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Exploring cryptic amyloidogenic
regions in prion-like proteins
from plants
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Prion-like domains (PrLDs) are intrinsically disordered regions (IDRs) of low

sequence complexity with a similar composition to yeast prion domains.

PrLDs-containing proteins have been involved in different organisms’

regulatory processes. Regions of moderate amyloid propensity within IDRs

have been shown to assemble autonomously into amyloid fibrils. These

sequences tend to be rich in polar amino acids and often escape from the

detection of classical bioinformatics screenings that look for highly

aggregation-prone hydrophobic sequence stretches. We defined them as

cryptic amyloidogenic regions (CARs) and recently developed an integrated

database that collects thousands of predicted CARs in IDRs. CARs seem to be

evolutionary conserved among disordered regions because of their potential to

stablish functional contacts with other biomolecules. Here we have focused on

identifying and characterizing CARs in prion-like proteins (pCARs) from plants,

a lineage that has been poorly studied in comparison with other prionomes. We

confirmed the intrinsic amyloid potential for a selected pCAR from Arabidopsis

thaliana and explored functional enrichments and compositional bias of pCARs

in plant prion-like proteins.

KEYWORDS

cryptic amyloidogenic regions, prion-like domains, plants, functional
interactions, bioinformatics
Abbreviations: CAR, Cryptic amyloidogenic region; pCAR, Prionic cryptic amyloidogenic region; CARs-

DB, Cryptic amyloidogenic regions database; PrLDs, Prion-like domains; LCD, Low complexity domain;

IDPs, Intrinsically disordered proteins; IDRs, Intrinsically disordered regions; PPIs, Protein-protein

interactions; LIPs, Linear interacting motifs; LLPS, Liquid-liquid phase separation; MLOs,

Membraneless organelles; MED9, Mediator of RNA polymerase II transcription subunit 9.
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1 Introduction

Since the description of the first self-perpetuating

proteinaceous infectious pathogens in the late 20th century

(Prusiner, 1982) and the subsequent discovery of yeast prions

(Wickner, 1994), the prion concept has progressively evolved

with our understanding of the phenomenon. Protein domains in

a variety of polypeptides were found to share similar sequential

composition to the domains required for yeast prion conversion,

although they do not necessarily show conformational

transitions or mechanisms of self-propagation and were

termed prion-like domains (PrLDs). Despite initially thought

to be linked to disease, further characterization of prion-like

polypeptides revealed their role in regulating key biological

functions in a wide variety of organisms (True and Lindquist,

2000; Chakrabortee et al., 2016; Yuan and Hochschild, 2017;

Pallares et al., 2018; Tetz and Tetz, 2018). In this context, under

physiological conditions, most PrLDs-containing proteins would

not transition towards aggregated states, and instead, they tend

to be involved in functional interactions with other proteins and

nucleic acids (Alberti et al., 2009; King et al., 2012; Iglesias

et al., 2015).

PrLDs are often enriched in glutamine, asparagine, serine,

glycine, and tyrosine (Michelitsch and Weissman, 2000; Alberti

et al., 2009; Toombs et al., 2010; Diaz-Caballero et al., 2018) and

depleted of hydrophobic amino acids, thus having an overall

polar character. The characteristic compositional bias of PrLDs

is at the core of diverse predictive bioinformatics tools that aim

at identifying such signatures in protein sequences (Toombs

et al., 2012; Lancaster et al., 2014; Afsar Minhas et al., 2017).

Most of the current protein aggregation predictors were

designed to predict highly hydrophobic sequence stretches in

disease-associated proteins, a feature that does not match the

polar nature of PrLDs (Fernandez-Escamilla et al., 2004;

Conchillo-Sole et al., 2007; Garbuzynskiy et al., 2010; Maurer-

Stroh et al., 2010; Sormanni et al., 2015). Only a few of them, like

pWaltz (Sabate et al., 2015b), and its implementation in PrionW

(Zambrano et al., 2015), use adapted aggregation scales aimed to

identify sequences of milder amyloid propensity, denominated

soft amyloid cores (SACs). Albeit pWaltz has been successfully

used to identify SACs within PrLDs whose correspondent

peptides have been experimentally validated to form amyloids

(Sant’anna et al., 2016; Batlle et al., 2017a), this algorithm suffers

from technical limitations, including the exclusion of proline

residues on its predictions, the identification of a single hit per

PrLD or the rigidity of its sequence scoring system that

unavoidably employs a sliding window of 21 residues.

