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Cerebrovascular disease is responsible for up to 20% of cases of dementia

worldwide, but also it is a major comorbid contributor to the progression of other

neurodegenerative diseases, like Alzheimer’s disease. White matter hyperintensities

(WMH) are the most prevalent imaging marker in cerebrovascular disease. The

presence and progression of WMH in the brain have been associated with general

cognitive impairment and the risk to develop all types of dementia. The aim of

this piece of work is the assessment of brain functional differences in an MCI

population based on the WMH volume. One-hundred and twenty-nine individuals

with mild cognitive impairment (MCI) underwent a neuropsychological evaluation,

MRI assessment (T1 and Flair), and MEG recordings (5 min of eyes closed resting

state). Those participants were further classified into vascular MCI (vMCI; n = 61,

mean age 75 ± 4 years, 35 females) or non-vascular MCI (nvMCI; n = 56, mean

age 72 ± 5 years, 36 females) according to their WMH total volume, assessed with

an automatic detection toolbox, LST (SPM12). We used a completely data-driven

approach to evaluate the differences in the power spectra between the groups.

Interestingly, three clusters emerged: One cluster with widespread larger theta power

and two clusters located in both temporal regions with smaller beta power for vMCI

compared to nvMCI. Those power signatures were also associated with cognitive

performance and hippocampal volume. Early identification and classification of

dementia pathogenesis is a crucially important goal for the search for more effective

management approaches. These findings could help to understand and try to palliate

the contribution of WMH to particular symptoms in mixed dementia progress.
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Introduction

Due to high life expectancy, aged-related pathologies like
dementia are rising. Alzheimer’s Disease (AD) is the most common
subtype of dementia; however Vascular Dementia (VaD) or major
vascular cognitive impairment (VCI) is responsible for up to 20%
of cases worldwide (Catindig et al., 2012; Rizzi et al., 2014; O’Brien
and Thomas, 2015; Kalaria, 2018). Besides pure VaD, cerebrovascular
disease (CBVD) is also major comorbid contributor to the progression
of other neurodegenerative diseases, observed to some extent in
almost all patients with dementia or MCI (Khan et al., 2016), for
example in 50%–90% of the patients diagnosed with AD (Santos
et al., 2017), and up to 50% of dementias worldwide (Wardlaw et al.,
2019). Furthermore, the presence of cerebrovascular neuropathology
in post-mortem studies has been related to an increment in the
risk of developing dementia even more than the evidence of AD
neuropathology; but concomitant pathologies skyrocket the risk
compared to people with no brain alterations, or even with evidence of
exclusively Alzheimer or cerebrovascular-type lesions (Azarpazhooh
et al., 2018).

CBVD involves a spectrum of medical conditions or changes
in the cerebral and/or systemic vasculature with brain impact,
including a huge number of pathologies and etiologies. Within
these vascular pathologies, cerebral small vessel disease (CSVD)
is one of the most common accompaniments of aging, not only
in dementia patients but also in healthy populations. Specifically,
white matter hyperintensities (WMH), seen as diffuse areas of
high signal intensity (hence, “hyperintense”) on T2-weighted or
fluid-attenuated inversion recovery sequences (Alber et al., 2019),
are the most prevalent imaging marker on CSVD, accounting for
15% in the general population greater than 64 and more than
90% in those older than the age of 80 (Drebette and Markus,
2010; Kloppenborg et al., 2014). Although age seems to be closely
related to WMH presence in the brain, the amount and progression
have been associated with a higher risk of stroke, dementia, and
cognitive dysfunction (Drebette and Markus, 2010; Kloppenborg
et al., 2014). Specifically, WMH has been associated with small
but robust effects on general cognitive impairment, attention, and
executive functioning in patients with MCI and dementia (Mortamais
et al., 2014; Prins and Scheltens, 2015; Arvanitakis et al., 2016; Van
Den Berg et al., 2018; Lam et al., 2021). In this context, the high
incidence and contribution of CBVD to cognitive impairment, added
to their treatable conditions, provide special importance to the early
differentiation and prevention of the pathophysiological origin of
cognitive decline in the old population (Livingston et al., 2017). In
addition, CBVD could help to rise more accurate prognosis and
management of new therapeutic targets, with the final goal of slowing
down the dementia progression.

Electrophysiologic neuroimaging techniques are of special
interest for this early differentiation, as they bring useful information
for assessing brain function and network dynamics revealing early
changes inaccessible to standard structural imaging techniques
or even to cognitive assessment. Neurophysiologic techniques, in
contrast to the other functional neuroimaging techniques, provide
information about brain oscillations with a wide frequency range
from delta to gamma, are capable to measure the neural activation
directly instead of doing it by means of indirect measures such as
blood flow or metabolism and allow repeated measurements without
any risk for the patients. Within the electrophysiological techniques,

electroencephalography (EEG) and magnetoencephalography (MEG)
are included. While EEG is less expensive and more popular in a
clinical context, MEG provides a better disposition for the estimation
of neural sources, a better signal to noise ratio for higher frequency
bands and it is a more patient-friendly technique, and indeed it has
also already come into clinical use in some hospitals for the clinical
practice (Hoshi et al., 2022).

Furthermore, the study of electrophysiological spectral
signatures, measured with MEG resting state recordings, has
been well-established for early detection and prognosis in
neurodegenerative disorders (López-Sanz et al., 2019), especially
for Alzheimer’s disease (López-Sanz et al., 2018; Nakamura et al.,
2018) and mild cognitive impairment (MCI; López-Sanz et al.,
2016). According to the cerebrovascular factors they can also be
found in studies analyzing MEG spectral features for patients with
stroke (Tecchio et al., 2006; Chu et al., 2015; Kielar et al., 2016;
Johnston et al., 2022), which is one of the major causes of major VCI,
even using ultrasonography measures to assess carotid blood flow
(Matsumoto et al., 2021). Nevertheless, to the best of our knowledge,
no article has been published performing spectral analysis with MEG
in older people diagnosed with mild or major VCI, and only a few
can be found with EEG, as described in a recent systematic review
performed by our research group (Torres-Simón et al., 2022).

