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An open source Python library 
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Isotopic composition modelling is a key aspect in many environmental studies. This work presents 
Isocompy, an open source Python library that estimates isotopic compositions through machine 
learning algorithms with user‑defined variables. Isocompy includes dataset preprocessing, outlier 
detection, statistical analysis, feature selection, model validation and calibration and postprocessing. 
This tool has the flexibility to operate with discontinuous inputs in time and space. The automatic 
decision‑making procedures are knitted in different stages of the algorithm, although it is possible 
to manually complete each step. The extensive output reports, figures and maps generated by 
Isocompy facilitate the comprehension of stable water isotope studies. The functionality of Isocompy 
is demonstrated with an application example involving the meteorological features and isotopic 
composition of precipitation in N Chile, which are compared with the results produced in previous 
studies. In essence, Isocompy offers an open source foundation for isotopic studies that ensures 
reproducible research in environmental fields.

Water isotopic composition is of paramount importance for decision making in many fields of study, including 
environmental resource  management1. The stable water isotopes 18O and 2H are indicators of diverse aspects of 
the hydrological cycle. δ18O and δ2H measurements in precipitation are utilized in different meteorological and 
hydrological studies to identify the origin of precipitation, recognize local effects in water cycle studies, define the 
relative shares of water with different origins in a water body, describe aquifer recharging and characterization 
process and investigate various aspects of runoff and stream flow generation. All these features are essential for 
the optimal and sustainable management of water  resources2,3.

The isotopic composition of rainwater is influenced by different physical variables and processes: tempera-
ture; pressure; humidity during condensation (to generate precipitation)4,5; mixtures of air masses with distinct 
 origins6; the isotopic composition of the seawater from which air moisture  condenses7; in-cloud microphysical 
 processes8–12; the moisture conditions below clouds and the partial evaporation of precipitation along the path 
between clouds and the  ground13–15; and the mixture of recycled precipitation from evapotranspiration over 
 continents16–18. Therefore, detailed isotopic signature studies are used to discern these effects in any study area.

A linear relationship called the global meteoric water line (GMWL) is present between the δ18O and δ2H 
of meteoric water at the global scale, and this relationship is defined as δ18O = 8*δ2H +  1014. The characteristic 
isotopic signature of meteoric water in a particular region is caused by the various temperatures, relative humid-
ity values, amounts of precipitation, latitudes and landmass proximities. The water molecules components (O, 
H) undergo isotope fractionation during phase transitions and the ratios of heavy versus light isotopes acts as a 
traceable feature of the physical  processes19–23.

Two common approaches are available for studying the global distribution of the isotopic composition of 
precipitation: isotope-enabled atmospheric general circulation models (IGCMs) and regression statistics-based 
 approaches24. IGCMs are numerical models that improve our understanding and reveal valuable information 
of the atmosphere by considering different physical processes (diffusion, advection, convection, etc.), including 
the physics of water isotopes (e.g., isotope fractionation, evaporation, condensation, among others)25. Com-
putational power and numerical modelling advancements in recent decades have played an important role in 
the development of IGCMs, as they have resulted in a variety of models at different regional scales with diverse 
levels of complexity, such as  CAM526–28,  ECHAM529,30,  MIROC31 and  LMDZ432. IGCMs are usually complex, 

OPEN

1Institute of Environmental Assessment and Water Research (IDAEA/CSIC), C/ Jordi Girona 18-26, 08034 Barcelona, 
Spain. 2Departament de Geologia, Universitat Autònoma de Barcelona (UAB), Edificis C, Bellaterra, 
08193 Barcelona, Spain. 3Mediterranean Institute for Advanced Studies (IMEDEA, UIB-CSIC), 07190 Esporles, 
Spain. *email: ashkan.hassanzadeh@csic.es

http://crossmark.crossref.org/dialog/?doi=10.1038/s41598-023-29073-2&domain=pdf


2

Vol:.(1234567890)

Scientific Reports |         (2023) 13:1895  | https://doi.org/10.1038/s41598-023-29073-2

www.nature.com/scientificreports/

time consuming and computationally demanding simulations. On the other hand, regression statistics-based 
models are generally useful in identifying the possible processes suffered by water samples based on their isotopic 
signature. Statistical models are simple to apply and are more intuitive to interpret. Consequently, they are used 
as stand-alone or complementary–preliminary tools for interpreting IGCM models and evaluating their  results25.

Statistical models exhibit some shortcomings that can limit their usage or lower their precision. First, in 
contrast with IGCMs, there is no specific standalone tool that allows the user to determine the input features and 
databases for developing a statistical isotopic model. Second, some study areas possess scarce isotopic data or 
different types of isotopic samples (individual rain events versus accumulated events) and/or contain meteoro-
logical measurements with diverse spatiotemporal resolutions. This may limit the usage of the available variables 
that can affect statistical isotopic  models24,33. Third, most statistical regression studies are based on simple linear 
models, which can neglect some of the underlying processes of the water isotopic signature by not exploring the 
more complex relationship between the variables. The use of both standard and novel mathematical approaches 
can explore these possibilities and could potentially result in discovering unforeseen  aspects34. Fourth, the use 
of statistical analyses can be time- and effort-consuming, depending on the type and number of models needed 
or the output desired (meteoric water lines, estimation graphs, detailed maps, etc.). Automatically creating an 
extensive output could prevent systematic errors without compromising the possibility to carefully examine the 
significance and relevance of the inputs and results by the user, if it is accompanied by the informative reports 
of each underlying processes.

To address these shortcomings, we present Isocompy, an open source, Python-based, multistage isotopic 
composition analysis and modelling library. The main objectives of Isocompy are (i) to introduce an open source 
framework that integrates the diverse steps of stable statistical isotope modelling in a dedicated library; (ii) to 
incorporate novel data management, statistical analysis and machine learning regression methods accompanied 
by decision-making algorithms; (iii) to exhibit flexibility regarding the available input data and function with 
measurements that are scarce and discontinuous in time and heterogeneous in space.; (iv) to be intuitive and 
user friendly, which speeds up the process of forming an isotope model; and (v) to generate reports and figures 
in every step if needed so that the user can understand the ongoing procedure.

