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In structured populations, persistence under environmental change may be
particularly threatened when abiotic factors simultaneously negatively affect
survival and reproduction of several life cycle stages, as opposed to a single
stage. Such effects can then be exacerbated when species interactions gener-
ate reciprocal feedbacks between the demographic rates of the different
species. Despite the importance of such demographic feedbacks, forecasts
that account for them are limited as individual-based data on interacting
species are perceived to be essential for such mechanistic forecasting—but
are rarely available. Here, we first review the current shortcomings in asses-
sing demographic feedbacks in population and community dynamics. We
then present an overview of advances in statistical tools that provide an
opportunity to leverage population-level data on abundances of multiple
species to infer stage-specific demography. Lastly, we showcase a state-of-
the-art Bayesian method to infer and project stage-specific survival and
reproduction for several interacting species in a Mediterranean shrub com-
munity. This case study shows that climate change threatens populations
most strongly by changing the interaction effects of conspecific and hetero-
specific neighbours on both juvenile and adult survival. Thus, the
repurposing of multi-species abundance data for mechanistic forecasting
can substantially improve our understanding of emerging threats on
biodiversity.
1. Demographic determinants of species responses to
environmental change

We are living in an era of unprecedented human-driven perturbations affecting
all levels of biological organization, from local populations to communities to
entire ecosystems. Such perturbations are complex, often consisting of synergis-
tic, nonlinear effects of multiple abiotic and biotic factors [1,2]. When this
complexity of human impacts meets complex natural systems, where different
interacting species are differently affected by environmental drivers, it becomes
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imperative to understand key pathways through which
environmental change can alter natural communities [3–5].
Understanding these pathways allows us to define more
nuanced ecological forecasting, proposing different scenarios
under which populations remain viable in the future, when
they go locally extinct, or when they invade new habitats
[6–8].

In communities that consist of age-, stage- or trait-struc-
tured species’ populations, a key pathway that needs to be
accounted for in robust forecasts are the nuanced effects of
global-change drivers across different life cycle stages ([9];
figure 1). For instance, climate-driven changes in the timing
of key life cycle events (i.e. phenology) can lead to substantial
mismatches in the phenology between species, thus affecting
their survival and reproduction [9–12]. However, a lower
reproductive output or higher offspring mortality can be
compensated by a higher survival of the remaining juveniles
and therefore have ultimately little effects on population
fitness [13]. These and other cases highlight that global-
change drivers do not need to result in changed population
dynamics if demographic tradeoff or compensation mechan-
isms that buffer unfavourable environmental conditions are
in place [14–17] or environmental effects are concentrated
on demographic rates with low contribution to population
growth rates [18]. On the other hand, simultaneous negative
environmental effects on several life cycle stages may
exacerbate extinction risks [19].

The example of mismatch in the phenology of interacting
species demonstrates that the complexity in species’ demo-
graphic responses to environmental change is compounded
by the complexity of the underlying environmental drivers,
where the effects of abiotic drivers on demography can be
strongly mediated by biotic interactions (figure 1). That is,
species do not exist in isolation in natural communities; both
theoretical (e.g. [20,21]) and empirical studies (e.g. [22–24])
on coexistence and trophic interactions show that even rela-
tively small changes in abiotic conditions can alter species
interactions and thereby community organization. For
instance, changes in competitive interactions can result in
niche shifts for some species, thereby allowing for local popu-
lation persistence even under adverse abiotic conditions
[25,26]. Predation pressures have also been shown to constrain
adaptive responses to climate change in local populations [27]
or to exacerbate adverse climate-change effects [28], while her-
bivory can be important in maintaining plant community
diversity under climate change [29], and the adverse effects
of pathogens can be amplified by more extreme climatic
events [19]. The effects of species interactions are often specific
to particular stages in the life cycles of the interacting species
[4,30]. It has been shown that environmental perturbation on
key life cycle stages may amplify the effects on negative inter-
actions among species, destabilizing entire ecological
communities [31,32]. Such feedbacks between demography
and species interactions mean that environmental effects on
any populations often scale nonlinearly (or non-additively)
to spatiot-emporal abundance changes of neighbouring
species (figure 1) [33–35].

Collectively, the examples above suggest that our under-
standing of changes in biodiversity would be improved if
we assess how much feedbacks between demographic rates
and species interactions can modify, under increasing abiotic
pressures such as climate change, the population persistence
of several species in natural communities (figure 1). From a
modelling perspective, this means that by parameterizing
demographic models as functions of abiotic drivers and
species interactions, we can assess how much abiotic drivers
affect survival and reproduction directly as opposed to
indirectly, when abiotic drivers alter species interactions,
e.g. by changing abundances ([36]; figure 1). Only with
such information can we understand how lower level demo-
graphic effects scale up to affect population dynamics of
several species simultaneously and consequently our fore-
casts of changes in community composition ([33,37,38]; see
example in box 1 for interactions between size-dependent
demographic responses and intraguild predation).
2. Shortcomings in forecasting species
persistence

Although the intrinsic relationship between demographic
and community levels of organization has traditionally
been well recognized [52–56], its integration to forecasting
has remained elusive [57]. Prominent examples of multi-
species demographic models exist in coexistence research
[56,58], eco-evolutionary dynamics [59], trophic interactions
[60,61] and forest stand dynamics [35]. However, forecasting
applications that empirically assess the feedback between
species demography and species interactions in a community
context are largely missing (but see [35] for approaches to
indirectly link demography and community composition
via resources). Forecasts that scale from demographic rates
to populations focus strongly on a single species and simplify
or omit interspecific interactions [62]. This is not surprising as
such forecasts rely almost exclusively on long-term individ-
ual-based data. This is undoubtedly the most robust
approach to quantify demographic processes across the life
cycle and link them to emergent population properties [63–
65]. However, such datasets are rarely collected for several
interacting species. This limitation contrasts with ample evi-
dence showing the role of such interactions in mediating
population fates under global-change drivers [31,66–68].
Therefore, a large knowledge gap remains in our understand-
ing of the pathways through which global-change drivers
affect the local persistence of multiple interacting species
within ecological communities.
3. Repurposing abundance data to forecasts
feedbacks between demography and species
interactions

An important step towards expanding the application of fore-
casts that integrate feedbacks between demography and
species interactions is by repurposing existing long-term
abundance datasets. While individual-based data on multiple
species in a community are rare, population-level data on
stage-specific multi-species abundances are routinely col-
lected in studies focused on spatio-temporal changes in
community composition [52,69–73]. Such studies assess rela-
tive abundances of species [74–77] or changes in reproduction
and survival at the species level [78–80]. However, stage-
specific demographic rates are mostly omitted, and studies
typically do not explicitly forecast dynamic changes in
species interactions. At the same time, forecasting feedbacks
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Figure 1. Conceptual overview of how feedbacks between stage-specific demographic rates and species interactions can affect community dynamics under environ-
mental change. As an example (a), stage-specific survival rates of three species respond differently to an abiotic driver and biotic interactions (approximated by
interspecific abundances): 1—adult survival changes more strongly under abiotic ( positive) than biotic (negative) effects; 2—juvenile and adult survival decline
more strongly under biotic effects; 3—strong effect of abiotic driver on adult survival, but juvenile survival benefits from high-interspecific abundances. A given
value of the abiotic driver at time t can therefore (b) directly change demographic rates (e.g. survival, recruitment and stage transitions) from time t to t + 1. This
then changes the abundances of species, which, in turn, affect demographic rates and abundances at time t + 1, representing an indirect effect of the abiotic driver.
Such feedbacks mean that, while all species respond negatively to a decrease in the abiotic driver, unfavourable abiotic conditions may increase the abundance of
those species that are more strongly affected by changes in interspecific abundances (e.g. release from competition, blue species here).

royalsocietypublishing.org/journal/rspb
Proc.R.Soc.B

290:20221494

3

between demography and species interactions using multi-
species abundance data may have advantages over using
individual-based data, especially for applied management.
This is because model outputs can be evaluated against
population-level data across broad spatial scales [81], which
is rarely done with population-level outputs from demo-
graphic models based on individual-based data, creating a
mismatch in scale [82].