In recent work, we implemented a pWaltz-related approach

to identify protein regions with amyloid potential in hydrophilic

sequential contexts by decreasing the actual detection threshold

of the Walz algorithm (Maurer-Stroh et al., 2010), -a well-

characterized amyloidogenic predictor- without any further
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arbitrary residue exclusion or window-size length assumption.

This prediction scheme allowed us to identify and characterize

cryptic amyloidogenic regions (CARs) in experimentally

validated intrinsically disordered regions (IDRs), which were

previously considered to be depleted of aggregation-prone

regions (Santos et al., 2021). CARs are sequences of mild

amyloidogenic potential, yet able to assemble into fibrils when

in isolation. These stretches have likely been conserved within

IDPs because their potential to act as functional interacting

motifs with other biomolecules overpasses a low risk for

pathogenic aggregation. In fact, CARs consistently overlap

with interacting motifs in IDPs. We collected these predictions

in a comprehensive database named CARs-DB (Pintado-Grima

et al., 2022a).

Given the generic disordered nature of PrLDs, in this work,

we conducted a computational screening to identify CARs in

plant PrLDs (pCARs) from different plant species to understand

their role in this kingdom. We discovered that CARs are

widespread in model plants’ PrLDs, with gene ontology

enrichment analysis suggesting they are connected to critical

biological processes. In addition, we validated amyloid

formation for a selected pCAR from Arabidopsis thaliana (A.

thaliana), demonstrating that this class of plant protein

sequences bears the potential to spontaneously self-assemble,

at least in vitro.
2 Materials and methods

2.1 Data collection and dataset
generation

The reference proteomes of five different plant model

organisms, including Arabidopsis thaliana (mouse-ear cress;

UP000006548), Zea mays (maize; UP000007305), Oriza sativa

(rice; UP000059680), Solanum lycopersicum (tomato;

UP000004994) and Nicotiana tabacum (tobacco plant;

UP000084051) were extracted from UniProt (UniProt, 2021)

(Release 2022_03). PrLDs were screened with PLAAC

(Lancaster et al., 2014) using a core length of 60 amino acids

and relative weighting of background probabilities obtained

from input sequences. PLAAC searches protein sequences to

identify probable prion subsequences exploiting a hidden-

Markov model (HMM) algorithm using the selected

background probabilities. pCARs longer than six residues were

obtained from PrLDs by applying the Waltz algorithm at

thresholds 73.5, 80, and 85, as optimized in our original study

of CARs (Santos et al., 2021) and CARs-DB (Pintado-Grima

et al., 2022a) to account for polar amyloidogenic regions. The

Waltz algorithm (Maurer-Stroh et al., 2010) explores the

sequence determinants of amyloid structure using position-

specific scoring matrices derived from analyzing a database of
frontiersin.org
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short amyloid-forming and non-forming sequences. Modified

Waltz thresholds optimized in our original CAR work were

selected based on previous experimental evidence (Sabate

et al., 2015b).
2.2 Gene Ontology (GO) enrichment
analysis

Functional enrichments were assessed with the database for

annotation, visualization, and integrated discovery DAVID

(Sherman et al., 2022) using each proteome as background.

