
Citation: Gómez, J.L.; Villalonga, G.;

López, A.M. Co-Training for

Unsupervised Domain Adaptation of

Semantic Segmentation Models.

Sensors 2023, 23, 621. https://

doi.org/10.3390/s23020621

Academic Editors: Dan Levi, Oded

Bialer and Shaul Oron

Received: 17 October 2022

Revised: 27 December 2022

Accepted: 3 January 2023

Published: 5 January 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

Co-Training for Unsupervised Domain Adaptation of Semantic
Segmentation Models
Jose L. Gómez 1,2,* , Gabriel Villalonga 1 and Antonio M. López 1,2

1 Computer Vision Center (CVC), Universitat Autònoma de Barcelona (UAB), 08193 Bellaterra, Spain
2 Computer Science Department, Universitat Autònoma de Barcelona (UAB), 08193 Bellaterra, Spain
* Correspondence: jlgomez@cvc.uab.es

Abstract: Semantic image segmentation is a core task for autonomous driving, which is performed
by deep models. Since training these models draws to a curse of human-based image labeling, the
use of synthetic images with automatically generated labels together with unlabeled real-world
images is a promising alternative. This implies addressing an unsupervised domain adaptation
(UDA) problem. In this paper, we propose a new co-training procedure for synth-to-real UDA of
semantic segmentation models. It performs iterations where the (unlabeled) real-world training
images are labeled by intermediate deep models trained with both the (labeled) synthetic images and
the real-world ones labeled in previous iterations. More specifically, a self-training stage provides
two domain-adapted models and a model collaboration loop allows the mutual improvement of
these two models. The final semantic segmentation labels (pseudo-labels) for the real-world images
are provided by these two models. The overall procedure treats the deep models as black boxes and
drives their collaboration at the level of pseudo-labeled target images, i.e., neither modifying loss
functions is required, nor explicit feature alignment. We test our proposal on standard synthetic
and real-world datasets for onboard semantic segmentation. Our procedure shows improvements
ranging from approximately 13 to 31 mIoU points over baselines.

Keywords: domain adaptation; semi-supervised learning; semantic segmentation; autonomous
driving

1. Introduction

Semantic image segmentation is a central and challenging task in autonomous driving,
as it involves predicting a class label (e.g., Road, Pedestrian, Vehicle, etc) per pixel in
outdoor images. Therefore, non-surprisingly, the development of deep models for semantic
segmentation has received a great deal of interest since deep learning is the core for solving
computer vision tasks [1–7]. In this paper, we do not aim at proposing a new deep model
architecture for onboard semantic segmentation, but our focus is on the training process of
semantic segmentation models. More specifically, we explore the setting where such models
must perform in real-world images, while for training them we have access to automatically
generated synthetic images with semantic labels together with unlabeled real-world images.
It is well-known that training deep models on synthetic images for performing on real-
world ones requires domain adaptation [8,9], which must be unsupervised if we have no
labels from real-world images [10]. Thus, this paper falls into the realm of unsupervised
domain adaptation (UDA) for semantic segmentation [11–22], i.e., in contrast to assuming
access to labels from the target domain [23,24]. Note that the great relevance of UDA in
this context comes from the fact that, until now, pixel-level semantic image segmentation
labels are obtained by cumbersome and error-prone manual work. In fact, this is the reason
why the use of synthetic datasets [25–27] arouses great interest.

In this paper, we address synth-to-real UDA following a co-training pattern [28], which
is a type of semi-supervised learning (SSL) [29,30] approach. Essentially, canonical co-

Sensors 2023, 23, 621. https://doi.org/10.3390/s23020621 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s23020621
https://doi.org/10.3390/s23020621
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0001-9511-1915
https://orcid.org/0000-0002-1155-9374
https://orcid.org/0000-0002-6979-5783
https://doi.org/10.3390/s23020621
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s23020621?type=check_update&version=1

Sensors 2023, 23, 621 2 of 28

training consists in training two models in a collaborative manner when only a few la-
beled data are available but we can access a relatively large amount of unlabeled data.
In the canonical co-training pattern, the domain shift between labeled and unlabeled data is
not present. However, UDA can be instantiated in this paradigm.

In previous works, we successfully applied a co-training pattern under the synth-
to-real UDA setting for deep object detection [31,32]. This encourages us to address the
challenging problem of semantic segmentation under the same setting by proposing a
new co-training procedure, which is summarized in Figure 1. It consists of a self-training
stage, which provides two domain-adapted models, and a model collaboration loop for
the mutual improvement of these two models. These models are then used to provide
the final semantic segmentation labels (pseudo-labels) for the real-world images. In con-
trast to previous related works, the overall procedure treats the deep models as black
boxes and drives their collaboration only at the level of pseudo-labeled target images, i.e.,
neither modifying loss functions is required, nor explicit feature alignment. We test our
proposal on synthetic (GTAV [26], Synscapes [27], SYNTHIA [25]) and real-world datasets
(Cityscapes [33], BDD100K [34], Mapillary Vistas [35]) which have become standard for
researching on on-board semantic segmentation. Our procedure shows improvements
ranging from approximately 13 to 31 mean intersection-over-union (mIoU) points over
baselines, being less than 10 mIoU points below upper bounds. Moreover, to the best of our
knowledge, we are the first to report synth-to-real UDA results for semantic segmentation
in BDD100K and Mapillary Vistas.

Figure 1. Co-training procedure for UDA.X l is a set of labeled synthetic images, X u a set of unlabeled
real-world images, and X l̂

x is the set x of real-world pseudo-labeled images (automatically generated).
Our self-training stage provides two initial domain-adapted models (W1,W2), which are further
trained collaboratively by exchanging pseudo-labeled images. Thus, this procedure treats the deep
models as black boxes and drives their collaboration at the level of pseudo-labeled target images, i.e.,
neither modifying loss functions is required, nor explicit feature alignment. See details in Section 3
and Algorithms 1–3.

In summary, the main contributions of this paper are:

• The design and implementation of a novel co-training procedure to tackle synth-to-real
UDA for semantic segmentation. To the best of our knowledge, it is the first time that
the co-training pattern [28] is instantiated for such a purpose.

Sensors 2023, 23, 621 3 of 28

• This procedure allows for seamlessly leveraging multiple heterogeneous synthetic
datasets. In this paper, we show the case of joint use of GTAV and Synscapes datasets.

• This procedure is complementary to image pre-processing techniques such as color
space adjustments and learnable image-to-image transformations. In this paper, we
use LAB alignment.

• This procedure allows for seamlessly leveraging adaptive confidence thresholding
and domain mixing techniques. In this paper, we use thresholding inspired by
MPT [12], the ClassMix collage transform [36], and mini-batch domain mixes (which
we termed as cool-world a decade ago [37]).

• In contrast to the main trend in the related literature, our proposal is purely data-
driven. More specifically, we treat semantic segmentation models as black boxes; thus,
our co-training neither requires modifying specific semantic segmentation losses nor
performing explicit feature alignment.

• Overall, in public benchmarks, our co-training reaches state-of-the-art accuracy on
synth-to-real UDA for semantic segmentation.

Section 2 contextualizes our work. Section 3 details the proposed procedure. Section 4
describes the experimental setup and discusses the obtained results. Section 5 summarizes
this work. Finally, Appendices A–C, provide more details regarding datasets and co-
training quantitative and qualitative results.

2. Related Works

Li et al. [12] and Wang et al. [17] rely on adversarial alignment to perform UDA.
While training a deep model for semantic segmentation, it is performed adversarial image-
to-image translation (synth-to-real) together with an adversarial alignment of the model
features arising from the source (synthetic images) and target domains (real-world im-
ages). Both steps are alternated as part of an iterative training process. For feature
alignment, pseudo-labeling of the target domain images is performed. This involves
applying an automatically computed per-class max probability threshold (MPT) to class
predictions. Tranheden et al. [21] follow the idea of mixing source and target information
(synthetic and real) as training samples [25]. However, target images are used after applying
ClassMix [36], i.e., a class-based collage between source and target images. This requires
the semantic segmentation ground truth, which for the synthetic images (source) is avail-
able while for the real-world ones (target) pseudo-labels are used. Such domain adap-
tation via cross-domain mixed sampling (DACS) is iterated so that the semantic seg-
mentation model can improve its accuracy by eventually producing better pseudo-labels.
Gao et al. [19] not only augment target images with source classes but the way around too.
Their dual soft-paste (DSP) is used within a teacher–student framework, where the teacher
model generates the pseudo-labels. Zou et al. [11] propose a self-training procedure where
per-cycle pseudo-labels are considered by following a self-paced curriculum learning policy.
An important step is class-balanced self-training (CBST), which is similar to MPT since
a per-class confidence-based selection of pseudo-labels is performed. Spatial priors (SP)
based on the source domain (synth) are also used. The authors improved their proposal
in [15] by incorporating confidence regularization steps for avoiding error drift in the
pseudo-labels.

Chao et al. [18] assumes the existence of a set of semantic segmentation models
independently pre-trained according to some UDA technique. Then, the pseudo-label
confidences coming from such models are unified, fused, and finally distilled into a student
model. Zhang et al. [22] propose a multiple fusion adaptation (MFA) procedure, which
integrates online-offline masked pseudo-label fusion, single-model temporal fusion, and
cross-model fusion. To obtain the offline pseudo-labels, existing UDA methods must be
applied. In particular, the so-called FDA [16] method is used to train two different models
which produce two maps of offline pseudo-labels for each target image. The other two
models, m1 & m2, are then iteratively trained. Corresponding temporal moving average
models, m̂1 & m̂2, are kept and used to generate the online pseudo-labels. The training total

Sensors 2023, 23, 621 4 of 28

loss seeks consistency between class predictions of each mi and both offline pseudo-labels
and class predictions from the corresponding m̂i. Moreover, consistency between the online
pseudo-labels from m̂i and the predictions from mj, i 6= j, is used as a collaboration mech-
anism between models. Offline and online pseudo-labels are separately masked out by
corresponding CBST-inspired procedures. He et al. [20] assumes the existence of different
source domains. To reduce the visual gap between each source domain and the target
domain there is a first step where their LAB color spaces are aligned. Then, there are as
many semantic segmentation models to train as source domains. Model training relies
on source labels and target pseudo-labels. The latter are obtained by applying the model
to the target domain images and using a CBST-inspired procedure for thresholding the
resulting class confidences. The training of each model is performed iteratively so that
the relevance of pseudo-labels follows a self-paced curriculum learning. Collaboration
between models is also part of the training. In particular, it is encouraged agreement on the
confidence of the different models when applied to the same source domain, for all source
domains. Qin et al. [14] proposed a procedure consisting of feature alignment based on
cycleGAN [38], additional domain alignment via two models whose confidence discrepan-
cies are considered, and a final stage where the confidences of these models are combined to
obtain pseudo-labels which are later used to fine-tune the models. Luo et al. [13] focused on
the lack of semantic consistency (some classes may not be well aligned between source and
target domains, while others can be). Rather than a global adversarial alignment between
domains, a per-class adversarial alignment is proposed. Using a common feature extractor,
but two classification heads, per-class confidence discrepancies between the heads are used
to evaluate class alignment. The classification heads are forced to be different by a cosine
distance loss. Combining the confidences of the two classifiers yields the final semantic
segmentation prediction. This approach does not benefit from pseudo-labels.

