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Abstract

Background

Wearable sensors-based systems have emerged as a potential tool to continuously monitor

Parkinson’s Disease (PD) motor features in free-living environments.

Objectives

To analyse the responsivity of wearable inertial sensor (WIS) measures (On/Off-Time, dys-

kinesia, freezing of gait (FoG) and gait parameters) after treatment adjustments. We also

aim to study the ability of the sensor in the detection of MF, dyskinesia, FoG and the per-

centage of Off-Time, under ambulatory conditions of use.

Methods

We conducted an observational, open-label study. PD patients wore a validated WIS

(STAT-ONTM) for one week (before treatment), and one week, three months after therapeu-

tic changes. The patients were analyzed into two groups according to whether treatment

changes had been indicated or not.

Results

Thirty-nine PD patients were included in the study (PD duration 8 ± 3.5 years). Treatment

changes were made in 29 patients (85%). When comparing the two groups (treatment inter-

vention vs no intervention), the WIS detected significant changes in the mean percentage of

Off-Time (p = 0.007), the mean percentage of On-Time (p = 0.002), the number of steps (p =

0.008) and the gait fluidity (p = 0.004). The mean percentage of Off-Time among the

patients who decreased their Off-Time (79% of patients) was -7.54 ± 5.26. The mean
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percentage of On-Time among the patients that increased their On-Time (59% of patients)

was 8.9 ± 6.46. The Spearman correlation between the mean fluidity of the stride and the

UPDRS-III- Factor I was 0.6 (p = <0.001). The system detected motor fluctuations (MF) in

thirty-seven patients (95%), whilst dyskinesia and FoG were detected in fifteen (41%), and

nine PD patients (23%), respectively. However, the kappa agreement analysis between the

UPDRS-IV/clinical interview and the sensor was 0.089 for MF, 0.318 for dyskinesia and

0.481 for FoG.

Conclusions

It’s feasible to use this sensor for monitoring PD treatment under ambulatory conditions.

This system could serve as a complementary tool to assess PD motor complications and

treatment adjustments, although more studies are required.

Introduction

Parkinson’s disease (PD) is a complex neurodegenerative disorder characterized by a wide

range of motor and non-motor symptoms. Dopaminergic treatments can improve symptoms

and quality of life. However, motor fluctuations (MF), non-motor fluctuations (NMF), dyski-

nesia and freezing of gait (FoG) complicate the management of PD [1–3]. Accurate identifica-

tion of motor symptoms, motor fluctuations and Off-Time is crucial to making a precise

treatment adjustment. The clinical interview, a set of recommended clinical scales and

patient’s diaries are widely used for this purpose [4–7]. Nonetheless, the real time for each

patient in the setting of the clinical practice is sometimes limited and not all the symptoms can

be captured properly. Besides, intra and interrater correlations of UPDRS are low and give

only a “quick snap picture” of the motor state of the patient [8]. Completing patient’s diaries

require some effort, but they are completed without difficulty in most instances [9]. However,

some patients may struggle to register motor complications (MC) accurately. Recall bias,

reduced diaries compliance and diary fatigue can also be common [10,11].

New technologies and wearable sensors-based systems have emerged in the last decade to

objectively assess motor PD symptoms for long periods in free-living environments [12–19].

Novel devices based either on machine-learning approaches or statistical-based methodology,

can be used to capture and monitor motor PD symptoms and MC, or to objectively assess

response to dopaminergic therapy [20–33]. The Kinesia 360TM is composed of two sensors,

wrist-worn and ankle-worn [32]. It uses a gyroscope, and the algorithms give information

regarding tremor, dyskinesia, slowness, mobility, posture and steps. The PKGTM has been

extensively used. It is a waist-worn sensor that can detects ON/OFF states, bradykinesia, dyski-

nesia, tremor, and inactivity state but not FoG, gait or falls [26–30]. The PDMonitorTM uses a

five-device system and can detect ON/OFF MF, bradykinesia, dyskinesia, tremor, FoG, gait

measures and rest state but not falls. Although these novel tools are promising, some chal-

lenges such as the lack of external validation could limit their implementation [8]. The main

challenge relies on comparing the clinical practice with devices against the clinical practice

without devices and seeing if the wearable sensor-based systems can improve PD motor symp-

toms. So far, only comparisons between sensors and questionnaires have been done, but no

clear evidence has been shown yet.
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The STAT-ONTM is a wearable inertial sensor (WIS) that was certified as a medical

device in June 2019. The system provides numerical and graphical information of the

motor symptoms associated with PD. The STAT-ON reports include the percentages of

Off-Time, On-Time, dyskinesia, and FoG (Fig 1A and 1C). The WIS can capture On, Off

or intermediate states (Fig 1B). When no movement is detected, the report shows this

period in grey colour (Fig 1B). The sensor also captures the gait fluidity (GF) (Fig 1D).