GO terms of biological process (BP_DIRECT), molecular

func t ion (MF_DIRECT) , and ce l lu l ar component

(CC_DIRECT) were selected for the study with a modified

Fisher cutoff p-value of 0.1. The Bejamini false discovery rate

method was used to control increased error rates for multiple

tests (Benjamini and Hochberg, 1995).
2.3 Peptide preparation and aggregation

The peptide encoding the mediator of RNA polymerase II

transcription subunit 9 (MED9) pCAR region Ac-

QYQQFQQQQHFIQQQQFQ-NH2 was purchased from

SynPeptide (Shanghai, China) with a purity >95%. To mimic

the protein environment, terminal charges were neutralized by

N-terminal acetylation and C-terminal amidation. Peptide

powder was dissolved in hexafluoroisopropanol to a

concentration of 1 mg/mL, aliquoted, and vacuum dried with

a SpeedVac (Thermo Fisher Scientific, Waltham, USA). For the

aggregation reactions, aliquots were solubilized with 20 µL

hexafluoroisopropanol and diluted to a concentration of 50

mM in 20 mM Tris and 100 mM NaCl pH 8. 150 mL of

peptide solutions were incubated in a 96 wells plate (non-

treated) (Sarstedt, Germany) for two days at 37°C with

continuous agitation at 100 RPM. A detailed description of the

aggregation conditions is described in the supplementary

MIRRAGGE spreadsheet (Martins et al., 2020).
2.4 Binding to amyloid dyes

End-point samples of the MED9 pCAR were incubated with

40 µM thioflavin-T (Th-T) for 20 minutes, and their

fluorescence emission spectra were recorded using a Spark

plate reader (Tecan, Männedorf, Switzerland). Fluorescence

intensity was measured by exciting at 440 nm, bandwidth of 5

nm, and collecting the emission from 460 to 600 nm with a 1

nm interval.

Congo-red (CR) binding to end-point samples recovered

from the plate was tested using a Cary 100 UV/Vis

Spectrophotometer (Varian, Palo Alto, United States). 100 µl
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of the aggregated sample was incubated for 20 minutes with 900

µl of CR at a final concentration of 5 µM before recording the

spectra. CR absorbance spectra were recorded from 400 to 700

nm. A control sample with 100 µl of the aggregation buffer was

prepared (CR-Free).
2.5 Far circular dichroism spectroscopy

Far-UV circular dichroism (CD) spectra of the peptide

before and after aggregation were recorded on a Jasco J-

815CD spectrometer (Halifax, Canada) at 25°C. The spectra

were acquired from 260 nm to 200 nm at 0.2 nm intervals, 2 nm

bandwidth, 2 s of response time, and a 200 nm/min scan speed

on a 0.1 cm quartz cell. To prevent unwanted self-association

through the experiment and have a representative spectrum of

the initial time-point, the initial aliquot was resuspended in 25

mM Sodium acetate 100 mMNaCl pH 5; 10 accumulations were

recorded and averaged for each measurement.
2.6 Attenuated total reflectance Fourier
transform infrared spectroscopy

Attenuated total reflectance Fourier transform infrared

(ATR-FTIR) spectroscopy experiments were performed in a

Bruker Tensor 27 FTIR spectrometer (Bruker Optics Inc) with

a Golden Gate MKII ATR accessory. Samples were dried under

an N2 (g) stream and measured at a spectral resolution of 2 cm-1

within the 1800–1500 cm-1 range (16 accumulations). Dara

recording and normalization were performed using the OPUS

MIR Tensor 27 software and deconvoluted with the Peak Fit 4.12

program (Systat Software Inc., San Jose, CA, USA).
2.7 Transmission electron microscopy

5 µL of the aggregated sample, previously diluted to a

concentration of 5 µM, was placed onto glow-discharged

carbon-coated copper grids for 1 min. Sample excess was

blotted with ashless filter paper, and grids were washed in

distillate water drops. Negative staining was performed with

2% (w/v) uranyl acetate for 1 min. A TEM JEM-1400 (JEOL,

Peabody, USA) microscope was used, operating at an

accelerating voltage of 120 kV.
3 Results

3.1 Prevalence of pCARs in plant PrLDs

Since the original characterization of prion domains in yeast

(Chernoff et al., 1995; Serio et al., 1999), PrLDs with similar
frontiersin.org
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features have been identified and studied in other organisms

such as viruses (Tetz and Tetz, 2018), bacteria (Iglesias et al.,

2015; Yuan and Hochschild, 2017; Choi et al., 2022), protozoan

(Pallares et al., 2018) or humans (An and Harrison, 2016; Iglesias

et al., 2019). Plants have received less attention, with only a few

studies focusing on PrLDs’ coverage and function (Chakrabortee

et al., 2016; Dorone et al., 2021; Garai et al., 2021). To identify

the potential presence of CARs in PrLDs (pCARs) from plants,

the proteomes of five different model higher plants were first

screened with the PLAAC algorithm. Around 1% of the total

proteome of these species was predicted as PrLDs, spanning

from 0.62% (O. sativa) to 1.57% (A. thaliana). In comparison

with other studied model organisms (Gil-Garcia et al., 2021), this

average is similar to the proportion of human, bacteria, and

viruses PrLDs and lower than S. cerevisiae (~3%)

(Figure 1; Table 1).