In contrast to these methods, our proposal is purely data-driven in the sense of neither
requiring changing the loss function of the selected semantic segmentation model, nor
explicit model features alignment of the source and the target domains via loss function,
i.e., we treat the semantic segmentation model as a black box. Our UDA is inspired by co-
training [28], so we share with some of the reviewed works the benefit of leveraging pseudo-
labels. In our proposal, two models collaborate at a pseudo-label level for compensating
labeling errors. These two models arise from our previous self-training stage, which
shares with previous literature the self-paced learning idea and adaptive thresholding
inspired by MPT, as well as pixel-level domain mixes inspired by ClassMix. Our proposal
is complementary to image pre-processing techniques such as color space adjustments
and learnable image-to-image transformations. In the case of having multiple synthetic
domains, we assume they are treated as a single (heterogeneous) source domain, which has
been effective in other visual tasks [39].

3. Method

In this section, we explain our data-driven co-training procedure, i.e., the self-training
stage, and the model collaboration loop for the mutual improvement of these two models,
which we call co-training loop. Overall, our proposal works at the pseudo-labeling level, i.e.,
it does not change the loss function of the semantic segmentation model under training.
Global transformations (e.g., color corrections, learnable image-to-image transformations)
on either source or target domain images are seen as pre-processing steps. Moreover, in the
case of having access to multiple synthetic datasets, whether to use them one at a time or
simultaneously is just a matter of the input parameters passed to our co-training procedure.

3.1. Self-Training Stage

Algorithm 1 summarizes the self-training stage, which we detail in the following.
Input & output parameters. The input X l refers to the set of fully labeled source

images; while X u refers to the set of unlabeled target images. In our UDA setting, the
source images are synthetic and have automatically generated per-pixel semantic segmen-

Sensors 2023, 23, 621 5 of 28

tation ground truth (labels), while the target images are acquired with real-world cameras.
W refers to the weights of the semantic segmentation model (a CNN) already initialized
(randomly or by pre-training on a previous task); whileHW are the usual hyper-parameters
required for training the model in a supervised manner (e.g., optimization policy, num-
ber of iterations, etc). Hst = {T , N, n, Km, KM,Md f } consists of parameters specifically
required by the proposed self-training. KM is the number of self-training cycles, where
we output the model, WKM , at the final cycle. Km, Km < KM, indicates an intermediate
cycle from where we also output the corresponding model, WKm . N is the number of
target images used to generate pseudo-labels at each cycle, while n, n < N, is the number
of pseudo-labeled images to be kept for the next model re-training. Hst also contains
T = {pm, pM, ∆p, Cm, CM}, a set of parameters to implement a self-paced curriculum
learning policy for obtaining pseudo-labels from model confidences, which is inspired by
MPT [12]. Finally,Md f = {pMB, pCM} consists of parameters to control how source and
target images are combined.

Algorithm 1: Self-Training Stage.

Input : Set of labeled images: X l

Set of unlabeled images: X u

Net. init. weights & training hyp.-p.: W ,HW
Self-t. hyp.-p.: Hst = {T , N, n, Km, KM,Md f }

Output : Two refined models: WKm ,WKM

// Initialization
W0 ← BasicModelTraining(W ,HW ,X l)

< X l̂ , k,VCT ,W > ← < ∅, 0, 0,W0 >

repeat
// Self-training Loop

< X l̂
N ,VCT > ← Run(W , Rnd(X u, N), k, T)

X l̂ ← Fuse(X l̂ , Select(n,X l̂
N))

W ← Train(W0,HW ,X l ,X l̂ ,Md f ,VCT)

if (k == Km) thenWKm ←W
elseif (k == KM) thenWKM ←W endif

until (k == KM; k++)
returnWKm ,WKM

Initialization. We start by training a model,W0, on the (labeled) source images, X l ,
according toW andHW . At each self-training cycle,W0 is used as a pre-trained model.

Self-training cycles (loop). Each cycle starts by obtaining a set of pseudo-labeled
images, X l̂

N . For the sake of speed, we do not consider all the images in X u as candidates to
obtain pseudo-labels. Instead, N images are selected from X u and, then, the current model
W is applied to them (run). Thus, we obtain N semantic maps. Each map can be seen as
a set of confidence channels, one per class. Thus, for each class, we have N confidence
maps. Let’s term as Vc the vector of confidence values > 0 gathered from the N confidence
maps of class c. For each class c, a confidence threshold, CTc , is set as the value required
for having p% values of vector Vc over it, where p = min(pm + k∆p, pM). Let’s term as
VCT the vector of confidence thresholds from all classes. Now, VCT is used to perform
per-class thresholding on the N semantic segmentation maps, so obtaining the N pseudo-
labeled images forming X l̂

N . Note how the use of pm + k∆p, where k is the self-training
cycle, acts as a mechanism of self-paced curriculum learning on the thresholding process.
The maximum percentage, pM, allows for preventing noise due to accepting too many
per-class pseudo-labels eventually with low confidence. Moreover, for any class c, we
apply the rule CTc ← max(Cm, min(CTc , CM)); where, irrespective of p%, Cm prevents from
considering not sufficiently confident pseudo-labels, while CM ensures to consider pseudo-
labels with a sufficiently high confidence. Then, in order to set the final set of pseudo-labels

Sensors 2023, 23, 621 6 of 28

during each cycle, only n of the N pseudo-labeled images are selected. In this case, an image-
level confidence ranking is established by simply averaging the confidences associated
to the pseudo-labels of each image. The top-n most confident images are considered
and fused with images labeled in previous cycles. If one of the selected n images was
already incorporated in previous cycles, we kept the pseudo-labels corresponding to the
highest image-level confidence average. The resulting set of pseudo-labeled images is
termed as X l̂ .

Finally, we use the (labeled) source images, X l , and the pseudo-labeled target im-
ages, X l̂ , to train a new model,W , by fine-tuningW0 according to the hyper-parameters
HW andMd f . A parameter we can find in any HW is the number of images per mini-
batch, NMB. Then, given Md f = {pMB, pCM}, for training W we use pMBNMB images

from X l̂ and the rest from X l . In fact, the former undergoes a ClassMix-inspired collage
transform [36]. In particular, we select pMBNMB images from X l and, for each one individ-
ually, we gather all the class information (appearance and labels) until considering a pCM%
of classes, going from less to more confident ones, which is possible thanks to VCT . This
information is pasted at the appearance level (class regions from the source on top of target
images) and at the label level (class labels from the source on top of the pseudo-label maps
of the target images).

Algorithm 2: Collaboration of Models.

Input : Sets of pseudo-labeled images: X l̂
N1

,X l̂
N2

Vectors of per-class conf. thr.: VCT 1,VCT 2
Amount of images to exchange: n
Image-level confidence threshold control: λ

Output : New sets of ps.-lab. images: X l̂
N1,new,X l̂

N2,new
// ClassSort(v) returns the vector of sorted v indices after
// sorting by v values, so that ∆i[k] is a class index.

∆1 ← ClassSort(VCT 2 − VCT 1)
∆2 ← ClassSort(VCT 1 − VCT 2)

// ClassImageList(X) returns a vector so that Si[k] is the
// list of images in X containing pseudo-labels of class k.

S1 ← ClassImageList(X l̂
N1
),

S2 ← ClassImageList(X l̂
N2
)

X l̂
N1,new,X l̂

N2,new ← ∅, ∅
k, Nc ← 0, Num. Classes

repeat
// Sj[∆i[k]] > t applies element-wise.
// Images from X l̂

N2
move to X l̂

N1,new.
tc ← λ max(S1[∆2[k]]) + (1− λ)min(S1[∆2[k]])

X l̂
N1,new ← Append(X l̂

N1,new,S1[∆2[k]] > tc)

// Images from X l̂
N1

move to X l̂
N2,new.

tc ← λ max(S2[∆1[k]]) + (1− λ)min(S2[∆1[k]])
X l̂

N2,new ← Append(X l̂
N2,new,S2[∆1[k]] > tc)

until ((|X l̂
N1,new| == |X l̂

N2,new| == n)‖(k == Nc); k++)

return X l̂
N1,new,X l̂

N2,new

Sensors 2023, 23, 621 7 of 28

Algorithm 3: Co-training Procedure
Uses: Algorithms 1 & 2.

Input : Set of labeled images: X l

Set of unlabeled images: X u

Net. init. weights & training hyp.-p.: W ,HW
Self-t. hyp.-p.: Hst = {T , N, n, Km, KM,Md f }
Co-t. hyp.-p.: Hct = {K, w, λ}

Output : Refined model: W
// Initialization

W0,1,W0,2 ← SelfTraining(X l ,X u,W ,HW ,Hst)

X l̂
1 ,X l̂

2 , k,VCT 1,VCT 2,W1,W2 ← ∅, ∅, 0, 0, 0,W0,1,W0,2

repeat
// Co-training Loop

X u
N ← Rnd(X u, N)

< X l̂
N1

,VCT 1 > ← Run(W1,X u
N , k, T)

< X l̂
N2

,VCT 2 > ← Run(W2,X u
N , k, T)

X l̂
N1

,X l̂
N2

← Combination(X l̂
N1

,X l̂
N2
)

X l̂
N1

,X l̂
N2

← Collaboration(X l̂
N1

,VCT 1,X l̂
N2

,VCT 2, n, λ)

X l̂
1 ,X l̂

2 ← Fuse(X l̂
1 ,X l̂

N1
), Fuse(X l̂

2 ,X l̂
N2
)

W1 ← Train(W0,1,HW ,X l ,X l̂
1 ,Md f ,VCT 1)

W2 ← Train(W0,2,HW ,X l ,X l̂
2 ,Md f ,VCT 2)

until (k == K; k++)
W ← LastTrain(w,W1,W2,HW ,X l ,X u,Md f)

returnW

3.2. Co-Training Procedure

Algorithm 3 summarizes the co-training procedure supporting the scheme shown
in Figure 1, which is based on the previous self-training stage (Algorithm 1), on combin-
ing pseudo-labels, as well as on a model collaboration stage (Algorithm 2). We detail
Algorithm 3 in the following.

Input & output parameters, and Initialization. Since the co-training procedure in-
cludes the self-training stage, we have the input parameters required for Algorithm 1.
As additional parameters we have Hct = {K, w, λ}, where K is the maximum number of
iterations for mutual model improvement, which we term as co-training loop, w is just a
selector to be used in the last training step (after the co-training loop), and λ is used during
pseudo-label exchange between models. The output parameter,W , is the final model. The
co-training procedure starts by running the self-training stage.

Co-training cycles (loop). Similarly to self-training, a co-training cycle starts by
obtaining pseudo-labeled images. In this case two sets, X l̂

N1
&X l̂

N2
, are obtained since

we run two different models, W1&W2. These are applied to the same subset, X u
N , of

N unlabeled images randomly selected from X u. As for self-training, we not only obtain
X l̂

N1
&X l̂

N2
, but also corresponding vectors of per-class confidence thresholds, VCT 1&VCT 2.

Since X l̂
N1

&X l̂
N2

come from the same X u
N but result from different models, we can perform

a simple step of pseudo-label combination. In particular, for each image in X l̂
Ni

, if a pixel
has the void class as pseudo-label, then, if the pseudo-label for the same pixel of the corre-
sponding image in X l̂

Nj
is not void, we adopt such pseudo-label, i ∈ {1, 2}, j ∈ {1, 2}, i 6= j.

