study.

FXTAS cases
(n = 95)

No-FXTAS
cases (n = 65)

Males/female [no (%)] 80 (84%)/15 (16%) 65 (100%)/0

Age (mean± SD, Y)* 67.70± 10.81 77.01± 6.38

Age min, max (Y) 27–94 66–98

CGG repeat size (mean± SD)* 93.15± 20.33 75.00± 15.14

CGG repeat size min, max 55–150 56–150

*p < 0.0001 using Student’s t-test for comparison of means.

TABLE 2 Genotype frequency for each SNP according to
presence of FXTAS.

Genotype FXTAS
(n = 95)

No-FXTAS
(n = 65)

rs162007 GG 64 (67.4%) 37 (56.9%)

GA 26 (27.3%) 25 (38.5%)

AA 5 (5.3%) 3 (4.6%)

rs162008 CC 64 (67.4%) 36 (55.4%)

CT 26 (27.3%) 26 (40%)

TT 5 (5.3%) 3 (4.6%)

rs63514 CC 63 (66.3%) 37 (56.9%)

CT 27 (28.4%) 25 (38.5%)

TT 5 (5.3%) 3 (4.6%)

rs335931 AA 63 (66.3%) 38 (58.5%)

AG 27 (28.4%) 25 (38.5%)

GG 5 (5.3%) 2 (3%)

rs335930 AA 57 (60%) 36 (55.4%)

AC 32 (33.7%) 26 (40%)

CC 6 (6.3) 3 (4.6%)

rs335929 AA 63 (66.3%) 38 (58.5%)

AC 27 (28.4%) 24 (36.9%)

CC 5 (5.3%) 3 (4.6%)

rs16942851 TT 64 (67.4%) 38 (58.5%)

TG 26 (27.3%) 24 (36.9%)

GG 5 (5.3%) 3 (4.6%)
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TABLE 3 Single nucleotide polymorphism (SNP) allele association analysis.

SNP FXTAS MAF No-FXTAS MAF OR (95% CI) P-value Adj P-value

rs16942851 0.19 0.22 0.81 (0.47–1.41) 0.463 0.628

rs335929 0.19 0.22 0.84 (0.49–1.46) 0.538 0.628

rs335930 0.23 0.24 0.96 (0.57–1.63) 0.887 0.887

rs335931 0.19 0.22 0.84 (0.49–1.46) 0.538 0.628

rs63514 0.19 0.24 0.77 (0.45–1.33) 0.348 0.628

rs162008 0.19 0.25 0.72 (0.42–1.23) 0.224 0.628

rs162007 0.19 0.24 0.75 (0.43–1.28) 0.290 0.628

MAF, minor allele frequency; OR, odd-ratio. Adj p-value, adjusted p-value using Benjamini and Hochberg step-up false discovery rate, for multiple comparisons.

size, the difference found might account for the CGG-repeat
dependence described in clinical and neuropathologic features
of FXTAS.

In agreement with HWE, there was no deviation detected
in any of the analyzed SNPs (p > 0.3). All SNPs studied
were in linkage disequilibrium (LD), and the pairwise LD
coefficient (r2) ranged between 0.8 and 1. Table 2 shows the
genotype frequency for each SNP according to the presence
of FXTAS symptoms. After correction of p-values for multiple
comparisons, there was no significant difference in frequencies
of any of the analyzed SNPs between FXTAS and no-FXTAS
group (Table 3). Adjustment for sex did not change these
results (data not shown). Table 4 shows the results of the
genotype association analysis between AQP4 polymorphisms
and risk of FXTAS, according to different genetic inheritance
models.

Discussion

Fragile X-associated tremor/ataxia syndrome is a late-
onset neurodegenerative disorder with reduced penetrance,
meaning that not all FMR1 premutation carriers will develop
it (Hagerman et al., 2001). Among FMR1 premutation carriers
older than 50 years, it has been estimated that 40% of men
and 16% of women will develop FXTAS symptoms, although
there is significant variability in the progression of neurological
dysfunction (Coffey et al., 2008; Rodriguez-Revenga et al.,
2009). The description and characterization of FXTAS is of
great interest, because the prevalence of FMR1 premutation
in the general population is relatively high. It has been
estimated that FMR1 premutation affects ∼1 out of 400 males
and 1 out of 200 females (Tassone et al., 2012), leading to
symptoms of FXTAS in up to 1 in 3000 men older than
50 years. Even though the FMR1 premutation is the major
risk factor for FXTAS, there are still some unknown genetic,
epigenetic or environmental factors that might be affecting
gene penetrance. Candidate gene SNP association analysis
is a commonly used approach to identify risk alleles and

their association with clinical traits. In the present study we
selected this method to investigate the role of AQP4 gene
variants in FXTAS susceptibility. We hypothesized that AQP4
polymorphisms could play a role as risk factors for FXTAS.
However, we did not find any significant difference in the
distributions of alleles, genotypes, and haplotypes between
FXTAS and no-FXTAS individuals, after correction for multiple
testing.

A myriad of different studies point out AQP4 gene as a
novel candidate gene for brain plasticity and associated with
neuropsychiatric and neurodegenerative disorders. According
to the human postmortem brain microarray data from the Allen
Brain Atlas resources,4 AQP4 is most highly expressed in fronto-
limbic and temporal cortical regions. Both neuroanatomical
areas are linked to cognitive and executive processes, and its
disturbance leads to the neuropsychological changes described
in many different movement disorders (Robertson et al.,
2016). Although indirectly, genome-wide linkage studies have
repeatedly pointed out the role of AQP4 in the development
of brain disorders (Dadgostar et al., 2021). Genetic variations,
abnormal distribution and quantitative abnormalities of AQP4
have also been associated with several neurodegenerative
disorders, such as AD, Parkinson’s disease and amyotrophic
lateral sclerosis (reviewed in Mader and Brimberg, 2019).
Recently the rs162008, the most prevalent genetic variant
of AQP4, has been associated with a ∼15% change in
AQP4 expression. In AD, genetic variations in AQP4 were
shown to be associated with changes in sleep pattern and
increased β-amyloid (Rainey-Smith et al., 2018), as well as
to β-amyloid accumulation and disease stage progression
(Burfeind et al., 2017; Chandra et al., 2021). Taking everything
into account, it is implied that AQP4 distribution and
regulation might have crucial role in neuronal activity and
function.