In the following sections, we describe the methods used (“Methods”) and the different aspects of Isocompy 
(“Under the hood of Isocompy”), and we demonstrate its functionality by applying it to an example involving 
Salar de Atacama (Chile) (“Application to the example of Salar de Atacama”).

Methods
To create the Isocompy algorithm, bibliographical research is performed to define the innovative capabilities 
that would be needed for isotopic modelling. The workflow of the program is then chosen accordingly. In this 
section, we discuss the necessity of the capabilities that are included in Isocompy and the methodology used in 
the proposed workflow to form the isotopic precipitation composition models with respect to the aforemen-
tioned objectives.

Various input parameters can affect the isotopic composition of rainwater. Meteorological (precipitation, 
relative humidity, temperature, etc.) and geospatial parameters are two groups of input data that are widely used 
in isotopic  modelling35–41. However, other information may be needed, such as sea surface temperatures, atmos-
pheric pressures, outgoing longwave radiation (OLR)  values10,42–45, features derived from air mass  trajectories39,46 
or features resulting from reanalysis (such as wind components, dewpoint temperatures, and evaporation val-
ues)47. Therefore, the workflow must allow the user to choose the nature of the input features. Moreover, in cases 
where the database contains unwanted data for the ongoing study, it can be modified easily.

Furthermore, some industrial and scientific projects are carried out in regions with limited or discontinuous 
spatiotemporal data. For example, in some cases, the meteorological stations are continuously maintained, which 
results in the production of a long-term dataset. Conversely, isotopic measurements are often sparse in time and 
poorly distributed in space and are not necessarily measured at the same position as other input parameters 
(e.g., weather parameters); this is mostly due to the complexity and costs of the analyses. Figure 1(1) illustrates 
an imaginary example of two independent parameters (red crosses and blue circles) that potentially affect the 
isotopic measurements (green triangles), but since they are not available at the same location, a one-to-one 
relation between the features cannot be made to perform regression. Moreover, the densities of the available 
data are different among the red crosses, blue circles and green triangles. To obtain of the features at the green 
triangle positions, first, regression models for the red and blue points, which are variables dependent on other 
features (in this case, geospatial features), must be generated. Figure 1(2,3) illustrate the estimations of each red 
and blue feature obtained at the green triangle positions derived from two separate regression models (F1 and 
F2, respectively).

In the yellow diamonds in Fig. 1(4), the calculated values of the red and blue parameters (estimated from 
F1 and F2) and the corresponding green measurements are available, which makes it possible to construct a 
regression model with red and blue parameters as independent variables and the green parameter as a depend-
ent variable. By using this model, it is possible to create a map of the green parameter (isotopic composition).

Data can also vary within a time window. Utilizing the example in Fig. 1, let us assume that a continuous 
and dense amount of data are available for the blue parameter in a specific month during ten consecutive years. 
However, in the red crosses, data are available in the same month for six years. To overcome the limitations 
derived from different measurement frequencies and time windows, one solution is to average the 10- and 
6-year measurements in the blue and red points, respectively, to obtain a single set of data for each feature in 
each location. Although averaging the measurements may result in a loss of information while producing less 
precision and higher model uncertainty, these effects would also occur with other data treatment techniques, 
such as filling the gaps in data series. The final workflow must also account for different parameters that are 
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measured directly alongside the isotopic water composition or estimated via other methods, such as features 
derived from  reanalysis48,49. Another important aspect of the workflow is to analyse the degrees of influence of 
suspected features on the dependent variable. Considering that the goal is to produce a workflow that is simple 
yet precise, an automatic statistical analysis procedure based on multicollinearity examination and a feature 
selection algorithm must be crucial parts of the workflow.

The fact that the relations between earth science variables may be linear or nonlinear suggests the capability 
to apply different regression methods in the workflow. The regressions must be accompanied by calibration and 
validation procedures to find the regression method with the highest estimation power that avoids common 
modelling errors such as overfitting. A total of eight regression models are considered in this study:  Elasticnet50, 
Bayesian ridge  regression51, least-angle  regression52, Bayesian automatic relevance determination (ARD)53 and 
orthogonal matching  pursuit54, support vector  regression55, a random  forest56, and a multilayer  perceptron57. 
Since some of these methods are sensitive to the data scale, all inputs are standardized before applying the 
regressions. Hyperparameters are parameters of machine learning methods whose values control the learning 
 process58. The brute-force hyperparameter search algorithm is used to obtain a suitable set of  hyperparameters59; 
it is optional to fit regression methods to the transformed ln(1 + x) of the input data alongside the original data 
which can potentially result in a better model in case the features have log-normal distributions. Other data 
transformation techniques can be applied on the input data by the user.

In Elasticnet, both L1 and L2 regularization terms are used to avoid overfitting. The Lasso (L1) and ridge 
(L2) regression methods are specific forms of Elasticnet regression, where the former adds the absolute value 
of the magnitude and the latter adds the squared magnitude as a regularization term to the cost function. Lasso 
and ridge regressions are achieved by introducing an L2 to L1 ratios equal to zero and one, respectively. A more 
detailed description of this method can be found  in50.

The orthogonal matching pursuit method constrains the number of zero coefficients. Its residuals are calcu-
lated by using an orthogonal n-dimensional projection, which assumes, similar to independent variables, that 
the dependent variable can contain measurement  errors54.

Least-angle regression is a stepwise linear regression method that moves in the direction of the most cor-
related feature in each step. This method is beneficial when the number of features is higher than the number of 
samples. Least-angle regression is sensitive to outlier  data52.

The Bayesian ridge and Bayesian automatic relevance determination methods (also known as sparse Bayesian 
learning and relevance vector machine regression, respectively) form probabilistic models that include regulari-
zation parameters that are tuned according to the available data instead of being defined prior to  regression51.

Figure 1.  Workflow scheme for estimating isotopic values by using two independent parameters that 
are available in different locations than the isotopic measurements. Blue circles and red crosses represent 
two independent features that are potential candidates affecting the green triangles (isotopic precipitation 
composition). (1) Imaginary map of all available points. Green triangles are points with field isotopic 
measurements, and red crosses and blue circles are two independent parameter measurements. (2, 3) Estimation 
of the red and blue parameters from the constructed F1 and F2 regression models at the location points where 
isotopic data are available. (4) As a result of the algorithms, in the yellow diamonds, estimated red and blue data 
and measured green (isotopic composition) data are available.
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Random forest regression is a method based on the average of randomized independent decision tree estima-
tor outputs. The main concept of this method is that the integrated final estimator may produce better results 
than any of the single decision trees since combining them decreases the standard deviation of the  estimates56.