This step reduces the amount of non-labeled pixels while keeping pseudo-labeling differ-
ences between X l̂

N1
&X l̂

N2
at non-void pseudo-labels.

Note that co-training strategies assume that the models under collaboration per-
form in a complementary manner. Therefore, after this basic combination of pseudo-
labels, a more elaborated collaboration stage is applied, which is described in Algorithm 2.
Essentially, n pseudo-labeled images from X l̂

Ni
will form the new X l̂

Nj
after such collabora-

Sensors 2023, 23, 621 8 of 28

tion, i ∈ {1, 2}, j ∈ {1, 2}, i 6= j. Thus, along the co-training cycle, pseudo-labeled images
arising fromWi will be used to retainWj. In particular, visiting first those images contain-

ing classes for which X l̂
Ni

is more confident than X l̂
Nj

, sufficiently high confident images in

X l̂
Ni

are selected for the new X l̂
Nj

set, until reaching n. The class confidences of X l̂
Ni

&X l̂
Nj

are given by the respective VCT 1&VCT 2, while the confidence of a pseudo-labeled image
is determined as the average of the confidences of its pseudo-labels. Being sufficiently
high confident means that the average is over a dynamic threshold controlled by the λ
parameter.

Once this process is finished, we have two new sets of pseudo-labels, X l̂
N1

&X l̂
N2

, which

are used separately for finishing the co-training cycle. In particular, each new X l̂
i is used as

its self-training counterpart (see X l̂ in the loop of Algorithm 1), i.e., performing the fusion
with the corresponding set of pseudo-labels from previous cycles and fine-tuning ofW0,i.
Finally, once the co-training loops finish, the last train is performed. In this case, the full X u

is used to produce pseudo-labels. For this task, we can use an ensemble ofW1 andW2 (e.g.,
averaging confidences), or any of these two models individually. This option is selected
according to the parameter w. In this last training, the ClassMix-inspired procedure is not
applied, but mixing source and target images at the mini-batch level is still performed
according to the value pMB ∈ Md f . It is also worth noting that, inside the co-training loop,
the two Run() operations can be parallelized, and the two Train() too.

4. Experimental Results
4.1. Datasets and Evaluation

Our experiments rely on three well-known synthetic datasets used for UDA seman-
tic segmentation as source data, namely, GTAV [26], SYNTHIA [25] and Synscapes [27].
GTAV is composed of 24,904 images with a resolution of 1914× 1052 pixels directly obtained
from the render engine of the videogame GTA V. Synscapes is composed by 25,000 images
with a resolution of 1440× 720 pixels of urban scenes, obtained by using a physic-based ren-
dering pipeline. SYNTHIA is composed of 9000 images of urban scenes highly populated,
with a resolution of 1280× 760 pixels, generated by a videogame-style rendering pipeline
based on the Unity3D framework. As real-world datasets (target domain) we rely on
Cityscapes [33], BDD100K [34] and Mapillary Vistas [35]. Cityscapes is a popular dataset
composed of on-board images acquired at different cities in Germany under clean condi-
tions (e.g., no heavy occlusions or bad weather), it is common practice to use 2975 images
for training semantic segmentation models, and 500 images for reporting quantitative
results. The latter is known as the validation set. Cityscapes images have a resolution of
2048× 1024 pixels. Another dataset is BDD100K, which contains challenging onboard
images taken from different vehicles, in different US cities, and under diverse weather
conditions. The dataset is divided into 7000 images for training purposes and 1000 for vali-
dation. However, a high amount of training images are heavily occluded by the ego vehicle,
thus, for our experiments, we rely on an occlusion-free training subset of 1777 images. Nev-
ertheless, we use the official validation set of BDD100K without any image filtering. Image
resolution is 1280× 720 pixels. Finally, Mapillary Vistas is composed of high-resolution
images of street views around the world. These images have a high variation in resolutions
and aspect ratios due to the fact that are taken from diverse devices such as smartphones,
tablets, professional cameras, etc. For simplicity, we only consider those images with an
aspect ratio of 4:3, which, in practice, are more than 75%. Then, we have 14,716 images for
training and 1617 for validation.

As is common practice, we evaluate the performance of our system on the validation
set of each real-world (target) dataset using the 19 official classes defined for Cityscapes.
These 19 classes are common in all the datasets except in SYNTHIA that only contains 16 of
these 19 classes, additional dataset-specific classes are ignored for training and evaluation.
Note that, although there are semantic labels available for the target datasets, for performing
UDA we ignore them at training time, and we use them at validation time. In other words,

Sensors 2023, 23, 621 9 of 28

we only use the semantic labels of the validation sets, with the only purpose of reporting
quantitative results. All the synthetic datasets provide semantic labels, since they act as
the source domain, we use them. In addition, we note that for our experiments we do
not perform any learnable image-to-image transform to align synthetic and real-world
domains (like GAN-based ones). However, following [20], we perform synth-to-real LAB
space alignment as a pre-processing step.

As is standard, quantitative evaluation relies on PASCAL VOC intersection-over-union
metric IoU = TP/(TP + FP + FN) [40], where TP, FP, and FN refer to true positives, false
positives, and false negatives, respectively. IoU can be computed per class while using a
mean IoU (mIoU) to consider all the classes at once.

4.2. Implementation Details

We use the Detectron2 [41] framework and leverage their implementation of
DeepLabV3+ for semantic segmentation, with ImageNet weight initialization. We chose
the V3+ version of DeepLab instead of the V2 because it provides a configuration that
fits well in our 12 GB-memory GPUs, turning out in a ×2 training speed over the V2
configuration and allowing a higher batch size. Other than this, V3+ does not provide
accuracy advantages over V2. We will see it when discussing Table 1, where the baselines
of V3+ and V2 perform similarly (SYNTHIA case) or V3+ may perform worse (GTAV
case). The hyper-parameters used by our co-training procedure are set according to Table 2.
Since their meaning is intuitive, we just tested some reasonable values but did not perform
a hyperparameter search. As we can see in Table 2 they are pretty similar across datasets.
This table does not include the hyper-parameter related to the training of DeepLabV3+,
termed as HW in Algorithms 1–3 since they are not specific to our proposal. Thus, we
summarize them in the following.

For training the semantic segmentation models, we use SGD optimizer with a starting
learning rate of 0.002 and momentum 0.9. We crop the training images to 1024× 512 pixels,
816× 608, and 1280× 720, when we work with Cityscapes, Mapillary Vistas, and BDD100K,
respectively. Considering this cropping and our available hardware, we set batch sizes
(NMB) of four images, four, and two, for these datasets, respectively. Moreover, we perform
data augmentation consisting of random zooms and horizontal flips. For computing
each source-only baseline model (W0 in Algorithm 1) and the final model (returnedW in
Algorithm 3) we use a two-step learning rate decay of 0.1 at 1/3 and 2/3 of the training
iterations. In these cases, the number of iterations is set to 60K when we work with
Cityscapes and Mapillary Vistas, and 120 K for BDD100 K to maintain consistency given
the mentioned batch sizes. The number of iterations for the self-training stage and the
co-training loop is equally set to 8K for Cityscapes and Mapillary Vistas, and 16K for
BDD100K.

For training only using GTAV, a class balancing sample policy (CB) is applied. Due
to the scarcity of samples from several classes (e.g., bicycle, train, rider, and motorcycle),
these are under-represented during training. A simple, yet efficient, method to balance
the frequency of samples from these classes is computing individual class frequency in the
whole training dataset and applying a higher selection probability for the under-represented
classes. The other synthetic datasets in isolation and the combination of GTAV + Synscapes
are already well-balanced and we do not need to apply this technique.

Sensors 2023, 23, 621 10 of 28

Table 1. UDA results. mIoU considers the 19 classes. mIoU* considers 13 classes, which only applies to SYNTHIA, where classes with ’*’ are not considered for
global averaging and those with ’-’ scores do not have available samples. ∆(Diff.) refers to the mIoU improvement over the corresponding baseline (i.e., column
’mIoU’—column ’Baseline’). Note also that, following Cityscapes class naming, the class Person refers to pedestrians (i.e., it does not include riders. Bold stands for
best, and underline for second best. In this table, the target domain is always Cityscapes.

Methods

R
oa

d

Si
de

w
al

k

B
ui

ld
in

g

W
al

l*

Fe
nc

e
*

Po
le

*

Tr
af

fic
Li

gh
t

Tr
af

fic
Si

gn

V
eg

et
at

io
n

Te
rr

ai
n

Sk
y

Pe
rs

on

R
id

er

C
ar

Tr
uc

k

B
us

Tr
ai

n

M
ot

or
bi

ke

B
ik

e

m
Io

U
*

m
Io

U

B
as

el
in

e

∆
(D

if
f.

)

SYNTHIA (Source)→ Cityscapes

AdSegNet [42] 81.7 39.1 78.4 11.1 0.3 25.8 6.8 9.0 79.1 - 80.8 54.8 21.0 66.8 - 34.7 - 13.8 29.9 45.8 39.6 33.5 +6.1
IntraDA [43] 84.3 37.7 79.5 5.3 0.4 24.9 9.2 8.4 80.0 - 84.1 57.2 23.0 78.0 - 38.1 - 20.3 36.5 48.9 41.7 33.5 +8.2
CBST [11] 68.0 29.9 76.3 10.8 1.4 33.9 22.8 29.5 77.6 - 78.3 60.6 28.3 81.6 - 23.5 - 18.8 39.8 48.9 42.6 29.2 +13.4
CRST [15] 67.7 32.2 73.9 10.7 1.6 37.4 22.2 31.2 80.8 - 80.5 60.8 29.1 82.8 - 25.0 - 19.4 45.3 50.1 43.8 34.9 +8.9
DACS [21] 80.5 25.1 81.9 21.4 2.8 37.2 22.6 23.9 83.6 - 90.7 67.6 38.3 82.9 - 38.9 - 28.4 47.5 54.8 48.3 29.4 +18.9
DSP [19] 86.4 42.0 82.0 2.1 1.8 34.0 31.6 33.2 87.2 - 88.5 64.1 31.9 83.8 - 65.4 - 28.8 54.0 59.9 51.0 33.5 +17.5
MFA [22] 81.8 40.2 85.3 - - - 38.0 33.9 82.3 - 82.0 73.7 41.1 87.8 - 56.6 - 46.3 63.8 62.5 - - -
RED [18] 88.6 46.6 83.7 22.6 4.1 35.0 35.9 36.1 82.8 - 81.3 61.6 32.1 87.9 - 52.7 - 31.9 57.6 59.9 52.5 35.3 +17.2
ProDA [44] 87.8 45.7 84.6 37.1 0.6 44.0 54.6 37.0 88.1 - 84.4 74.2 24.3 88.2 - 51.1 - 40.5 45.6 62.0 55.5 34.9 +20.6
Co-T (ours) 78.1 36.9 84.0 9.3 0.2 47.4 49.2 19.3 89.0 - 89.6 77.9 52.3 91.5 - 60.3 - 47.1 64.7 64.6 56.0 35.4 +20.6