In the present study, we assess MEG electrophysiological spectral
signatures that differentiate between participants clinically diagnosed
with MCI, according to their cognitive profile, with and without
evidence of WMH of vascular origin, resulting in two groups: vascular
MCI (vMCI) and non-vascular MCI (nvMCI). Based on the results
previously described for EEG studies, we hypothesize that patients
with vMCI will display a spectral profile compatible with more
pronounced slowness of brain activity (power increase of slow bands
and decrease of higher frequency bands), particularly in middle
temporal regions, where WMH predominantly appears in early stages
of the disease.

Methods

The sample for the present study was recruited under the
framework of two national projects (PSI2009-14415-C03-01 and
PSI2012-38375-C03-01) focused on research and early detection
of dementia. Data were collected between 2010 and 2014 in
collaboration with three different clinical centers located in Madrid
(Spain): the Neurology Department in “Hospital Universitario
Clinico San Carlos,” the Center for Prevention of Cognitive
Impairment, and the Seniors Center of Chamartín District. The
sample consisted in 129 participants who were native Spanish
speakers diagnosed with mild cognitive impairment (MCI) according
to the criteria established by Petersen (2004). Patients with
MCI showed cognitive impairments but did not fulfill the
criteria for a dementia diagnosis. To assess general cognitive and
functional status, the following set of screening questionnaires
were used: The Mini Mental State Examination (MMSE; Lobo
et al., 1979), the Global Deterioration Scale (Reisberg et al., 1982),
the Geriatric Depression Scale–Short Form (GDS; Yesavage et al.,
1982); the Functional Assessment Questionnaire (FAQ; Pfeffer
et al., 1982), and the questionnaire for Instrumental Activities
of Daily Living (Lawton and Brody, 1969). Participants were
excluded if they had: (1) a history of psychiatric or neurological
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disease; and (2) psychoactive drugs consumption or chronic use of
medication, such as anxiolytics. In addition, alternative etiologies
of cognitive decline were ruled out, such as B12 deficiency, poorly
controlled diabetes mellitus, thyroid problems, syphilis, or human
immunodeficiency virus.

All participants signed an informed consent. This study was
approved by the “Hospital Universitario Clinico San Carlos” ethics
committee and was performed in accordance with approved
guidelines and regulations.

Neuropsychological assessment

All patients underwent an additional neuropsychological
assessment to generate detailed cognitive profiles including Direct
and Inverse Digit Span Test (Wechsler Memory Scale, WMS-III;
Wechsler, 1997), Immediate and Delayed Recall (WMS-III; Wechsler,
1997), and Phonemic and Semantic Fluency (Controlled Oral Word
Association Test, COWAT; Benton and Hamsher, 1989).

Magnetic resonance recordings and analysis

T1-weighted and T2-weighted 3D FLAIR MRI were obtained
using a General Electric 1.5 Tesla magnetic resonance scanner, with
a high-resolution antenna and a homogenization PURE filter (Fast
Spoiled Gradient Echo sequence). The following parameters were
used for T1-weighted imaging: repetition time (TR) = 11.2 ms,
echo time (TE) = 4.2 ms, inversion time (TI) = 450 ms, Field Of
View (FOV) = 25 cm, flip angle (FA) = 12◦, 252 coronal slices (in-
plain resolution: 256 × 256), voxel size: 0.98 × 0.98 × 1 mm3 and
acquisition time '8:00 min. T2-weighted 3D FLAIR images
were obtained with the following specifications: TR = 7,000 ms,
TE = 101 ms, TI = 2,112 ms, FOV = 24 cm, 252 coronal slices (in-
plain resolution: 256 × 112), voxel size: 0.94 × 0.94 × 1.6 mm3 and
acquisition time'4:57 min.

WMH segmentation (T1 and Flair) and lesion volume calculation
were performed using an automatic computerized toolbox in SPM12,
called Lesion Segmentation Tool (LST). We used the initial κ threshold
with default value of 0.3 as recommended by the developers (Schmidt
et al., 2012), and subsequently the probabilistic threshold of 0.5,
as it was the most accurate compared with the clinician’s manual
segmentations.

WMH volume cut point

As explained before in the introduction, a minimum load
WMH is present in practically every individual above 60 years
old. Nevertheless, the amount and progression of this vascular
marker has been closely related with a higher risk of stroke and
dementia and also with cognitive dysfunction. In order to establish
a possible threshold from which WMH volume in the brain could
have clinical implications we have calculated a specificity-based cut
point for the WMH damage quantity (Jack et al., 2017). For this
purpose, we used the WMH segmentations of a preexisting dataset
of 346 cognitively intact (CI) older individuals without evidence
of vascular disease, according to the radiological report. This cut
point corresponded to the 95th percentile of the WMH damage

quantity distribution among CI individuals aged 50–86 years (average
67 ± 8). The obtained cut point corresponded to a WMH volume
of 3,448 mm3.

MEG data acquisition

Five minutes of resting-state (closed-opened eyes) were recorded
with a Vectorview system (Elekta Neuromag) at the Center
for Biomedical Technology (Madrid, Spain). All participants sat
comfortably in a chair with their eyes closed. The arousal level
of each subject was monitored with a video camera and checked
via a conversation immediately following the measurement session.
MEG data were collected at a sampling frequency of 1,000 Hz and
online band-pass filtered between 0.1 and 330 Hz. Each subject’s
head shape was defined relative to three anatomical locations (nasion
and bilateral preauricular points) using a 3D digitizer (Fastrak,
Polhemus, VT, USA) and the head motion was tracked through
four head-position indicator (HPI) coils attached to the scalp.
These HPI coils continuously monitored the participants’ head
movements, while eye movements were monitored by a vertical
electrooculogram assembly (EOG) composed of a pair of bipolar
electrodes. Raw recording data were first introduced to Maxfilter
software (v 2.2, correlation threshold = 0.9, time window = 10 s)
to remove external noise using the temporal extension of the signal
space separation method with movement compensation (Taulu and
Simola, 2006). Then, magnetometers data (Garcés et al., 2017)
were automatically examined to detect ocular, muscle, and jump
artifacts using Fieldtrip software (Oostenveld et al., 2011), which
were visually confirmed by an MEG expert (initials). Twelve
participants were dismissed due to bad quality MEG data, resulting
in a sample of 117 participants. The remaining artifact-free data
was sectioned into 4-s segments. Independent component analysis-
based procedure (ICA) was applied to remove heart magnetic field
artifacts and EOG components. Only those recordings with at
least 20 clean segments (80 s of brain activity) were utilized in
subsequent analyses.