Support vector machines are versatile supervised learning methods that are used in various environmental 
science  fields60. They can be used in high-dimensional environments and are flexible depending on the chosen 
seed functions. It must be taken into account that support vector regression can be computationally  demanding61. 
Moreover, if the number of features is higher than the number of samples, the seed functions must be selected 
in a way that avoids  overfitting62.

Neural networks have proven to be effective estimation techniques in various branches of science. Multilayer 
perceptron regression is a supervised learning method that uses L2 regularization to avoid overfitting the weights. 
An MLP uses a backpropagation technique. The ability to determine the number of hidden layers, the size of 
each layer and diverse type of activation functions mark an MLP as a flexible  technique57. However, an MLP is 
complex during the process of choosing the correct estimator hyperparameters.

Under the hood of Isocompy
Isocompy workflow. Considering the abovementioned aspects of isotopic composition modelling, Fig. 2 
illustrates the general scheme of our proposed workflow. It consists of data preparation and two main stages. The 
independent variables are introduced in the data preparation step. The goal of the first stage is to estimate the 
independent parameters that affect the isotopic composition model in the same space–time framework as the 
empirical data. The results of the first stage, accompanied by the empirical data, are incorporated into the second 
stage to obtain δ18O and δ2H models. Stage one of the workflow begins with a statistical analysis of the inde-
pendent variables that are introduced in the data preparation step to determine their degrees of influence on the 
dependent variable and select the substantial variables for the regression model. The regressions are applied, and 
the most calibrated model is selected. Then, the variables that influence the water isotopes are estimated in the 
same time and space as the isotopic measurements. By preparing the data from three source groups [estimated 
variable data, measured variable data and measured isotopic data, (1.4, c,b in Fig. 2, respectively)], it is possible 
to obtain isotopic models in stage two. Again, a statistical analysis leads to the extraction of the substantial inde-
pendent variables over which the regressions will be applied to select the best model. Once the models are availa-
ble, the isotopic composition values can be estimated. The underlying sections of each stage are explained below.

Data preparation (the red a, b and c boxes in Fig. 2) is a key step that defines many major properties of the 
constructed model. Box a in Fig. 2 shows the input features named indirect features since they are not measured 
with isotopic values; box b represents the isotopic input measurements, and box c illustrates other features 
measured directly with isotopic values (direct features). In the data preparation step, different aspects of the 
model must be determined by the user.

• The dependent and independent variables.
• The temporal window of the input measurement choice.
• Input filtration based on specific time properties, if needed (El Niño or La Niña Southern Oscillation).
• Outlier removal based on diverse methods, if needed.
• The data averaging technique.
• Brute-force searching hyperparameter definition.

The statistical analysis step (yellow boxes in Fig. 2) allows the algorithm to select the most considerable fea-
tures to be used afterwards in the regression models. Feature selection is crucial in environmental models that 
normally use spatial features as inputs since autocorrelations in data may distort the estimation power of the 
 model63. As shown in the yellow boxes in Fig. 3, in this stage, the algorithm calculates the p values determined 
by one-tailed F-test on centred data, mutual  information64, correlation coefficients and variation inflation fac-
tors (VIFs) of the variables. The p values and mutual information help to determine the linear and nonlinear 
relationships between parameters and evaluate the significance of the  parameters65,66. The VIFs and correlation 
coefficients are useful for detecting multicollinearity.

Since one of the main objectives of the algorithm is to facilitate and speed up the model generation process, 
the feature selection procedure that is derived from the statistical analysis can be performed automatically or 
controlled by user-defined or predefined values. In the automatic mode, the algorithm first uses the VIFs, correla-
tion coefficients and optional pairs of features defined by the user to remove the features with multicollinearity 

Figure 2.  Scheme of the Isocompy workflow utilized to design the Isocompy architecture. It consists of data 
preparation (red boxes) and two main stages. Each stage includes statistical analysis (yellow boxes 1.1 and 2.1), 
regression (green boxes 1.2 and 2.2), model selection (violet boxes 1.3 and 2.3) and feature estimation steps 
(blue boxes 1.4 and 2.4).



5

Vol.:(0123456789)

Scientific Reports |         (2023) 13:1895  | https://doi.org/10.1038/s41598-023-29073-2

www.nature.com/scientificreports/

effects that higher than a defined threshold. Then, p values are used to select the statistically significant features, 
based on the user-defined alpha level.

It is important to mention that since the F-test assumes that the features are distributed normally, the user 
have to check the normality of the features that are chosen as important features in VIF test.

The regression steps are performed in two stages of the algorithm (green boxes in Fig. 2). Various linear and 
nonlinear regression methods are available, as shown in the green boxes in Fig. 3, which can be selected by the 
user based on the nature of the given study or computational power, among other strategies. The regression 
methods implemented in Isocompy are described in detail in “Methods”. Nevertheless, it is worth mentioning 
that users with coding knowledge can add other methods of their own.

Model selection steps are also implemented in two stages of the algorithm. To find the best model, the 
algorithm includes and combines cross validation, brute force hyperparameter searching, R-squared fitness 
and goodness of fit to the GMWL or local meteoric water line (LMWL), as shown in the violet boxes in Fig. 3.

Finally, the estimation step is performed in the first and second stages, as illustrated in the blue 1.4 and 2.4 
boxes of Fig. 2, by determining the substantial features determined in previous steps. This workflow ensures the 
flexibility of the input features, time steps and geospatial scale and, at the same time, promotes and speeds up 
the model generation process in an integrated algorithm.

Isocompy architecture. The Isocompy tool examines the relationship among the input variables with vari-
ous linear and nonlinear regression methods, performs a statistical analysis and dimensionality reduction, and 
chooses the best available regression method and its respective parameters via calibration and evaluation tech-
niques. This is done by implementing novel machine learning, data management and statistical analysis libraries 
such as  pandas67,  geopandas68,  numpy69,  pylr270,  statsmodels71 and  scikit_learn72. Isocompy generates extensive 
reports alongside figures and maps to facilitate the procedure of statistical water isotope modelling and support 
the user in interpreting and evaluating the results.