For predicted plant PrLDs, pCARs were identified with

Waltz at the three designated thresholds 73.5, 80, and 85. As

expected, the percentage of PrLDs CAR positive (containing at

least one CAR) increased in all species as the threshold became

less stringent, hence allowing the detection of an increasing

number of pCARs of polar nature (Figure 2A). Remarkably, at

threshold 73.5, more than 90% of the predicted PrLDs contained
Frontiers in Plant Science 04
FIGURE 1

Proportion of predicted PrLDs for five models of plants in
comparison with other described organisms. Around 1% of the
total proteome is predicted as prion-like, similar to the values
obtained for humans, bacteria, and viruses. S. cerevisiae represents
an exceptional case of a proteome highly enriched in PrLDs.
TABLE 1 Identification of pCARs from PrLDs for the five different plant model organisms.

Organism Proteins PrLDs
PrLDs
(%)

Waltz
threshold CARs

PrLDs
CAR+

PrLDs CAR
+ (%)

CARs/PrLD
CAR+

Average CAR
length

Arabidopsis thaliana 27474 432 1.57 85 679 303 70.14 2.24 11.6

80 983 356 82.41 2.76 12.66

73.5 1484 402 93.06 3.69 14.69

Zea mays (maize) 56926 404 0.71 85 667 302 74.75 2.21 12.58

80 918 356 88.12 2.58 13.78

73.5 1358 380 94.06 3.57 15.99

Oryza sativa (rice) 43672 270 0.62 85 429 190 70.37 2.26 11.48

80 595 220 81.48 2.7 13.19

73.5 864 253 93.7 3.42 15.52

Solanum lycopersicum
(tomato) 34655 405 1.17 85 689 307 75.8 2.24 13

80 957 354 87.41 2.7 14.2

73.5 1366 377 93.09 3.62 15.88

Nicotiana tabacum
(tobacco plant) 61673 883 1.43 85 1471 683 77.35 2.15 12.38

80 1989 763 86.41 2.61 13.98

73.5 2913 847 95.92 3.44 15.96

PrLDs were screened with PLAAC, and their corresponding CARs were predicted with Waltz at the three designated thresholds.
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such regions. According to the analysis, for the 5 tested plant

species, PrLDs tend to display several pCARs, with and average

length of >10 residues (Figures 2B, C). Comparing these metrics

with generic intrinsically disordered regions (IDRs) extracted

from DisProt (Santos et al., 2021), the positive rate of CARs in

PrLDs is higher than in IDRs, as well as the number of CARs/

LCD (low complexity domain, either PrLD or IDR) and their

size. This indicates that CARs are more prevalent in PrLDs than

in IDRs, likely because of the particular amino acid bias of prion

LCD sequences.

As in IDRs (Santos et al., 2021), the widespread

representation of CARs in plants is suggestive of a link with

protein functionality. We compared the coincidence of pCARs

from A. thaliana with linear interaction motifs (LIPs) as

described in the MobiDB database (Piovesan et al., 2021), and

observed a 63.5%, 65.6%, and 67.6% of pCAR residues

overlapping with LIPs for the 73.5, 80 and 85 thresholds,

respectively. This suggests that these regions might be

conserved because of their contribution to establishing
Frontiers in Plant Science 05
functional interactions. Our Aggrescan algorithm (Conchillo-

Sole et al., 2007) failed to identify 71.5% (703/983) of A.

thalianas’ pCARs detected at the 80.0 threshold, indicating

that, in the context of PrLDs, they do not confer to the

containing protein a high risk for aggregation.
3.2 Amino acid composition of pCARs in
A. thaliana

Once the presence of pCARs in all five plant species was

confirmed and provided that the proportion of PrLDs and

pCARs were similar, we selected the best-known plant model

organism A. thaliana for subsequent analyses.