MEG clean time series were band-pass filtered (2 s padding)
between 2 and 45 Hz. Source reconstruction was carried out using a
regular grid of 1 cm spacing in the Montreal Neurological Institute
(MNI) template. The resulting model comprised 2,459 sources
homogeneously distributed across the brain. This model was
linearly transformed to each subject’s space. The leadfield was
calculated using a single shell model (Nolte, 2003). Source
time series were reconstructed using a Linearly Constrained
Minimum Variance beamformer (Van Veen et al., 1997). The
power spectrum of each grid’s node was computed by means
of a multitaper method (mtmfft) with discrete prolate spheroidal
sequences (dpss) as windowing function and 1 Hz smoothing.
For each node, relative power was calculated by normalizing by
total power over the 2- to 30-Hz range. The source template
with 2,459 nodes in a 10 mm spacing grid was segmented
into 78 regions of the Automated Anatomical Labeling atlas
(AAL, Tzourio-Mazoyer et al., 2002), excluding the cerebellum,
basal ganglia, thalamus, and olfactory cortices. Those 78 regions
of interest included 1,202 of the original 2,459 nodes. Trials
were averaged across participants ending up with a source-
reconstructed power matrix of 1,202 nodes × 113 frequency
steps× 117 participants.
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Statistical procedure

The assessment of significance between group power differences
was addressed by relying on the cluster-based permutation test
(CBPT; Maris and Oostenveld, 2007; Zalesky et al., 2010). Power
differences were tested between groups for each pair of nodes
using an ANCOVA test while adjusting for the effects of age and
total white matter volume. The resulting matrix of F-statistics (with
the same dimension of original power matrix) was binarized by
thresholding the matrix using a critical value computed with a
p-value of 0.005. This binary matrix was split into two matrices
attending for the sign of the differences between groups. Clusters
were built by grouping spatially adjacent nodes that systematically
showed significant between-groups differences. All nodes within a
cluster must exhibit the same sign of between-groups differences,
indicating that the cluster was likely a functional unit. Only clusters
involving at least 1% of the nodes (i.e., a minimum of 12 nodes) were
considered. Cluster-mass statistics were assessed through the sum of
all F-values across all nodes. To control for multiple comparisons, the
entire analysis pipeline was repeated 10,000 times after shuffling the
original group’s labels. At each repetition, the maximum statistic of
the surrogate clusters was kept, creating a maximal null distribution
that would ensure control of the family-wise error rate (FWER) at the
cluster level. Cluster-mass statistics on each cluster in the original data
set was compared using the same measure in the randomized data.
The CBPT p-value represented the proportion of the permutation
distribution with cluster-mass statistic values greater or equal to the
cluster-mass statistic value of the original data. Only those clusters
that survived the CBPT at p < 0.05 or below were considered for
the subsequent analyses as potential “MEG markers.” As descriptive
values for each significant cluster, we computed the average power
(across all nodes that belong to the cluster). These values were used as
MEG marker values for the subsequent Spearman correlation analysis
with measures of cognitive performance and structural integrity. In
addition, we computed between groups statistics for these averaged
power values using ANCOVA with age and total white matter volume
as covariates. Statistical analyses were carried out using Matlab
R2021b (Mathworks Inc).

Data availability

The data that support the findings of this study are available from
the corresponding author, upon request. All the algorithms used in
the present article are reported in the “Methods” section.

Results

Segregation of patients with MCI based on
their WMH volume

The aim of this piece of work is the assessment of brain
functional differences in an MCI population based on the WMH
volume, and their possible correlation with cognitive performance.
The original 117 patients with MCI were divided into two groups
(VMCI vs. nVMCI) using their WMH volumes and the 3,448 mm3

cut point. Sixty-one patients diagnosed with MCI showed WMH
volumes above the cut point (hence vMCI group) whereas 56 had

WMH volumes below the cut point (nvMCI group). Both groups
were compared to assess possible differences in all demographic
scores displayed in Table 1. Patients with vMCI showed significantly
higher age (p < 0.001), Total gray matter volume (GM volume;
p = 0.014) and WMH volume (p ≪ 0.001). No significant differences
between groups arise when cognitive performance and hippocampal
volumes were assessed. This last result is important since cognition
and hippocampal atrophy are common markers of dementia status.
Descriptive data and statistical scores are depicted in Table 1.

Electrophysiological power differences
between groups

The power spectra were used to determine the brain regions and
frequency ranges with a significant difference between vMCI and
nvMCI groups. The results showed three significant clusters.

The first significant result (named θ cluster, CBPT p value = 0.036)
emerged as a widespread cluster (see Figure 1A), whose brain
oscillatory activity in the frequency range [4.75–8.00 Hz] (Figure 1C)
differed between groups. The power of this cluster, that fell within
the classical theta band range, was enhanced in the vMCI group
when compared to the nvMCI group (see Figure 1B). The cluster size
ranged between 20 nodes up to 300 nodes reaching the maximum size
at the frequency of 7 Hz (see Figure 1D). The average F value, across
all nodes of the cluster, is depicted in Figure 1E. A detailed description
of the ROIs involved in the θ cluster can be found in Supplementary
Table 1.

Besides from the θ cluster, two significant results showing a
diminished power in the vMCI group when compared to the
individuals included in nvMCI, were found within the beta frequency
band (Figures 2B and 3B).

The first beta cluster (henceforth called β1, CBPT p
value = 0.0336) involved left temporo-parietal regions of the
brain (see Figure 2A). It emerged in the frequency range [12.25 Hz to
19.50 Hz] (Figure 2C). The size of the cluster ranged between 20 and
127 nodes, peaking at 16 Hz (Figure 2D). The maximum average F
value, across all nodes of the cluster, was found at 15 Hz (Figure 2E).
A detailed description of the ROIs involved in the β1 cluster can be
found in Supplementary Table 2.