In this section, we describe the architecture of the underlying components and the outputs of Isocompy. It is 
built into six classes and 18 methods, as shown in Fig. 4. A list of the Python libraries used in Isocompy can be 
found in “Isocompy library information”.

Preprocessing. The preprocess class holds the data preparation step (red frames in Fig. 4), whose inputs 
are pandas dataframes. This class has the ability to filter outliers based on upper and lower limit percentiles or 
modified IQR  functions73,74. Outlier detection can be performed with or without zero values included in the data 
removal procedure. This is possible since there are geospatial states where zero values can result in unreasonable 
outlier filtration (e.g., removing the 5% lowest precipitation values from an arid zone with very few precipita-
tion events). Data averaging can be performed based on arithmetic or geometric averaging. It is also possible 

Figure 3.  Yellow, green and violet boxes show the techniques used in the statistical analysis step, the regression 
methods available in Isocompy and the implemented techniques in the model selection steps, respectively.

Figure 4.  The Isocompy algorithm architecture. It contains 6 classes and 18 methods.
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to define specific time periods and limit the outputs to these episodes. Another decisive feature of preprocess 
is that the user specifies the brute-force search hyperparameters of the corresponding regression models. This 
selection is closely dependent on the format (i.e., volume and quality of the data) and correlation of the  dataset75. 
Therefore, it is crucial that the user have an experienced-based, focused, theoretically sound, and practical search 
approach. Nevertheless, the default values which are described in detail in “Isocompy library information”, could 
be useful for dealing with complex datasets in our experience.

The model class (green frames in Fig. 4) is designed to handle the statistical analysis, feature selection, model 
regression and model selection procedures in the first and second stages; the flowchart of this stage is shown in 
Fig. 5, and it can be performed manually or automatically. The statistical analysis and feature selection param-
eters are defined as arguments of the class. In the manual mode, the statistical analysis data are shown, and the 
user must choose the considerable features. In the automatic mode, Isocompy finds the parameters with the 
most influence on the dependent variable by comparing their correlation coefficients and VIFs with predefined 
thresholds in an iterative process. However, the usage of correlation coefficients, VIFs or threshold values can 
also be defined by the user. The output features of this statistical analysis and feature selection step (Fig. 5) feed 
the regression models.

Figure 6 illustrates the workflow of the regression modelling, model evaluation and calibration processes that 
result in selecting the best model. In each regression method, all combinations of hyperparameters are defined. 
For each combination, the random k-fold cross-validation technique is used to avoid overfitting. The score of 
a determined hyperparameter set is defined as the average score of the k models. The selected set of hyperpa-
rameters for each model is defined as the one with the highest average score. The best model among different 
regression methods can be selected based on preferred criteria. In the first stage, the best models are selected 
based on higher R-squared values, whereas in the second stage, the best model can also be selected based on 
three different criteria: the smallest point-to-point estimation-observation distance, the pair of models with the 
most similar results to the LMWL or the pair of models with the most similar results to any defined line between 
the water isotopes. The predefined arguments for this line are eight and ten coefficient and intercept values, 
respectively, that represent the GMWL. To test the different options available for selecting the best model in the 
second stage, it is possible to change the criteria and generate corresponding outputs.

Isocompy generates reports that include the details of all the executed models and the selected models with 
their R-squared values, adjusted R-squared values, VIF values, correlation coefficients, mutual information, 
chosen input features and sets of hyperparameters. For the chosen regression models, Isocompy also reports the 
cross validation averages and standard deviations obtained on the training and test data to evaluate the model 
estimation uncertainties.

Figure 5.  Feature selection flowchart of the model class. Red lines indicate false arguments.

Figure 6.  Workflow of the model regression, model validation, model calibration and best model selection 
processes. Black dots show that these processes are performed for each regression method selected.
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Model evaluation. The evaluation class follows the algorithm shown in Fig. 7 to calculate the outputs of the 
second-stage estimations. All the independent features introduced in data preparation go through the statistical 
analysis, and only the substantial features are used in the regression models to obtain the desired spatial–tem-
poral estimations. Only the samples with independent determined features must be introduced, while all other 
data are ignored in the isotopic estimation process.

The indirect input features (box a in Fig. 2) go through the stage one estimation procedure, which are unified 
with the introduced direct features and are used as isotopic composition input variables for the final isotopic 
estimation.

Postprocessing tools. The stats class generates statistical reports for each stage (pink frames in Fig. 4). 
They include the characteristics and details of all executed models and the selected models: their R-squared s, 
adjusted R-squared values, VIF values, correlation coefficients, mutual information, chosen input features and 
sets of hyperparameters. Isocompy also reports the chosen regression models, cross validation averages, and 
standard deviations of the training and test data to evaluate the model estimation uncertainties. The reports can 
be generated for the whole or the separate parts of the time series.

The plot class generates diverse kinds of graphics to illustrate the results (orange frames in Fig. 4). The 
 shapely76,  Bokeh77 and  matplotlib78 libraries are employed to develop the methods of this class. The partial_dep_
plots method generates partial dependency plots. The best_estimator_plot method constructs the plots of the 
best estimator in each determined time window. The isotope_meteoline_plot method is designed to illustrate and 
compare the output data and observed data with the GMWL and LMWL. This method uses the reduced major 
axis (RMA) regression method to calculate the local line of the input data. It is shown that the RMA approach 
explains water isotope relationships better than least-squares regression since it takes the measurement errors in 
box axes into  account79–81. The isotope_meteoline_plot method can also generate residual plots of each isotopic 
station for each isotopic composition and accompanies them with a report including the mean absolute errors, 
mean square errors and means and standard deviations of the residuals, observations and estimations.

The map_generator method generates maps of the desired features, whether they are observed or estimated. 
The maps are generated based on the estimated data limits introduced by the user to the evaluation class in the 
time periods defined by the user. The results can be limited to positive values and/or to percentages if needed. 
The user has the ability to add a desired shapefile to the maps, display the measured data and define the aesthet-
ics. The results can be saved as an interactive HTML file or in an image format.