Recent methodological advances, often termed dynamic
N-mixture models, have allowed us to empirically infer the
demographic processes underlying species co-occurrences
or multi-species abundances (reviewed in [83], see also
[84]). Generally, such methods use Bayesian latent-state
approaches to estimate gains (recruitment and immigration)
and apparent survival (true survival minus emigration) as
unobserved processes [85–87] from time series of counts,
where such demographic rates can be structured by size,
age or stage [84,88], and modelled as a function of density
dependence ([89]; figure 2). These approaches offer great
potential to link demography and species interactions for
multiple species [90–92]. Below, we first discuss some simpli-
fying assumptions that need to be made to parameterize
multi-species dynamics forecasts. We then illustrate with an
example how to effectively estimate the demographic
mechanisms of changes in abundances of several species in
a community; we do not consider recent related advances
in species range dynamics, which have been discussed in
much detail elsewhere [93–96].
4. Modelling species interactions in structured
demographic models

Inferring age- or stage-specific demographic rates from count
data using latent-variable approaches has become increasingly
more accessible [83,97]. However, parameterizing suchmodels
for interacting species comes with some challenges. The main
challenge is the same as those studies inferring species inter-
actions for highly diverse systems [98], namely, how to
circumvent the estimation of a large number of parameters
[65], some of which may not be identifiable [99]. For instance,
if we consider three interacting species (e.g. two herbivores
which share a top predator) and three life stages ( juvenile,
non-reproductive adult and reproductive adult), we need to
estimate, at a minimum, 3 × 3 = 9 interaction effects, typically
modelled as densities of con- and interspecific neighbours
[56,99], for each demographic stage. This equals to 27 pairwise
interactions determining the survival, development and
reproduction of the three species. We would also need to
add additional parameters that map the effect of environ-
mental change onto demographic rates and species
interaction coefficients, which can be common across species
and life stages or specific to each combination. While such
an effort is feasible in simulations [101], the accurate empirical
estimation of so many parameters in a natural system can
require an impossible level of effort [5]. Integrating these par-
ameters also increases model complexity and can complicate
interpretation of modelling outcomes [102], in part because
the likelihood of highly intercorrelated variables increases
with an increasing number of parameters, thus raising the
likelihood of spurious correlations [103] and issues with
parameter identifiability [83]. Experimental manipulations of
densities are ultimately required to tease apart whether posi-
tive or negative associations between species indicate
interactions [104,105], but these can also be difficult to execute
in systems larger than two–three species.

There are ways to reduce the dimensionality of parameter-
ization for systems of multi-species interactions using
discretization and grouping following general ecological
rules and regularization approaches [106,107]. For one, species
do not interact randomly but follow, in most cases, specific
rules determined by species traits such as body size or height
[3,37,108]. In addition, although interaction coefficients are
usually expressed as per capita effects (e.g. [56]), the relative



Box 1. Individual demographic interactions determine community dynamics.

One well-studied example that highlights the complexities of species interactions in determining community structure occurs
in the high-elevation streams on the Caribbean island of Trinidad. There, Hart’s killifish (Rivulus hartii) and Trinidadian gup-
pies (Poecilia reticulata) compete with each other for resources and consume each other as part of a bidirectional intraguild
predation community. Theory predicts that intraguild predation should result in an unstable community, but guppies and
killifish coexist in these streams. This is, in part, because the magnitude of interactions between the two species depends
strongly on their body sizes (Box Figure).

Simple models of species interactions (e.g. Lotka–Volterra competition equations) describe the negative effects of compe-
tition on population growth as simple functions of the numbers, densities, or biomass of competitors in the environment.
However, when populations are structured by traits such as body size, simple models like these generate predictions that
perform poorly when compared to models that incorporate size-specific interactions between the species [39,40]. For
example, for both guppies and killifish, larger individuals are better competitors for a common resource than are smaller
ones [41,42]. For guppies, incorporating these differences in projections of their long-term population dynamics produced
more accurate results than models assuming all individuals compete equally [30].
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Box Figure. Survival and recruitment in killifish vary depending on whether guppies are present (black) or absent
(orange) in streams and whether guppies affect all or only certain sizes of killifish. Plot derived from [43].

Yet size often determines more than the competitive ability of the individuals. Larger killifish and guppies also consume
resources at higher trophic levels than smaller individuals, which could decrease the negative effects of competition on the
smaller fish. As intraguild predators, larger individuals of each species consume smaller individuals of the other species.
Because the interactions between these species are so strongly dependent on body size—whether it be competitive inter-
actions or predation—any factor that affects the size distributions of these species can generate markedly different
population dynamics and different outcomes of their interaction, coexistence or deterministic competitive exclusion or
exclusion of either species via priority effects [40].

Still, the size-based interactions between the two species tell an incomplete story. High-elevation Trinidadian streams con-
tain different microhabitats that each of the species prefers [44]. Recent analyses show that each species may also respond to
environmental variation in contrasting ways, with guppies doing well in drier periods and killifish performing better in
wetter periods (RDB and JT unpublished data). Consider what can happen if climate change was to produce longer dry seasons
and drier wet seasons. The pools favoured by guppies may be more productive because of longer periods of high light inten-
sity while the riffles favoured by killifish may shrink in total area from the reduced water flow. As a result, guppies may
attain larger body sizes, killifish may grow more slowly and display smaller body sizes, and the size-dependent interactions
could result in the elimination of killifish.

Both species also rapidly adapt to the presence of the other species [45,46] and display genetically based morphological,
behavioural and life-history differences. These adaptations feedback to alter the rest of the community and ecosystem [47–51].
The outcome of these evolutionary effects is a change in way the species interact over time and for the resulting population
dynamics to evolve [43]. These evolutionary changes are repeatable across multiple independent evolutionary instances of
guppy/killifish communities, revealing that these evolutionary changes are predictable and hence can, in principle, be
incorporated into predictive models. However, this is no small task.
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abundances of neighbouring species drive the frequency of
interactions between individuals of different species, and
with it, the overall biotic effects on the focal species [3]. In the
absence of individual monitoring to quantify per capita effects,
estimates based on trait-matching and abundance-based inter-
action frequency can be used as a first-principles baseline for
grouping interactions in empirical systems and across life
stages (figure 2). Furthermore, life-history information of the
neighbours such as fast-growing versus slow-growing species
or native versus invasive species can facilitate the interpret-
ation of model coefficients as true interactions [109]. Causal
inferencemethods also exist to better infer cause-effect relation-
ships from observational data [110,111]. Lastly, relatively
simple structured population models are able to capture a
wide range of demographic variation within and among
populations [112–114]. This means that the step from
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resented as the sum of adult abundances for all neighbour species (simplified
to one neighbour for clarity) of a focal species. Species can then be jointly
projected under a common abiotic driver of demographic rates (e.g. rain).
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abundance-baseddatatodemographicprojectionscanpotentially
be achieved via relatively straightforward structured models,
including as few as two stages ( juveniles and reproductive).

We use the example of interactions among Mediterranean
shrubs to highlight the minimum data required to do short-term
forecasts (i.e. out-of-sample predictions) and climate-change pro-
jections (i.e. using scenarios of rainfall change) at the interface of
population and community ecology.Using a dynamicN-mixture
model [85] (figure 2), we showcase how ecological forecasts can
be improved through more biologically realistic parameteriza-
tions of the effects of environmental conditions on population
abundances, i.e. simultaneously projecting howbiotic and abiotic
factors affect the demography of interacting species.
5. Example: inferring demography from
abundance datasets to project climate-change
effects on interacting shrubs

Our case study focuses on understanding how feedbacks
between demography and species interactions mediate
changes in abundances of coexisting Mediterranean shrub
species under increasingly drier winter weather (an overview
of the analyses steps in the case study is presented in
figure 3). We use data on the abundance of individuals of
common shrub species in Doñana National Park (Spain)
that have been recorded across 18 sites since 2007. Details
on the study and sampling design are described in electronic
supplementary material, S1. The original aim of the monitor-
ing was to assess changes in community composition after a
severe drought which led to a collapse of the shrubland in
2005 [115]. Recent evidence suggests that resilience to
drought is well described by community-weighted species-
specific demographic traits (e.g. longevity, reproductive
output) [116], but dynamic forecasts of multi-species popu-
lations abundances have not been done thus far. Such
forecasts are important because rainfall has become increas-
ingly scarcer at the study site since the drought, a situation
that is expected to continue under climate change [117,118].
However, how rainfall scarcity affects plant demography
directly or indirectly via changing species interactions
remains an open question, thus complicating assessments of
the fate of the critical shrublands.

