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Abstract

Background During high-flow nasal cannula (HFNC) therapy, flow plays a crucial role in the physiological effects.
However, there is no consensus on the initial flow settings and subsequent titration. Thus, we aimed to systematically
synthesize the effects of flows during HFNC treatment.

Methods In this systematic review, two investigators independently searched PubMed, Embase, Web of Science,
Scopus, and Cochrane for in vitro and in vivo studies investigating the effects of flows in HFNC treatment published in
English before July 10, 2022. We excluded studies that investigated the pediatric population (< 18 years) or used only
one flow. Two investigators independently extracted the data and assessed the risk of bias. The study protocol was
prospectively registered with PROSPERO, CRD42022345419.

Results In total, 32,543 studies were identified, and 44 were included. In vitro studies evaluated the effects of flow
settings on the fraction of inspired oxygen (F,O,), positive end-expiratory pressure, and carbon dioxide (CO,) wash-
out. These effects are flow-dependent and are maximized when the flow exceeds the patient peak inspiratory flow,
which varies between patients and disease conditions. In vivo studies report that higher flows result in improved
oxygenation and dead space washout and can reduce work of breathing. Higher flows also lead to alveolar overdis-
tention in non-dependent lung regions and patient discomfort. The impact of flows on different patients is largely
heterogeneous.

Interpretation Individualizing flow settings during HFNC treatment is necessary, and titrating flow based on clinical
findings like oxygenation, respiratory rates, ROX index, and patient comfort is a pragmatic way forward.

Keywords High-flow nasal cannula, Oxygen therapy, Flow settings, Peak inspiratory flow, Oxygenation, Ventilation
distribution, Patient self-inflicted lung injury
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Introduction

The use of high-flow nasal cannula (HFNC) in critical
care areas has increased over the past few years, par-
ticularly during the COVID-19 pandemic [1]. HENC
has been shown to effectively reduce intubation rates for
patients with acute hypoxemic respiratory failure (AHRF)
[2] and prevent post-extubation respiratory failure [3]. It
may also be non-inferior to noninvasive ventilation to
prevent reintubation for patients with chronic obstruc-
tive pulmonary disease (COPD) [4, 5]. Improved patient
outcomes associated with HFNC are due to its physiolog-
ical effects, such as improvement in oxygenation [6—11],
efficiency of ventilation [6-8, 11-24], reduction of work
of breathing (WOB) [7, 11, 12, 24], avoidance of patient
self-inflicted lung injury, and improvement in patient
comfort and tolerance [25]. HFNC washes out upper
airway dead space, and its effects are maximized when
the delivered gas flow meets or exceeds the patient peak
inspiratory flow, resulting in a stable fraction of inspired
oxygen (F,0,) and a level of positive end-expiratory pres-
sure (PEEP) [6, 26]. Thus, flow settings play a vital role
during HFNC oxygen therapy [27].

In recent years, significant efforts have been made
to investigate the effects of flow settings during HFNC
therapy for various patient populations. However, no
consensus has been reached on the most effective initial
flow setting and its subsequent titration. Therefore, we
systematically reviewed the available evidence regarding
the physiological and clinical effects of different flow set-
tings during HENC therapy for adult subjects, aiming to
provide evidence-based guidance on optimal HFNC flow
settings for various clinical conditions.

Literature search strategy and results

A literature search was conducted independently by two
investigators in PubMed, Embase, Web of Science, Sco-
pus, and Cochrane for articles published before July 10,
2022, using the following keywords: (“high-flow nasal
cannul*” OR “high flow cannul*” OR “high flow oxygen
therapy” OR “high flow oxygen” OR “high flow therapy”
OR “HENC” OR “nasal high flow” OR “NHF”) AND
(“flow”) AND (“adult”). The search was limited to papers
published in English. Original studies investigating
more than one HFNC flow setting were included. Stud-
ies that only included pediatric populations, used only
one flow during HFENC treatment, review articles, let-
ters, abstracts, and editorials were excluded. Study titles
and abstracts were initially screened, and full texts were
subsequently reviewed to select studies included in this
review. The review protocol was prospectively registered
with PROSPERO, CRD42022345419. Two investigators
independently extracted the data and assessed the risk of
bias using the Cochrane collaboration risk of bias tool for
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RCTs. The Newcastle—Ottawa Scale was used to assess
non-randomized trials. Any disagreement regarding
study selection, data extraction, or quality assessments
was resolved by a consensus discussion with the third
investigator.