Apart from intention tremor and cerebellar ataxia, core
clinical features of FXTAS include executive dysfunction which
may progress to dementia in some cases (Hagerman et al.,

4 http://www.brain-map.org
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TABLE 4 Genotype association using different genetic models.

SNP Allele Test OR (95% CI) P-value Adj P-value

rs16942851 G ADD 1.22 (0.52–2.83) 0.647 0.978

DOM 0.68 (0.35–1.31) 0.251 0.365

REC 1.75 (0.33–9.31) 0.512 0.854

rs335929 C ADD 1.23 (0.53–2.86) 0.634 0.978

DOM 0.71 (0.37–1.37) 0.313 0.365

REC 1.75 (0.33–9.31) 0.512 0.854

rs335930 C ADD 1.38 (0.60–3.15) 0.449 0.978

DOM 0.83 (0.43–1.57) 0.561 0.561

REC 2.12 (0.41–10.87) 0.366 0.854

rs335931 G ADD 1.23 (0.53–2.86) 0.634 0.978

DOM 0.71 (0.37–1.37) 0.313 0.365

REC 1.75 (0.33–9.31) 0.512 0.854

rs63514 T ADD 0.99 (0.47–2.08) 0.978 0.978

DOM 0.67 (0.35–1.29) 0.229 0.365

REC 1.15 (0.26–4.98) 0.854 0.854

rs162008 T ADD 0.97 (0.46–2.04) 0.932 0.978

DOM 0.60 (0.31–1.15) 0.125 0.365

REC 1.15 (0.26–4.98) 0.854 0.854

rs162007 A ADD 0.98 (0.47–2.06) 0.961 0.978

DOM 0.64 (0.33–1.23) 0.180 0.365

REC 1.15 (0.26–4.98) 0.854 0.854

ADD, additive model; DOM, dominant model; REC, recessive model. Adj p-value, adjusted p-value using Benjamini and Hochberg step-up false discovery rate, for multiple comparisons.

2001; Hall et al., 2016). In addition, several conditions affecting
sleep quality have been frequently described among FXATS
patients (Hamlin et al., 2011; Summers et al., 2014). FXTAS
can coexist with other neurodegenerative disorders, such as
Parkinson’s disease and AD (Aydin et al., 2020; Salcedo-Arellano
et al., 2021b), suggesting a synergistic effect on the progression
of disease symptoms. On the basis of these observations and
the evidence of the consequences of AQP4 dysfunction in
neurological conditions, we analyzed genetic variation of AQP4
gene among FXTAS patients. We compared frequency of alleles,
genotypes, and haplotypes of AQP4 between FXTAs and no-
FXTAS cases. Results did not find any association between any of

TABLE 5 Major allele and minor allele haplotype (HTMa and HTMi)
frequencies of AQP4 functional SNPs across the CEU (Utah residents
with ancestry from Northern and Western Europe) population and the
FXTAS and no-FXTAS groups.

Haplotype
frequency CEU

FXTAS
(n = 190)

No-FXTAS
(n = 130)

HTMa 0.767 0.76842105 0.73846154

HTMi 0.1966 0.18947368 0.22307692

the SNPs analyzed and the risk of developing FXTAS (Table 4).
Furthermore, no association was detected when comparing
frequency distribution of the two major AQP4-haplotypes. In
fact, the frequency detected did not differ from the one described
among CEU population (Table 5). Although no relationship
between genetic variants in AQP4 gene and FXTAS was found,
no association with changes in the development of the disease
has been assessed due to lack of clinical information. Similarly
with the AD,AQP4 SNPs have been associated with some aspects
of the clinical course, such as faster cognitive decline, rather
than the presence or absence of the disease (Burfeind et al.,
2017).

As previously described (Ulv Larsen et al., 2020),
examination of the SNPs revealed two conserved haplotypes:
HtMa (haplotype for the major allele) and HtMi (haplotype for
the minor allele). Haplotype frequency comparison by means
of dominant analysis between FXTAS and no-FXTAS group
did not show significant differences (p > 0.05). Moreover, both
groups showed similar haplotype frequency compared to the
CEU population (Table 5).

Given the sample size this study had limited power. Post
hoc power analyses showed that the power to detect the
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observed odds ratios for FXTAS cases vs. no-FXTAS ranged
from 0.05 to 0.19.

This study has two main limitations that might be explained
because of the rarity of the disorder. First the relatively small
sample size. Power ranged only from 0.05 to 0.19. Second,
the age differences between groups and the fact that those
individuals considered as no-FXTAS may develop clinical
symptoms later in life, masking differences among groups.
Nonetheless, to our knowledge we are reporting for the
first time, that the AQP4 SNPs (rs162007, rs162008, rs63514,
rs335931, rs335930, rs335929, and rs16942851) and haplotypes
were not associated with susceptibility of FXTAS in Caucasian
population. Despite this lack of association, further studies are
necessary to fully discard the role of AQP4 and glymphatic
system in the pathology of FXTAS. There is a need to describe
new evidence into how the glymphatic system functions,
and how AQP4 dysfunction might take part into FXTAS
disease progression.
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