We used 8 years of data, collected across 18 plots between
2007 and 2021, on stage-specific abundances of the five most
common shrub species in the study area (Halimium commuta-
tum, Halimium halimifolium, Rosmarinus officinalis, Lavandula
stoechas and Cistus libanotis) to estimate stage-specific survival
(of saplings and reproductive adults), transitions of saplings
to adults and gains of saplings to the population as latent,
i.e. unobserved, states, inferred from the abundances
(figure 3). We modelled these demographic rates jointly for
all species using generalized linear models that included rain-
fall and inter- and intraspecific densities (adult abundances in
5 × 5 m plots) as covariates. Recruitment of seedlings (ratio
seedlingst+1/adultst) was assumed to be fixed, as we only
had two years of data on recruitment (see electronic sup-
plementary material, S1). For each species, abundances at
the beginning of time t were estimated from the demographic
transitions from (t− 1) to t. Interactions among the shrubs are
largely determined by size, i.e. the number of relatively large,
adult neighbouring shrubs [119,120]. In the absence of infor-
mation on the spatial location of the shrubs, we considered all
adult shrubs in a 5 × 5 m plot as neighbours. We summed the
abundance of adult interspecific neighbours at the beginning of
time t and used this pooled measure of interspecific effects as
covariate in the demographic rate models at t for each species
(we included the abundance of intraspecific adults as a separate
covariate). Electronic supplementary material, S1 showcases the
Bayesian dynamic approach used to parameterize models, test
their goodness of fit and test their ability to recover parameters
from simulated data. This methodology can be readily applied
to other community datasets [84] and to other drivers of global
change, but our study also highlights that sufficient spatio-tem-
poral replication of stage-specific counts is needed to avoid
overparameterization and parameter unidentifiability. In our
particular case, replication in space compensated for the rela-
tively low temporal replication of 8 years, but spatial
replication of similar studies is typically much larger [83,84].
The low spatio-temporal resolution of the data can increase
uncertainties of parameter estimates (electronic supplementary
material, figures S18 and S19) and, in our case, did not give us
enough degrees of freedom to parameterize more complex and
realistic covariate effects (e.g. interactions between rainfall and
densities or quadratic rainfall effects).
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We used predictions from the demographic rate models
(electronic supplementary material, figures S2–S6) to build
stage-structured metapopulation models for each species
[120]. In these models, the local demography of every shrub
species in each of the 18 plots was described by a stage-struc-
tured matrix population model (figure 3). The 18 local matrix
models were joined by a dispersal matrix, which described
adult plants producing seeds in a given plot that germinated
as seedlings in adjacent plots (see electronic supplementary
material, S1 for details). We validated how well the metapo-
pulation model predicted observed abundances by projecting
abundances of each species until 2021, starting with the site-
and stage-specific population vector in 2010, and visually
comparing the results to observed abundances. This in-
sample validation showed a good fit to adult abundance
data (observed abundances were within the 95% C.I. of pre-
dicted abundances for most species, sites and years;
electronic supplementary material, figures S8–S13). Predicted
abundances of saplings diverged more strongly from
observed ones, likely because we estimated gains of saplings
to the population as a constant and did not account for seed
production when inferring demography from abundances.
We simplified these processes as we lacked data for more
complex models (electronic supplementary material, S1),
highlighting that the lack of abundance data on several life
cycle stages can be an important limiting factor on the
detail of demographic inference from abundances.

We then focused on local population dynamics of each
shrub species and determined the relative sensitivity of the
local population growth (λ) of each shrub species at equili-
brium population density to changes in rainfall, intra- and
interspecific densities. These sensitivity analyses demonstrate
that population dynamics of most species are strongly influ-
enced by negative effects of species interactions (including
both intra- and interspecific densities) on adult survival—
suggesting competition. Notably, however, for some species,
such as H. commutatum and L. stoechas, such negative effects
are balanced by positive effects of interspecific densities on
juvenile survival (figure 4). As expected, rainfall positively
affects populations, although the effect is not as strong as
the effects of interspecific densities (figure 4). We performed
additional sensitivity simulations in which we estimated the
indirect effects of rainfall on population growth via changes
in interspecific densities (see Perturbation analyses in electronic
supplementary material, S1). These simulations show that the
strength of such indirect effects differs among species and can
be substantial, most importantly for R. officinalis where a 10%
increase in rainfall affecting neighbours’ survival decreases
population growth by 8% on average (electronic supplemen-
tary material, figure S15). This system of interacting shrubs
therefore suggests that changes in abiotic conditions can
strongly affect the community via interactions among neigh-
bouring species and contrasts with other systems of non-
trophic interactions, where interspecific interactions affect
demography far less than intraspecific interactions [36].

Intra- and interspecific interactions mediate population
responses of the shrubs when simulating a drier future. We
jointly projected the metapopulations of the interacting
shrubs using average posterior values of parameters (see
[19,99] for examples of full uncertainty propagation in projec-
tions) and assuming a higher prevalence of below-average
rainfall in the next 50 years (figure 3; electronic supplemen-
tary material, S1). Under these projections, not all species
decrease in abundance compared to baseline projections (ran-
domly sampling all rainfall values 2007–2021) (figure 5).
Abundances of C. libanotis decrease most strongly, followed
by H. halimifolium, as adult survival in both species is directly
positively affected by rainfall. Plants may also experience
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more competition from shrubs not directly negatively
affected by scarcer rainfall, as is the case for
H. commutatum, L. stoechas and R. officinalis. Abundances of
H. commutatum and L. stoechas do not change under drier con-
ditions, as, in addition to not being directly affected by
rainfall, a higher adult survival is countered by a lower juven-
ile survival under lower interspecific densities (figure 4). By
contrast, abundances of R. officinalis increase under climate
change (figure 5), as lower abundances of neighbours
under climate change decrease the negative effect of inter-
specific density on adult and juvenile survival (figure 4).

Projections that do not account for climate-change effects
on interspecific densities (no dynamics in figure 5) tend to
show higher increases or decreases in abundances for most
species compared with fully dynamic projections; they also
increase the variation in abundance forecasts (electronic sup-
plementary material, figure S17). Short-term forecasts of
most-recently collected abundances (2022) lend further sup-
port to the importance of fully dynamic projections of
abundance changes. Starting with stage-specific abundances
in 2007, we forecast abundances to 2022, either assuming a
fully dynamic model or a simplified one, i.e. assuming no
climate effects on interspecific densities (see electronic sup-
plementary material, S1 for details). We show that fully
dynamic forecasts provide an accurate estimate of observed
adult abundances in 2022 (but less so for saplings due to
the data limitations in the relevant models, as discussed
above; figure 6; electronic supplementary material, figure
S14). Simplified assumptions in the forecasts, meanwhile,
decrease forecast accuracy (figure 6). More years of indepen-
dent data to evaluate the forecasts are needed for more
conclusive results; this is particularly true for mechanistic
forecasts that include many parameter and lagged effects of
density (figure 1; [8,9]). Nevertheless, several lines of evi-
dence in our case study suggest that omitting a crucial
pathway of climate change on populations in the forecast,
i.e. interspecific interactions affecting stage-specific survival,
can lead to an inaccurate interpretation of population
dynamics under climate change.

Winters in the Mediterranean have been getting drier over
the past 10 years; projections of our dynamic multi-species
demographic models are in line with empirical evidence of
abundance trends (electronic supplementary material, S1)
and literature that shows a higher recent mortality of
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H. halimifolium and increases in abundances in L. stoechas [115].
Based on life-history theory, we would expect populations of
relatively short-lived species such as L. stoechas [116] to be
more sensitive to changes in abiotic conditions than popu-
lations of longer-lived species such as H. halimifolium [122].
However, indirect effects of such changes via species inter-
actions can have substantial effects on natural communities
across different life histories [28,60]. Themodels we developed
for the shrubs are relatively simple and likely do not incorpor-
ate all relevant biological processes (all scripts and data can be
found at: https://github.com/MariaPaniw/shrub_forecast;
[123]). We will update our models iteratively [124] as we
gain a better understanding of size-mediated demographic
rates, spatially explicit interactions and hidden demographic
stages, such as seed banks [125]. However, these dynamic
models highlight the importance of a better integration of
the pathways through which environmental change can
affect communities. Perturbing these pathways creates differ-
ent forecasting scenarios and can result in more nuanced
decision making on the management of this community
where the focus can vary between managing populations
(e.g. of the cover of the most common species, H. halimifolium)
and communities (e.g. introducing burning to entire patches
to promote seedling recruitment and thus higher food
availability for rodents) [126].

6. Conclusion and future directions
Assessing individual, age- or stage-specific demographic
responses to biotic and abiotic drivers for several species in a
community simultaneously offers an essential perspective
into the fates of populations and communities under environ-
mental change. Projections of population dynamics based on
abundance data have been demonstrated to be only as accurate
as projections based on demographic models in some systems
[127]. However, as our case study shows, this may not be the
case for the many communities where even small environ-
mental changes can substantially change community
dynamics by altering the outcomes of species interactions
[128]. Similarly, averaging these direct and indirect effects of
environmental change over demographic stages and even
populations can substantially obscure our ability to assess
the capacity of communities to bounce back from pertur-
bations [83,129]. This occurs when different demographic
rates respond distinctly to intra- and interspecific densities,
so that decreases in one life cycle stage may be compensated
by increases in another. Such context-dependent demographic
responses are likely very common in nature [62,130] and chal-
lenge classic assumptions of what taxa are most sensitive to
global change [131]. Robustly capturing some of the pathways
throughwhich global change affects populationsmayallow us
to design robust alternative scenarios of outcomes under
global change, thus avoiding the ‘forecast trap’ (sensu
[132,133]) where management decisions rely too closely on
optimizing the forecast ability of a single best-fit model.

Our case study demonstrates that advances in statistical
tools [83] and data integration [134], including life-history
information, known effects of heterospecific and conspecific
neighbours, or dispersal, make it possible to explore demo-
graphy–biotic interaction feedbacks in a wide range of
systems. However, more studies aimed at improving the
parameterization and biological realism of multi-species
demographic inference are needed. The methods presented
here require that sufficient count data be available to infer
demographic rates. This may preclude the inclusion of less
abundant and potentially more threatened species. Such chal-
lenges can be partially overcome by the inclusion of
informative priors into Bayesian model fitting [89], and
studies that integrate informative priors into multi-species
demographic inference are needed. In addition, populations
of many species are structured by continuous traits, such as
size or body mass, and many community-level studies

https://github.com/MariaPaniw/shrub_forecast


royalsocietypublishing.org/journal/rspb
Proc.R.Soc.