The minutes walked, the number of steps per day, the cadence and the number of falls can

also be detected.

A recent study that analysed the opinion of different PD experts in Spain regarding WIS

clinical utility showed that the system was considered “quite” to “very useful” by 74% of the

neurologists [34]. Moreover, a single-blind, multicentre, randomised controlled clinical trial

comparing the effectiveness of the system with other clinical monitoring methods is being con-

ducted [35]. Satisfaction and usability of the system among PD patients have been also ana-

lysed using the Quebec User Evaluation of Satisfaction with assistive Technology (QUEST)

questionnaire and the System Usability Scale (SUS) questionnaire respectively [36–38]. The

level of satisfaction of the device was high according to QUEST scale (all items scored between

4 “quite satisfied” and 5 “very satisfied”), except for the item “easy in adjusting” (47%), which

had a lower score [38].

Fig 1. Examples of sensor patients’ results. A. Example of the first page of the STAT-ONTM report. It contains information regarding the total time of

monitorization along the 7-day-period. B. Example of the report that is shared with the patient. Color legend. Green: On state; Red: Off state; Yellow: Intermediate

state; Grey: Inactivity or rest state. No walking detection; Freezing of Gait (FoG) is represented by a black round; Horizontal purple line: Dyskinesia; Vertical black

line: Button event (in the present study, corresponds with the levodopa dose); Vertical blue line: Fall. C. The figure shows the total time and the percentage of Off state

of every day. The height of each bar depends on the percentage of Off-Time per day. D. This figure shows the GF along the day of the third day of monitoring of the

same patient of the STAT-ONTM report above. The GF is worse in the morning.

https://doi.org/10.1371/journal.pone.0279910.g001
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Regarding the sensitivity and specificity of the algorithms embedded into the sensor for

detecting On-Off fluctuations, dyskinesia or FoG, a set of studies have demonstrated that both

are around 0.9, with few variations depending on the algorithm [39–47]. However, there has

been no published data regarding the responsivity of the sensor’s measures after treatment

adjustments. Besides, and to the best of our knowledge there are no studies analysing the

agreement of the detection of MF, dyskinesia, and FoG in an unsupervised scenario.

We conducted an observational, open-label study in our outpatient Movement Disorders

Unit to assess this both issues of the sensor, under ambulatory conditions of use.

Methods

Study participants and inclusion criteria

Patients diagnosed with PD according to the UK PD Society Brain Bank criteria who routinely

visited our unit, were recruited prospectively between September 2019 and December 2019

[48]. All participants met the following inclusion criteria: aged 30–80 years, were taking levo-

dopa, had MC or a “suboptimal” motor state, and agreed to participate. A suboptimal motor

state was considered when MF or WO were not clearly manifested according to the patient

and the UPDRS-III motor scale of the patient was 3 points worse than the evaluation in the

previous visit (the change considered by the literature as clinically significant). Participants

were excluded if it was deemed by the interviewer’s clinical judgment that they were unable to

provide valid responses. Exclusion criteria also included unavailability to perform the study

because of hospitalization or diagnosis of serious illness.

Design, procedures, and clinical assessment

Socio-demographic and clinical data were collected. Standardized neurological assessment

included the clinical interview, the Unified Parkinson’s Disease Rating Scale (UPDRS)- II,

UPDRS-III, UPDRS-IV, and the H&Y Staging of PD.

Patients were trained on how to use the device. The WIS was placed on their left hip in the

first visit, and for one week, twelve hours a day (Fig 2).