GTAV (Source)→ Cityscapes

AdSegNet [42] 86.5 36.0 79.9 23.4 23.3 23.9 35.2 14.8 83.4 33.3 75.6 58.5 27.6 73.7 32.5 35.4 3.9 30.1 28.1 - 42.4 36.6 +5.8
IntraDA [43] 90.6 36.1 82.6 29.5 21.3 27.6 31.4 23.1 85.2 39.3 80.2 59.3 29.4 86.4 33.6 53.9 0.0 32.7 37.6 - 46.3 36.6 +9.7
CBST [11] 89.6 58.9 78.5 33.0 22.3 41.4 48.2 39.2 83.6 24.3 65.4 49.3 20.2 83.3 39.0 48.6 12.5 20.3 35.3 - 47.0 35.4 +11.6
CRST [15] 91.7 45.1 80.9 29.0 23.4 43.8 47.1 40.9 84.0 20.0 60.6 64.0 31.9 85.8 39.5 48.7 25.0 38.0 47.0 - 49.8 35.4 +14.4
DACS [21] 89.9 39.6 87.8 30.7 39.5 38.5 46.4 52.7 87.9 43.9 88.7 67.2 35.7 84.4 45.7 50.1 0.0 27.2 33.9 - 52.1 32.8 +19.3
DSP [19] 92.4 48.0 87.4 33.4 35.1 36.4 41.6 46.0 87.7 43.2 89.8 66.6 32.1 89.9 57.0 56.1 0.0 44.1 57.8 - 55.0 36.6 +18.4
MFA [22] 94.5 61.1 87.6 41.4 35.4 41.2 47.1 45.7 86.6 36.6 87.0 70.1 38.3 87.2 39.5 54.7 0.3 45.4 57.7 - 55.7 45.6 +10.1
RED [18] 94.4 60.9 88.0 39.4 41.8 43.2 49.0 56.0 88.0 45.8 87.7 67.5 38.0 90.0 57.6 51.9 0.0 46.5 55.2 - 57.9 34.8 +23.1
ProDA [44] 87.8 56.0 79.7 46.3 44.8 45.6 53.5 53.5 88.6 45.2 82.1 70.7 39.2 88.8 45.5 59.4 1.0 48.9 56.4 - 57.5 36.6 +20.9
Co-T (ours) 89.9 51.0 89.0 40.0 34.2 51.6 56.5 51.3 89.5 50.1 89.8 71.8 46.5 90.9 55.7 56.7 0.0 52.6 64.2 - 59.5 28.5 +31.0

Synscapes (Source)→ Cityscapes

AdSegNet [42] 94.2 60.9 85.1 29.1 25.2 38.6 43.9 40.8 85.2 29.7 88.2 64.4 40.6 85.8 31.5 43.0 28.3 30.5 56.7 - 52.7 45.3 +7.4
IntraDA [43] 94.0 60.0 84.9 29.5 26.2 38.5 41.6 43.7 85.3 31.7 88.2 66.3 44.7 85.7 30.7 53.0 29.5 36.5 60.2 - 54.2 45.3 +8.9
Co-T (ours) 91.4 55.7 81.6 34.5 38.9 53.6 64.7 67.4 91.0 48.7 93.4 77.5 42.4 93.1 18.3 20.8 1.2 60.0 74.2 - 58.3 45.0 +13.3

GTAV + Synscapes (Source)→ Cityscapes

MADAN [45] 94.1 61.0 86.4 43.3 32.1 40.6 49.0 44.4 87.3 47.7 89.4 61.7 36.3 87.5 35.5 45.8 31.0 33.5 52.1 - 55.7 51.6 +4.1
MsDACL [20] 93.6 59.6 87.1 44.9 36.7 42.1 49.9 42.5 87.7 47.6 89.9 63.5 40.3 88.2 41.0 58.3 53.1 37.9 57.7 - 59.0 51.6 +7.4
Co-T (ours) 96.3 74.7 90.4 48.8 49.1 58.3 61.5 67.0 90.7 54.7 93.5 79.4 57.7 90.4 45.6 85.1 59.9 60.4 70.9 - 70.2 50.0 +20.2

Sensors 2023, 23, 621 11 of 28

Table 2. Hyper-parameters of our method (Section 3 and Algorithms 1–3). Datasets: GTAV (G),
Synscapes (S), SYNTHIA (SIA), Cityscapes (C), BDD100K (B), Mapillary Vistas (M).

Md f Hst Hct
Source Target N n ∆p Cm CM NMB pMB pCM Pm PM Km KM Pm PM K w λ

SIA C 500 100 0.05 0.5 0.9 4 0.75 0.5 0.5 0.6 1 10 0.5 0.6 5 1 0.8
S, G + S C, M 500 100 0.05 0.5 0.9 4 0.75 0.5 0.5 0.6 1 10 0.5 0.6 5 1 0.8

G C 500 100 0.05 0.5 0.9 4 0.75 0.5 0.3 0.5 1 10 0.5 0.6 5 1 0.8
G + S B 500 100 0.05 0.5 0.9 2 0.5 0.5 0.3 0.5 1 10 0.5 0.6 5 1 0.8

4.3. Comparison with the State of the Art

In Table 1 we compare our co-training procedure with state-of-the-art methods when
using Cityscapes as the target domain. We divide the results into four blocks according to the
source images we use: SYNTHIA, GTAV, Synscapes, or GTAV+Synscapes.
Most works in the literature present their results only using GTAV or SYNTHIA as source
data. We obtain the best results in the SYNTHIA case, with 56 mIoU (19 classes), and for
GTAV with 59.5 mIoU. On the other hand, each proposal from the literature uses its own
CNN architecture and pre-trained models. Thus, we have added the mIoU score of the
baseline that each work uses as starting point to improve according to the corresponding pro-
posed method. Then, we show the difference between the final achieved mIoU score and the
baseline one. In Table 1 this corresponds to column ∆(Diff.). Note how our method reaches
20.6 and 31.0 points of mIoU increment on SYNTHIA and GTAV, respectively. The highest for
GTAV, and the highest for SYNTHIA on pair with the ProDA proposal. Additionally, for the
sake of completeness, we have added the mIoU scores for the 13 classes setting of SYNTHIA
since it is also a common practice in the literature. We can see that co-training obtains the
best mIoU too. On the other hand, we are mostly interested in the 19-class setting. Using
Synscapes as source data we achieved state-of-the-art results in both ∆(Diff.) (13.3 points)
and the final mIoU score (58.3). Note that, in this case, our baseline score is similar to the
ones reported in previous literature.

By performing a different LAB transform for each synthetic dataset individually, our
co-training procedure allows us to join them as if they were one single domain. Thus, we
have considered this setting too. Preliminary baseline experiments (i.e., without performing
co-training) showed that the combinations GTAV + Synscapes and GTAV + Synscapes +
SYNTHIA are the best performings, with a very scarce mIoU difference between them
(0.62). Thus, for the shake of bounding the number of experiments, we have chosen GTAV +
Synscapes as the only case combining datasets, so also avoiding the problem of the 19 vs. 16
classes discrepancy when SYNTHIA is combined with them. In fact, using GTAV + Synscapes,
we reach a ∆(Diff.) of 20.2 points, with a final mIoU of 70.2, which outperforms the second
best in 11.2 points, and it clearly improves the mIoU with respect to the use of these synthetic
datasets separately (15.6 points comparing to GTAV, 11.9 for Synscapes). Again, in this case,
our baseline score is similar to the ones reported in previous literature.

4.4. Ablative Study and Qualitative Results

In Table 3 we compare co-training results with corresponding baselines and upper
bounds. We also report the results of applying LAB adjustment as only the UDA step,
as well as the results from one of the models obtained after our self-training stage (we
chose the model from the last cycle). Overall, in all cases, the co-training loop (which
completes the co-training procedure) improves the self-training stage, and this stage, in
turn, improves over LAB adjustment. Moreover, when combining GTAV + Synscapes we
are only 7.95 mIoU points below the upper bound, after improving 20.22 mIoU points over
the baseline.

Sensors 2023, 23, 621 12 of 28

Table 3. Co-training results compared to baseline (Source), LAB adjustment pre-processing (SrcLAB), self-training stage, and upper-bound (SrcLAB + Target).
Note that Target refers to using 100% of the target domain images labeled for training by a human oracle. CB corresponds to the class balance policy applied on GTAV.
We remind also that, before running our co-training procedure (self-training stage and co-training loop), we apply target LAB adjustment on the synthetic datasets.
In this table, the target domain is always Cityscapes.

Methods

R
oa

d

Si
de

w
al

k

B
ui

ld
in

g

W
al

l

Fe
nc

e

Po
le

Tr
af

fic
Li

gh
t

Tr
af

fic
Si

gn

V
eg

et
at

io
n

Te
rr

ai
n

Sk
y

Pe
rs

on

R
id

er

C
ar

Tr
uc

k

B
us

Tr
ai

n

M
ot

or
bi

ke

B
ik

e

mIoU

SYNTHIA (Source)→ Cityscapes

Source 38.47 17.42 75.39 4.92 0.22 30.58 17.79 15.48 73.86 - 80.55 63.28 22.57 62.47 - 27.12 - 13.22 23.92 35.46
SrcLAB 58.5 22.23 78.33 6.03 0.28 37.8 17.0 15.64 78.01 - 79.36 63.05 22.48 78.91 - 32.1 - 13.31 28.8 39.48
Self-training stage (ours) 72.14 30.37 82.97 2.97 0.11 43.72 34.49 14.00 87.09 - 86.87 73.82 43.45 87.57 - 42.44 - 21.69 56.36 48.74
Co-training proce. (ours) 78.14 36.98 84.07 9.34 0.28 47.49 49.2 19.35 89.07 - 89.62 77.92 52.32 91.50 - 60.37 - 47.10 64.76 56.09
SrcLAB + Target 97.92 84.42 92.60 53.87 61.70 65.93 70.67 78.00 92.71 (65.68) 94.98 83.29 66.49 95.32 (77.37) 88.20 (71.84) 67.45 78.13 79.48

∆(SrcLAB vs. Source) 20.03 4.81 2.94 1.11 0.06 7.22 −0.79 0.16 4.15 - −1.19 −0.23 −0.09 16.44 - 4.98 - 0.09 4.88 4.02
∆(Co-t vs. Source) 39.62 18.38 8.24 4.33 0.06 16.84 31.41 3.87 13.81 - 9.04 14.6 29.66 26.29 - 19.71 - 33.86 40.74 19.40
∆(Co-t vs. SrcLAB) 19.64 14.75 5.74 3.31 0 9.69 32.2 3.71 11.06 - 10.26 14.87 29.84 12.59 - 28.27 - 33.79 35.96 16.6
∆(Co-t vs. Self-t) 6.00 6.61 1.10 6.37 0.17 3.77 14.71 5.35 1.98 - 2.75 4.10 8.87 3.93 - 17.93 - 25.41 8.40 7.34
∆(Co-t vs. SrcLAB + Tgt) −19.83 −48.62 −8.97 −44.62 −61.42 −18.51 −21.47 −58.65 −5.04 - −5.39 −5.41 −14.26 −6.56 - −41.37 - −20.37 −13.47 −24.62