The second beta cluster (henceforth called β2, CBPT p
value = 0.0401) involved right temporo-parietal regions of the brain
(see Figure 3A). The β2 cluster contralaterally mirrored the result
of the β1 cluster since it showed a decreased beta power in the
patients with vMCI when compared to patients without vascular
damage in the right hemisphere of the brain (Figure 3B). It was
defined in the frequency range [11.75 Hz to 19.50 Hz] (Figure 3C).
The size of the cluster fluctuated between 15 and 105 nodes, peaking
at 15 Hz (Figure 3D). The maximum average F value, across all
nodes of the cluster, was found at 14 Hz (Figure 3E). A detailed
description of the ROIs involved in the β2 cluster can be found in
Supplementary Table 3.

Correlations between electrophysiological
markers and brain health

In order to help the interpretation of the results, we carried
out Spearman correlation test between the average power of each
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TABLE 1 Participants’ demographics.

vMCI (61) nvMCI (56) p-value F value η2

Sex (females) 35 36 0.46

Age 75.26± 4.19 72.13± 5.11 <0.001* 13.28* 0.104

Education (years) 9.08± 4.67 8.44± 4.14 0.21 1.60 0.026

MMSE 26.15± 2.68 27.09± 2.48 0.92 0.01 <0.001

Immediate Recall 15.13± 8.07 16.70± 8.92 0.89 0.02 <0.001

Delayed Recall 5.23± 6.41 6.42± 6.80 0.87 0.03 <0.001

Dígit Spam Forward 6.95± 1.74 6.54± 1.66 0.09 3.00 0.048

Dígit Spam Backward 4.03± 1.37 4.20± 1.54 0.55 0.36 0.006

Phonemic Fluency 8.28± 4.25 8.40± 3.77 0.54 0.38 0.006

Semantic Fluency 11.77± 2.94 12.48± 3.96 0.55 0.37 0.006

GDS 3.89± 2.89 4.45± 3.50 0.12 2.50 0.041

Apoe-ε4 27 20 0.45

WMH volume (10± 6) · 103 (1± 1) · 103 ≪0.001 60.17 0.505

WMH number of lesions 23± 13 12± 8 0.06 3.70 0.059

GM volume (531± 51) · 103 (527± 48) · 103 0.014 6.36 0.097

WM volume (389± 50) · 103 (395± 57) · 103 0.53* 0.40* 0.003

LHV 0.0022± 0.0003 0.0023± 0.0004 0.87 0.03 <0.001

RHV 0.0022± 0.0003 0.0024± 0.0004 0.80 0.07 0.001

Values are presented as mean± SD. MMSE, mini-mental state examination; GDS, geriatric depression scale; WMH volume, white matter hyperintensities total volume; WMH number
of lesions, white matter hyperintensities number of lesions; GM volume, total gray matter volume (mm3); WM volume, total white matter volume (mm3); L/RHV, left/right hippocampal
volume. Medial temporal lobe volumes were normalized with respect to the overall intracranial volume to account for differences in head volume among participants. p-values
correspond with ANCOVA with age and WM volume as covariates, t-test (for age and WM volume, marked with *), and Fisher (sex and ApoE-ε4) tests- F values account for ANCOVA
analysis. For age and WM volume the values correspond to t values. η2 accounts for partial-Eta squared for all comparisons but for the case of age and WM volume l where the values
correspond to η2 values.

cluster and scores of brain health (neurophysiological assessment
and structural quantitative scores associated with gray matter
atrophy). The significant results are depicted in Table 2, and
the scores included in the analysis are those described in
Table 1.

As it can be seen in Table 2, all three power markers correlated
significantly with neuropsychological performance and hippocampal
integrity. Importantly, whilst the average power of the θ cluster
correlated negatively with cognitive and structural integrities, both
β clusters showed a positive correlation. This indicates that brain
health seems to be associated with decreased θ power and increased
β power. This association emerged clearly when assessing correlations
between all power markers and hippocampal volumes, delayed recall
and MMSE performance. These results emphasize the relevance
of the MEG markers for early differentiation since both MCI
groups did not show statistical differences in cognition nor in
hippocampal volumes.

Discussion

In this study, we compared the spectral profiles during resting
state, assessed with MEG, for two MCI populations differentiated
according to their level of cerebrovascular damage, described as the
total volume of white matter hyperintensities in the brain. As we
hypothesized, our results demonstrated the emergence of increased
power for slow bands, specifically a widespread theta band (5–9 Hz),
and smaller power was seen for high-frequency bands, in particular
in the beta band (12–20 Hz) in bilateral temporal regions. Importantly
these power spectral changes were independent of age, gender, genetic

predisposition, or cognitive impairment, as they were controlled for
our analysis.

To the best of our knowledge, this is the first study using MEG
spectral analysis to compare MCI populations with and without
cerebrovascular damage, specifically assessing the presence of WMH.
The lack of literature regarding electrophysiological spectral patterns
measured with MEG related to VCI makes it impossible to directly
compare our results with previous literature, but we can confirm that
our findings are in line with those described in EEG studies (Torres-
Simón et al., 2022). It is worth mentioning that in many of these EEG
studies, the inclusion criteria for the VCI population are vague or
broad. In fact, in most cases, it is not possible to differentiate between
VCI subtypes or to assess the degree of comorbidity in MCI or
dementia patients with mixed pathology. Few articles described clear
inclusion and exclusion criteria regarding MRI standards, specifically
for WMH. Additionally, in most of these studies, structural vascular
damage or white matter damage of vascular origin was assessed
using internationally validated clinical visual scales. These scales
are the most commonly used method to detect and evaluate the
severity of WMH, being the Fazekas scale (Fazekas et al., 1987),
and the age-related white matter changes scale (ARWMC; Wahlund
et al., 2001) the most recommended visual rating (Wahlund et al.,
2017). Nevertheless, these scales do not report true quantitative
information (i.e., lesion volume), which makes the evaluation of the
progression difficult when the changes are not abrupt. In this context,
a clinician’s manual segmentation is the most accurate method to
measure lesion volume in white matter and it is considered as the gold
standard (Commowick et al., 2018). Notwithstanding, segmenting
the WMH manually is extremely time-consuming, and it comprises
high inter-rater variability making its application in clinical and
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FIGURE 1