A total of 32,543 studies were identified, and 32,395
studies were excluded for reasons displayed in Fig. 1. One
hundred and forty-eight full-text articles were assessed
for eligibility, and 44 studies were finally included, of
which 11 were in vitro studies [26, 28—37], 2 combined
in vitro and in vivo studies to investigate patients with
AHREF [6, 14], 13 studies investigated healthy individu-
als [13, 15-20, 38—43], 9 investigated patients with AHRF
[7-10, 27, 4446, 50], 5 studies examined patients with
COPD [11, 12, 21-23], 1 study investigated both AHRF
and COPD patients [24], and 3 investigated patients
during procedural sedation [47-49]. Among the in vivo
studies, only four were randomized controlled trials [27,
47-49], while 18 were randomized crossover studies [7,
8,10, 12,13, 16, 17, 22-24, 38, 40-43, 45, 46, 50]. None of
the included randomized trials had incomplete outcome
data reporting but 10 did not have registration [7, 8, 10,
13, 41, 43, 46, 48-50]. All of them had a clear description
of random sequence generation, but only five explained
the study allocation concealment [13, 16, 22, 27, 48].
Due to the nature of HFNC flows in conscious patients,
blinding participants and/or the treating clinicians was
not possible. No obvious publication bias was observed
among the randomized controlled or crossover trials
(Additional file 1: Figs. S1, appendix p2) and non-rand-
omized trials (Additional file 1: Table S1, appendix p3).

Subject peak inspiratory flow during tidal
breathing

HFNC aims to provide a flow that meets or exceeds
the patient peak tidal inspiratory flow (PTIF) [51]. Sev-
eral studies have reported PTIF in different popula-
tions (Additional file 1: Table S2, appendix p4) [6, 13, 44,
52-54].

Healthy individuals

Healthy adult volunteer PTIF has been reported in two
studies [13, 52]. Ritchie et al. [13] reported PTIFs while
study participants were at rest and during exercise. PTIF
during exercise was higher (119.9+20.0 vs 27.9+9.2 L/
min). Moreover, PTIF increased as exercise intensity
increased [52].

Patients with pulmonary disease

The PTIF in adult patients with pulmonary disease,
especially for those with respiratory failure, is slightly
higher than PTIF in healthy individuals. Small vari-
ations in PTIF have been noted between different
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Fig. 1 Study flow diagram. HFNC, high-flow nasal cannula

diseases (Additional file 1: Table S2, appendix p4). The
mean PTIF in patients with AHRF was reported to be
3449 L/min [6]. Similar median PTIF values were
observed in patients with stable asthma and COPD
[53]. In stable tracheostomized patients, the mean PTIF
was 30 (27, 32) L/min when measured inside the tra-
chea [54]. Interestingly, Butt et al. [44] measured PTIF
in intubated patients on a mechanical ventilator with
pressure support of zero and zero-PEEP. Their meas-
ured PTIF was 60 (40, 80) L/min, significantly higher
than the PTIF found in non-intubated spontaneously
breathing patients. This difference might be caused by
the need to overcome the resistance of the endotra-
cheal tube or by a more severe respiratory condition.
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In vitro evidence of flow settings during HFNC
treatment

Multiple bench studies have been conducted to evalu-
ate the effects of HFNC flows on tracheal F,O,, [6, 26,
28, 29] PEEP [6, 28—36], and dead space clearance [14,
32, 34, 35, 37]. When HFNC flow is lower than PTIF,
the F,O, in the trachea is lower than the set F;O, (Fig. 2)
[6, 26, 28, 29]. This can be explained by air entrain-
ment occurring in the upper airway, which dilutes the
concentration of delivered oxygen [26]. When HENC
flow exceeds PTIF, studies have shown that a certain
level of PEEP is indeed generated [6], with a quad-
ratic correlation between HENC flows and PEEP levels
[33, 35]. That said, multiple factors affect PEEP level
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Fig. 2 Relationship between FO, and flow ratio of HFNC flow to peak inspiratory flow during tidal breathing. F,O,, fraction of inspired oxygen;