GTAV (Source)→ Cityscapes

Source 51.85 13.57 64.71 8.19 15.86 14.39 31.66 10.86 71.95 6.91 38.21 55.65 22.21 72.40 32.62 9.76 0.0 9.93 11.14 28.52
SrcLAB 75.25 23.38 76.59 19.72 16.86 32.28 28.37 13.73 81.75 25.47 46.71 64.0 31.76 84.14 32.29 16.23 0.08 23.41 27.27 37.86
SrcLAB + CB 73.34 26.30 73.50 29.57 21.16 35.04 42.78 20.09 84.64 26.48 53.20 63.02 40.77 81.90 34.16 31.56 4.74 36.05 34.07 42.76
Self-training stage (ours) 85.31 36.82 85.11 41.09 25.62 46.39 45.19 33.44 88.98 45.55 72.99 69.54 42.43 89.36 44.42 57.5 1.28 45.51 59.78 53.49
Co-training proce. (ours) 89.92 51.03 89.09 40.05 34.23 51.61 56.54 51.36 89.50 50.12 89.83 71.88 46.50 90.91 55.72 56.77 0.0 52.61 64.21 59,57
SrcLAB + Target 98.20 85.43 92.74 59.07 63.05 65.26 69.43 77.10 92.63 65.26 94.70 82.11 63.22 95.22 85.05 86.07 67.27 64.84 77.21 78.10

∆(SrcLAB + CB vs.
Source) 21.49 12.73 8.79 21.38 5.3 20.65 11.12 9.23 12.69 19.57 14.99 7.37 18.56 9.5 1.54 21.8 4.74 26.12 22.93 14.24

∆(Co-t vs. Source) 38.07 37.46 24.38 31.86 18.37 37.22 24.88 40.5 17.55 43.21 51.62 16.23 24.29 18.51 23.1 47.01 0.0 42.68 53.07 31.05
∆(Co-t vs. SrcLAB + CB) 16.58 24.73 15.59 10.48 13.07 16.57 13.76 31.27 4.86 23.64 36.63 8.86 5.73 9.01 21.56 25.21 −4.74 16.56 30.14 16.81
∆(Co-t vs. Self-t) 4.61 14.21 3.98 −1.04 8.61 5.22 11.35 17.92 0.52 4.57 16.84 2.34 4.07 1.55 11.3 −0.73 −1.28 7.1 4.43 6.08
∆(Co-t vs. SrcLAB + Tgt) −8.28 −34.4 −3.65 −19.02 −28.82 −13.65 −12.89 −25.74 −3.13 −15.14 −4.87 −10.23 −16.72 −4.31 −29.33 −29.3 −67.27 −12.23 −13.0 −18.53

Synscapes (Source)→ Cityscapes

Source 83.81 42.15 61.87 26.10 21.69 44.65 47.12 53.86 81.30 33.57 53.53 67.79 29.68 85.66 14.81 6.66 2.36 34.94 63.53 45.01
SrcLAB 78.39 37.47 67.39 16.45 19.09 48.5 51.79 58.54 83.18 29.89 64.79 70.17 29.27 85.39 18.42 10.42 3.32 36.48 64.61 45.98
Self-training stage (ours) 89.55 50.19 84.26 33.61 37.67 57.29 60.11 64.00 90.61 47.13 91.22 72.15 21.17 91.99 15.38 20.09 9.35 44.94 70.78 55.34
Co-training proce. (ours) 91.46 55.76 81.63 34.58 38.92 53.66 64.74 67.43 91.02 48.72 93.45 77.54 42.40 93.14 18.35 20.84 1.29 60.03 74.22 58.38
SrcLAB + Target 98.03 84.49 92.90 59.10 63.70 67.18 71.67 79.50 92.74 65.51 94.81 83.93 68.07 95.45 82.89 91.83 83.79 70.91 79.24 80.30

∆(SrcLAB vs. Source) 0.97 −5.42 −4.68 5.52 −9.65 −2.6 3.85 4.67 4.68 1.88 −3.68 11.26 2.38 −0.41 −0.27 3.61 3.76 0.96 1.54 1.08
∆(Co-t vs. Source) 7.65 13.61 19.76 8.48 17.23 9.01 17.62 13.57 9.72 15.15 39.92 9.75 12.72 7.48 3.54 14.18 −1.07 25.09 10.69 13.37
∆(Co-t vs. SrcLAB) 13.07 18.29 14.24 18.13 19.83 5.16 12.95 8.89 7.84 18.83 28.66 7.37 13.13 7.75 −0.07 10.42 −2.03 23.55 9.61 12.40
∆(Co-t vs. Self-t) 1.91 5.57 −2.63 0.97 1.25 −3.63 4.63 3.43 0.41 1.59 2.23 5.39 21.23 1.15 2.97 0.75 −8.06 15.09 3.44 3.04
∆(Co-t vs. SrcLAB + Tgt) −6.57 −28.73 −11.27 −24.52 −24.78 −13.52 −6.93 −12.07 −1.72 −16.79 −1.36 −6.39 −25.67 −2.31 −64.54 −70.99 −82.5 −10.88 −5.02 −21.92

Sensors 2023, 23, 621 13 of 28

Table 3. Cont.

Methods
R

oa
d

Si
de

w
al

k

B
ui

ld
in

g

W
al

l

Fe
nc

e

Po
le

Tr
af

fic
Li

gh
t

Tr
af

fic
Si

gn

V
eg

et
at

io
n

Te
rr

ai
n

Sk
y

Pe
rs

on

R
id

er

C
ar

Tr
uc

k

B
us

Tr
ai

n

M
ot

or
bi

ke

B
ik

e

mIoU

GTAV + Synscapes (Source)→ Cityscapes

Source 66.39 33.54 79.58 29.43 40.24 49.73 56.12 46.51 81.22 18.40 79.06 73.18 29.67 85.25 43.00 6.46 23.02 47.71 61.63 50.01
SrcLAB 87.97 47.45 85.14 34.31 43.16 49.82 57.16 47.85 88.88 45.00 82.53 72.58 38.22 89.16 51.91 61.31 40.06 43.64 60.85 59.32
Self-training stage
(ours) 93.93 66.08 89.95 46.40 48.13 56.30 59.65 65.16 90.25 52.22 93.33 75.97 41.15 90.40 44.98 75.08 65.52 55.52 71.98 67.47

Co-training proce.
(ours) 96.30 74.72 90.44 48.89 49.15 58.36 61.52 67.05 90.75 54.75 93.52 79.48 57.71 90.48 45.61 85.11 59.95 60.41 70.96 70.23

SrcLAB + Target 97.88 83.43 92.33 64.15 61.77 63.45 68.04 75.17 92.31 62.74 94.08 82.00 64.16 95.01 84.25 89.66 75.56 63.28 76.07 78.18

∆(SrcLAB vs. Source) 21.58 13.91 5.56 4.88 2.92 0.09 1.04 1.34 7.66 26.6 3.47 −0.6 8.55 3.91 8.91 54.85 17.04 −4.07 −0.78 9.31
∆(Co−t vs. Source) 29.91 41.18 10.86 19.46 8.91 8.63 5.40 20.54 9.53 36.35 14.46 6.3 28.04 5.23 2.61 78.65 36.93 12.70 9.33 20.22
∆(Co-t vs. SrcLAB) 8.33 27.27 5.30 14.58 5.99 8.54 4.36 19.20 1.87 9.75 10.99 6.9 19.49 1.32 −6.3 23.8 19.89 16.77 9.28 10.91
∆(Co-t vs. Self-t) 2.37 8.64 0.49 2.49 1.02 2.06 1.87 1.89 0.5 2.53 0.19 3.51 16.56 0.08 0.63 10.03 −5.57 4.89 −1.85 2.76
∆(Co-t vs. SrcLAB +
Tgt) −1.58 −8.71 −1.89 −15.26 −12.62 −5.09 −6.52 −8.12 −1.56 −7.99 −0.56 −2.52 −6.45 −4.53 −38.64 −4.55 −15.61 −2.87 −5.94 −7.95

Sensors 2023, 23, 621 14 of 28

To complement our experimental analysis, we summarize in Table 4 the contribution
of the main components of our proposal for the case GTAV + Synscapes → Cityscapes.
First, we can see how a proper pre-processing of the data is relevant. In particular, per-
forming synth-to-real LAB space alignment already allows improving 9.31 points of mIoU.
This contribution can also be seen in Tables 3 and 5, where improvements range from
2.59 mIoU points (GTAV+Synscapes→Mapillary Vistas) to 9.34 (GTAV→Cityscapes). This
LAB adjustment is a step hardly seen in synth-to-real UDA literature which should not
be ignored. Then, back to Table 4, we see that properly combining labeled source images
and pseudo-labeled target images (MixBatch) is also relevant since it provides an addi-
tional gain of 6.86 points. Note that this MixBatch is basically the cool world idea which
we can trace back to work of our own lab done before the deep learning era in computer
vision [37]. In addition, performing our ClassMix-inspired collage also contributes 1.29 points
of mIoU, and the final collaboration of models returns 2.76 additional points of mIoU.
Overall, the main components of our synth-to-real UDA procedure contribute 10.91 points
of mIoU and LAB alignment 9.31 points. We conclude that all the components of the
proposed procedure are relevant.

In order to confirm these positive results, we applied our method to two additional
target domains which are relatively challenging, namely, Mapillary Vistas and BDD100K.
In fact, up to the best of our knowledge, in the current literature, there are no synth-to-real
UDA semantic segmentation results reported for them. Our results can be seen in Table 5,
directly focusing on the combination of GTAV + Synscapes as the source domain. In this
case, the co-training loop improves less over the intermediate self-training stage. Still, for
BDD100K the final mIoU is only 8.22 mIoU points below the upper bound, after improving
24.13 mIoU points the baseline. For Mapillary Vistas our method remains only 9.14 mIoU
points below the upper bound and improves 16.11 mIoU points the baseline. To the best of
our knowledge, these are state-of-the-art results for BDD100K and Mapillary Vistas when
addressing synth-to-real UDA semantic segmentation.

Figure 2 presents qualitative results of semantic segmentation for the different real-
world (target) datasets when using GTAV + Synscapes as the source domain. We ob-
serve how the baselines have problems with dynamic objects (e.g., cars, trucks) and some
infrastructure classes such as Sidewalk are noisy. The self-training stage mitigates the
problems observed in the only-source (with LAB adjustment) results to a large extent.
However, we can still observe instabilities in classes such as Truck or Bus, which the
co-training loop (full co-training procedure) achieves to address properly. Nevertheless,
the co-training procedure is not perfect and several errors are observed in some classes
preventing them to reach upper-bound mIoU. In fact, the upper bounds are neither perfect,
which is due to the difficulty of performing semantic segmentation in onboard images.

Table 4. Contribution of the main components of our proposal. Case study: GTAV + Synscapes→
Cityscapes.

Co-Training Procedure

Self-Training Stage

Baseline +LAB +MixBatch +ClassMix +Co-Training
Loop Upper Bound

mIoU 50.01 59.32 66.18 67.47 70.23 78.18
Gain - +9.31 +6.86 +1.29 +2.76 -

Figures 3 and 4 exemplify these comments by showing the pseudo-labeling evolu-
tion for several classes of special interests such as Road, Sidewalk, Pedestrian, and Car.
In Figure 3, we see how the SrcLAB model has particular problems segmenting well the
sidewalk, however, the self-training stage resolves most errors although it may introduce
new ones (mid-bottom image), while the co-training loop is able to recover from such errors.

Sensors 2023, 23, 621 15 of 28

In Figure 4, we can see (bottom row) how the self-training stage improves the pseudo-
labeling of a van, while the co-training loop improves it even more. Analogously, we can
see (top row) how self-training helps to alleviate the confusion between Pedestrian and
Rider classes, while the co-training loop almost removes all the confusion errors between
these two classes.