After one week, the sensor was returned and WIS information was evaluated jointly by the

neurologist and the patient. Treatment adjustments were indicated mainly according to best

clinical practice guidelines but in some cases, device information reinforced these treatment

decisions. The patients were analysed into two groups according to whether treatment changes

had been indicated or not. In addition, the WIS satisfaction through QUEST scale was

evaluated.

After 11 weeks, the WIS was again delivered for patients to use for a 7-day period, twelve

hours per day. WIS information was shared with the patient. Assessment of FoG, Off-Time,

and UPDRS II-IV and the SUS questionnaire were also completed (Fig 2).

Patient’s training on how to use the sensor

Patients were asked to place the WIS on their left hip during the day for 12 hours. They were

encouraged to continue with their usual activities as much as possible. For a better understand-

ing of the WIS information, patients were asked to record their ADL each hour. However, we

asked them to take off de WIS if a long car journey was done, or they practiced physical activ-

ity. They were trained to push the unique button of the system when they took a levodopa

dosage.
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Equipment

We used the STAT-ONTM system (https://www.statonholter.com/) as a continuous monitor-

ing system through new technologies. The system is a Medical Device Class IIa (Council

Directive 93/42/EEC of 14 June 1993) being only prescribed and provided from the clinician

to the patient. The STAT-ONTM system consists of a monitoring device, its base charger, a

belt, and a smartphone application (App). According to the Instructions for Use, The STA-

T-ONTM is a waist-worn inertial recorder, configured by a doctor and used by the patient for

clinical, ambulatory, or home environments, that collects the results of the motor disorders

and events of PD patients for a period. The smartphone can be property of the neurologist or

the centre. The device continuously collects the inertial signals of the patient’s movement, pro-

cesses them in real-time by means of artificial intelligence algorithms, and stores the results in

its internal memory. When the patient returns the sensor, the App connects to the STA-

T-ONTM device via Bluetooth and WIS data are downloaded and converted into structured

report that can be emailed to any user or neurologist (Fig 1A–1D).

The App can only be managed by the health staff and can be installed on any smartphone

or tablet (Android 5 or higher) or iOS for Apple devices (iOS 10.2 or higher). STAT-ONTM

App is used both for configuring the system and for downloading the data previously gener-

ated by the sensor. The distance between the ground and the user’s hip (leg length), the age

and the H&Y Off stage are needed for a use configuration.

Assessment of motor fluctuations, dyskinesia, FoG and patient-based Off-

Time

Motor fluctuations were assessed by UPDRS-IV (item 39) while assessment of dyskinesia was

based on item 35 of UPDRS-IV. The presence of FoG was evaluated according to the clinical

interview.

Fig 2. Design, procedures, and clinical assessment.

https://doi.org/10.1371/journal.pone.0279910.g002
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Data WIS analysis

Selection of monitored days. The analysis was performed selecting the 4 days with more

hours in Off-Time. Although patients were asked to wear the sensor for 12 hours, the time of use

during the day was variable. Therefore, all those days with less than 8 hours of monitoring were

omitted. The variation of having days with 8 to more than 12 hours of monitoring was minimized

using the percentage of time in OFF with respect to the total time monitored. Besides, in our

experience there are some patients with fewer hours monitored that put on the sensor later in the

morning. This can lead to missing data of the morning-Off’s. The most appropriate and simple

criterion to minimize this effect and not introduce bias in the sample was to compare the 4 worst

days of each patient in terms of the percentage of OFF with respect to the monitored time.

Analysis of sensor data for the correlation with clinical data. The outcome rate of the

sensor’s information is provided every 30 minutes. This means that if 12 hours of monitoring are

captured per day for 7 days, a total of 168 outcomes are obtained. Obviously, this is not directly

comparable with a single clinical evaluation. In order to obtain a single diagnostic data for all the

monitoring, different criteria and aggregations have been applied, which we detail below. In our

experience, the most natural way to aggregate the sensor information is through a timeframe of

one day. This means that the percentage of the different variables (Off, On, Intermediate- Time

or dyskinesia) have only been computed if the monitoring period is more than 8h per day. From

these daily measurements, we analyse the 4 worst days with higher OFF percentages. Finally, and

with the aim of normalising the data amongst the patients, from these obtained 4 days, we calcu-

late the mean of all the parameters. This way, it is obtained in a single data diagnosis which could

be comparable to the clinical evaluation carried out in the consultation.