Project management. The session class enables the functionality of saving and loading one or all defined 
objects of a session (yellow frames in Fig. 4). The session class is powered by the Dill python  library82 because of 
its capacity to save the executed Isocompy project as a compressed file along with its results in a single command. 
Hence, it would be feasible to save and close an interpreter session, send the compressed session file to another 
computer, open a new interpreter, decompress the session and thus continue from the point of work saved in the 
original interpreter session.

Outputs. Isocompy outputs can be categorized into four groups: reports, figures, maps and datasheets. It is 
possible to obtain this information at different steps to clarify the underlying processes. Reports are generated 
to address the input data characteristics, partial and whole time period statistics, the best first- and second-stage 
model characteristics, all models in the first and second stages, the best second-stage model selection scoring 
details based on the chosen function, prediction model uncertainty statistics, residuals, observed and estimated 
isotopic value statistics and errors.

Figures can be created for partial dependencies, observed-estimated regressions, residual plots and meteoric 
line plots, as explained in “Postprocessing tools”. The bottom-left and top-right parts of Fig. 8 show examples of 
partial dependencies and residual plots, respectively. Examples of observed-estimated plots can be seen in the 
figures of the next section.

Maps can be created in different formats for any desired feature by using the map_generator function, as 
mentioned in “Isocompy architecture”. Examples of maps can be seen in the figures of the next section. The 
bottom-right part of Fig. 8 shows a screenshot of an interactive map created by Isocompy.

Figure 7.  Workflow of the evaluation class for estimating the second-stage regressions.
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Datasheets are produced in the data preprocessing stage, and they include outlier-removed data, monthly 
averages for each year at each station and station averages. First- and second-stage estimations are also saved in 
datasheets. Refer to “Application on Salar de Atacama” for an example datasheet.

Figure 8.  Screenshots of the outputs generated by Isocompy. Top left: an example report. Bottom left: partial 
dependency plots of the selected features. The values are standardized between zero and one. Vertical ticks on 
the x-axis illustrate the percentile of the data. Top right: a residual plot at each observation point generated 
by Isocompy via the isotope_meteoline_plot method. Bottom right: an interactive map generated by Isocompy 
without an available shape file.
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Application to the example of Salar de Atacama
The Salar de Atacama is the ideal target zone for demonstrating Isocompy capabilities due to its particular climate 
and topographic features. The scope of this investigation is not a comprehensive isotopic analysis, as it has been 
published  already83–90, but rather validate Isocompy performance. Therefore, using the scarce information that 
is currently available, the climatic characteristics and isotopic composition of the precipitation in this area are 
compared with that of previous studies.

The Salar de Atacama basin is located in northern Chile in the Antofagasta region (Fig. 9). This zone is the 
largest salt flat in Chile and the third-largest salt flat in the world. The Salar de Atacama is one of the driest places 
on the Earth’s surface, contains vast amounts of lithium reserves and is a valuable lagoon ecosystem (RAMSAR). 
For these reasons, in recent decades, many studies have been carried out on the water resources of this  area83–90. 
No continuous monitoring is performed on individual precipitation events in the basin, and the available data 
do not have a high spatial density.

The distribution of isotopic precipitation samples is heterogeneous in time, space and type of sample. Specific 
rain samples are taken in the basin, and permanent rain collectors are installed close to automatic meteorologi-
cal  stations91. Isotopic samples are mostly collected during the summer months (January, February and March) 
since this is the period containing important precipitation events (during the so-called “Altiplanic winter”). As 
a result, Isocompy is applied only during these time periods.

Figure 9.  Left: location map of the study area in South America with published isotopic precipitation data (red 
circles) and automatic weather stations that monitor temperature (crosses), precipitation levels (blue squares) 
and relative humidity (yellow triangles). The solid red line delineates the Salar de Atacama basin, and the solid 
brown line shows the Altiplano-Puna plateau basins. The base map is derived from satellite data (SRTM from 
http:// earth explo rer. usgs. gov/). All location data are in UTM Zone 19 S coordinates based on the WGS of 1984. 
The utilized DEM is an ALOS PALSAR RTC product that has a resolution of 12.5 × 12.5 m and is provided by 
the Alaska Satellite Facility. Right: elevation map of the Salar de Atacama basin.

http://earthexplorer.usgs.gov/
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Input data. The available meteorological variables that potentially influence the δ18O and δ2H values in 
this study are air temperature, relative air humidity and amount of precipitation. They are recorded daily at the 
meteorological stations of the Salar de Atacama basin and its surroundings and compiled from the automatic 
weather stations belonging to the General Directorate of  Waters92,93 of Chile and the Soquimich (SQM) mining 
company. Temperature value records are provided for the period from 1974 to 2019, relative humidity values are 
from 1987 to 2019 and precipitation volume data are from 1959 to 2019. The basic statistical indicators of the 
aforementioned meteorological variables can be seen in Table 1.

The precipitation samples for the isotopic analysis are compiled from previously published  studies94–99 for 
the period from 2002 to 2021 for δ18O and δ2H and correspond to 31 different points (Fig. 9). These samples 
are heterogeneous: some are individual precipitation events, others are monthly accumulated or multimonth 
samples, and others are mixtures of rainfall and snow. The main statistical indicators of δ18O and δ2H can be 
seen in Table 2. Refer to “Application on Salar de Atacama” for the input data file.

Implementation. The data preparation steps for the input parameters are shown in Fig. 10 Lines 7 to 25 
align with the preprocess classes for precipitation, air temperature and cumulative humidity. These three indirect 
variables are estimated in stage one and are dependent on the spatial variables (latitude, longitude and altitude).

Lines 26 to 32 create the preprocess class for the δ18O and δ2H values of precipitation used in the second stage 
of the model. The spatial variables here act as direct variables since they are measured in the same location as 
the isotopic data. In this study, outlier removal techniques, such as those explained in “Isocompy workflow”, 
are not needed.

The steps needed to execute the first-stage models for the desired preprocess classes in January, February and 
March of all years can be seen in Fig. 11. Each preprocessing class contains the dependent and independent vari-
ables, as shown in Fig. 10. The models for each process class and for each month are isolated from the rest. The 
feature selection options of the first stage are not changed from the predefined default Isocompy values (line 5 
in Fig. 11), so the feature selection process in the first stage runs automatically. Isocompy reports the VIF and 
correlation coefficient values but does not consider them in the feature selection procedure. Executing lines 9 
and 10 generates the estimated-versus-observed values and partial dependency plots for each regression model 
in stage one.