Table 5. Analogous to Table 3 with BDD100K and Mapillary as target domains.

Methods

R
oa

d

Si
de

w
al

k

B
ui

ld
in

g

W
al

l

Fe
nc

e

Po
le

Tr
af

fic
Li

gh
t

Tr
af

fic
Si

gn

V
eg

et
at

io
n

Te
rr

ai
n

Sk
y

Pe
rs

on

R
id

er

C
ar

Tr
uc

k

B
us

Tr
ai

n

M
ot

or
bi

ke

B
ik

e

mIoU

GTAV + Synscapes (Source)→ BDD100K

Source 67.83 20.84 54.86 9.00 27.57 30.24 31.74 20.75 62.69 15.39 63.75 54.53 24.08 65.92 12.82 9.10 0.07 39.58 39.04 34.20
SrcLAB 74.22 26.07 68.48 7.94 15.51 31.09 38.69 22.90 69.33 25.92 74.27 59.35 18.81 72.79 23.66 19.75 0.02 54.72 35.48 38.68
Self-training stage (ours) 88.52 26.21 78.77 14.48 35.41 41.40 49.27 31.74 75.86 35.89 88.85 60.39 35.22 85.48 35.04 42.29 0.00 51.28 47.40 48.60
Co-training proce. (ours) 88.43 31.63 80.05 13.05 39.89 41.81 46.12 29.67 76.06 37.79 89.50 63.08 39.94 85.78 40.52 42.71 0.07 53.60 50.40 50.11
SrcLAB + Target 93.33 60.89 84.41 31.45 47.74 49.62 55.33 47.77 85.00 42.77 92.60 66.10 38.91 88.11 40.63 71.09 0.00 57.71 54.90 58.33

∆(SrcLAB vs. Source) 6.39 5.23 9.62 −1.06 −12.06 0.85 6.95 2.15 6.64 10.53 10.52 4.82 −5.27 6.87 10.84 10.65 −0.05 15.14 −3.56 4.48
∆(Co-t vs. Source) 25.5 40.05 29.55 22.45 20.17 19.38 23.59 27.02 22.31 27.38 28.85 11.57 14.83 22.19 27.81 61.99 −0.07 18.13 15.86 24.13
∆(Co-t vs. SrcLAB) 19.11 34.82 19.93 23.51 32.23 18.53 16.64 24.87 15.67 16.85 18.33 6.75 20.1 15.32 16.97 51.34 −0.02 2.99 19.42 19.65
∆(Co-t vs. Self-t) −0.09 5.42 1.28 −1.43 4.48 0.41 −3.15 −2.07 0.2 1.9 0.65 2.69 4.72 0.3 5.48 0.42 0.07 2.32 3.0 1.51
∆(Co-t vs. SrcLAB + Tgt) −4.9 −29.26 −4.36 −18.4 −7.85 −7.81 −9.21 −18.1 −8.94 −4.98 −3.1 −3.02 1.03 −2.33 −0.11 −28.38 0.07 −4.11 −4.5 −8.22

GTAV + Synscapes (Source)→Mapillary Vistas

Source 68.81 31.73 68.88 25.20 37.94 38.79 49.79 20.57 73.27 29.66 80.62 63.81 42.75 80.65 35.74 16.86 1.85 44.56 47.09 45.19
SrcLAB 72.62 43.18 70.89 17.21 25.18 35.05 57.74 55.73 76.78 27.09 88.72 71.34 24.34 77.89 46.29 47.37 0.00 34.27 46.77 48.34
Self-training stage (ours) 89.44 53.30 85.28 36.57 44.89 47.10 59.18 65.94 84.58 48.25 97.44 74.23 55.71 89.37 58.34 59.45 1.47 49.44 51.50 60.60
Co-training proce. (ours) 90.44 57.83 85.59 36.38 45.56 49.64 59.73 67.62 84.27 47.08 96.79 74.80 56.05 90.42 56.34 49.86 10.71 49.62 55.94 61.30
SrcLAB + Target 94.02 69.46 88.70 51.38 60.17 57.59 64.21 75.16 90.70 69.35 98.27 76.02 56.70 91.42 60.49 73.35 33.81 60.87 66.63 70.44

∆(SrcLAB vs. Source) −2.93 −0.24 0.73 −8.10 −8.64 5.25 5.94 21.32 3.34 2.73 1.74 3.47 4.75 1.86 5.84 −3.15 1.09 7.51 6.69 2.59
∆(Co-t vs. Source) 21.63 26.10 16.71 11.18 7.62 10.85 9.94 47.05 11.0 17.42 16.17 10.99 13.30 9.77 20.60 33.0 8.86 5.06 8.85 16.11
∆(Co-t vs. SrcLAB) 24.56 26.34 15.98 19.28 16.26 5.6 4.0 25.73 7.66 14.69 14.43 7.52 8.55 7.91 14.76 36.15 7.77 −2.45 2.16 13.52
∆(Co-t vs. Self-t) 1.0 4.53 0.31 −0.19 0.67 2.54 0.55 1.68 −0.31 −1.17 −0.65 0.57 0.34 1.05 −2.0 −9.59 9.24 0.18 4.44 0.7
∆(Co-t vs. SrcLAB + Tgt) −3.58 −11.63 −3.11 −15.0 −14.61 −7.95 −4.48 −7.54 −6.43 −22.27 −1.48 −1.22 −0.65 −1.0 −4.15 −23.49 −23.1 −11.25 −10.69 −9.14

Figure 2. Qualitative results using GTAV + Synscapes as source domain. From (left) to (right), the
two first columns correspond to Cityscapes in the role of the target domain, the next two columns
to BDD100K, and the last two to Mapillary Vistas. (Top) to (bottom) rows correspond to SrcLAB,
self-training stage, full co-training procedure, upper bound, and ground truth, respectively.

Sensors 2023, 23, 621 16 of 28

Figure 3. Qualitative results (GTAV + Synscapes→ Cityscapes) focusing on TP/FP/FN for road
and sidewalk classes. Columns, (left) to (right): SrcLAB, self-training stage, co-training loop (full
co-training procedure). Blue boxes highlight areas of interest.

Figure 4. Analogous to Figure 3 for the classes Person and Car.

5. Conclusions

In this paper, we have addressed the training of semantic segmentation models under
the challenging setting of synth-to-real unsupervised domain adaptation (UDA), i.e., as-
suming access to a set of synthetic images (source) with automatically generated ground
truth together with a set of unlabeled real-world images (target). We have proposed a
new co-training procedure combining a self-training stage and a co-training loop where
two models arising from the self-training stage collaborate for mutual improvement.
The overall procedure treats the deep models as black boxes and drives their collabo-
ration at the level of pseudo-labeled target images, i.e., neither modifying loss functions is
required, nor explicit feature alignment. We have tested our proposal on standard synthetic
(GTAV, Synscapes, SYNTHIA) and real-world datasets (Cityscapes, BDD100K, Mapillary
Vistas). Our co-training shows improvements ranging from approximately 13 to 31 mIoU
points over baselines, remaining closely (less than 10 points) to the upper bounds. In fact,
up to the best of our knowledge, we are the first to report such results for challenging
target domains such as BDD100K and Mapillary Vistas. Moreover, we have shown how
the different components of our co-training procedure contribute to improving the final
mIoU. Future work, will explore collaboration from additional perception models at the co-
training loop, i.e., not necessarily based on semantic segmentation but such collaborations
may arise from object detection or monocular depth estimation.

Author Contributions: Conceptualization and methodology, all authors; software and data curation,
J.L.G.; validation, J.L.G.; formal analysis and investigation, all authors; writing—original draft prepa-
ration as well as writing—review and editing, A.M.L. and J.L.G.; visualization, J.L.G.; supervision,
A.M.L. and G.V.; project administration, resources, and funding acquisition, A.M.L. All authors have
read and agreed to the published version of the manuscript.

Funding: The authors acknowledge the support received for this research from the Spanish Grant
Ref. PID2020-115734RB-C21 funded by MCIN/AEI/10.13039/501100011033. Antonio M. López
acknowledges the financial support to his general research activities given by ICREA under the
ICREA Academia Program. Jose L. Gómez acknowledges the financial support to perform his Ph.D.
given by the grant FPU16/04131.

Institutional Review Board Statement: Not applicable.

Sensors 2023, 23, 621 17 of 28

Informed Consent Statement: Not applicable.

Data Availability Statement: All datasets used in this study have been downloaded from well-
known publicly available sources, whose associated papers are properly cited and so included in
the references.

Acknowledgments: The authors acknowledge the support of the Generalitat de Catalunya CERCA
Program and its ACCIO agency to CVC’s general activities.

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design
of the study; in the collection, analysis, or interpretation of data; in the writing of the manuscript, or
in the decision to publish the results.

Appendix A. Additional Datasets Information

Table A1 presents statistics about the content of the different datasets. Focusing on
the synthetic datasets, we observe that GTAV has few cases of Bicycle and Train, thus
explaining why the semantic segmentation baseline performs poorly on these classes. On
other hand, SYNTHIA and Synscapes are overall well-balanced, however, in Synscapes,
the examples of Bus, Train, and Truck are very similar in shape. On other hand, SYNTHIA
is less photo-realistic than Synscapes.

Table A1. Content statistics for the considered datasets. For each class, we indicate the percentage
(%) of: (1) Images containing samples of the class, and (2) Pixels in the dataset with the class label.

R
oa

d

Si
de

w
al

k

B
ui

ld
in

g

W
al

l

Fe
nc

e

Po
le

Tr
af

fic
Li

gh
t

Tr
af

fic
Si

gn

V
eg

et
at

io
n

Te
rr

ai
n

Sk
y

Pe
rs

on

R
id

er

C
ar

Tr
uc

k

B
us

Tr
ai

n

M
ot

or
bi

ke

B
ic

yc
le

SY
N

TH
IA Images 99.9 99.9 99.9 41.7 79.9 99.9 68.1 94.3 97.3 0.0 93.9 99.9 99.5 95.8 0.0 76.4 0.0 84.1 99.5

Pixels 18.54 19.31 29.43 0.27 0.26 1.04 0.04 0.10 10.15 0.0 6.80 4.25 0.47 4.04 0.0 1.53 0.0 0.21 0.22

G
TA

V Images 99.3 97.3 99.8 95.7 84.2 99.2 74.3 60.5 99.3 97.8 99.2 93.9 13.1 91.7 67.0 20.4 4.5 16.7 1.8

Pixels 32.1 8.29 16.91 1.85 0.63 1.06 0.13 0.08 7.6 2.14 13.53 0.36 0.03 2.51 1.13 0.37 0.06 0.03 0.1

Sy
ns

ca
pe

s

Images 99.9 98.7 99.1 32.8 98.2 99.6 96.7 98.9 97.6 48.2 98.0 99.7 82.3 98.5 86.9 80.8 65.8 86.5 89.5

Pixels 28.29 6.82 22.57 1.13 1.37 2.07 0.37 0.53 13.93 0.88 8.31 3.18 0.79 5.59 0.79 1.08 1.17 0.6 0.52

C
it

ys
ca

pe
s

Images 98.6 94.5 98.6 32.6 43.6 99.1 55.7 94.4 70.3 55.6 90.3 78.8 34.4 95.2 12.1 9.2 4.8 17.2 55.3