Significant result found within the theta frequency range. (A) Description of the regions involved in the θ cluster. The cluster was found to be significant
between 4.75 Hz and 8.00 Hz. In the figure can be seen the initial, final, and maximum extensions of the cluster. (B) Violin plots and boxplots graphics
describing the individual values for the average power of the cluster in the significant frequency range. (C) Representation of the average spectral power
across all significant nodes. The significant frequency region is marked with dashes lines. (D) Number of grid nodes that are part of the cluster at each
frequency step (maximum extension was found at 7 Hz). (E) Minimum, maximum, and average F values across all nodes contained within the cluster at
each frequency step.

scientific practice unfeasible. For this reason, automatic segmentation
tools are increasing the presence in this research field and allow
for direct comparison of WMH between groups. Due to its great
balance between accuracy and time dedication, we decided to include
this automatic analysis to classify as objectively as possible our
patients in the two experimental groups according to their level of
cerebrovascular damage for later comparison.

Increment in theta power

An increase in theta power during the resting state for vMCI
compared to nvMCI has been broadly reported. Previous literature
reports that the presence and severity of cerebrovascular damage is
related to a higher increment of power in the theta band. Specifically,
it has been reported that patients with mild cognitive impairment
and evidence of vascular damage experienced an augmentation in
theta band power compared to healthy age-matched controls (Gawel

et al., 2007; van Straaten et al., 2012); but interestingly, this increment
was even greater for patients with vMCI than for patients with
nvMCI (Babiloni et al., 2004; Moretti et al., 2004, 2007; Gawel et al.,
2009; Sheorajpanday et al., 2013; Quandt et al., 2020). Furthermore,
this theta band power increment has been closely linked to general
cognitive impairment, assessed with MMSE (Moretti et al., 2007). We
are pleased to confirm this correlation in our sample. Additionally, we
found a similar negative correlation between the power of the theta
cluster and delayed recall scores. This result helps to confirm that the
increased power found could be considered the reflection in the brain
function of poorer cognitive functioning, although non-significant,
derived from the cerebrovascular damage in our patients, which could
help to the prognosis of worse memory decline in the future.

While the association between increased theta power, age,
and cognitive impairment (Schomer and Lopes da Silva, 2012) is
well established, our data suggest that evidence of cerebrovascular
pathologies (i.e., WMH) exacerbates this relationship. The sharper
increment in slow frequency bands found for vMCI compared
to nvMCI with similar severity of cognitive impairment could be
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FIGURE 2

Significant result found within the beta frequency range in the left temporo-parietal region. (A) Description of the regions involved in the β1 cluster.
The cluster was found to be significant between 12.25 Hz and 19.50 Hz. In the figure can be seen the initial, final, and maximum extensions of the
cluster. (B) Violin plots and boxplots graphics describing the individual values for the average power of the cluster in the significant frequency range. (C)
Representation of the average spectral power across all significant nodes. The significant frequency region is marked with dashes lines. (D) Number of
grid nodes that are part of the cluster at each frequency step (maximum extension was found at 16 Hz). (E) Minimum, maximum, and average F values
across all nodes contained within the cluster at each frequency step.

explained by pathological changes in the brain driven by WMH.
The referred hyperintense lesions are predominantly located in the
deep white matter of the brain and are presumably related to small
vessel disease, in which little ischemic events increase white matter
injuries triggering axonal damage and even diffuse demyelination
(Jang et al., 2017; Venkat et al., 2017; Kalaria, 2018); increase in
blood-brain barrier permeability, contributing to neurodegeneration,
apoptosis, and functional disruption (Farrall and Wardlaw, 2009;
Schreiber et al., 2013); dysregulation of neurotransmitter systems,
such as the cholinergic system (Caruso et al., 2019); and alterations
of cerebral blood flow and chronic hypoperfusion (Yang et al., 2002;
Tak et al., 2011). Brain white matter tracks are able to connect
cortical and subcortical gray matter across a relatively large distance,
as temporal, and frontal lobes whose interaction is tightly related
to theta wave generation (Anderson et al., 2010). Consequently,
an increase in widespread theta could be explained as a cortical
oscillatory activity reflection of deep white matter injury. Going
a step further in this hypothesis, in the present study, we found
that the theta band cluster that emerged was negatively associated
with bilateral hippocampal volume. The higher WMH total volume,
the larger the theta band power in the cluster and the lower the

hippocampal volumes. This correlation seems especially important to
explain the possible association between cognitive impairments with
periventricular WMH, which has been previously hypothesized to
be reflecting the disruption of cholinergic projections from the basal
forebrain to the cortex (Alber et al., 2019).

Decrement in beta power

The positive relationship between a reduction in beta band
power in resting state and general cognitive functioning (MMSE,
delayed and immediate memory performance, semantic fluency, and
attentional spam) has been previously reported. Specifically, prior
studies show smaller beta (β) band power in VCI patients compared
with HC, once again associated with greater evidence of cognitive
symptomatology (van Straaten et al., 2012; Al-Qazzaz et al., 2017).
Unfortunately, there were no comparisons made to patients with
nvMCI or AD. Additionally, previous studies obtained differences in
alpha band for vMCI compared with HC associated with increased
severity of cerebrovascular damage and cognitive impairment. They

Frontiers in Human Neuroscience 07 frontiersin.org

https://doi.org/10.3389/fnhum.2023.1068216
https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org/journals/human-neuroscience#articles
https://www.frontiersin.org


Torres-Simon et al. 10.3389/fnhum.2023.1068216

FIGURE 3

Significant result found within the beta frequency range in the right temporo-parietal region. (A) Description of the regions involved in the β2 cluster.
The cluster was found to be significant between 11.75 Hz and 19.50 Hz. In the figure can be seen the initial, final, and maximum extensions of the
cluster. (B) Violin plots and boxplots graphics describing the individual values for the average power of the cluster in the significant frequency range. (C)
Representation of the average spectral power across all significant nodes. The significant frequency region is marked with dashes lines. (D) Number of
grid nodes that are part of the cluster at each frequency step (maximum extension was found at 15 Hz). (E) Minimum, maximum, and average F values
across all nodes contained within the cluster at each frequency step.