Factor I of UPDRS-III. UPDRS-III-Factor I is one of the parameters of the UPDRS that

correlates better with the sensor signals. The UPDRS-III items clustered in the Factor-I are

speech, facial expression, arising from a chair, gait, postural instability, and body bradykinesia

[39,46,49]. The fluidity of the stride gait is a continuous variable, calculated for each group of

strides of the patient, and which is the basis for calculating motor states [50–52]. In the present

study we analysed the correlation of the Factor I and the mean fluidity of the stride. This analy-

sis was evaluated in all the patients that completed the two monitorizations (after and before

treatment changes).

Statistical methods

Sensor variables were measured at baseline and three months later. The changes in these vari-

ables were compared between the patients in whom some therapeutic intervention was per-

formed versus those that did not. Univariate comparisons were performed between both

groups. The statistical tests included Chi-squared test, U-Mann-Whitney test, and t-student

test as appropriate. Spearman correlation was applied for the analysis of Factor I of UPDRS-III.

For the agreement analysis of MF, dyskinesias and FoG, the proportion of observed agreement

and the Kappa coefficient was estimated for every pair of observers and every symptom. Statis-

tical significance was set at p<0.05. SPSS 24.0 statistical software (SPSS, Chicago, IL) was used

for all statistical analyses.

Results

Characteristics of PD sample and WIS parameters at baseline

Thirty-nine PD patients were included in the study [mean (SD) age of 69 (8) years, 56% men,

mean disease duration PD 8 (3.5) years]. All PD patients were treated with levodopa. Twenty-

nine PD patients (74%) had predictable MF according to UPDRS-IV Q36, while 7.7% had
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unpredictable MF. Seventeen patients (44%) had dyskinesia and twelve patients (31%) had FoG

according to the clinical interview. Details regarding, demographics, motor state and therapies

of sample, according the two groups (therapeutic intervention vs not) are shown in Table 1.

The WIS captured On, Off and intermediate state in the majority of patients (95–97%).

Characteristics regarding the motor state, the MC and patients’ gait parameters according

to the sensor are detailed in Table 2.

At the 3-month follow-up visit, five dropouts (13%) occurred: in three patients due to inter-

current diseases and in two patients due to unavailability to perform the study, all of them not

related to PD.

Observed agreement of MF, dyskinesia and FoG at baseline

The system detected MF in thirty-seven patients (95%), whilst dyskinesia and FoG were

detected in fifteen (41%), and nine (23%), respectively.

However, the kappa coefficient for MF, dyskinesia and FoG was 0.089, 0.318 and 0.481

respectively (Table 3).

PD groups according to treatment adjustments

The treatment adjustments group included 29 patients was (85%) while there were 5 patients

(15%) in the PD group without treatment adjustments. These 5 patients denied a modification

Table 1. Characteristics of the study sample.

Change of treatment

N = 34

No change of treatment

N = 5

P Value

Age, years 70 (6) 63 (13) 0.316

Male, n (%) 19 (56) 3 (60) 0.862

Years from PD diagnosis 7 (4.1) 6 (2.3) 0.554

Years of PD evolution 8 (3.7) 7 (1.6) 0.259

H&Y 0.427

1, n (%) 2 (6) 0

2, n (%) 15 (44) 1 (41)

2.5, n (%) 14 (41) 4 (46)

3, n (%) 3 (9) 0

PD drug Treatment

L-DOPA use, n (%) 34 (100) 5(100) -

DA agonist use, n (%) 22 (65) 3 (60) 0.838

MAOIs use, n (%) 21 (62) 4 (80) 0.427

COMT inhibitor use, n (%) 13 (38) 2 (40) 0.940

Amantadine, n (%) 2 (5) 0 0.578

L-DOPA total daily dose 576 (260) 490 (134) 0.475

L-DOPA equivalence total daily dose 705 (292) 632 (343) 0.614

Advanced therapies, n (%) 2 (5) 0 0.578

UPDRS-II on state 9.8 (7) 9.2 (4) 0.848

UPDRS-III on state 21.6 (9.3) 14.8 (9.6) 0.194

UPDRS-IV 4.2 (2.3) 3.9 (1.7) 0.219

Values expressed as mean (standard deviation) except when indicated otherwise.