9
record not only counts but also such key traits. Future studies
that parameterize demographic rates as functions of continu-
ous traits, in turn affected by species interactions, may not
only address an important biological pathway of global-
change effects on populations and communities [84,135],
but can also result in more efficient model fitting that requires
fewer parameters [136].

Data accessibility. All data to replicate the analyses in this manuscript
have been deposited on Dryad: https://doi.org/10.5061/dryad.
8cz8w9gvc [137]. R scripts to process the data and run all analyses
presented in the manuscript are available at: https://github.com/
MariaPaniw/shrub_forecast [123].

The data are provided in the electronic supplementary material
[138].
Authors’ contributions. M.P.: conceptualization, formal analysis, funding
acquisition, investigation, methodology, writing—original draft and
writing—review and editing; D.G.C.: conceptualization, resources
and writing—review and editing; F.L.: data curation, validation and
writing—review and editing; R.D.B.: conceptualization, methodology,
visualization, writing—review and editing; J.T.: conceptualization,
resources and writing—review and editing; O.G.: conceptualization,
writing—original draft and writing—review and editing.

All authors gave final approval for publication and agreed to be
held accountable for the work performed therein.
Conflict of interest declaration. We declare we have no competing interests.

Funding. This project has received funding from the European Union’s
Horizon 2020 research and innovation programme under the Marie
Sklodowska-Curie grant agreement No 894223. O.G. acknowledges
financial support provided by the Spanish Ministry of Economy and
Competitiveness (MINECO) and by the European Social Fund
through the Ramón y Cajal Program (RYC-2017-23666). F.L. acknowl-
edges financial support provided by the Spanish Ministry of Science
and Innovation (MICIN, PID2020-115264RB-I00). R.D.B. and J.T.
acknowledge financial support from the National Science Foundation,
USA (2100163).
Acknowledgements. We are grateful for constructive feedback from two
anonymous reviewers as well as Prof. Tim Coulson on previous
versions of this manuscript.
B
290:202
References
21494
1. Zarnetske PL, Skelly DK, Urban MC. 2012 Biotic
multipliers of climate change. Science 336,
1516–1518. (doi:10.1126/science.1222732)

2. Zscheischler J et al. 2018 Future climate risk from
compound events. Nat. Clim. Chang. 8, 469–477.
(doi:10.1038/s41558-018-0156-3)

3. Dáttilo W, Marquitti FMD, Guimarães Jr PR, Izzo TJ.
2014 The structure of ant–plant ecological
networks: is abundance enough? Ecology 95,
475–485. (doi:10.1890/12-1647.1)

4. de Roos AM. 2021 Dynamic population stage
structure due to juvenile–adult asymmetry
stabilizes complex ecological communities. Proc.
Natl Acad. Sci. USA 118, e2023709118. (doi:10.
1073/pnas.2023709118)

5. Peterson ML, Doak DF, Morris WF. 2019
Incorporating local adaptation into forecasts of
species’ distribution and abundance under climate
change. Glob. Chang Biol. 25, 775–793. (doi:10.
1111/gcb.14562)

6. Neupane N, Zipkin EF, Saunders SP, Ries L. 2022
Grappling with uncertainty in ecological projections:
a case study using the migratory monarch butterfly.
Ecosphere 13, e03874. (doi:10.1002/ecs2.3874)

7. Lancaster LT, Morrison G, Fitt RN. 2017 Life history
trade-offs, the intensity of competition, and
coexistence in novel and evolving communities
under climate change. Phil. Trans. R. Soc. B 372,
20160046. (doi:10.1098/rstb.2016.0046)

8. Hefley TJ, Hooten MB, Russell RE, Walsh DP, Powell
JA. 2017 When mechanism matters: Bayesian
forecasting using models of ecological diffusion.
Ecol. Lett. 20, 640–650. (doi:10.1111/ele.12763)

9. Petchey OL et al. 2015 The ecological forecast
horizon, and examples of its uses and determinants.
Ecol. Lett. 18, 597–611. (doi:10.1111/ele.12443)

10. Stenseth NChr, Mysterud A. 2002 Climate, changing
phenology, and other life history traits: nonlinearity
and match–mismatch to the environment. Proc.
Natl Acad. Sci. USA 99, 13 379–13 381. (doi:10.
1073/pnas.212519399)
11. Both C, van Asch M, Bijlsma RG, van den Burg AB,
Visser ME. 2009 Climate change and unequal
phenological changes across four trophic levels:
constraints or adaptations? J. Anim. Ecol. 78, 73–83.
(doi:10.1111/j.1365-2656.2008.01458.x)

12. Simmonds EG, Cole EF, Sheldon BC, Coulson T. 2020
Phenological asynchrony: a ticking time-bomb for
seemingly stable populations? Ecol. Lett. 23,
1766–1775. (doi:10.1111/ele.13603)

13. Reed TE, Grøtan V, Jenouvrier S, Sæther BE, Visser
ME. 2013 Population growth in a wild bird is
buffered against phenological mismatch. Science
340, 488–491. (doi:10.1126/science.1232870)

14. Hansen BB et al. 2019 More frequent extreme
climate events stabilize reindeer population
dynamics. Nat. Comm. 10, 1–17. (doi:10.1038/
s41467-019-09332-5)

15. Ogutu JO, Piepho H-P, Kanga E. 2012 Dynamics of an
insularized and compressed impala population: rainfall,
temperature and density influences. Open Ecol. J. 5,
1–17. (doi:10.2174/1874213001205010001)

16. Compagnoni A et al. 2016 The effect of
demographic correlations on the stochastic
population dynamics of perennial plants. Ecol.
Monogr. 86, 480–494. (doi:10.1002/ecm.1228)

17. Villellas J, Doak DF, García MB, Morris WF. 2015
Demographic compensation among populations:
what is it, how does it arise and what are its
implications? Ecol. Lett. 18, 1139–1152. (doi:10.
1111/ele.12505)

18. Capdevila P, Stott I, Beger M, Salguero-Gómez R.
2020 Towards a comparative framework of
demographic resilience. Trends Ecol. Evol. 35,
776–786. (doi:10.1016/j.tree.2020.05.001)

19. Paniw M et al. 2022 Higher temperature extremes
exacerbate negative disease effects in a social
mammal. Nat. Clim. Chang. 12, 284–290. (doi:10.
1038/s41558-022-01284-x)

20. Chesson P, Kuang JJ. 2008 The interaction between
predation and competition. Nature 456, 235–238.
(doi:10.1038/nature07248)
21. Mathias A, Chesson P. 2013 Coexistence and
evolutionary dynamics mediated by seasonal
environmental variation in annual plant
communities. Theor. Popul. Biol. 84, 56–71. (doi:10.
1016/j.tpb.2012.11.009)

22. Aung KMM, Chen HH, Segar ST, Miao BG, Peng YQ,
Liu C. 2022 Changes in temperature alter
competitive interactions and overall structure of fig
wasp communities. J. Anim. Ecol. 91, 1303–1315.
(doi:10.1111/1365-2656.13701)

23. Hallett LM, Shoemaker LG, White CT, Suding KN.
2019 Rainfall variability maintains grass-forb species
coexistence. Ecol. Lett. 22, 1658–1667. (doi:10.
1111/ele.13341)

24. Dunson WA, Travis J. 1991 The role of abiotic factors
in community organization. Am. Nat. 138,
1067–1091. (doi:10.1086/285270)

25. Román-Palacios C, Wiens JJ. 2020 Recent responses
to climate change reveal the drivers of species
extinction and survival. Proc. Natl Acad.
Sci. USA 117, 4211–4217. (doi:10.1073/pnas.
1913007117)

26. Holt RD. 2009 Bringing the Hutchinsonian niche
into the 21st century: ecological and evolutionary
perspectives. Proc. Natl Acad. Sci. USA 106,
19 659–19 665. (doi:10.1073/pnas.0905137106)

27. Veldhuis MP, Hofmeester TR, Balme G, Druce DJ,
Pitman RT, Cromsigt JPGM. 2020 Predation risk
constrains herbivores’ adaptive capacity to warming.
Nat. Ecol. Evol. 4, 1069–1074. (doi:10.1038/s41559-
020-1218-2)

28. Harley CDG. 2011 Climate change, keystone
predation, and biodiversity loss. Science 334,
1124–1127. (doi:10.1126/science.1210199)

29. Post E. 2013 Erosion of community diversity and
stability by herbivore removal under warming. Proc.
R. Soc. B 280, 20122722. (doi:10.1098/rspb.2012.
2722)