TABLE 2 Significant correlation between power markers and brain health.

θ cluster β1 cluster β2 cluster

rho p val rho p val rho p val

MMSE −0.306 0.001 0.269 0.004 0.288 0.002

Dígit Spam Backward 0.184 0.050

Immediate Recall 0.207 0.027

Delayed Recall −0.314 0.001 0.303 0.001 0.250 0.008

Semantic Fluency 0.188 0.049

LHV −0.261 0.005 0.225 0.016 0.210 0.024

RHV −0.282 0.002 0.246 0.008 0.281 0.002

Spearman correlation analyses between the average power of each corresponding cluster and brain health in the whole sample. All correlations were computed with age and total white
matter volume as covariates. MMSE, mini-mental state examination; L/RHV, left/right hippocampal volume normalized by total intracranial volume. Phonological fluency was not
included in the table because it did not significantly correlate with any MEG marker.

observed decrement in the low-alpha (Babiloni et al., 2004; Moretti
et al., 2007; Sheorajpanday et al., 2013; Wu et al., 2014) and
high-alpha (Moretti et al., 2004; Al-Qazzaz et al., 2017) power and
a slower peak alpha frequency (Moretti et al., 2004; Neto et al.,

2015). All these results are in line with our main hypothesis that
stated that a more pronounced slowing of spectral brain activity
could be related to the presence and progression of brain damage
of vascular origin. The heterogeneity in the alpha band definition
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and naming could be distorting these results, meaning that similar
underlying electrophysiological phenomena have been described as
different findings.

In contrast to the widespread presentation of the theta power
alteration, the decrement in beta is explicitly localized in bilateral
temporal regions. We are pleased to see that our findings go in line
with the well-stated idea that slower oscillatory powers are primarily
produced by the thalamo-cortical network, while faster oscillatory
powers depend on local activities (Klimesch, 1999) Additionally,
beta band functioning alteration has been widely reported in studies
focused on patients with ischemic strokes (Kulasingham et al.,
2022; Pusil et al., 2022). Interestingly, the clusters that emerged in
the present study for lower beta band power overlap the deepest
brain regions surrounding periventricular areas where WMH most
predominantly appears and is strongly related to the positive
relationship that we found with both beta temporal clusters with
right and left hippocampal volumes. As previously explained in
the introduction, WMH is the neuroimaging evidence of the small
and recurrent ischemic events underlying the cerebral small vessels
disease (CSVD). In this context, our finding related to local beta
power reduction hypothetically could explain some kind of relation
between beta band local functioning and brain ischemic events, but
this is something that needs further investigation.

Limitations

The lack of previous literature assessing those with vMCI using
MEG is one of the main concerns of the present study as it does
not allow us to directly compare our results. This lack of replication
should be considered for results generalization, but it also entails the
beginning of a new and unexplored research field.

Although all the patients included in the sample met the MCI
diagnosis criteria (Petersen, 2004), the lack of neuropathological
markers of AD (i.e., CSF/PET amyloid or tau markers) potentially
increases the heterogeneity of the MCI population and could diminish
the degree of association between VCI and AD that we can state
with our data. However, significant differences were found despite this
limitation.

Finally, recent meta-analysis found that WMH volume estimation
was not comparable between studies due to the lack of standardization
in the definition of WMH and the high technical variability in
assessment (Melazzini et al., 2021). Despite the lack of evidence for
WMH volume references intervals, the literature strongly supports
the role of WMH as a biomarker of longstanding cerebrovascular
disease, and its implication in the pathophysiology of stroke and
cognitive impairment or dementia (Chutinet and Rost, 2014). With
the intention of advancing in the search for possible thresholds for
this imaging marker we have calculated and detailed reported our
findings and procedure, based on a referenced method for defining
biomarker cut points for brain aging (Jack et al., 2017), to facilitate
further replication.

Conclusions

The lack of literature on electrophysiological spectral patterns
related to patients with mild (referred to in this study as vMCI) or
major VCI with MEG, and the lack of consensus and replication on

EEG results evidence that electrophysiology signatures are not ready
yet to be included in the diagnosis criteria for cognitive impairment
of vascular origin because they are not robust, repeatable, and reliable
enough to be used as clinical biomarkers. MEG quantitative analysis
has been previously stated as a precise, non-invasive tool with high
temporal resolution that is able to reflect changes in the bioelectrical
activity of the brain. This brings us the opportunity to study
brain functioning disruption due to changes in synaptic potentials
produced by vasculature alterations before structural changes and/or
cognitive decline are evidenced. Nevertheless, there is a critical need
to accurately classify VCI in future electrophysiological research in
order to facilitate scientific results sharing and aggregation. CBVD
underlying cognitive impairment of vascular origin involves a variety
of medical conditions, pathologies, and etiologies. In this sense, trying
to look for biomarkers generalizable to all of them is practically
impossible. In this context, we encourage a reductionist approach
oriented to find specific electrophysiological signatures related to this
specific cerebrovascular damage (i.e., WMH) reducing the incidence
of other possible pathological variables, trying to establish a strong
and accurate baseline for VCI research. This approach could help
to understand and try to palliate particular symptoms in mixed
dementias, where WMH damage is a comorbid contributor to the
progression of other neurodegenerative diseases. The present study
establishes a baseline for MEG future research in the VCI field,
showing general electrophysiological spectral patterns, registered with
MEG. These results demonstrate the utility of MEG signal analysis
to augment structural imaging studies in the differentiation of MCI
subtypes and to understand the effect of CBVD in brain function and
cognition.

Data availability statement

The raw data supporting the conclusions of this article will be
made available by the authors, without undue reservation.

Ethics statement

The studies involving human participants were reviewed
and approved and this study was approved by the “Hospital
Universitario Clinico San Carlos” ethics committee and was
performed in accordance with approved guidelines and regulations.
The patients/participants provided their written informed consent to
participate in this study.