We compared the amino acid composition of PrLDs from A.

thaliana with that of the complete proteome (Figure 3A). As

expected from the encoded residue preferences in the employed

PLAAC algorithm, in the PrLDs from A. thaliana are depleted of

hydrophobic residues and enriched in b-breakers (GP), two
A B C

FIGURE 2

General statistics for pCARs from A thaliana (blue), Z. mays (green), O. sativa (red), S. lycopersicum (ochre), and N. tabacum (purple), in
comparison with general DisProt CARs (black). Most PrLDs are CAR-positive (A), often with more than one predicted pCARs (B). Lower Waltz
thresholds contain more pCARs with longer average sequences (C).
A B

FIGURE 3

pCARs composition by threshold in A thaliana compared with their PrLDs and its proteome. Compared with the proteome, PrLDs already have
an intrinsic bias toward polar and b-breakers amino acids. In contrast, pCARs are enriched in hydrophobics and depleted of b-breakers (A). Most
polar amino acids are QNs, and aromatic residues seem to modulate the amyloidogenic load of pCARs (B). Barplot draws error bars in the plot
with 95% confidence interval.
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features that play against the uncontrolled and generic

aggregation of these disordered regions (Rousseau et al., 2006;

Theillet et al., 2013). Indeed, glycines and prolines (G+P) alone

equal the total content of hydrophobic residues, around 25%,

whereas, in the total proteome, non-polar residues are threefold

more abundant than G+P. Next, we compared pCARs

composition against PrLDs. pCARs exhibit a higher

percentage of hydrophobic residues and a lower content in b-
breakers than PrLDs. As expected, the proportion of G+P in

pCARs decreases as the Waltz threshold becomes more

stringent. The percentage of hydrophilic residues in pCARs

resembles that in PrLDs, being insensitive to the applied

threshold, suggesting that they might provide background

control to the equilibrium between disorder and assembly in

these sequences.

To better dissect the relevant physicochemical features

hidden in these amino acid groups, we split them into seven

categories: Q+N, charged, rest of polars, tyrosine, rest of

aromatics, aliphatics, and b-breakers. As observed in

Figure 3B, only two residues (Q+N) account for almost 25% of

the amino acids in PrLDs, a situation that contrasts with these

residues’ low contribution to this plant proteome composition

(7.9%). Asp and Gln are known to play a critical role in prion

conformation (Perutz et al., 2002; Derkatch et al., 2004; Jiang

et al., 2004; Sabate et al., 2015b; Zambrano et al., 2015; Zhang

et al., 2016). Interestingly enough, Q+N are more frequent in

pCARs than in complete PrLDs, their number increasing with

the stringency of the prediction, indicative that they would be

important contributors to the homo- or heterotypic interactions

these stretches might establish. The higher proportion of

hydrophobic amino acids in pCARs, relative to its PrLDs

containers, can be traced to increases in both aromatic and

aliphatic residues. However, it seems that the presence of

aromatic residues is a distinctive feature of pCARs, their

proportion increasing with the detection threshold.

Specifically, tyrosines (Y) account in all the cases for more

than 50% of the total aromatics, likely due to its dual polar/

apolar character and its unique hydrogen bonding capability.

This bias toward Y is reminiscent of what has been observed in

liquid-liquid phase separation (LLPS), where phenylalanine and

tyrosine are not interchangeable (Wang et al., 2018), likely

because Y best balances solubility and assembly potential

(Diaz-Caballero et al., 2018).

Not surprisingly, regions between pCARs (interpCARs) also

differ in residues composition from pCARs (Figure 4).

Compared with pCARs, interpCARs are highly enriched in G

+P and depleted in aromatic residues. Despite Q+N are also

abundant in interpCARs there is a strong preference for Q over

N in these regions, indicating that their properties are not

entirely exchangeable. Another interesting observation is that

the cationic arginine (R) and histidine (H) residues are preferred

at interpCARs, but this bias does not apply to other charged

residues like lysine, glutamate, and aspartate. The average length
Frontiers in Plant Science 06
of interpCARs is longer than that of pCARs; 20.4 and 12.7 at

threshold 80.0, respectively.

In a way, the distribution and biased composition of pCARs

within PrLDs is reminiscent of the proposed stickers and spacers

model of LLPS (Wang et al., 2018; Martin et al., 2020; Holehouse

et al., 2021; Bremer et al., 2022); with the Y+F+W+N enriched

pCARs acting as stickers that facilitate protein interactions and

the P+G+H+R enriched interpCARs as spacers, connecting

stickers and providing them the adequate solubility and

disorder context.
3.3 Functional enrichments of pCARs in
A. thaliana

To explore the potential contribution of pCARs to the

biological roles of A. thaliana prion-like proteins, we

performed a functional enrichment analysis using the DAVID

database (Sherman et al., 2022).