30. Griffiths JI, Childs DZ, Bassar RD, Coulson T, Reznick
DN, Rees M. 2020 Individual differences determine
the strength of ecological interactions. Proc. Natl

https://doi.org/10.5061/dryad.8cz8w9gvc
https://doi.org/10.5061/dryad.8cz8w9gvc
https://github.com/MariaPaniw/shrub_forecast
https://github.com/MariaPaniw/shrub_forecast
http://dx.doi.org/10.1126/science.1222732
http://dx.doi.org/10.1038/s41558-018-0156-3
http://dx.doi.org/10.1890/12-1647.1
http://dx.doi.org/10.1073/pnas.2023709118
http://dx.doi.org/10.1073/pnas.2023709118
http://dx.doi.org/10.1111/gcb.14562
http://dx.doi.org/10.1111/gcb.14562
http://dx.doi.org/10.1002/ecs2.3874
http://dx.doi.org/10.1098/rstb.2016.0046
http://dx.doi.org/10.1111/ele.12763
https://doi.org/10.1111/ele.12443
https://doi.org/10.1073/pnas.212519399
https://doi.org/10.1073/pnas.212519399
http://dx.doi.org/10.1111/j.1365-2656.2008.01458.x
http://dx.doi.org/10.1111/ele.13603
http://dx.doi.org/10.1126/science.1232870
https://doi.org/10.1038/s41467-019-09332-5
https://doi.org/10.1038/s41467-019-09332-5
https://doi.org/10.2174/1874213001205010001
http://dx.doi.org/10.1002/ecm.1228
http://dx.doi.org/10.1111/ele.12505
http://dx.doi.org/10.1111/ele.12505
http://dx.doi.org/10.1016/j.tree.2020.05.001
http://dx.doi.org/10.1038/s41558-022-01284-x
http://dx.doi.org/10.1038/s41558-022-01284-x
http://dx.doi.org/10.1038/nature07248
http://dx.doi.org/10.1016/j.tpb.2012.11.009
http://dx.doi.org/10.1016/j.tpb.2012.11.009
http://dx.doi.org/10.1111/1365-2656.13701
http://dx.doi.org/10.1111/ele.13341
http://dx.doi.org/10.1111/ele.13341
http://dx.doi.org/10.1086/285270
http://dx.doi.org/10.1073/pnas.1913007117
http://dx.doi.org/10.1073/pnas.1913007117
http://dx.doi.org/10.1073/pnas.0905137106
http://dx.doi.org/10.1038/s41559-020-1218-2
http://dx.doi.org/10.1038/s41559-020-1218-2
http://dx.doi.org/10.1126/science.1210199
https://doi.org/10.1098/rspb.2012.2722
https://doi.org/10.1098/rspb.2012.2722


royalsocietypublishing.org/journal/rspb
Proc.R.Soc.B

290:20221494

10
Acad. Sci. USA 117, 17 068–17 073. (doi:10.1073/
pnas.2000635117)

31. Rasher DB et al. 2020 Keystone predators govern
the pathway and pace of climate impacts in a
subarctic marine ecosystem. Science 369,
1351–1354. (doi:10.1126/science.aav7515)

32. Miller LP, Matassa CM, Trussell GC. 2014
Climate change enhances the negative effects of
predation risk on an intermediate consumer.
Glob. Change Biol. 20, 3834–3844. (doi:10.1111/
gcb.12639)

33. Shoemaker LG et al. 2020 Integrating the
underlying structure of stochasticity into community
ecology. Ecology 101, e02922. (doi:10.1002/
ecy.2922)

34. Pironon S et al. 2018 The ‘Hutchinsonian niche’ as
an assemblage of demographic niches: implications
for species geographic ranges. Ecography 41,
1103–1113. (doi:10.1111/ecog.03414)

35. Medvigy D, Wofsy SC, Munger JW, Hollinger DY,
Moorcroft PR. 2009 Mechanistic scaling of ecosystem
function and dynamics in space and time:
ecosystem demography model version 2. J. Geophys.
Res. 114, G01002. (doi:10.1029/2008JG000812)

36. Adler PB, Dalgleish HJ, Ellner SP. 2012 Forecasting
plant community impacts of climate variability and
change: when do competitive interactions matter? J.
Ecol. 100, 478–487. (doi:10.1111/j.1365-2745.2011.
01930.x)

37. Coulson T. 2021 Environmental perturbations and
transitions between ecological and evolutionary
equilibria: an eco-evolutionary feedback framework.
Peer Comm. J. 1, e6. (doi:10.24072/pcjournal.4)

38. Evans MR, Norris KJ, Benton TG. 2012 Predictive
ecology: systems approaches. Phil. Trans. R. Soc. B
367, 163–169. (doi:10.1098/rstb.2011.0191)

39. Bassar RD, Childs DZ, Rees M, Tuljapurkar S, Reznick
DN, Coulson T. 2016 The effects of asymmetric
competition on the life history of Trinidadian
guppies. Ecol. Lett. 19, 268–278. (doi:10.1111/ele.
12563)

40. Bassar RD, Travis J, Coulson T. 2017 Predicting
coexistence in species with continuous ontogenetic
niche shifts and competitive asymmetry. Ecology
98, 2823–2836. (doi:10.1002/ecy.1969)

41. Anaya-Rojas JM et al. 2021 The evolution of size-
dependent competitive interactions promotes
species coexistence. J. Anim. Ecol. 90, 2704–2717.
(doi:10.1111/1365-2656.13577)

42. Potter T, King L, Travis J, Bassar RD. 2019
Competitive asymmetry and local adaptation in
Trinidadian guppies. J. Anim. Ecol. 88, 330–342.
(doi:10.1111/1365-2656.12918)

43. Bassar RD, Simon T, Roberts W, Travis J, Reznick DN.
2017 The evolution of coexistence: reciprocal
adaptation promotes the assembly of a simple
community. Evolution 71, 373–385. (doi:10.1111/
evo.13086)

44. Goldberg JF, Fraser DF, Lamphere BA, Reznick DN.
2022 Differential habitat use and recruitment
facilitate coexistence in a community with intraguild
predation. Ecology 103, e03558. (doi:10.1002/ecy.
3558)
45. Travis J, Reznick D, Bassar RD, López-Sepulcre A,
Ferriere R, Coulson T. 2014 Do eco-evo feedbacks
help us understand nature? Answers from studies of
the Trinidadian guppy. In Advances in ecological
research (eds J Moya-Laraño, J Rowntree, G
Woodward), pp. 1–40. New York, NY: Academic
Press.

46. Walsh MR, Fraser DF, Bassar RD, Reznick DN. 2011
The direct and indirect effects of guppies:
implications for life-history evolution in Rivulus
hartii. Funct. Ecol. 25, 227–237. (doi:10.1111/j.
1365-2435.2010.01786.x)

47. Bassar RD et al. 2012 Direct and indirect ecosystem
effects of evolutionary adaptation in the Trinidadian
guppy (Poecilia reticulata). Am. Nat. 180, 167–185.
(doi:10.1086/666611)

48. Bassar RD, Heatherly 2nd T, Marshall MC, Thomas
SA, Flecker AS, Reznick DN. 2015 Population size-
structure-dependent fitness and ecosystem
consequences in Trinidadian guppies. J. Anim. Ecol.
84, 955–968. (doi:10.1111/1365-2656.12353)

49. Bassar RD et al. 2010 Local adaptation in
Trinidadian guppies alters ecosystem processes.
Proc. Natl Acad. Sci. USA 107, 3616–3621. (doi:10.
1073/pnas.0908023107)

50. El-Sabaawi RW, Marshall MC, Bassar RD, López-
Sepulcre A, Palkovacs EP, Dalton C. 2015 Assessing
the effects of guppy life history evolution on
nutrient recycling: from experiments to the field.
Freshw. Biol. 60, 590–601. (doi:10.1111/fwb.12507)

51. Marshall MC et al. 2012 Effects of consumer
interactions on benthic resources and ecosystem
processes in a neotropical stream. PLoS ONE 7,
e45230. (doi:10.1371/journal.pone.0045230)

52. Abrego N et al. 2021 Accounting for species
interactions is necessary for predicting how arctic
arthropod communities respond to climate change.
Ecography 44, 885–896. (doi:10.1111/ecog.05547)

53. Suttle KB, Thomsen MA, Power ME. 2007 Species
interactions reverse grassland responses to changing
climate. Science 315, 640–642. (doi:10.1126/
science.1136401)

54. Descombes P et al. 2020 Novel trophic interactions
under climate change promote alpine plant
coexistence. Science 370, 1469–1473. (doi:10.1126/
science.abd7015)

55. Blois JL, Zarnetske PL, Fitzpatrick MC, Finnegan S.
2013 Climate change and the past, present, and
future of biotic interactions. Science 341, 499–504.
(doi:10.1126/science.1237184)

56. Adler PB, Ellner SP, Levine JM. 2010 Coexistence of
perennial plants: an embarrassment of niches. Ecol.
Lett. 172, 1019–1029. (doi:10.1111/j.1461-0248.
2010.01496.x)

57. Travis J et al. 2014 Integrating the invisible fabric of
nature into fisheries management. Proc. Natl Acad. Sci.
USA 111, 581–584. (doi:10.1073/pnas.1305853111)

58. Bowler CH, Weiss-Lehman C, Towers IR, Mayfield
MM, Shoemaker LG. 2022 Accounting for
demographic uncertainty increases predictions for
species coexistence: a case study with annual
plants. Ecol. Lett. 25, 1618–1628. (doi:10.1111/ele.
14011)
59. Coulson T, Benton TG, Lundberg P, Dall SRX, Kendall
BE. 2006 Putting evolutionary biology back in the
ecological theatre: a demographic framework
mapping genes to communities. Evol. Ecol. Res. 8,
1155–1171.