To create the second-stage models, the precipitation, temperature and humidity values must be predicted 
at the same coordinates as the isotopic measurements. Line 2 in Fig. 12 three estimates these values for three 
months based on the stage-one models. The dependent and independent (direct and indirect) variables must be 
determined as shown in lines 7 to 10.

The feature selection process of the second-stage models is the st2_fit method, which is performed automati-
cally if it is not specified. In this example, some aspects of the feature selection process are specified. Thus, as seen 
in line 13 of Fig. 12, in cases with high VIF and correlation coefficient values, one of the parameters is removed: 
temperature is preferred over altitude to respect the seasonality of the data. Line 16 executes the model based on 
the defined variables, and lines 19 to 23 generate the statistical reports of the given month and the whole period. 
Similar to the first stage, lines 26 and 27 generate the estimated-versus-observed values and partial dependency 
plots for each generated isotopic regression model.

The reader is referred to “Application on Salar de Atacama” for the complete version of the Jupyter notebook 
in this study that contains the evaluation class, visualization options, evaluations, estimated value datasheets, 
meteoric lines for observed and newly defined coordinates, residual plots and feature maps.

Results and discussion
The first stage of statistical analysis shows that altitude and longitude are significant variables for temperature 
and relative humidity in all 3 months, while latitude is also significant in March (Table 3). This is consistent with 
the DICTUC 100 results. For precipitation, latitude and altitude are significant variables in the three summer 

Table 1.  Statistical indicators of temperature, relative humidity and precipitation in January, February and 
March for Salar de Atacama study area.

Number of stations Unit Min Max Mean Median Std.dev

Temperature 28 °C −4.3 22.6 12.8 13.2 5.5

Relative humidity 24 % 15 69.8 23.6 20.8 11.6

Precipitation 31 Mm 0 219 4.7 0 16.9

Table 2.  Statistical indicators of δ18O and δ2H in January, February and March for Salar de Atacama study 
area.

Number of samples Unit Min Max Mean Median Std.dev

δ18O 
52 ‰ VSMOW

−15.2 −0.2 −8.1 −8.0 4.3

δ2H −102.5 0.9 −53.3 −52.7 32.2
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months, as Houston and  Harley101 mentioned, while longitude is also significant in February and March. The 
influence of altitude on the amount of precipitation that falls in the eastern part of the basin is recognized by all 
existing  studies86,102,103.

Monthly models for temperature, relative humidity and precipitation are created by using the significant 
features. The estimation method with the highest scores in all models is the random forest, whose R-squared 
values are shown in Table 3. Column Ln (x + 1) shows the models whose feature Ln (x + 1) values are used since 
they result in higher R-squared values.

The estimation uncertainties can be evaluated by the standardized standard deviation of the cross-validation 
scores for the randomly selected test dataset in each iteration (Table 3). The limited spatial distribution of the 
available data in the Salar de Atacama basin can play an important role in high estimated standard deviation 
values obtained for some features. Figure 13 shows the observed-versus-estimated values of the three features 
in three months.

The map of the temperature distribution estimated by Isocompy for the Salar de Atacama in the three summer 
months is shown in Fig. 14. It can be observed that the maximum temperatures are recorded in the central area 
with values between 19 and 20.4 °C, which are slightly lower than those of Marazuela et al. (24 °C) and Kampf 

1. #Import isocompy
2. from isocompy.data_preparation import preprocess
3. from isocompy.reg_model import model
4. from isocompy.tools import stats, plot
5. #-------------------------------------------
6.
7. #Data preparation: rain, temp and hum are pandas DataFrames, imported from the database.
8. dir ="defined directory"
9. fields=["CooX","CooY","CooZ"]
10. #-------------------------------------------
11.
12. #Precipitation preprocess class
13. pre_prc=preprocess()
14. pre_prc.fit(inp_var=rain,var_name="prc",fields=fields,remove_outliers=False,direc=dir)
15. #-------------------------------------------
16.
17. #Temperature preprocess class
18. pre_tmp=preprocess()
19. pre_tmp.fit(inp_var=temp,var_name="tmp",fields=fields,remove_outliers=False,direc=dir)
20. #-------------------------------------------
21.
22. #Humidity preprocess class
23. pre_hmd=preprocess()
24. pre_hmd.fit(inp_var=hum,var_name="hmd",fields=fields,remove_outliers=False,direc=dir)
25. #-------------------------------------------
26.
27. #isotopes
28. pre_iso1=preprocess()
29. pre_iso1.fit(inp_var=iso_18,var_name="iso_18",fields=fields,remove_outliers=False,direc=dir)
30.
31. pre_iso2=preprocess()
32. prep_iso2.fit(inp_var=iso_2h,var_name="iso_2h",fields=fields,remove_outliers=False,direc=dir)

Figure 10.  Isocompy data preparation. Location information (X, Y: coordinates; Z: altitude) is used to calculate 
the feature information in these positions. Preprocess classes are created for the precipitation, temperature, 
cumulative humidity, δ18O and δ2H of precipitation. Rain, temp and hum are panda dataframes that contain ID, 
Date and Value columns.

1. #stage 1 model class
2. dir ="defined directory"
3.
4. est_class=model()
5. est_class.st1_fit(var_cls_list=[pre_prc,pre_tmp,pre_hmd],st1_model_month_list=[1,2,3],direc=dir)
6. #-------------------------------------------
7.
8. #stage 1 model plots
9. plots.best_estimator_plots(est_class,st2=False)
10. plots.partial_dep_plots(est_class,st2=False)

Figure 11.  Stage-one estimation models, estimator and partial dependency plots.



12

Vol:.(1234567890)

Scientific Reports |         (2023) 13:1895  | https://doi.org/10.1038/s41598-023-29073-2

www.nature.com/scientificreports/

et al. (23 °C)102,104 in February. It is observed that temperature decreases with altitude, reaching minimum values 
of 4 to 5.3 °C in the volcanic arc that surrounds the eastern side of the basin, with a gradient of approximately 
−0.55 °C/100 m. These gradients are similar to those presented by DICTUC and MOP-DGA (−0.56 °C/100 m 
and −0.65 °C/100 m, respectively)100,105.