Regarding the molecular functions of pCARs, significant

enrichments were found for regulative processes, especially for

nucleic acids, including DNA, RNA and mRNA binding, but

also protein binding (Figure 5; Supplementary Table 1). This is

interesting, as CARs have already been described to mediate key

PPIs in IDPs (Santos et al., 2021; Pintado-Grima et al., 2022a). It

is not surprising that, provided the previously proposed

regulatory function of CARs, pCARs are found enriched in

biological activities of gene expression, transcription, and

translation. Related enrichments have been described in

amyloidogenic (Antonets and Nizhnikov, 2017) and prion-like
FIGURE 4

Residue composition comparison between A. thaliana pCARs
and interpCARs (regions between two pCARs in any PrLD
sequence) at threshold 80. pCARs are enriched in aromatic
residues and depleted of b-breakers (GP). An opposite tendency
is observed for interpCARs, which seem to compensate the
sequential amyloidogenic load by reducing the aromatics and
increasing b-breakers.
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(Garai et al., 2021) proteins from plants. The fact that a

significant proportion of PrLDs is pCAR-positive makes it

challenging to disentangle the contributions of the complete

PrLD sequence and pCARs only in a given protein to the

detected enrichments. However, even when the A. thaliana

prionome is used as background for the GO analysis,

significant enrichments in regulatory processes such as

regulation of transcription (BP), transcription factor activity

(MF), or nucleus (CC) were still observed (Supplementary

Figure 1). A. thaliana’s pCARs are also enriched in plant-

specific biological processes such as leaf and flower

development or root meristem growth. In fact, there is already

experimental evidence for plant PrLDs being involved in the

autonomous flowering pathway, specifically for the

luminidependens PrLD from A. thaliana (Chakrabortee

et al., 2016).

pCARs are found to be associated with nuclear components,

ribonuclear complexes, and nucleus, the latter with the lowest p-

values observed (p<10-61) among all GO terms analyzed. Certain

membraneless organelles (MLOs), such as cytoplasmatic stress

granules or P-bodies were also enriched in pCARs. PrLDs are

recruited to MLOs in response to different stimuli (Boncella

et al., 2020; Iglesias et al., 2021), and they need to have some

condensate driving element that facilitates the formation of

liquid droplets. This would be especially relevant when the

protein phase separates by itself, in the absence of additional

co-factors (Pintado-Grima et al., 2022b); as described, pCARs

might act as sticker regions facilitating PrLDs’ coalescence and

the stabilization of these cellular compartments (Tsoi et al.,

2021). In general, RNA and mRNA binding and processing are

associated with pCARs. This might reflect a situation in which

many of the protein constituents of MLOs are originally nuclear
Frontiers in Plant Science 07
RNA binding proteins (Mann and Donnelly, 2021), with many

of them bearing PrLDs (Harrison and Shorter, 2017; Gotor

et al., 2020).
3.4 MED9 pCAR form amyloid fibrils

The concept of CARs has been gaining strength by means of

the continuous experimental validation of predicted segments of

hydrophilic nature that form amyloid fibrils in vitro (Santos

et al., 2021; Pintado-Grima et al., 2022a). Our goal is to increase

the body of evidence on the intrinsic amyloidogenic potential of

these sequences, when they are disconnected from their

interpCARs regions. Accordingly, we examined a new pCAR

from A. thaliana’s MED9 protein (Q8RWA2) in this work.

MED9, the mediator of RNA polymerase II transcription

subunit 9, is a nuclear protein that is part of the mediator

complex. It acts as a coactivator involved in the transcriptional

regulation of almost all RNA polymerase II-related genes. The

N-terminal domain of MED9 (1-149) is predicted as a PrLD by

PLAAC. Within this PrLD, an 18-residue pCAR comprising

residues 77 to 94 (77-QYQQFQQQQHFIQQQQFQ-94)

emerges as an interesting pCAR that we selected by its overall

polar composition (67%), significant aromatic content (22%),

low Waltz score (77.87), and for being undetectable by well-

established aggregation and amyloid predicting algorithms like

Aggrescan (Conchillo-Sole et al., 2007; De Groot et al., 2012),

Tango (Fernandez-Escamilla et al., 2004) or ZipperDB

(Thompson et al., 2006).