Author contributions

LT-S: conceptualization, methodology, formal analysis,
investigation, writing—original draft, writing—review and editing,
visualization, project administration, and funding acquisition. PC:
conceptualization, methodology, formal analysis, investigation,
writing—original draft, writing—review and editing, visualization
and supervision. AC-L: methodology, formal analysis, investigation,
and writing—original draft. BC: writing—review and editing,
supervision and funding acquisition. LO: investigation, and
writing—original draft. EM: writing—review and editing,

Frontiers in Human Neuroscience 09 frontiersin.org

https://doi.org/10.3389/fnhum.2023.1068216
https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org/journals/human-neuroscience#articles
https://www.frontiersin.org


Torres-Simon et al. 10.3389/fnhum.2023.1068216

supervision, and validation. PG: writing—review and editing,
supervision, validation and funding acquisition. FM: writing—review
and editing, resources, supervision, validation and funding
acquisition. All authors contributed to the article and approved
the submitted version.

Funding

LT-S acknowledges the financial support of predoctoral
researchers grant from Universidad Complutense de Madrid
(CT42/18-CT43/18) and co-funded by Santander bank.
Additionally, BC acknowledges the financial support of the
National Council of Science, Technology and Technological
Innovation (CONCYTEC, Perú) through the National Fund for
Scientific and Technological Development (FONDECYT, Perú).
Finally, all the authors acknowledge the financial support from
the Fundación Canaria Instituto de Investigación Sanitaria de
Canarias (FIISC). The authors declare that this study received
co-funding from Santander Bank. The funder was not involved
in the study design, collection, analysis, interpretation of data,
the writing of this article, or the decision to submit it for
publication.

Conflict of interest

The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be
construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the
authors and do not necessarily represent those of their affiliated
organizations, or those of the publisher, the editors and the reviewers.
Any product that may be evaluated in this article, or claim that
may be made by its manufacturer, is not guaranteed or endorsed by
the publisher.

Supplementary material

The Supplementary Material for this article can be found online
at: https://www.frontiersin.org/articles/10.3389/fnhum.2023.1068
216/full#supplementary-material.

References

Alber, J., Alladi, S., Bae, H. J., Barton, D. A., Beckett, L. A., Bell, J. M., et al. (2019).
White matter hyperintensities in vascular contributions to cognitive impairment and
dementia (VCID): knowledge gaps and opportunities. Alzheimers Dement. (N Y) 5,
107–117. doi: 10.1016/j.trci.2019.02.001

Al-Qazzaz, N. K., Ali, S. H. B. M., Ahmad, S. A., Islam, M. S., and Escudero, J. (2017).
Automatic artifact removal in EEG of normal and demented individuals using ICA-WT
during working memory tasks. Sensors (Basel) 17:1326. doi: 10.3390/s17061326

Anderson, K. L., Rajagovindan, R., Ghacibeh, G. A., Meador, K. J., and Ding, M.
(2010). Theta oscillations mediate interaction between prefrontal cortex and medial
temporal lobe in human memory. Cereb. Cortex 20, 1604–1612. doi: 10.1093/cercor/
bhp223

Arvanitakis, Z., Capuano, A. W., Leurgans, S. E., Bennett, D. A., and Schneider, J. A.
(2016). Relation of cerebral vessel disease to Alzheimer’s disease dementia and cognitive
function in elderly people: a cross-sectional study. Lancet Neurol. 15, 934–943.
doi: 10.1016/S1474-4422(16)30029-1

Azarpazhooh, M. R., Avan, A., Cipriano, L. E., Munoz, D. G., Sposato, L. A., and
Hachinski, V. (2018). Concomitant vascular and neurodegenerative pathologies double
the risk of dementia. Alzheimers Dement. 14, 148–156. doi: 10.1016/j.jalz.2017.07.755

Babiloni, C., Binetti, G., Cassetta, E., Cerboneschi, D., Dal Forno, G., Del Percio, C.,
et al. (2004). Mapping distributed sources of cortical rhythms in mild Alzheimer’s disease.
A multicentric EEG study. Neuroimage 22, 57–67. doi: 10.1016/j.neuroimage.2003.
09.028

Benton, A., and Hamsher, K. (1989). Multilingual Aphasia Examination. Iowa City, IA:
AJA Associates.

Caruso, P., Signori, R., and Moretti, R. (2019). Small vessel disease to subcortical
dementia: a dynamic model, which interfaces aging, cholinergic dysregulation and the
neurovascular unit. Vasc. Health Risk Manage. 15, 259–281. doi: 10.2147/VHRM.S190470

Catindig, J. A. S., Venketasubramanian, N., Ikram, M. K., and Chen, C. (2012).
Epidemiology of dementia in Asia: insights on prevalence, trends and novel risk factors.
J. Neurol. Sci. 321, 11–16. doi: 10.1016/j.jns.2012.07.023

Chu, R. K. O., Braun, A. R., and Meltzer, J. A. (2015). MEG-based detection and
localization of perilesional dysfunction in chronic stroke. Neuroimage Clin. 8, 157–169.
doi: 10.1016/j.nicl.2015.03.019

Chutinet, A., and Rost, N. S. (2014). White matter disease as a biomarker for long-term
cerebrovascular disease and dementia. Curr. Treat. Options Cardiovasc. Med. 16:292.
doi: 10.1007/s11936-013-0292-z

Commowick, O., Istace, A., Kain, M., Laurent, B., Leray, F., Simon, M., et al.
(2018). Objective evaluation of multiple sclerosis lesion segmentation using a data
management and processing infrastructure. Sci. Rep. 8:13650. doi: 10.1038/s41598-018
-31911-7

Drebette, S., and Markus, H. S. (2010). The clinical importance of white matter
hyperintensities on brain magnetic resonance systematic review and meta-analysis. BMJ
341:c3666. doi: 10.1136/bmj.c3666

Farrall, A. J., and Wardlaw, J. M. (2009). Blood—brain barrier: Ageing and
microvascular disease–systematic review and meta-analysis. Neurobiol. Aging 30,
337–352. doi: 10.1016/j.neurobiolaging.2007.07.015

Fazekas, F., Chawluk, J. B., Alavi, A., Hurtig, H. I., Zimmerman, R. A. (1987). MR signal
abnormalities at 1.5 T in Alzheimer’s dementia and normal aging. Am. J. Roentgenol. 149,
351–356. doi: 10.2214/ajr.149.2.351

Garcés, P., López-Sanz, D., Maestú, F., and Pereda, E. (2017). Choice of
magnetometers and gradiometers after signal space separation. Sensors (Basel) 17:2926.
doi: 10.3390/s17122926