Pixels 32.63 5.39 20.19 0.58 0.78 1.09 0.18 0.49 14.08 1.03 3.55 1.08 0.12 6.19 0.24 0.21 0.21 0.09 0.37

BD
D

10
0K Images 96.5 66.7 88.4 15.4 30.6 95.0 47.1 75.3 91.7 36.7 94.8 34.7 5.2 97.3 30.5 15.0 0.7 3.8 6.4

Pixels 21.26 2.03 13.24 0.48 1.03 0.94 0.18 0.34 13.2 1.03 17.26 0.25 0.02 8.13 0.97 0.56 0.01 0.02 0.05

M
ap

ill
ar

y

Images 98.8 72.2 91.3 46.2 62.7 98.6 51.0 91.0 96.8 46.9 98.9 50.5 19.0 93.4 24.0 15.8 1.3 15.1 16.7

Pixels 19.42 2.99 12.47 0.75 1.26 0.9 0.18 0.45 14.94 1.05 29.33 0.31 0.06 3.36 0.37 0.26 0.02 0.06 0.07

Sensors 2023, 23, 621 18 of 28

Appendix B. Additional Co-Training Information

Figure A1 shows the confusion matrix of the semantic segmentation model trained
with the pseudo-labels provided by co-training on GTAV + Synscapes (source) and Cityscapes
(target). We can see how background classes such as Road, Building, Vegetation, and Sky
reach a ∼95% precision, where ’∼’ means approximately . All classes corresponding to dy-
namic objects show a ∼90% precision, except for Motorbike and Rider with ∼70%. Riders
may be confused with pedestrians, and motorbikes with bicycles. This problem could be
addressed by injecting more Rider samples in the source data, including corner cases where
they appear with pedestrians around. In addition, having more synthetic samples showing
motorbikes and bicycles may help to better differentiate such classes.

Figure A2 is analogous to Figure A1 but for BDD100K as target data. Again, most
classes corresponding to environmental elements (Road, Building, Vegetation, and Sky)
have high precision. However, some of them have a large margin for improvement. For
instance, the Sidewalk class tends to be labeled as Road, which we think is due to lacking
real-world images with sidewalks; in Table A1, we can see that only the∼66% of the training
images contain sidewalks, while this statistics reaches the ∼98% in the case of Cityscapes.
Wall, Fence, and Pole classes form a sort of confusion set. Sometimes, pixels of these classes
are also labeled as Vegetation because their instances occlude instances of Wall/Fence/Pole
or vice versa. Traffic lights and signs are frequently labeled as Building/Pole/Vegetation.
Here, a different labeling policy may also be introducing confusion on the trained model.
While the rear part of traffic lights and signs is not labeled in Synscapes and Cityscapes,
they are in BDD100K. Other classes such as Truck, Motorbike, and Bike, tend to be labeled
as Car. The Truck class is also under a discrepancy in labeling policy, since pick-up vehicles
are labeled as Truck in BDD100K but as Car in the others datasets.

Figure A1. Confusion matrix of the co-training model trained with GTAV + Synscapes as source data
and Cityscapes as target data.

Sensors 2023, 23, 621 19 of 28

Figure A2. Confusion matrix of the co-training model trained with GTAV + Synscapes as source data
and BDD100K as target data.

Figure A3 is analogous to Figure A1 but for Mapillary Vistas as target data.
The diagonal scores and confusion cases are similar to those of Cityscapes. We can ob-
serve cases of high precision but not so high IoU. For instance, ∼93% and ∼47% for the
class Terrain, respectively. Other classes showing a similar pattern are Truck, Bus, and
Motorbike. We think this can be at least partially due to differences in labeling policies.
Mapillary Vistas accounts for around one hundred different classes, which cannot be easily
mapped to the 19 classes of Cityscapes. Then, using only 19 classes while setting as unla-
beled the rest, drives to a ground truth with less information per training image than in
cases such as Cityscapes and BDD100K.

Sensors 2023, 23, 621 20 of 28

Figure A3. Confusion matrix of the co-training model trained with GTAV + Synscapes as source data
and Mapillary Vistas as target data.

Appendix C. Additional Qualitative Analysis

GTAV + Synscapes→ Cityscapes: In Figures A4 and A5 we show additional qualita-
tive results obtained on Cityscapes, when using GTAV + Synscapes as source domain.

Figure A4 remarks where several improvements from the co-training model vs. self-
training one appear. In the example in the left column, we see that the baseline and
self-training models have problems labeling a bus while the co-training model labels all
the dynamic objects accurately as the upper-bound model does. In the mid column, the
co-training model improves the labeling of the sidewalk, the closest person and rider.
The last column shows a challenging case where several pedestrians mixed with cyclists are
crossing the road. The baseline and self-training models are poor at distinguishing riders
from pedestrians. The co-training model is able to improve on classifying riders over the
baseline and self-training models, but not reaching the performance of the upper-bound
model in this case.

Sensors 2023, 23, 621 21 of 28

Figure A4. Qualitative results on the validation set of Cityscapes when relying on GTAV + Syn-
scapes as source data. The baseline model is trained using only these source data, the upper-bound
model uses these source data and all the labeled training data of Cityscapes. Self-training and co-
training models rely on the source data and the same training data from Cityscapes but without the
labeling information.

Figure A5 shows examples of wrong labeling even from the co-training model. The left
column shows a building erroneously labeled by all models except by the upper-bound one.
A large area of the building is labeled as Fence, which we believe is due to the reflections
seen in the facade windows. Furthermore, the variability of buildings in the synthetic data
is not enough to cover these variants seen in real-world scenarios. The upper-bound model
properly labels most of the building, but still labels part of its bottom as Fence. The mid
column shows a usual troublesome case in Cityscapes, where a stone-based road is labeled
as Sidewalk. Note that stones are also used to build sidewalks. The right column shows a
bus with some kind of advertising on the back, which induces all the models (including the
upper-bound one) to label the bus as a mixture of Traffic Sign and Building. We note that,
overall, there are not sufficient training samples of this type.

Sensors 2023, 23, 621 22 of 28

Figure A5. Analogous to Figure A4, focusing on problematic examples.

GTAV + Synscapes→ BDD100K: In Figures A6 and A7 we present qualitative results
changing the target to BDD100K.

Figure A6 shows how noisy the baseline model is in this case. This is due to variability
regarding weather conditions, lighting, and on-board cameras. Note that, contrarily to the
case of Cityscapes, BDD100K cameras are not even installed in the same position from car
to car, not even in the same car model in all the cases (see Figure A8). In the left column
of Figure A6, we see how both self-training and co-training models clearly perform much
better than the baseline, in fact, similarly to the upper-bound one. In the mid column, the
co-training model is the one performing most similarly to the upper bound. In the last
column, self-training, co-training, and upper-bound models have problems labeling the
bus cabin, which is confused with a truck cabin (upper-bound), a car cabin (co-training),
and a bit of both (self-training as coming from the baseline).

Figure A7 shows examples of wrong labeling even from the co-training model.
The left column shows an example where a far bus is confused with a Truck (baseline) or a
Car (self-training and co-training), and the sidewalk is largely confused with Terrain/Road
(baseline and co-training), Road (self-training), even the upper-bound confuses the part
of the sidewalk with Terrain. Traffic lights are also misclassified. The mid column also
shows failures in sidewalk classification for self-training and co-training models, although
both label the road better than the baseline. These models label the closest car even better
than the upper-bound model. The right column shows an extreme case where all models
have difficulties labeling a case of rider-with-bicycle. The baseline model provides some
insufficient cues, self-training improves them, but the co-training model labels the rider-
with-bicycle partially as Car and partially as Road. Even the upper-bound model misses
the rider, only properly labeling the bicycle.

Sensors 2023, 23, 621 23 of 28

Figure A6. Qualitative results similar to Figure A4 when using BDD100K as target.

Figure A7. Analogous to Figure A6, focusing on problematic examples.

Sensors 2023, 23, 621 24 of 28

Figure A8. Image samples from BDD100K dataset.

GTAV + Synscapes→ Mapillary: In Figures A9 and A10 we introduce qualitative
results changing the target to Mapillary Vistas.

Figure A9 aims to show cases where the co-training model performs similarly or
even better than the upper-bound one. In the left column, the co-training model performs
better than the rest of the models by avoiding parts of the wall being labeled as Fence.
In the mid column, only the co-training and the upper-bound models perform relatively
well labeling the sidewalk, the co-training model even better. In the right column, only
the co-training model is properly labeling the wall and relatively well the close truck.
Note how the upper-bound model labels the wall as Fence.

Figure A10 shows examples of wrong labeling from the co-training model. In the left
column, some buildings are labeled as Train. In fact, these buildings have a shape and
are arranged in a way that resembles train wagons. In the mid column, we see that the
co-training model is labeling some vegetation as Terrain, performing a bit worse than the
self-training model. In the right column, the co-training model partially labels two buses as
Car, while the self-training model performs better labeling in these cases.

Sensors 2023, 23, 621 25 of 28

Figure A9. Qualitative results similar to Figure A4 when using Mapillary Vistas as target.

Sensors 2023, 23, 621 26 of 28

Figure A10. Analogous to Figure A9, focusing on problematic examples.

References
1. Long, J.; Shelhamer, E.; Darrell, T. Fully convolutional networks for semantic segmentation. In Proceedings of the International

Conference on Computer Vision and Pattern Recognition (CVPR), Boston, MA, USA, 7–12 June 2015.
2. Badrinarayanan, V.; Kendall, A.; Cipolla, R. SegNet: A deep convolutional encoder-decoder architecture for image segmentation.

IEEE Trans. Pattern Anal. Mach. Intell. 2017, 39, 2481–2495. [CrossRef] [PubMed]

http://doi.org/10.1109/TPAMI.2016.2644615
http://www.ncbi.nlm.nih.gov/pubmed/28060704

Sensors 2023, 23, 621 27 of 28

3. Chen, L.-C.; Papandreou, G.; Schroff, F.; Adam, H. Rethinking atrous convolution for semantic image segmentation. arXiv 2017,
arXiv:1706.05587.

4. Chen, L.; Papandreou, G.; Kokkinos, I.; Murphy, K.; Yuille, A.L. DeepLab: Semantic image segmentation with deep convolutional
nets, atrous convolution, and fully connected crfs. IEEE Trans. Pattern Anal. Mach. Intell. 2018, 40, 834–848. [CrossRef] [PubMed]

5. Chen, L.-C.; Zhu, Y.; Papandreou, G.; Schroff, F.; Adam, H. Encoder-decoder with atrous separable convolution for semantic image
segmentation. In Proceedings of the European Conference on Computer Vision (ECCV), Munich, Germany, 8–14 September 2018.

6. Wang, J.; Sun, K.; Cheng, T.; Jiang, B.; Deng, C.; Zhao, Y.; Liu, D.; Mu, Y.; Tan, M.; Wang, X.; et al. Deep high-resolution
representation learning for visual recognition. IEEE Trans. Pattern Anal. Mach. Intell. 2020, 43, 3349–3364. [CrossRef] [PubMed]

7. Xie, E.; Wang, W.; Yu, Z.; Anandkumar, A.; Alvarez, J.M.; Luo, P. SegFormer: Simple and efficient design for semantic segmentation
with transformers. In Proceedings of the Neural Information Processing Systems (NeurIPS), online, 6–14 December 2021.