MobiDB (Piovesan et al., 2021) consistently predicts MED9

PrLD to belong to a long-disordered region (1-150) (Figure 6A).

AlphaFold (Jumper et al., 2021; Varadi et al., 2022) predict that
frontiersin.or
FIGURE 5

GO enrichments of pCARs from A. thaliana by threshold. Significant enrichments were found in cellular components (CC), biological processes
(BP), and molecular functions (MF) at the three designated thresholds: 73.5 (green), 80 (yellow), and 85 (blue). pCARs are mainly associated with
nuclear components and MLOs and are found in several regulatory processes and plant-specific functions.
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FIGURE 6

Experimental characterization of the predicted pCAR derived peptide in MED9 from A thaliana. (A) MED9 diagram showing the location of the
predicted disordered regions (yellow), PrLD (violet), secondary structures (blue) and the selected pCAR (red). The sequence of pCAR is shown in
the red box. (B) Far-UV circular dichroism spectra of the peptide, evolution from the initial disordered soluble state into mature amyloid fibrils at
50 mM and 48 hours of incubation at 37 °C with continuous agitation at 100 RPM. (C) Thioflavin-T fluorescence emission spectrum when
excited at 440nm in the absence (dashed line) and presence (solid line) of the aggregated sample; note the characteristic fluorescence
enhancement at 480 nm when the dye is bound to amyloid-like aggregates. (D) CR spectral changes in the absence (dashed line) and in the
presence (solid line) of the incubated peptide. (E) FTIR spectrum in the amide I region of the incubated sample. The red line corresponds to the
absorbance spectra and the blue area indicates the inter-molecular b-sheet contribution to the total area upon Gaussian deconvolution.
(F) Representative TEM micrographs illustrating the fibrils of the incubated peptide.
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residues 32-64 and 70-97 might form two alpha-helices, which,

in the absence of tertiary contacts, are probably only attained

upon binding to a molecular partner (i.e., coiled-coil formation).

The MED9 pCAR maps within the second predicted helix

(Figure 6A), suggesting a potential implication in PPIs

through a folding upon binding mechanism, as reported in a

significant proportion of previously characterized CARs (Santos

et al., 2021).

To assess the amyloidogenic potential of MED9 pCAR, we

analyzed whether a peptide corresponding to its sequence was

able to self-assemble into amyloid fibrils in vitro. We incubated

the peptide at 50 mM in 20 mM Tris and 100 mM NaCl pH 8 for

48 hours at 37 °C and 100RPM. After this time, the initial CD

signal corresponding to the disordered soluble peptide was

significantly reduced and shifted to a faint b-sheet signature,
indicating protein aggregation (Figure 6B). The end-point

sample was positive for amyloid dye binding (Th-T and CR),

suggesting the formation of amyloid-like structures (Figures 6C,

D). To assess the secondary structure content of the insoluble

aggregates not accessible by CD, we used FTIR and recorded the

amine I region of the infrared spectra (1700-1600 cm-1). We

observed a dominant contribution of the 1630 cm-1 band (70%

of the area) associated with the formation of amyloid-like

intermolecular b-sheets (Figure 6E). A morphological analysis

of the aggregates by TEM confirmed the fibrillar nature of the

aggregates (Figure 6F).

Together, this data confirms that the MED9 pCAR has the

inherent potential to aggregate into amyloid fibrils.

Furthermore, the coincidence of predicted coiled-coil and

amyloid propensities in the same sequence has been previously

observed in a large number of human PrLDs and yeast prions

(Fiumara et al., 2010; Batlle et al., 2021). Indeed, a human

member of the mediator complex, MED15, is a bona fide

prion-like protein whose PrLD transits between disordered,

coiled-coil, and amyloid states (Batlle et al., 2021). As

mentioned above, the MED9 pCAR is just one example of a

conjunct of amyloid-competent sequences not detectable by

classical aggregation predictors like our own Aggrescan

(Conchillo-Sole et al., 2007).
4 Discussion

The prion phenomenon continues to attract high interest. In

recent times, significant effort has been devoted to

understanding the role PrLDs play in biological pathways

across species, beyond those initially described in yeast prions.