60. Peers MJL et al. 2020 Climate change increases
predation risk for a keystone species of the boreal
forest. Nat. Clim. Chang. 10, 1149–1153. (doi:10.
1038/s41558-020-00908-4)

61. Quéroué M et al. 2021 Multispecies integrated
population model reveals bottom-up dynamics in a
seabird predator–prey system. Ecol. Monogr. 91,
e01459. (doi:10.1002/ecm.1459)

62. Paniw M et al. 2021 The myriad of complex
demographic responses of terrestrial mammals to
climate change and gaps of knowledge: a global
analysis. J. Anim. Ecol. 90, 1398–1407. (doi:10.
1111/1365-2656.13467)

63. Stillman RA, Railsback SF, Giske J, Berger U, Grimm
V. 2015 Making predictions in a changing world:
the benefits of individual-based ecology. Bioscience
65, 140–150. (doi:10.1093/biosci/biu192)

64. Clutton-Brock T, Sheldon BC. 2010 Individuals and
populations: the role of long-term, individual-based
studies of animals in ecology and evolutionary
biology. Trends Ecol. Evol. 25, 562–573. (doi:10.
1016/j.tree.2010.08.002)

65. Lasky JR, Hooten MB, Adler PB. 2020 What
processes must we understand to forecast regional-
scale population dynamics? Proc. R. Soc. B 287,
20202219. (doi:10.1098/rspb.2020.2219)

66. Morris WF, Ehrlén J, Dahlgren JP, Loomis AK,
Louthan AM. 2020 Biotic and anthropogenic forces
rival climatic/abiotic factors in determining global
plant population growth and fitness. Proc. Natl
Acad. Sci. USA 117, 1107–1112. (doi:10.1073/pnas.
1918363117)

67. Cahill AE et al. 2013 How does climate change
cause extinction? Proc. R. Soc. B 280, 20121890.
(doi:10.1098/rspb.2012.1890)

68. Urban MC et al. 2016 Improving the forecast for
biodiversity under climate change. Science 353,
aad8466. (doi:10.1126/science.aad8466)

69. Sabatini FM et al. 2021 sPlotOpen – an
environmentally balanced, open-access, global
dataset of vegetation plots. Glob. Ecol. Biogeogr. 30,
1740–1764. (doi:10.1111/geb.13346)

70. Magurran AE et al. 2010 Long-term datasets in
biodiversity research and monitoring: assessing change
in ecological communities through time. Trends Ecol.
Evol. 25, 574–582. (doi:10.1016/j.tree.2010.06.016)

71. White L, O’Connor NE, Yang Q, Emmerson MC,
Donohue I. 2020 Individual species provide
multifaceted contributions to the stability of
ecosystems. Nat. Ecol. Evol. 4, 1–8. (doi:10.1038/
s41559-020-01315-w)

72. Becker EA, Foley DG, Forney KA, Barlow J, Redfern
JV, Gentemann CL. 2012 Forecasting cetacean
abundance patterns to enhance management
decisions. Endanger Species Res. 16, 97–112.
(doi:10.3354/esr00390)

73. de la Riva EG, Lloret F, Pérez-Ramos IM. 2017 The
importance of functional diversity in the stability of

http://dx.doi.org/10.1073/pnas.2000635117
http://dx.doi.org/10.1073/pnas.2000635117
http://dx.doi.org/10.1126/science.aav7515
http://dx.doi.org/10.1111/gcb.12639
http://dx.doi.org/10.1111/gcb.12639
http://dx.doi.org/10.1002/ecy.2922
http://dx.doi.org/10.1002/ecy.2922
https://doi.org/10.1111/ecog.03414
https://doi.org/10.1029/2008JG000812
https://doi.org/10.1111/j.1365-2745.2011.01930.x
https://doi.org/10.1111/j.1365-2745.2011.01930.x
https://doi.org/10.24072/pcjournal.4
http://dx.doi.org/10.1098/rstb.2011.0191
http://dx.doi.org/10.1111/ele.12563
http://dx.doi.org/10.1111/ele.12563
http://dx.doi.org/10.1002/ecy.1969
http://dx.doi.org/10.1111/1365-2656.13577
http://dx.doi.org/10.1111/1365-2656.12918
http://dx.doi.org/10.1111/evo.13086
http://dx.doi.org/10.1111/evo.13086
http://dx.doi.org/10.1002/ecy.3558
http://dx.doi.org/10.1002/ecy.3558
http://dx.doi.org/10.1111/j.1365-2435.2010.01786.x
http://dx.doi.org/10.1111/j.1365-2435.2010.01786.x
http://dx.doi.org/10.1086/666611
http://dx.doi.org/10.1111/1365-2656.12353
http://dx.doi.org/10.1073/pnas.0908023107
http://dx.doi.org/10.1073/pnas.0908023107
http://dx.doi.org/10.1111/fwb.12507
http://dx.doi.org/10.1371/journal.pone.0045230
http://dx.doi.org/10.1111/ecog.05547
http://dx.doi.org/10.1126/science.1136401
http://dx.doi.org/10.1126/science.1136401
http://dx.doi.org/10.1126/science.abd7015
http://dx.doi.org/10.1126/science.abd7015
http://dx.doi.org/10.1126/science.1237184
https://doi.org/10.1111/j.1461-0248.2010.01496.x
https://doi.org/10.1111/j.1461-0248.2010.01496.x
http://dx.doi.org/10.1073/pnas.1305853111
http://dx.doi.org/10.1111/ele.14011
http://dx.doi.org/10.1111/ele.14011
http://dx.doi.org/10.1038/s41558-020-00908-4
http://dx.doi.org/10.1038/s41558-020-00908-4
http://dx.doi.org/10.1002/ecm.1459
http://dx.doi.org/10.1111/1365-2656.13467
http://dx.doi.org/10.1111/1365-2656.13467
http://dx.doi.org/10.1093/biosci/biu192
http://dx.doi.org/10.1016/j.tree.2010.08.002
http://dx.doi.org/10.1016/j.tree.2010.08.002
https://doi.org/10.1098/rspb.2020.2219
http://dx.doi.org/10.1073/pnas.1918363117
http://dx.doi.org/10.1073/pnas.1918363117
https://doi.org/10.1098/rspb.2012.1890
http://dx.doi.org/10.1126/science.aad8466
https://doi.org/10.1111/geb.13346
https://doi.org/10.1016/j.tree.2010.06.016
https://doi.org/10.1038/s41559-020-01315-w
https://doi.org/10.1038/s41559-020-01315-w
http://dx.doi.org/10.3354/esr00390


royalsocietypublishing.org/journal/rspb
Proc.R.Soc.B

290:20221494

11
Mediterranean shrubland communities after the
impact of extreme climatic events. J. Plant Ecol. 10,
281–293. (doi:10.1093/jpe/rtw027)

74. Luna P, Corro EJ, Antoniazzi R, Dáttilo W. 2020
Measuring and linking the missing part of
biodiversity and ecosystem function: the diversity of
biotic interactions. Diversity 12, 86. (doi:10.3390/
d12030086)

75. Santamaría S, Galeano J, Pastor JM, Méndez M.
2016 Removing interactions, rather than species,
casts doubt on the high robustness of pollination
networks. Oikos 125, 526–534. (doi:10.1111/oik.
02921)

76. García-Callejas D, Molowny-Horas R, Araújo MB.
2018 The effect of multiple biotic interaction types
on species persistence. Ecology 99, 2327–2337.
(doi:10.1002/ecy.2465)

77. Clark JS, Scher CL, Swift M. 2020 The emergent
interactions that govern biodiversity change. Proc.
Natl Acad. Sci. USA 117, 17 074–17 083. (doi:10.
1073/pnas.2003852117)

78. Callaway RM et al. 2002 Positive interactions among
alpine plants increase with stress. Nature 417,
844–848. (doi:10.1038/nature00812)

79. Matías L, Godoy O, Gómez-Aparicio L, Pérez-Ramos
IM. 2018 An experimental extreme drought reduces
the likelihood of species to coexist despite
increasing intransitivity in competitive networks.
J. Ecol. 106, 826–837. (doi:10.1111/1365-2745.
12962)

80. Alexander JM, Diez JM, Levine JM. 2015 Novel
competitors shape species’ responses to climate
change. Nature 525, 515–518. (doi:10.1038/
nature14952)

81. Gelfand AE, Ghosh S, Clark JS. 2013 Scaling
integral projection models for analyzing size
demography. Stat. Sci. 28, 641–658. (doi:10.1214/
13-STS444)

82. Ghosh S, Gelfand AE, Clark JS. 2012 Inference for
size demography from point pattern data using
integral projection models. J. Agric. Biol. Environ.
Stat. 17, 642–677.