8. Csurka, G. Chapter 1: A Comprehensive Survey on Domain Adaptation for Visual Applications. In Advances in Computer Vision
and Pattern Recognition; Springer: Berlin/Heidelberg, Germany, 2017.

9. Wang, M.; Deng, W. Deep visual domain adaptation: A survey. Neurocomputing 2018, 312, 135–153 [CrossRef]
10. Wilson, G.; Cook, D.J. A survey of unsupervised deep domain adaptation. ACM Trans. Intell. Syst. Technol. 2020, 11, 1–46.

[CrossRef]
11. Zou, Y.; Yu, Z.; Kumar, B.; Wang, J. Unsupervised domain adaptation for semantic segmentation via class-balanced self-training.

In Proceedings of the European Conference on Computer Vision (ECCV), Munich, Germany, 8–14 September 2018.
12. Li, Y.; Yuan, L.; Vasconcelos, N. Bidirectional learning for domain adaptation of semantic segmentation. In Proceedings of the

International Conference on Computer Vision and Pattern Recognition (CVPR), Long Beach, CA, USA, 15–20 June 2019.
13. Luo, Y.; Zheng, L.; Guan, T.; Yu, J.; Yang, Y. Taking a closer look at domain shift: Category-level adversaries for semantics

consistent domain adaptation. In Proceedings of the International Conference on Computer Vision and Pattern Recognition
(CVPR), Long Beach, CA, USA, 15–20 June 2019.

14. Qin, C.; Wang, L.; Zhang, Y.; Fu, Y. Generatively inferential co-training for unsupervised domain adaptation. In Proceedings of the
International Conference on Computer Vision (ICCV) Workshops, Seoul, Republic of Korea, 27 October 2019–2 November 2019.

15. Zou, Y.; Zhiding, Y.; Xiaofeng, L.; Kumar, B.; Jin-Song, W. Confidence regularized self-training. In Proceedings of the International
Conference on Computer Vision (ICCV), Seoul, Republic of Korea, 27 October 2019–2 November 2019.

16. Yang, Y.; Soatto, S. FDA: Fourier domain adaptation for semantic segmentation. In Proceedings of the International Conference
on Computer Vision and Pattern Recognition (CVPR), virtual, 14–19 June 2020.

17. Wang, Z.; Yu, M.; Wei, Y.; Feris, R.; Xiong, J.; Hwu, W.M.; Huang, T.; Shi, H. Differential treatment for stuff and things:
A simple unsupervised domain adaptation method for semantic segmentation. In Proceedings of the International Conference on
Computer Vision and Pattern Recognition (CVPR), virtual, 14–19 June 2020.

18. Chao, C.-H.; Cheng, B.-W.; Lee, C.-Y. Rethinking ensemble-distillation for semantic segmentation based unsupervised domain
adaption. In Proceedings of the International Conference on Computer Vision and Pattern Recognition (CVPR), virtual, 19–25
June 2021.

19. Gao, L.; Zhang, J.; Zhang, L.; Tao, D. DSP: Dual soft-paste for unsupervised domain adaptive semantic segmentation.
In Proceedings of the ACM International Conference on Multimedia, Chengdu, China, 20–24 October 2021.

20. He, J.; Jia, X.; Chen, S.; Liu, J. Multi-source domain adaptation with collaborative learning for semantic segmentation.
In Proceedings of the International Conference on Computer Vision and Pattern Recognition (CVPR), virtual, 19–25 June 2021.

21. Tranheden, W.; Olsson, V.; Pinto, J.; Svensson, L. DACS: Domain adaptation via cross-domain mixed sampling. In Proceedings of
the Winter Conference on Applications of Computer Vision (WACV), virtual, 5–9 January 2021.

22. Zhang, K.; Sun, Y.; Wang, R.; Li, H.; Hu, X. Multiple fusion adaptation: A strong framework for unsupervised semantic
segmentation adaptation. In Proceedings of the British Machine Vision Conference (BMVC), online, 22–25 November 2021.

23. Wang, Z.; Wei, Y.; Feris, R.; Xiong, J.; Hwu, W.-M.; Huang, T.S.; Shi, H. Alleviating semantic-level shift: A semi-supervised domain
adaptation method for semantic segmentation. In Proceedings of the International Conference on Computer Vision and Pattern
Recognition (CVPR) Workshops, virtual, 14–19 June 2020.

24. Chen, S.; Jia, X.; He, J.; Shi, Y.; Liu, J. Semi-supervised domain adaptation based on dual-level domain mixing for semantic
segmentation. In Proceedings of the International Conference on Computer Vision and Pattern Recognition (CVPR), virtual,
19–25 June 2021.

25. Ros, G.; Sellart, L.; Materzyska, J.; Vázquez, D.; López, A. The SYNTHIA dataset: A large collection of synthetic images
for semantic segmentation of urban scenes. In Proceedings of the International Conference on Computer Vision and Pattern
Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016.

26. Richter, S.R.; Vineet, V.; Roth, S.; Koltun, V. Playing for data: Ground truth from computer games. In Proceedings of the European
Conference on Computer Vision (ECCV), Amsterdam, The Netherlands, 8–16 October 2016.

27. Wrenninge, M.; Unger, J. Synscapes: A photorealistic synthetic dataset for street scene parsing. arXiv 2018, arXiv:1810.08705.
28. Blum, A.; Mitchell, T. Combining labeled and unlabeled data with co-training. In Proceedings of the Conference on Computational

Learning Theory (COLT), Madison, WI, USA, 24–26 July 1998.
29. Triguero, I.; García, S.; Herrera, F. Self-labeled techniques for semi-supervised learning: Taxonomy, software and empirical study.

Signal Process. 2015, 42, 245–284. [CrossRef]
30. Van Engelen, J.; Hoos, H. A survey on semi-supervised learning. Mach. Learn. 2020, 109, 373–440. [CrossRef]

http://dx.doi.org/10.1109/TPAMI.2017.2699184
http://www.ncbi.nlm.nih.gov/pubmed/28463186
http://dx.doi.org/10.1109/TPAMI.2020.2983686
http://www.ncbi.nlm.nih.gov/pubmed/32248092
http://dx.doi.org/10.1016/j.neucom.2018.05.083
http://dx.doi.org/10.1145/3400066
http://dx.doi.org/10.1007/s10115-013-0706-y
http://dx.doi.org/10.1007/s10994-019-05855-6

Sensors 2023, 23, 621 28 of 28

31. Villalonga, G.; López, A. Co-training for on-board deep object detection. IEEE Accesss 2020, 8, 194.441–194.456. [CrossRef]
32. Gómez, J.L.; Villalonga, G.; López, A.M. Co-training for deep object detection: Comparing single-modal and multi-modal

approaches. Sensors 2021, 21, 3185. [CrossRef] [PubMed]
33. Cordts, M.; Omran, M.; Ramos, S.; Rehfeld, T.; Enzweiler, M.; Benenson, R.; Franke, U.; Roth, S.; Schiele, B. The Cityscapes

dataset for semantic urban scene understanding. In Proceedings of the International Conference on Computer Vision and Pattern
Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016.

34. Yu, F.; Chen, H.; Wang, X.; Xian, W.; Chen, Y.; Liu, F.; Madhavan, V.; Darrell, T. BDD100K: A diverse driving dataset for
heterogeneous multitask learning. In Proceedings of the International Conference on Computer Vision and Pattern Recognition
(CVPR), virtual, 14–19 June 2020.

35. Neuhold, G.; Ollmann, T.; Bulò, S.R.; Kontschieder, P. The Mapillary Vistas dataset for semantic understanding of street scenes.
In Proceedings of the International Conference on Computer Vision (ICCV), Venice, Italy, 22–29 October 2017.

36. Olsson, V.; Tranheden, W.; Pinto, J.; Svensson, L. ClassMix: Segmentation-based data augmentation for semi-supervised learning.
In Proceedings of the Winter Conference on Applications of Computer Vision (WACV), virtual, 5–9 January 2021.

37. Vázquez, D.; López, A.; Ponsa, D.; Marin, J. Cool world: Domain adaptation of virtual and real worlds for human detection using
active learning. In Proceedings of the Neural Information Processing Systems (NIPS)–Workshop on Domain Adaptation: Theory
and Applications, Granada, Spain, 12–17 December 2011.

38. Zhu, J.; Park, T.; Isola, P.; Efros, A. Unpaired image-to-image translation using cycle-consistent adversarial networks.
In Proceedings of the International Conference on Computer Vision (ICCV), Venice, Italy, 22–29 October 2017.

39. Ranftl, R.; Lasinger, K.; Hafner, D.; Schindler, K.; Koltun, V. Towards robust monocular depth estimation: Mixing datasets for
zero-shot cross-dataset transfer. IEEE Trans. Pattern Anal. Mach. Intell. 2022, 44, 1623–1637. [CrossRef] [PubMed]

40. Everingham, M.; Eslami, S.; Gool, L.V.; Williams, C.K.; Winn, J.; Zisserman, A. The PASCAL visual object classes challenge:
A retrospective. Int. J. Comput. Vis. 2015, 111, 98–136. [CrossRef]

41. Wu, Y.; Kirillov, A.; Massa, F.; Lo, W.-Y.; Girshick, R. Detectron2. 2019. Available online: https://github.com/facebookresearch/
detectron2 (accessed on 20 June 2022).

42. Tsai, Y.-H.; Hung, W.-C.; Schulter, S.; Sohn, K.; Yang, M.-H.; Chandraker, M. Learning to adapt structured output space for
semantic segmentation. In Proceedings of the International Conference on Computer Vision and Pattern Recognition (CVPR),
Salt Lake City, UT, USA, 18–23 June 2018.

43. Pan, F.; Shin, I.; Rameau, F.; Lee, S.; Kweon, I.S. Unsupervised intra-domain adaptation for semantic segmentation through
self-supervision. In Proceedings of the International Conference on Computer Vision and Pattern Recognition (CVPR), virtual,
14–19 June 2020.

44. Zhang, P.; Zhang, B.; Zhang, T.; Chen, D.; Wang, Y.; Wen, F. Prototypical pseudo label denoising and target structure learning
for domain adaptive semantic segmentation. In Proceedings of the International Conference on Computer Vision and Pattern
Recognition (CVPR), virtual, 19–25 June 2021.

45. Zhao, S.; Li, B.; Yue, X.; Gu, Y.; Xu, P.; Hu, R.; Chai, H.; Keutzer, K. Multi-source domain adaptation for semantic segmentation.
In Proceedings of the Neural Information Processing Systems (NeurIPS), Vancouver, BC, Canada, 8–14 December 2019.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1109/ACCESS.2020.3032024
http://dx.doi.org/10.3390/s21093185
http://www.ncbi.nlm.nih.gov/pubmed/34064323
http://dx.doi.org/10.1109/TPAMI.2020.3019967
http://www.ncbi.nlm.nih.gov/pubmed/32853149
http://dx.doi.org/10.1007/s11263-014-0733-5
https://github.com/facebookresearch/detectron2
https://github.com/facebookresearch/detectron2

	Introduction
	Related Works
	Method
	Self-Training Stage
	Co-Training Procedure

	Experimental Results
	Datasets and Evaluation
	Implementation Details
	Comparison with the State of the Art
	Ablative Study and Qualitative Results

	Conclusions
	Appendix A
	Appendix B
	Appendix C
	References