Abbreviations: H&Y = Hoehn and Yahr; PD = Parkinson disease; L-DOPA = Levodopa; DA = Dopaminergic; MAOI = Catechol-O-Methyltransferase Inhibitor:

UPDRS = Unified Parkinson’s Disease Rating Scale.

https://doi.org/10.1371/journal.pone.0279910.t001
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of the treatment scheduled. In fact, we usually face this scenario in clinical practice when deal-

ing with PD patients without having sensor information. Sometimes the patient doesn’t want

to change the treatment because of their own decision because the intensity of Off or other PD

symptoms are not so bothersome.

Levodopa was increased in 9 patients. In 2 patients the levodopa dose was decreased

because adjustments of other dopaminergic drugs (opicapone and apomorphine infusion)

were needed. Changes in levodopa schedule were indicated in 3 (10%) patients while a new

treatment was added in 15 (52%) patients: opicapone 4, amantadine 3, oral/transdermic dopa-

mine agonist 4, IMAOB (rasagiline/safinamide) 2, apomorphine infusion 1, antidepressant 1.

Clinical and WIS data after treatment changes

In the group with changes in the treatment schedule (85%) the increase of the levodopa equiva-

lent dose was 86.1 ± 69.7 mg while there was an improvement of the UPDRS-III On total score

Table 2. Characteristics of the motor state, the motor complications, FoG, and gait parameters of the patients detected by the Wearable Inertial Sensor at baseline.

Change of treatment

N = 34

No change of treatment

N = 5

P Value

Motor state

Patients with Off state, n (%) 33 (97) 4 (80) 0.106

Mean percentage of time in Off state 27 (10) 17 (11) 0.048�

Patients with On, n (%) 32 (94) 5 (100) 0.578

Mean percentage of time in On state 27 (10) 39 (14) 0.026�

Patients with intermediate state, n (%) 33 (97) 5 (100) 0.698

Mean percentage of time in intermediate 20 (6) 17 (8) 0.420

Mean percentage of time without walking 25 (10) 26 (8) 0.860

Dyskinesia, n (%) 16 (47) 0 0.046�

Number of dyskinesias per day 9 (11) 2 (1) 0.002�

FoG, n (%) 8 (23) 1 (20) 0.861

Number de FoG episodes per day 7 (26) 5 (7) 0.866

Gait parameters

Minute walking per day 73 (22) 103 (21) 0.008�

Steps per day 8140 (2817) 12320 (4046) 0.006�

Cadence 39 (2) 39 (4) 0.624

Gait fluidity 7 (1) 9 (2) 0.005�

Values expressed mean (standard deviation) except when indicated otherwise.

Abbreviations: FoG = Freezing of gait.

Continuous variables were compared using t-Student test. Categorial variables were compared using the Chi-square test.

� p<0.05.

https://doi.org/10.1371/journal.pone.0279910.t002

Table 3. Observed agreement between UPDRS-IV and wearable inertial sensor, regarding motor fluctuations, dyskinesia and FoG (at baseline).

UPDRS-IV/clinical interview WIS

data

Observed agreement Kappa coefficient

Motor fluctuations, n (%) 29 (74) 37 (95) 74.4% 0.089

Dyskinesias, n (%) 17 (44) 16 (41) 66.7% 0.318

FoG, n (%) 12 (31) 9 (23) 76.9% 0.481

Abbreviations: FoG = Freezing of gait; WIS = Wearable Inertial Sensor.

https://doi.org/10.1371/journal.pone.0279910.t003
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from 21.52 (+/- 9.82) to 16.69 (+/- 6.11). When comparing the mean percentages of Off-Time

and On-Time between the two groups, there were statistically significant differences (Table 4).

In the intervention group the percentage of Off-Time decreased from 28.30 ± 11.15 to

23.96 ± 13.37 while it increased in the group without treatment changes from 17.02 ± 11.64 to

23.07 (p = 0.007). Regarding the On-Time, it increased from 26.36 ± 10.83 to 29.22 ± 13.58 in

the intervention group and decreased from 39.52 ± 14.56 to 29.82 ± 13.07 in the group without

any intervention (p = 0.002). Differences were also observed between groups in terms of num-

ber of steps and GF with less decrease in the group in which treatment was changed (p = 0.008

and 0.004 respectively). Change in other sensor-based parameters (dyskinesia, FoG and min-

utes walking per day) was not significant.