Although PrLDs seem to share a moderate amyloid propensity

(Sabate et al., 2015b), the containing proteins do not always

behave as bona fide prions, but rather exploit these LCDs to

promote the functional interactions needed for their activity.

Amyloid regions in PrLDs need to be milder and more polar
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than the hydrophobic stretches often identified in the core of

pathogenic amyloid fibrils; to keep the protein soluble but allow

specific inter-molecular interactions. In this scenario, the

concept of CARs, whose existence has already been validated

in generic IDPs (Santos et al., 2021), is translated here to PrLDs,

since these domains are, by definition, intrinsically disordered.

In the PrLD context, pCARs would define the boundaries of the

regions that would concentrate this mild amyloid potential,

flanked by longer and highly soluble interpCARs segments,

acting analogously to the way stickers and spacers do in LLPS

(Martin et al., 2020).

pCAR composition suggests that these regions within PrLDs

arise from a reduction of b-breakers and an increase in

hydrophobic residues, especially of an aromatic character,

relative to the rest of the domain. In addition, Tyr seems to

play a unique role in pCARs, since it units aromaticity and

polarity, allowing interactions with water in the soluble state and

pi-pi interactions in the assembled state. Notably, the content in

polar residues of pCARs is equal to or higher than that of the

complete PrLDs or even the whole proteome, which ensures that

their amyloid propensity is framed in an overall soluble

background. In this context, the polar Gln and specially Asn

residues, which are highly enriched in PrLDs relative to the

proteome but also in pCARs relative to these domains, would

also contribute to control the amyloid load, since their side

chains have a high tendency to form hydrogen bonds with the

solvent and thus enable solubility, but at the same time, they can

form very tight interactions within the dehydrated interfaces of

b-strands (Balbirnie et al., 2001; Peccati et al., 2020). The

preference for Asn relative to Gln in pCARs seems to make

sense since Asn richness promotes the formation of benign

assemblies, whereas Gln richness promotes the formation of

toxic aggregates (Halfmann et al., 2011).

The present analysis uncovered a previously unexplored

putative amyloid sequence space in plants PrLDs, relative to

previous studies, including ours; where amyloid-prone regions

identification was limited by rationally implemented but

arbitrary requirements, including a fixed size, the absence of

Pro or the belief that a single region would suffice to nucleate

aggregation (Sabate et al., 2015a; Batlle et al., 2017b; Fernandez

et al., 2017), essentially because the bias toward studying disease-

associated amyloids made us wrongly thought that highly

hydrophilic sequences, like pCARs, could not form amyloid

structures autonomously. Importantly, the presence of these

cryptic amyloidogenic regions seems to relate to RNA- and

mRNA-related processes occurring in the nucleus, highlighting

the significant role that PrLDs containing CARs might play in

regulating plant-specific biochemical pathways.

Although the pCAR concept indeed requires extensive

experimental validation before their presence can be established

as a general principle modulating the activity of prion-like

proteins, it is also certain that for most of the experimentally
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validated CARs, structural analysis indicated that these initially

disordered regions might fold upon interaction with a partner, or,

alternatively, that they mediate multimerization. This suggests

that its higher amyloidogenic load, relative to the rest of the PrLD

sequence, cannot be purged out by natural selection because CARs

are needed for functional interactions. Surprisingly, in many

instances, the folded structures adopted by CARs in functional

complexes correspond to a-helices, often involved in coiled-coil

dimerization (Batlle et al., 2021). Chameleon sequences adopt an

a-helix in the folded state of globular proteins but display a

hidden propensity to form b-sheets when unfolded, and a-helix/
b-strand-discordant stretches were proposed to be associated with
amyloid fibril formation already in 2001 (Kallberg et al., 2001).

What makes special CARs, such as those of A. thalianaMED9 or

human MED15, is that they might populate three different states,

disordered in isolation, a-helix in functional PPIs, and b-sheets if
they eventually transition to the amyloid state; with the three

propensities encoded in the same sequence but controlled by the

protein microenvironment and the sequential context.

We believe the approach described in the present study may

translate to the detection of pCARs in other interesting

prionomes, to build a comprehensive repository of polar

amyloidogenic regions for further experimental validation and

benchmarking future predictive algorithms.
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