HFNC, high-flow nasal cannula

besides flow settings and include mouth status (open-
vs closed-mouth breathing) (Fig. 3A, B) [31, 34], lung
compliance (Fig. 3B) [31], gas type (Fig. 3C) [35], and
nasal prong size (Figs. 3C) [28, 30, 33, 35]. Of these, it
appears that mouth status is the most impactful vari-
able on PEEP generation [31, 32]. During closed-mouth
breathing, PEEP can be as high as 14.31+1.33 cmH,O
when flows of 80 L/min are set in adults [29]. When the
mouth is open, however, the PEEP level drops to almost
zero [31]. Additionally, PEEP levels are lower in stiffer

PEEP(cmH;0)
PEEP(cmH,0)

lungs, where PEEP is needed most [31]. Lighter gases,
such as heliox [35], and smaller nasal prongs have also
been reported to generate lower PEEP [14, 35]. Finally,
high HFNC flows appear to clear CO, in less time, even
when respiratory rates remain constant (Fig. 4) [32, 34,
35]. Overall, when flows are set to exceed PTIF, HFNC
can produce a certain amount of PEEP, stabilize F,O,
delivery, and wash out anatomic dead space. However,
mouth open/close status, lung compliance, gas type,
and prong size also impact HFNC effects.
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Fig. 3 Effects of mouth status (open- vs closed-mouth breathing) (A, B), lung compliance (B), gas type (C), and nasal prong size (C) on PEEP levels.

PEEP, positive end-expiratory pressure; HFNC, high-flow nasal cannula
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Fig. 4 Relationship between CO, clearance and HFNC flow settings. CO,, carbon dioxide; HFNC, high-flow nasal cannula

Different flow settings in adult subjects

During HENC oxygen therapy, flow settings have been
shown to have a significant impact on short-term clini-
cal outcomes in 32 studies [6—24, 38—50] and long-term
outcomes in one study [27].

Healthy individuals

Ventilation

Similar to in vitro studies, the physiological effects of
HENC are found to be flow-dependent (Table 1) [13,
15-20, 38-40]. As HFNC flows increase from 0 to 40 L/
min, tidal volume (Vt) increases [15—17, 38] and respira-
tory rate (RR) decreases [13, 15-20]. However, Okuda
et al. reported no change in minute ventilation between
HFNC flows of 0 and 50 L/min [15], and Parke et al. [18]
reported that RR plateaued with HFNC flows >40 L/min.

Airway pressure

The flow-dependent PEEP effect from the in vitro studies
has also been confirmed in healthy individuals, as end-
expiratory esophageal pressures or hypopharyngeal pres-
sure gradually increase when HENC flows are increased
(Fig. 5) [13, 16-18, 20, 39]. However, maintaining a con-
stant PEEP with HENC is challenging because it can sig-
nificantly decrease with open-mouth breathing [13, 17,
20, 39]. When subjects opened their mouth, hypopharyn-
geal pressure dropped from 5.2 (3.5, 7.0) cmH,O to 1.1
(—0.9, 2.4) cmH,0O with HENC set at 50 L/min [13], and

nasopharyngeal pressure dropped from 6.8 to 0.8 cmH,O
with HENC set at 60 L/min [17]. Caution must be taken
while using very high flows, such as 100 L/min, as it can
provide nasopharyngeal pressure as high as 11.9+£2.7
c¢mH,0 [18], and the tolerability is concerning.

End-expiratory lung impedance

Besides the potential for significantly elevated airway
pressure, an uneven distribution of delivered gas across
lung regions from different HFNC flows may also pose a
risk for regional overdistension. Three studies evaluat-
ing ventilation distribution across lung regions from vari-
ous HENC flows using electrical impedance tomography
(EIT) report that global end-expiratory lung impedance
(EELI) increases as HFNC flow increases [17—19]. How-
ever, increases in EELI mainly occur in non-dependent
regions of the lung. Plotnikow et al. reported an increase in
EELI by 35% from baseline (room air) to HFNC set at 30 L/
min and by 22% from 30 to 50 L/min in the non-depend-
ent regions [19]. In the lung-dependent regions, the EELI
only increased by 18% and 7.7%, respectively [19]. Since
the non-dependent lung regions are most likely open nor-
mally, these findings suggest a potential risk of over-dis-
tending the non-dependent region, resulting in lung injury.