When analysing the variables of On and Off sensor values in the “intervention group”, it

was found that the mean percentage of Off-Time among the patients who decreased their Off-

Time (79% of patients) was -7.54 ± 5.26. The mean percentage of On-Time among the patients

that increased their On-Time (59% of patients) was 8.9 ± 6.46.

When analysing the subgroup in which levodopa was increased (n = 9) against the group

without treatment changes (n = 5), the WIS detected more On-Time in the patients in whom

levodopa was increased (2.1 ± 6.7 vs– 9.7 ± 4.3; p = 0.003). More minutes walked (-1.1 ± 17.1

vs -22.0 ± 18.2; p = 0.039) and a greater number of steps (-281.3 ± 1976.8 vs– 3119.8 ± 1609.8;

p = 0.014) were also found in this levodopa group. The GF worsen in the group without treat-

ment changes (-0.8 ± 0.4) and remained unchanged in the levodopa group (0.0 ± 0.3)

(p = 0.004).

Discussion

New technologies and wearable sensors based on machine-learning approaches can help to

capture the response to dopaminergic treatments and provide complementary information

Table 4. Comparisons of the observed changes in WIS parameters between the two groups (treatment changes vs not) at baseline and after 3 months.

Group with treatment changes

n = 29

Group without treatment changes n = 5 P Value

Basal Month 3 Change Basal Month 3 Change

Clinical Outcomes

UPDRS-III ON 21.52 (9.82) 16.69 (6.11) - 4.89 (6.88) 14.80 (9.62) 16.20 (7.79) 1.4 (3.20) 0.015�

Factor I (sub-scale UPDRS III) 7.19 (3.9) 5.94 (3.15) -1.25 (1.63) 6.0 (3.32) 5.0 (3.53) -1.0 (1) 0.48

UPDRS- II ON 10.2 (8.1) 9.3 (7.5) -1.0 (3.0) 9.2 (4.2) 8.8 (4.7) -0.4 (0.5) 0.628

UPDRS-IV 4.1 (2.3) 4.3 (2.1) 0.2 (1.6) 3.0 (1.7) 2.2 (1.1) 0.8 (0.8) 0.080

WIS parameters

Mean % time in Off state 28.30 (11.15) 23.96 (13.37) -4.34 (8.31) 17.02 (11.64) 23.07 (15.84) 6.05 0.007�

Mean % time in On state 26.36 (10.83) 29.22 (13.58) 2.86 (9.44) 39.52 (14.56) 29.82 (13.07) -9.70 (4.32) 0.002�

Mean % time in Intermediate state 20.0 (7.3) 18.7 (7.1) 1.2 (6.8) 17.3 (8.3) 24.7 (6.7) 7.4 (11.0) 0.103

Mean % time in inactivity state 25.4 (11.2) 28.1 (12.9) 2.7 (6.6) 26.2 (8.5) 22.4 (6.8) -3.7 (8.5) 0.126

Dyskinesia per day 9.27 (9.74) 13.17 (13.71) 3.90 (9.34) 2.27 (1.66) 1.95 (2.74) -0.32 0.206

FoG per day 8.52 (28.35) 4.81 (13.26) -3.71 (15.52) 5.46 (7.12) 5.57 (8.81) 0.11 0.610

Minute walking per day 75.64(22.90) 71.97 (24.65) -3.67 (18.69) 103.26 (21.41) 81.26 (23.97) -22 0.061

Steps per day 8396(2890) 7840 (2878) -556 (1871) 12320 (4046) 9200 (3646) -3120 0.008�

Gait fluidity 7.37 (1.35) 7.43 (1.54) 0.06 (0.61) 9.38 (2.03) 8.57 (1.93) -0.81 0.004�

Values expressed as mean (standard deviation).