The relative humidity values estimated by Isocompy in the Salar de Atacama basin for the three summer 
months can also be seen in Fig. 14. The lowest values of relative humidity are recorded in the core (24–29%) and 
in the west, and they increase with altitude, reaching their maximum values in the east of the basin (42–55%) 
and resulting in a gradient of 0.49%/100 m. In Valdivielso et al.99, who used a larger study area (N Chile), the 
estimated values of relative humidity in the salt flat nucleus were similar to those in the present study, although 
the estimated values for high altitudes were lower.

Summer storms in the Salar de Atacama basin are convective and are characterized by highly variable 
 intensity84,86,106,107, with years that are much wetter than others and some with practically no precipitation. This 
high variability, accompanied by the nature of the available precipitation data, results in a low correlation between 
the precipitation values recorded in different seasons, as well as between the precipitation values recorded in 

1. #Stage 1 models prediction
2. est_class.st1_predict(cls_list=[pre_iso1,pre_iso2],st2_model_month_list=[1,2,3])
3. #-------------------------------------------
4.
5. #Stage 2 model
6.
7. #Determine the dependent and independent variables – direct ("CooX","CooY","CooZ") or indirect 

("tmp","prc","hmd") - to take into account for each model in the second stage
8. st2_model_var_dict={
9. "iso_18":["CooX","CooY","CooZ","tmp","prc","hmd"],
10. "iso_2h":["CooX","CooY","CooZ","tmp","prc","hmd"]}
11.
12. #Defining that takng into account vif and correlation coefficients, if the algorithm has to remove 

one of the variables between the "CooZ","tmp" pair, it has to be "CooZ"
13. args_dic={"vif_selection_pairs":[["CooZ","tmp"]]}
14.
15. #Stage 2 model fit
16. est_class.st2_fit(model_var_dict=st2_model_var_dict,args_dic=args_dic)
17. #-------------------------------------------
18.
19. #monthly statistics
20. stats.monthly_stats(est_class)
21.
22. #whole period statistics
23. stats.seasonal_stats(est_class)
24.
25. #Stage 2 model plots
26. plots.best_estimator_plots(est_class,st1=False)
27. plots.partial_dep_plots(est_class,st1=False)

Figure 12.  Stage-one estimation calculations (line 2). Stage-two model argument definitions (lines 7–10). 
Stage-two model execution (line 16). Statistical reports and plots (lines 26–27).

Table 3.  Results of the first-stage statistical analysis and models per month. The bold p values denote 
significant parameters (< 0.05). a Standardized standard deviation of the cross-validation scores of the 
estimation models.

Month Dependent feature

p-value

R2 Standardized standard  deviationa Ln (x + 1)Longitude Latitude Altitude

January

Temperature 7.04E−03 6.96E−02 8.06E−18 0.98 0.23 No

Relative humidity 1.10E−05 7.06E−02 1.10E−05 0.87 1 Yes

Precipitation 2.34E−01 1.73E−01 7.15E−11 0.97 0.09 Yes

February

Temperature 1.68E−03 1.16E−01 1.18E−20 0.98 0.28 No

Relative humidity 8.09E−03 9.58E−02 7.01E−03 0.84 0.13 No

Precipitation 6.67E−03 1.52E−02 5.74E−08 0.96 0.68 Yes

March

Temperature 1.80E−02 2.87E−02 2.05E−17 0.99 0 No

Relative humidity 6.38E−04 1.14E−02 3.32E−04 0.82 0.78 No

Precipitation 2.55E−01 1.03E−03 2.00E−06 0.94 0.09 No
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the same season for different periods. Therefore, the precipitation models exhibit high sensitivity to anomalous 
values since they greatly affect the average precipitation at a station.

From the precipitation model, zero precipitation (0 mm) is estimated in the salt flat nucleus (Fig. 14), increas-
ing with altitude up to 55 mm in the summits at the eastern limit of the basin; there is little precipitation at 
the western limits. A comparison with many studies that have presented annual isohyets maps of the Salar de 
 Atacama90,100,105,108 shows that the magnitude of precipitation is lower in the present study since only the summer 
precipitation is considered, but the overall distribution of precipitation is similar. The summer precipitation gradi-
ent from the salt flat nucleus to the eastern peaks is 3.7 mm/100 m, which is slightly less than the annual gradients 
calculated in Salas et al., Valdivielso et al. (5 mm/100 m) and IDAEA-CSIC (4.6 mm/100 m)90,91,109, as these stud-
ies considered all precipitation events during the year. In contrast,  DGA84 calculated values of 2.7 mm/100 m in 
January, 2.2 mm/100 m in February and 1.8 mm/100 m in March for the period from 1970 to 2008.

Precipitation is depleted in heavy isotopes with elevation, with an average gradient of −0.19‰/100 m in sum-
mer (Fig. 14). This gradient is slightly lower than the others calculated in this region (−0.34‰/100 m in Herrera 
et al. and −0.26‰/100 m in  Villablanca96,111. The distribution map of the stable isotopic signature is consistent 
with the distributions of the highest temperatures, the lowest relative humidity values and precipitation in the 
salt flat nucleus; at higher elevations, the precipitation and relative humidity are higher, and the temperatures 
are  lower98,112.

In the statistical analysis and feature selection processes of the second stage, the initial VIF values are higher 
than the defined threshold (VIF = 5) for longitude, altitude and temperature. Furthermore, these variables have 
high correlations with each other (Table 4). Therefore, as these variables have high multicolinearity and strong 
correlations, altitude and longitude are iteratively removed as important features until VIF values below the 
threshold are reached for all the features, as seen in the VIF_fin column of Table 4. Then, the p values of latitude, 
temperature, precipitation and humidity are evaluated, and as a result, temperature and relative humidity are 
selected as significant features for the δ18O and δ2H regression models (Table 4). The R-squared values of the 
δ18O and δ2H estimation models are 0.82 and 0.79, and the standard deviations of the associated cross-validation 
scores are 0.58 and 0.46, respectively. The top-left and top-right plots in Fig. 15 show the estimation-versus-real 
measurements of δ18O and δ2H, respectively.