83. Kery M, Royle JA. 2020 Applied hierarchical
modeling in ecology: analysis of distribution,
abundance and species richness in R and BUGS:
Volume 2: Dynamic and advanced models, p. 820.
London, UK: Academic Press.

84. Shriver RK et al. 2019 Transient population
dynamics impede restoration and may promote
ecosystem transformation after disturbance. Ecol.
Lett. 22, 1357–1366. (doi:10.1111/ele.13291)

85. Dail D, Madsen L. 2011 Models for estimating
abundance from repeated counts of an open
metapopulation. Biometrics 67, 577–587. (doi:10.
1111/j.1541-0420.2010.01465.x)

86. Hostetler JA, Chandler RB. 2015 Improved state-
space models for inference about spatial and
temporal variation in abundance from count data.
Ecology 96, 1713–1723. (doi:10.1890/14-1487.1)

87. Brintz B, Fuentes C, Madsen L. 2018 An asymptotic
approximation to the N-mixture model for the
estimation of disease prevalence. Biometrics 74,
1512–1518. (doi:10.1111/biom.12913)
88. Zipkin EF, Sillett TS, Grant EHC, Chandler RB, Royle
JA. 2014 Inferences about population dynamics
from count data using multistate models: a
comparison to capture–recapture approaches. Ecol.
Evol. 4, 417–426. (doi:10.1002/ece3.942)

89. Bellier E, Kéry M, Schaub M. 2016 Simulation-based
assessment of dynamic N-mixture models in the
presence of density dependence and environmental
stochasticity. Methods Ecol. Evol. 7, 1029–1040.
(doi:10.1111/2041-210X.12572)

90. Clare JDJ, Linden DW, Anderson EM, MacFarland
DM. 2016 Do the antipredator strategies of shared
prey mediate intraguild predation and mesopredator
suppression? Ecol. Evol. 6, 3884–3897. (doi:10.
1002/ece3.2170)

91. Roth T, Bühler C, Amrhein V. 2016 Estimating effects
of species interactions on populations of
endangered species. Am. Nat. 187, 457–467.
(doi:10.1086/685095)

92. Brodie JF et al. 2018 Models for assessing local-scale
co-abundance of animal species while accounting
for differential detectability and varied responses to
the environment. Biotropica 50, 5–15. (doi:10.
1111/btp.12500)

93. Briscoe NJ et al. 2019 Forecasting species range
dynamics with process-explicit models: matching
methods to applications. Ecol. Lett. 22, 1940–1956.
(doi:10.1111/ele.13348)

94. Thuiller W et al. 2013 A road map for integrating
eco-evolutionary processes into biodiversity models.
Ecol. Lett. 16, 94–105. (doi:10.1111/ele.12104)

95. Matthiopoulos J, Fieberg J, Aarts G, Beyer HL,
Morales JM, Haydon DT. 2015 Establishing the link
between habitat selection and animal population
dynamics. Ecol. Monogr. 85, 413–436. (doi:10.1890/
14-2244.1)

96. Usinowicz J, Levine JM. 2018 Species persistence
under climate change: a geographical scale
coexistence problem. Ecol. Lett. 21, 1589–1603.
(doi:10.1111/ele.13108)

97. Glennie R, Adam T, Leos-Barajas V, Michelot T,
Photopoulou T, McClintock BT. 2022 Hidden Markov
models: pitfalls and opportunities in ecology.
Methods Ecol. Evol. 14, 43–56. (doi:10.1111/2041-
210X.13801)

98. García-Callejas D, Bartomeus I, Godoy O. 2021 The
spatial configuration of biotic interactions shapes
coexistence-area relationships in an annual plant
community. Nat. Commun. 12, 6192. (doi:10.1038/
s41467-021-26487-2)

99. Paniw M et al. 2020 Assessing seasonal
demographic covariation to understand
environmental-change impacts on a hibernating
mammal. Ecol. Lett. 23, 588–597. (doi:10.1111/ele.
13459)

100. Hart SP, Freckleton RP, Levine JM. 2018 How to
quantify competitive ability. J. Ecol. 106,
1902–1909. (doi:10.1111/1365-2745.12954)

101. García-Callejas D, Godoy O. 2020 cxr: a toolbox for
modelling species coexistence in R. Methods Ecol.
Evol. 11, 1221–1226. (doi:10.1111/2041-210X.13443)

102. Ward EJ, Holmes EE, Thorson JT, Collen B. 2014
Complexity is costly: a meta-analysis of parametric
and non-parametric methods for short-term
population forecasting. Oikos 123, 652–661.
(doi:10.1111/j.1600-0706.2014.00916.x)

103. Detto M, Visser MD, Wright SJ, Pacala SW. 2019
Bias in the detection of negative density
dependence in plant communities. Ecol. Lett. 22,
1923–1939. (doi:10.1111/ele.13372)

104. Freilich MA, Wieters E, Broitman BR, Marquet PA,
Navarrete SA. 2018 Species co-occurrence networks:
can they reveal trophic and non-trophic interactions
in ecological communities? Ecology 99, 690–699.
(doi:10.1002/ecy.2142)

105. Okuyama T, Bolker BM. 2012 Model-based,
response-surface approaches to quantifying indirect
interactions. In Trait-mediated indirect interactions:
ecological and evolutionary perspectives (eds T
Ohgushi, O Schmitz, RD Holt). Cambridge, UK:
Cambridge University Press.

106. Bartomeus I, Gravel D, Tylianakis JM, Aizen MA,
Dickie IA, Bernard-Verdier M. 2016 A common
framework for identifying linkage rules across
different types of interactions. Funct. Ecol. 30,
1894–1903. (doi:10.1111/1365-2435.12666)

107. Lim M, Hastie T. 2015 Learning interactions via
hierarchical group-Lasso regularization. J. Comput.
Graph Stat. 24, 627–654. (doi:10.1080/10618600.
2014.938812)

108. Brose U et al. 2019 Predator traits determine food-
web architecture across ecosystems. Nat. Ecol. Evol.
3, 919–927. (doi:10.1038/s41559-019-0899-x)

109. Martyn TE, Stouffer DB, Godoy O, Bartomeus I,
Pastore AI, Mayfield MM. 2021 Identifying ‘useful’
fitness models: balancing the benefits of added
complexity with realistic data requirements in
models of individual plant fitness. Am. Nat. 197,
415–433. (doi:10.1086/713082)

110. Elwert F. 2013 Graphical causal models. In
Handbook of causal analysis for social research (ed.
SL Morgan), pp. 245–273. Dordrecht, The
Netherlands: Springer Netherlands.

111. Pearl J. 2000 Causality: models, reasoning and
inference. Cambridge, UK: Cambridge University
Press.

112. Metcalf CJE, Koons DN. 2007 Environmental
uncertainty, autocorrelation and the evolution of
survival. Proc. R. Soc. B 274, 2153–2160. (doi:10.
1098/rspb.2007.0561)

113. Postuma M, Schmid M, Guillaume F, Ozgul A, Paniw M.
2020 The effect of temporal environmental
autocorrelation on eco-evolutionary dynamics across life
histories. Ecosphere 11, e03029. (doi:10.1002/ecs2.3029)

114. Paniw M, Ozgul A, Salguero-Gómez R. 2018
Interactive life-history traits predict sensitivity of
plants and animals to temporal autocorrelation.
Ecol. Lett. 21, 275–286. (doi:10.1111/ele.12892)

115. Lloret F et al. 2016 Climatic events inducing die-off
in Mediterranean shrublands: are species’ responses
related to their functional traits? Oecologia 180,
961–973. (doi:10.1007/s00442-016-3550-4)

116. Paniw M, Riva EG, Lloret F. 2021 Demographic traits
improve predictions of spatiotemporal changes in
community resilience to drought. J. Ecol. 109,
3233–3245. (doi:10.1111/1365-2745.13597)