Comparisons of the observed changes in WIS parameters between groups were made using Mann-Whitney U test �p<0.05.

https://doi.org/10.1371/journal.pone.0279910.t004

PLOS ONE Feasibility of a wearable inertial sensor

PLOS ONE | https://doi.org/10.1371/journal.pone.0279910 February 2, 2023 9 / 15

https://doi.org/10.1371/journal.pone.0279910.t004
https://doi.org/10.1371/journal.pone.0279910


besides the clinical scales and patient’s subjective opinion about the treatment response. In the

present study, the STAT-ONTM system can detect significant sensor-based changes in terms of

a decrease in the percentage of Off-Time, and increase of On-Time, number steps and GF

after three months of having modified the treatment schedule. Besides, we have obtained a

value of 8.9 ± 6.46 for the percentage of On-Time and -7.54 ± 5.26 for the Off-Time percent-

age. These preliminary results will need further replication for future studies with this sensor

when analysing the magnitude of effect of interventions (either pharmacological or non-phar-

macological such as physiotherapy). We have also found that the number of steps increased

significantly, yet the minutes walking per day did not, meaning that the walking speed

increased. Hence, with the wearable sensors not only the Off-Time/On-Time is important to

analyse, but also gait variables such as GF and gait speed.

Other studies with different wearable-based technology have tried to demonstrate data-sen-

sor changes after dopaminergic treatments in real-world settings [20,21,24–26,28–30]. Wrist

sensors can overestimate symptoms more than waist-worn sensors, particularly tremor and

dyskinesia [53]. Nonetheless, if the objective is to monitor the change measured by the sensor

rather than accurately record PD symptoms, this can be achieved with either wrist or waist

sensors [53]. In a recent study were PD patients used a smartphone App while doing 5 activi-

ties (voice, finger tapping, gait, balance, and reaction time), a mobile PD score (mPDS) derived

from a novel machine-learning approach, captured improvement in response to dopaminergic

therapy [20]. The watch device Personal KinetiGraph (PKG) has been widely used in the set-

ting of routine clinical practice to identify a clinically significant response to levodopa [21],

assess the changes in the dopaminergic oral therapy [24,28,29], identify candidates for second

line therapies [24,50], or determine the changes in motor fluctuations following deep brain

stimulation [26].

Wearable technologies provide additional and useful objective data that can enhance an

enrichment of the clinical decision-making process, empowering the patient in the treatment

decisions [22,23]. In our study, the treatment decisions were done according to the best clinical

practice guidelines, but we are aware that the STAT-ONTM information could have influenced

these treatment decisions. However, in the present study the WIS report was available for all

the patients in the second visit. Hence, we don’t have measured how the impact of the STA-

T-ONTM information can influence in the treatment decisions. Nonetheless, in the ongoing

multicentre, randomised clinical trial MoMoPa-EC, in which the STAT-ONTM is used, this

issue will be analysed because there are three study arms (sensor information vs Hauser diaries

vs clinical information only collected in the visit) [35]. In fact, other studies using wearable

technology demonstrate that more treatment plans are performed with the additional informa-

tion captured by the sensors, probably improving the patient dialogue [24,25,28,29].

This device is only able to detect the Off-Time by analysing the bradykinetic gait while the

patient is walking and wearing the sensor [36,37]. According to the previous studies of this

sensor, the sensitivity and specificity of the On/Off STAT-ONTM algorithms are of 97% and

88% respectively [39,40,42]. According to our results, this wearable system detects Off state in

almost all the patients (95%) at baseline. Still, there was no agreement between the clinical and

the WIS results when applying the Kappa analysis. Nonetheless, these results could be influ-

enced by the fact that we don’t have used the Hauser diaries for the correlation. In this line, in

the previous studies for the elaboration of the STAT-ON sensor algorithms, patients that

didn’t experience MF or were unable to recognize them, were excluded of the studies [42,47].

On the contrary, in the present pilot study we have included patients with initial MF or that

they did not manifested WO. However, a recent sub-analysis of the MoMoPa-EC study that

analyse the agreement between the Hauser diaries and the STAT-ON sensor, show an
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intraclass correlation coefficient (ICC) of both methods of 0.57 (95% CI: 0.3–0.73) for the Off-

Time and 0.48 (95% CI: 0.17–0.68) for the On-Time [54].