Swallow function
Three studies have investigated the effects of flows
on swallow function among healthy volunteers
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Fig.5 The relationship between airway pressures and HFNC flow settings. HFNC, high-flow nasal cannula

during HENC therapy [41-43]. Sanuki et al. [41] reported
reduced latency time of the swallow reflex with HFNC
flows being increased from 15 to 45 L/min when healthy
volunteers swallowed 5 mL of distilled water over 3 s.
Thus, they concluded that HENC might enhance swal-
lowing function [41]. However, Arizono et al. reported
the opposite findings, as choking was observed when
HFNC flows were >40 L/min in the 30 mL swallow test
[42]. Additionally, they noted that swallowing efforts
were greater with HFNC flows > 20 L/min than 10 L/min
[42]. Allen and Galek found a flow-dependent influence
on the duration of laryngeal vestibule closure (dLVC)
among their healthy volunteers [43]. Since LVC is a pro-
tective reflex that helps to prevent aspiration, the authors
suggest that dLVC modulation from HENC flows might
help prevent aspiration [43]. Notably, a large variation
of dLVC between HENC flows of 50 and 60 L/min was
found, underscoring the reality that further research on
the impact of HFNC flows on swallow function is needed
[43]. Oral feeding during HENC therapy should be closely
monitored, especially in severe hypoxemic patients who
might need treatment escalation and those with dyspha-
gia or at high risk for aspiration.

Patients with acute hypoxemic respiratory failure
Oxygenation

During HENC therapy for patients with AHRF, oxygena-
tion has been assessed using SpO,/F,0O, (SF) ratio [6, 50],
PaO,/F,0O, (PF) ratio [7, 8], and the ROX index (=SF/
RR) [6, 9, 10]. Three studies have reported that oxygena-
tion improves as HFNC flows increase (Table 2) [6-8],

while Zhang et al. [9] found no significant changes in
ROX index between room air and HFNC flow of 60 L/
min in patients with mild hypoxemia. Likewise, Mauri
et al. reported that 30% (17/57) of AHRF patients had an
unchanged or decreased ROX index when HENC flows
were increased from 30 to 60 L/min. Their further anal-
ysis revealed that the 17 patients had a higher SF ratio
and ROX index at 30 L/min, compared to the other 40
patients who presented an increase in ROX index with
increasing flow [10]. Interestingly, the same authors
implemented a study 2 years earlier on similar patient
populations, and they found that 30% of patients had
decreased PF ratios after increasing flows from 30 or 45
to 60 L/min [7].

End-expiratory lung impedance

Similar to the findings in healthy individuals, increasing
flows also improves global EELI in patients with AHRF
(Additional file 1: Table S3, appendix p5) [7-9]. Increas-
ing HENC flow generates a greater end-expiratory lung
volume and PEEP [45, 46], which may cause recruitment
that mainly occurs in dependent lung regions. However,
it may also generate overdistension that is more pro-
nounced in non-dependent lung regions. It appears that
changes in oxygenation, that correlate with changes in
EELI [9], depend on the balance of alveolar recruitment
and overdistension.

The regional distribution of the aeration depends
on HFNC flows and patients [7-9]. When flows were
increased from 30 to 60 L/min, Mauri et al [7] reported
that EELI increased, but not by a significant amount.
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Fig. 6 Effects of flow settings on A Pes (A), PTP (B), and WOB (C). HFNC, high-flow nasal cannula; A Pes: esophageal pressure swings (cmH,0); PTP:
esophageal pressure—time product per minute (cmH,0O-s/min); WOB, work of breathing (J/min)

Interestingly, when compared to EELI with a facemask,
EELI in dependent lung regions significantly increased
with HENC at 60 L/min, while EELI in non-dependent
regions remained stable. These findings suggest more
recruitment in dependent lung regions than overdisten-
sion in non-dependent regions [7]. In a follow-up study
that included 12 patients with AHRF [8], the same group
of authors compared the effect of different flows that were
set based on the patient’s predicted body weight (0.5, 1.0,
and 1.5 L/Kg/min). They utilized median flows of 35, 65,
and 100 L/min, respectively [8]. Compared to EELI at 0.5
L/Kg/min, EELI in non-dependent lung regions increased
at 1.0 L/Kg/min and 1.5 L/Kg/min (p=0.01), with signifi-
cance reached at 1.5 L/Kg/min (p<0.05), while EELI in
dependent lung regions remained constant (p=0.548).
Both studies suggest that HENC flows at 60—65 L/min
may cause more recruitment than overdistention, while
high flows (such as 100 L/min) may result in lung over-
distention, especially in non-dependent lung regions [8].
The large variability between patients in these two studies
should be noted, suggesting that personalized flow titra-
tion based on its physiological effects may be a pragmatic
approach to be used at the bedside. For example, Mauri
et al. [7] reported that 37% of patients had improvement
in EELI in dependent regions with HFNC at 30 or 45 L/
min, but not at 60 L/min. Similarly, Zhang et al. [9] com-
pared EELI at baseline (room air) versus 60 L/min and
used the regional recruitment (recruited pixels) to define
the potential of lung recruitment, in which recruited pix-
els>10% pixels at 60 L/min than at baseline was defined
as the high potential of recruitment. They found that 13
in 24 patients (54%) had a high potential for recruitment.
For these patients, they noted that recruitment mainly
occurred in dependent lung regions when HFENC flow
was increased from 0 to 60 L/min [9]. For the rest of the
patients included in the study, seven had unchanged EELI
and four had overdistension without lung recruitment,
occurring mainly in the non-dependent lung regions
[9]. The difference in regional volume distribution from
various flows in the three studies might be due to the
factors that cause different responses to PEEP, including
disease severity, etiology, duration of pulmonary disease,