https://doi.org/10.1093/jpe/rtw027
http://dx.doi.org/10.3390/d12030086
http://dx.doi.org/10.3390/d12030086
http://dx.doi.org/10.1111/oik.02921
http://dx.doi.org/10.1111/oik.02921
http://dx.doi.org/10.1002/ecy.2465
http://dx.doi.org/10.1073/pnas.2003852117
http://dx.doi.org/10.1073/pnas.2003852117
http://dx.doi.org/10.1038/nature00812
http://dx.doi.org/10.1111/1365-2745.12962
http://dx.doi.org/10.1111/1365-2745.12962
http://dx.doi.org/10.1038/nature14952
http://dx.doi.org/10.1038/nature14952
http://dx.doi.org/10.1214/13-STS444
http://dx.doi.org/10.1214/13-STS444
http://dx.doi.org/10.1111/ele.13291
http://dx.doi.org/10.1111/j.1541-0420.2010.01465.x
http://dx.doi.org/10.1111/j.1541-0420.2010.01465.x
http://dx.doi.org/10.1890/14-1487.1
http://dx.doi.org/10.1111/biom.12913
https://doi.org/10.1002/ece3.942
http://dx.doi.org/10.1111/2041-210X.12572
http://dx.doi.org/10.1002/ece3.2170
http://dx.doi.org/10.1002/ece3.2170
http://dx.doi.org/10.1086/685095
http://dx.doi.org/10.1111/btp.12500
http://dx.doi.org/10.1111/btp.12500
http://dx.doi.org/10.1111/ele.13348
http://dx.doi.org/10.1111/ele.12104
http://dx.doi.org/10.1890/14-2244.1
http://dx.doi.org/10.1890/14-2244.1
http://dx.doi.org/10.1111/ele.13108
https://doi.org/10.1111/2041-210X.13801
https://doi.org/10.1111/2041-210X.13801
https://doi.org/10.1038/s41467-021-26487-2
https://doi.org/10.1038/s41467-021-26487-2
http://dx.doi.org/10.1111/ele.13459
http://dx.doi.org/10.1111/ele.13459
http://dx.doi.org/10.1111/1365-2745.12954
https://doi.org/10.1111/2041-210X.13443
http://dx.doi.org/10.1111/j.1600-0706.2014.00916.x
http://dx.doi.org/10.1111/ele.13372
http://dx.doi.org/10.1002/ecy.2142
http://dx.doi.org/10.1111/1365-2435.12666
https://doi.org/10.1080/10618600.2014.938812
https://doi.org/10.1080/10618600.2014.938812
http://dx.doi.org/10.1038/s41559-019-0899-x
https://doi.org/10.1086/713082
https://doi.org/10.1098/rspb.2007.0561
https://doi.org/10.1098/rspb.2007.0561
http://dx.doi.org/10.1002/ecs2.3029
http://dx.doi.org/10.1111/ele.12892
http://dx.doi.org/10.1007/s00442-016-3550-4
http://dx.doi.org/10.1111/1365-2745.13597


royalsocietypublishing.org/journal/rspb
Proc.R.Soc.B

290:20221494

12
117. Guardiola-Albert C, Jackson CR. 2011 Potential
impacts of climate change on groundwater supplies
to the Doñana wetland, Spain. Wetlands 31, 907.
(doi:10.1007/s13157-011-0205-4)

118. Sergio F, Blas J, Tanferna A, Hiraldo F. 2021
Protected areas enter a new era of uncertain
challenges: extinction of a non-exigent falcon in
Doñana National Park. Anim. Conserv. 25, 480–491.
(doi:10.1111/acv.12752)

119. Vilà M, Sardans J. 1999 Plant competition in
Mediterranean-type vegetation. J Veg. Sci. 10,
281–294. (doi:10.2307/3237150)

120. Lloret F, Granzow-de la Cerda I. 2013 Plant
competition and facilitation after extreme drought
episodes in Mediterranean shrubland: does damage
to vegetation cover trigger replacement by juniper
woodland? J. Veg. Sci. 24, 1020–1032. (doi:10.
1111/jvs.12030)

121. Hunter CM, Caswell H. 2005 The use of the vec-
permutation matrix in spatial matrix population
models. Ecol. Model. 188, 15–21. (doi:10.1016/j.
ecolmodel.2005.05.002)

122. Compagnoni A et al. 2021 Herbaceous perennial
plants with short generation time have stronger
responses to climate anomalies than those with
longer generation time. Nat. Commun. 12, 1824.
(doi:10.1038/s41467-021-21977-9)

123. Paniw M, Lloret F. 2023 Data from: Pathways
to global-change effects on biodiversity:
new opportunities for dynamically
forecasting demography and species interactions.
GitHub. (https://github.com/MariaPaniw/shrub_
forecast)
124. Dietze MC et al. 2018 Iterative near-term ecological
forecasting: needs, opportunities, and challenges.
Proc. Natl Acad. Sci. USA 115, 1424–1432. (doi:10.
1073/pnas.1710231115)

125. Paniw M, Quintana-Ascencio PF, Ojeda F, Salguero-
Gómez R. 2017 Accounting for uncertainty in dormant
life stages in stochastic demographic models. Oikos
126, 900–909. (doi:10.1111/oik.03696)

126. Moreno S, Villafuerte R. 1995 Traditional
management of scrubland for the conservation of
rabbits Oryctolagus cuniculus and their predators in
Doñana National Park, Spain. Biol. Conserv. 73,
81–85. (doi:10.1016/0006-3207(95)90069-1)

127. Tredennick AT, Hooten MB, Adler PB. 2017 Do we
need demographic data to forecast plant population
dynamics? Methods Ecol. Evol. 8, 541–551. (doi:10.
1111/2041-210X.12686)

128. Sales LP, Galetti M, Carnaval A, Monsarrat S,
Svenning JC, Pires MM. 2022 The effect of past
defaunation on ranges, niches, and future
biodiversity forecasts. Glob. Chang. Biol. 28,
3683–3693. (doi:10.1111/gcb.16145)

129. De Valpine P. 2003 Better inferences from
population-dynamics experiments using Monte
Carlo state-space likelihood methods. Ecology 84,
3064–3077. (doi:10.1890/02-0039)

130. Fay R et al. 2022 Temporal correlations among
demographic parameters are ubiquitous but highly
variable across species. Ecol. Lett. 25, 1640–1654.
(doi:10.1111/ele.14026)

131. Rademaker M, van Leeuwen A, Smallegange I. 2022
Why we should not necessarily expect life history
strategies to inform on sensitivity to environmental
change. Authorea Preprints. (doi:10.22541/au.
164848872.26565315/v1)

132. Boettiger C. 2022 The forecast trap. Ecol. Lett. 25,
1655–1664. (doi:10.1111/ele.14024)

133. Oreskes N, Shrader-Frechette K, Belitz K. 1994
Verification, validation, and confirmation of
numerical models in the Earth sciences. Science
263, 641–646. (doi:10.1126/science.263.5147.641)

134. Zipkin EF et al. 2021 Addressing data integration
challenges to link ecological processes across scales.
Front. Ecol. Environ. 19, 30–38. (doi:10.1002/fee.
2290)

135. Tredennick AT, Teller BJ, Adler PB, Hooker G, Ellner
SP. 2018 Size-by-environment interactions: a
neglected dimension of species’ responses to
environmental variation. Ecol. Lett. 21, 1757–1770.
(doi:10.1111/ele.13154)

136. Ellner SP, Childs DZ, Rees M. 2016 Data-driven
modelling of structured populations: a practical guide
to the integral projection model. Berlin, Germany:
Springer.

137. Paniw M, García-Callejas D, Lloret F, Bassar RD,
Travis J, Godoy O. 2023 Data from: Pathways to
global-change effects on biodiversity: new
opportunities for dynamically forecasting
demography and species interactions. Dryad Digital
Repository. (doi:10.5061/dryad.8cz8w9gvc)

138. Paniw M, García-Callejas D, Lloret F, Bassar RD,
Travis J, Godoy O. 2023 Pathways to global-change
effects on biodiversity: new opportunities for
dynamically forecasting demography and species
interactions. Figshare. (doi:10.6084/m9.figshare.c.
6403999)

http://dx.doi.org/10.1007/s13157-011-0205-4
http://dx.doi.org/10.1111/acv.12752
http://dx.doi.org/10.2307/3237150
http://dx.doi.org/10.1111/jvs.12030
http://dx.doi.org/10.1111/jvs.12030
https://doi.org/10.1016/j.ecolmodel.2005.05.002
https://doi.org/10.1016/j.ecolmodel.2005.05.002
http://dx.doi.org/10.1038/s41467-021-21977-9
https://github.com/MariaPaniw/shrub_forecast
https://github.com/MariaPaniw/shrub_forecast
http://dx.doi.org/10.1073/pnas.1710231115
http://dx.doi.org/10.1073/pnas.1710231115
http://dx.doi.org/10.1111/oik.03696
http://dx.doi.org/10.1016/0006-3207(95)90069-1
http://dx.doi.org/10.1111/2041-210X.12686
http://dx.doi.org/10.1111/2041-210X.12686
http://dx.doi.org/10.1111/gcb.16145
http://dx.doi.org/10.1890/02-0039
http://dx.doi.org/10.1111/ele.14026
https://doi.org/10.22541/au.164848872.26565315/v1
https://doi.org/10.22541/au.164848872.26565315/v1
http://dx.doi.org/10.1111/ele.14024
http://dx.doi.org/10.1126/science.263.5147.641
http://dx.doi.org/10.1002/fee.2290
http://dx.doi.org/10.1002/fee.2290
http://dx.doi.org/10.1111/ele.13154
http://dx.doi.org/10.5061/dryad.8cz8w9gvc
http://dx.doi.org/10.6084/m9.figshare.c.6403999
http://dx.doi.org/10.6084/m9.figshare.c.6403999

	Pathways to global-change effects on biodiversity: new opportunities for dynamically forecasting demography and species interactions
	Demographic determinants of species responses to environmental change
	Shortcomings in forecasting species persistence
	Repurposing abundance data to forecasts feedbacks between demography and species interactions
	Modelling species interactions in structured demographic models
	Example: inferring demography from abundance datasets to project climate-change effects on interacting shrubs
	Conclusion and future directions
	Data accessibility
	Authors' contributions
	Conflict of interest declaration
	Funding
	Acknowledgements
	References