The disagreement in the detection of MF between the clinical scale and the sensor, espe-

cially in the scenario of the daily-clinical practice, opens the discussion about whether the sen-

sor is detecting the problem before the patient understands the reason for it. The transition

from the best patient’s motor state to worst motor state can be gradual and ambiguous for

some patients, leading to imprecise evaluation [4]. Besides, some barriers exist in the clinical

practice when evaluating the off periods. These barriers could be lack of awareness of the

symptom among patients, cognitive impairment, reluctance to discuss symptoms, caregiver

absence, lack of time’s physician to evaluate all the symptoms or physician’s lack of apprecia-

tion of the Off periods [55]. In this regard, the use of wearable medical devices can be crucial

and potentially help the clinicians in the detection of MF [56]. Future studies with larger sam-

ples using specific WO scales and exploring the ability of STAT-ONTM of capturing initial MF

are mandatory.

With regard to dyskinesia, the sensitivity and specificity for strong or mild trunk dyskinesia

are 95% and 93% respectively, and the sensitivity is lower (39%) for mild limb dyskinesias [44].

In the sub-analysis of the MoMoPa trial mentioned before, the ICC of the Hauser diaries and

the STAT-ON was 0.48 (95% CI: 0.17–0.68) [54]. The STAT-ON cannot detect all the type of

dyskinesia along all the time of monitoring. Besides, the sensor only detects dyskinesia when

the patient is not walking. This means, when the bradykinesia algorithm is not working. The

kappa agreement for dyskinesia in the present study is of 0.318. Disagreement in dyskinesia

can be explained because either the patient may not be aware of their dyskinesia, or the patient

is doing an activity that might imitate a “false dyskinesia” like dancing. In the present study we

tried to control the patient’s activities in a simple diary. However, we couldn’t control at all the

activities potentially responsible for “false positive dyskinesia” such as cleaning, sweeping or

going by car or public transport. With respect to the FoG, in the previous algorithm validation

study of this WIS, the sensitivity and specificity were around 85% [43]. To our knowledge,

there are still no studies that have analysed the agreement between the clinical detection of

FoG and the STAT-ONTM sensor detection of FoG in an unsupervised scenario. Although in

our study there is the limitation that specific FoG detection clinical scales have not been used,

a kappa coefficient of 0.481 have been obtained. Hence, it will be of interest to have future

results analysing this issue.

The results of the Spearman correlation regarding the UPDRS-III-Factor I and the STA-

T-ONTM measures have been previously studied. In the study of Rodrı́guez-Molinero et al, the

correlation between the algorithm outputs and the UPDRS-III- Factor I was -0.67 (p< 0.01)

[46]. In this study the comparison was directly between the Factor I and the GF while in our

study we have obtained the variation of the mean GF of the same patient in the two monitori-

zations, which has 0.6. Although these results cannot be directly compared, the correlation

obtained in our study shows consistent results with the previous ones. Recently, Pérez-López

and collaborators, have found a Spearman correlation of– 0.63 (p> 0.001) between the mean

fluidity and the UPDRS-III- Factor I [54].

The present work has several limitations. Due to the design of the study, heterogeneity in

both the PD sample and the treatment groups couldn’t have been avoided. Moreover, we

haven’t used other specific clinical scales for evaluating the WO, dyskinesia or FoG, nor the

Hauser diaries have been used. Finally, the interesting point of the study that is performed in a

“free-living-environment” implies that some false positives are unavoidable.

Despite the limitations of our study, we think that this wearable can provide additional

value to PD neurologists for a better understanding of the PD patient ‘s motor state and a guid-

ing for treatment decisions in the setting of routine clinical practice [8,23,57,58].
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In summary, it’s feasible to use this sensor for monitoring PD treatment under ambulatory

conditions. This system could serve as a complementary tool to assess PD motor symptoms

and motor complications, although more studies with larger and homogeneous PD samples

should be completed.
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cal utility of a personalized and long-term monitoring device for Parkinson’s disease in a Real Clinical

Practice Setting: an expert Opinion survey on STAT-ONTM. Neurologia (Engl Ed). 2020 Dec 24; S0213-

4853(20)30339-X. https://doi.org/10.1016/j.nrl.2020.10.013 PMID: 33358530

35. Rodrı́guez-Molinero A, Hernández-Vara J, Miñarro A, Pérez-López C, Bayés-Rusiñol À, et al. Multicen-
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