and closed- vs open-mouth breathing. Regardless, close
monitoring of individuals’ responses in regional lung vol-
umes to different flows might help avoid overdistension
and lung injury.

Inspiratory efforts

Beyond the regional distribution of volume, dynamic
transpulmonary pressure reflects the patient inspira-
tory effort and lung stress, which is associated with lung
injury. Changes in esophageal pressure (APes) are a sur-
rogate for inspiratory effort [55]. When HFNC flows
were increased, inspiratory effort (Fig. 6A), pressure—
time product (Fig. 6B), and WOB (Fig. 6C) decreased [7,
24]. Mauri et al. described an exponential decay correla-
tion between HFNC flows and patient inspiratory effort
[7]. The reduction in the patient effort was caused by
several factors, such as recruitment of atelectatic regions,
an increase in dead space washout, a decrease in nasal
resistance, an improvement in secretion clearance, and
an increase in dynamic lung compliance [8, 24]. However,
they also found that 43% of patients had increased APes
when HFNC flows were increased from 30 or 45 to 60 L/
min [7]. The patients that demonstrated an increase in A
Pes might have had a compliance decrease due to alveo-
lar overdistention, particularly in the previously relatively
well-aerated regions of their lungs with 30 L/min [7].
Thus, due to the concerns that lung injury might occur in
patients who have no recruitment with increasing HFNC
flows, it has been suggested to titrate flow based on the
inspiratory effort [9].

Dead space and respiratory rates

Another important flow-dependent effect is the reduc-
tion in dead space. Pinkham et al. [14] reported that
exhaled gas rebreathing volume increased as RR
increased [14]. Moreover, when RR was>25 breaths/
min, rebreathing volume with HFNC at 20 L/min was
greater than when flows were 40 and 60 L/min. However,
there were no differences in rebreathing volume among
the three flows when RR was 15 breaths/min. Thus, the
authors proposed that RR could be used as an indicator
that HFNC flows should increase when RR is high [14].
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Five studies to date have shown an overall reduction in
RR when HFNC flows are increased for patients with
AHRF [6-9, 14], and two of them reported significant
reductions in minute ventilation [7, 14].

Patient comfort

Mauri et al. [50] compared 30 vs 60 L/min and 31 °C vs
37 °C for 40 patients with AHRF. Patient comfort was
lower at 37 °C than at 31 °C, but comfort was not differ-
ent between flows set at 30 and 60 L/min. Despite large
interindividual variability, they reported a higher comfort
score with the lowest temperature and the highest flow
in the subgroup of patients whose F,O, was>0.45 [50].
However, this does not necessarily mean that the opti-
mal temperature to achieve better comfort should be
31 °C. As temperature differences were only assessed by
comparing 20-min periods, tolerance may improve over
time. Similarly, three other studies evaluating comfort in
patients with AHRF reported no significant differences
between flows set below 60—65 L/min [6, 8, 44]. Patient
comfort was significantly lower when HEFNC flows
were set at~100 L/min [8]. Interestingly, Butt et al. [44]
found that patient comfort significantly decreased when
HENC flow was set at > 50 L/min among post-extubation
patients. Thus, for patients with AHRF who are more
hypoxemic and present higher inspiratory demands,
higher flows may be associated with better comfort.
Once again, variability in patient response to different
flows and temperatures highlights the importance of per-
sonalization of HFNC settings.