Figure 13.  Plots of the estimated-versus-observed values generated by Isocompy for temperature, precipitation 
and relative humidity in January, February and March.
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The LMWL is calculated with the isotopic measurements (observed LMWL: yellow line in Fig. 15), the average 
estimated δ18O and δ2H values at the same points as the measurements (estimated LMWL in Fig. 15; bottom left) 
and the average estimated δ18O and δ2H values in all the study areas (estimated LMWL in Fig. 15;—bottom right). 
Based on the estimated LMWL at the observation points, the isotopic model has slightly different slope (7.5) and 
intercept (7.8) values than those obtained with the LMWL defined in different areas of northern  Chile110,113–117. 
However, these differences are expected since the LMWL is calculated based on a different group of points in a 
larger area. Figure 15 also demonstrates that the slope and intercept of the estimated and observed LMWLs are 
similar, which indicates that the estimated isotopic values have the same behaviour as the measured values that 
validates the statistical built-in capabilities of Isocompy.

Conclusion
Isocompy is an open-source Python library dedicated to regression, statistical analysis and modelling for isotopic 
compositions of natural water. It considers the features that potentially affect the isotopic signature in a multistage 
procedure. These features can be meteorological measurements, particle trajectory-related parameters, sea surface 
temperatures, variables derived from reanalysis or any other parameter desired by the user.

The code simplifies and optimizes the analyses of the isotopic characteristics of natural water. The isotopic 
composition obtained using the Isocompy applications are consistent with those obtained in previous studies 
in the Salar de Atacama, which was used as an example of a study area with scarce and heterogeneous data, for 

Figure 14.  Maps of the temperature, precipitation, relative humidity and δ18O values of precipitation estimated 
by Isocompy in January, February and March in the Salar de Atacama basin.

Table 4.  The VIF values and correlation coefficients of the second-stage input features. VIF_init and VIF_fin 
show the initial and final VIF values, respectively. Cor. shows the correlation coefficients of the features. The p 
values of the parameters selected by the VIF process are shown. Significant p values are displayed in bold fonts 
(< 0.05).

p-value VIF_fin VIF_init Cor. lon Cor. lat Cor. alt Cor. temp Cor. prec Cor. hum

– – 8.6 Lon 1.00 – – – – –

0.78 1.1 2.0 Lat −0.30 1.00 – – – –

– – 33.3 Alt 0.83 0.09 1.00 – – –

0.00 2.6 43.0 Temp −0.87 −0.06 −0.98 1.00 – –

0.66 2.3 2.6 Prec 0.60 −0.05 0.61 −0.60 1.00 –

0.04 3.7 4.5 Hum 0.78 −0.09 0.72 −0.77 0.75 1.00
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validation. Therefore, Isocompy is capable of producing accurate estimated isotopic spatial distribution and 
estimated LMWL data. The application of Isocompy in this complex area (with unequal datasets in space and 
time) demonstrate the versatility on using machine learning techniques in environmental studies. Isocompy 
can deliver reasonable outputs, accompanied by an automatic feature selection procedure that enables a fast yet 
extensive study of the features that affect the isotopic composition of precipitation. The easily generated statistical 
analysis reports, feature maps and meteoric line plots from the observed and estimated values make the evalu-
ation process simple and user friendly.

Nevertheless, choosing the right set of regression methods and defining a suitable set of hyperparameters for 
each method in a specific study area, considering the available computation power and time, is always challeng-
ing, as is selecting a suitable time window. In cases with high data densities, the number of regression models in 
the first stage of Isocompy can be increased by shortening the time window of each model and proceeding with 
the same time window in the second stage. In contrast, similar to the example of the Salar de Atacama, when 
the data do not have high density, it is possible to widen the time window and use data integration techniques 
to include more input data in the first stage, integrating the different first-stage outputs into a single model in 
the second stage.

Another important aspect to consider is the sensitivity of the models to anomalies in the input data. This effect 
is more visible when the data are scarce. Data treatment techniques such as outlier detection and data filling can 
be effective with Isocompy in decreasing the sensitivity of the models, but the anomalies must be considered 
when interpreting the results.

Although Isocompy focuses mainly on the isotopic composition of precipitation, the code could assist 
researchers to further environmental investigations such as paleoclimate change studies which obtaining the 

Figure 15.  Top left and top right: estimations versus the measurements of δ18O and δ2H, respectively. Bottom: 
plots of the estimated (circles) and observed (triangles) δ18O versus δ2H values of precipitation. The red line is 
the GMWL, the brown dashed line is the estimated LMWL, and the yellow dashed line is the observed LMWL. 
Bottom left: the plot obtained using the δ18O and δ2H values estimated at the same points as the measurements. 
Bottom right: the plot obtained using the δ18O and δ2H values estimated in the study area. The reader is referred 
to “Application on Salar de Atacama” for the monthly meteoric line plots, residual plots and reports. All plots are 
generated by Isocompy.
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environmental variables from stable isotopes could be challenging. In studies where data preprocessing, statistical 
analysis, feature selection and machine learning are needed to investigate an environmental feature, Isocompy 
can be an integral solution for facilitating the workflow. In addition, Isocompy is an open-source library in a 
widely used programming language, which makes it a good candidate for further additions/implementations 
and customizations in different study areas.

Isocompy is a flexible tool that can be adapted based on the amount of data available in time and space, and it 
has the capability to apply diverse regression methods. It provides the user with reports, figures, datasheets and 
maps to facilitate the comprehension of the underlying process of each step and to speed up isotopic composition 
studies. Isocompy is designed to be easy to use but at the same time maintain adaptability to different studies.

Isocompy library information. Year first available: 2022. Dependencies: pandas, pylr2, dill, geopandas, 
bokeh, statsmodels, numpy, tabulate, matplotlib, Shapely, scikit_learn. Contact information: ashkan.hassanza-
deh@csic.es. Refer to https:// github. com/ IDAEA- EVS/ Isoco mpy/ wiki or https:// isoco mpy. readt hedocs. io for 
additional information about the installation, default values of the arguments, explanation and the usage.

Application on Salar de Atacama. The input data, the output reports, plots, figures and maps alongside 
the Jupyter notebook are available free of charge in https:// github. com/ IDAEA- EVS/ Isoco mpy.

Data availability
The datasets generated and analysed during the current study are available in the GitHub repository, https:// 
github. com/ IDAEA- EVS/ Isoco mpy under AGPL-3.0 license.
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