Treatment failure

Only one study compared the effect on clinical outcomes
of using different flows, which was conducted among car-
diac surgery patients with post-extubation hypoxemia
with HENC at 40 versus 60 L/min. The authors reported
clinically meaningful differences in treatment failure rate
between the two groups (30.3% vs 12.1%, p=0.11), with
reintubation rates of 15.2% and 6.1%, respectively [27].

Individualization of HFNC flow settings

For patients with AHRE, it appears that higher flows
improve oxygenation and lung compliance, and reduce
WOB. These clinical benefits are, at least in part, due to
the increase in PEEP and end-expiratory lung volume.
However, it should be noted that not all patients respond
to higher flows, and some patients might have uneven
volume distribution in their lungs which might lead to
alveolar overdistention in non-dependent lung regions.
To individualize flow settings based on patient needs
(PTIF), Li et al. [6] set HFNC flow to match the PTIF
or 10, 20, and 30 L/min above PTIF. They found that
the SF ratio and ROX index increased as flow increased.
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However, the ROX index plateaued when the flow was
set at 1.67 times PTIF [6]. Currently, there is no commer-
cially available device to monitor PTIF breath-by-breath,
so this approach may not be feasible. Butt et al. measured
PTIF during mechanical ventilation before extubation
and set HENC flows based on the patient’s comfort after
extubation which ranged between 30 and 50 L/min [44].
They reported a significant correlation between PTIF and
HENC flows [44]. Thus, PTIF measured on a mechanical
ventilator before extubation might be a reference for flow
settings during post-extubation HFNC treatment. How-
ever, more studies are needed to validate the accuracy of
these methods and explore the effects of these methods
on regional lung aeration and inspiratory efforts. Addi-
tionally, the clinical benefits, such as the need for reintu-
bation, of applying this method to set flows during HFNC
treatment are unknown.

Before the aforementioned methods are clearly demon-
strated and devices are commercially available, clinicians
may use pragmatic assessments that can be easily meas-
ured at the bedside, such as SF ratio, RR, ROX index, and
comfort to titrate HENC flows. One possible strategy
could be that when oxygenation starts to plateau, clini-
cians might stop the upward flow titration and return to
the previous flow when the plateau is first recognized.
Patient comfort is also a key consideration during HENC
flow titration. However, it should be noted that the
changes in oxygenation, RR, and comfort to HENC flows
may not be sensitive in patients with mild hypoxemia.

Patients with COPD

The main effects of HFNC flows for COPD are improved
ventilation efficiency [11, 12, 21-24], pressure—time
product (Fig. 6B), [11, 12] WOB (Fig. 6C), [24] and com-
fort [12, 21, 22]. When HFNC flows were increased,
seven studies reported reductions in RR [11, 12, 21, 22],
and two studies reported increases in V¢ (Table 3) [12,
21]. Additionally, longer exhalation times were observed
[12], which might help alleviate air-trapping and WOB.
With increased flows, minute ventilation was the same or
lower [21], but PaCO, or PtCO, was lower [11, 12, 21—
24]. This interesting finding implies improved alveolar
ventilation.

Patients during procedural sedation

Three RCTs compared the effectiveness of different flows
during procedural sedation (Additional file 1: Table S4,
appendix p6) [47-49], with two RCTs comparing HFNC
at 40 vs 60 L/min [47, 48] and one comparing HFNC at
30 vs 50 L/min [49]. Compared to HENC at low flows (30
or 40 L/min), HENC at higher flows (50 or 60 L/min) had
greater oxygenation at the end of the procedure (Addi-
tional file 1: Fig. S2, appendix p7) [47-49] and required
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fewer interventions, such as jaw lifting, during the proce-
dure [49].

Conclusion

The physiological effects of HFNC oxygen therapy are
flow-dependent and are maximized when the flow
exceeds PTIF. However, PTIF varies between patients
and disease conditions. Higher flows result in improved
oxygenation and dead space washout and can reduce
work of breathing. Notably, higher flows can also lead to
alveolar overdistention in non-dependent lung regions
and to patient discomfort. The impact of flows on differ-
ent patients is largely heterogeneous. Individualizing flow
settings during HENC treatment is necessary, and titrat-
ing flow based on clinical findings like oxygenation, RR,
and patient comfort is a pragmatic way forward, at least
for now.
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