Gawel, M., Zalewska, E., Szmidt-Sałkowska, E., and Kowalski, J. (2007). Does EEG
(visual and quantitative) reflect mental impairment in subcortical vascular dementia?
J. Neurol. Sci. 257, 11–16. doi: 10.1016/j.jns.2007.01.046

Gawel, M., Zalewska, E., Szmidt-Sałkowska, E., and Kowalski, J. (2009). The value of
quantitative EEG in differential diagnosis of Alzheimer’s disease and subcortical vascular
dementia. J. Neurol. Sci. 283, 127–133. doi: 10.1016/j.jns.2009.02.332

Hoshi, H., Hirata, Y., Kobayashi, M., Sakamoto, Y., Fukasawa, K., Ichikawa, S., et al.
(2022). Distinctive effects of executive dysfunction and loss of learning/memory abilities
on resting-state brain activity. Sci. Rep. 12:3459. doi: 10.1038/s41598-022-07202-7

Jack, C. R., Wiste, H. J., Weigand, S. D., Therneau, T. M., Lowe, V. J., Knopman, D. S.,
et al. (2017). Defining imaging biomarker cut points for brain aging and Alzheimer’s
disease. Alzheimers Dement. 13, 205–216. doi: 10.1016/j.jalz.2016.08.005

Jang, H., Kwon, H., Yang, J. J., Hong, J., Kim, Y., Kim, K. W., et al. (2017). Correlations
between gray matter and white matter degeneration in pure Alzheimer’s disease, pure
subcortical vascular dementia and mixed dementia. Sci. Rep. 7:9541. doi: 10.1038/s41598-
017-10074-x

Johnston, P. R., McIntosh, A. R., and Meltzer, J. A. (2022). Spectral slowing in chronic
stroke reflects abnormalities in both periodic and aperiodic neural dynamics. Neuroimage
Clin. 37:103277.doi: 10.1016/j.nicl.2022.103277

Kalaria, R. N. (2018). Neuropharmacology the pathology and pathophysiology of
vascular dementia. Neuropharmacology 134, 226–239. doi: 10.1016/j.neuropharm.2017.
12.030

Khan, A., Kalaria, R. N., Corbett, A., and Ballard, C. (2016). Update on vascular
dementia. J. Geriatr. Psychiatry Neurol. 29, 281–301. doi: 10.1177/0891988716654987

Kielar, A., Deschamps, T., Chu, R.K.O., Jokel, R., Khatamian, Y. B., Chen, J. J., et al.
(2016). Identifying dysfunctional cortex: dissociable effects of stroke and aging on resting
state dynamics in MEG and fMRI. Front. Aging Neurosci. 8:40. doi: 10.3389/fnagi.2016.
00040

Frontiers in Human Neuroscience 10 frontiersin.org

https://doi.org/10.3389/fnhum.2023.1068216
https://www.frontiersin.org/articles/10.3389/fnhum.2023.1068216/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fnhum.2023.1068216/full#supplementary-material
https://doi.org/10.1016/j.trci.2019.02.001
https://doi.org/10.3390/s17061326
https://doi.org/10.1093/cercor/bhp223
https://doi.org/10.1093/cercor/bhp223
https://doi.org/10.1016/S1474-4422(16)30029-1
https://doi.org/10.1016/j.jalz.2017.07.755
https://doi.org/10.1016/j.neuroimage.2003.09.028
https://doi.org/10.1016/j.neuroimage.2003.09.028
https://doi.org/10.2147/VHRM.S190470
https://doi.org/10.1016/j.jns.2012.07.023
https://doi.org/10.1016/j.nicl.2015.03.019
https://doi.org/10.1007/s11936-013-0292-z
https://doi.org/10.1038/s41598-018-31911-7
https://doi.org/10.1038/s41598-018-31911-7
https://doi.org/10.1136/bmj.c3666
https://doi.org/10.1016/j.neurobiolaging.2007.07.015
https://doi.org/10.2214/ajr.149.2.351
https://doi.org/10.3390/s17122926
https://doi.org/10.1016/j.jns.2007.01.046
https://doi.org/10.1016/j.jns.2009.02.332
https://doi.org/10.1038/s41598-022-07202-7
https://doi.org/10.1016/j.jalz.2016.08.005
https://doi.org/10.1038/s41598-017-10074-x
https://doi.org/10.1038/s41598-017-10074-x
https://doi.org/10.1016/j.nicl.2022.103277
https://doi.org/10.1016/j.neuropharm.2017.12.030
https://doi.org/10.1016/j.neuropharm.2017.12.030
https://doi.org/10.1177/0891988716654987
https://doi.org/10.3389/fnagi.2016.00040
https://doi.org/10.3389/fnagi.2016.00040
https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org/journals/human-neuroscience#articles
https://www.frontiersin.org


Torres-Simon et al. 10.3389/fnhum.2023.1068216

Klimesch, W. (1999). EEG alpha and theta oscillations reflect cognitive and
memory performance: a review and analysis. Brain Res. Brain Res. Rev. 29, 169–195.
doi: 10.1016/s0165-0173(98)00056-3

Kloppenborg, R. P., Nederkoorn, P. J., Geerlings, M. I., and van den Berg, E. (2014).
Presence and progression of white matter hyperintensities and cognition: a meta-analysis.
Neurology 82, 2127–2138. doi: 10.1212/WNL.0000000000000505

Kulasingham, J. P., Brodbeck, C., Khan, S., Marsh, E. B., and Simon, J. Z. (2022).
Bilaterally reduced rolandic beta band activity in minor stroke patients. Front. Neurol.
13:819603. doi: 10.3389/fneur.2022.819603

Lam, S., Lipton, R. B., Harvey, D. J., Zammit, A. R., and Ezzati, A. (2021). White matter
hyperintensities and cognition across different Alzheimer’s biomarker profiles. J. Am.
Geriatr. Soc. 69, 1906–1915. doi: 10.1111/jgs.17173

Lawton, M. P., and Brody, E. M. (1969). Assessment of older people: self-maintaining
and instrumental activities of daily living. Gerontologist 9, 179–186. doi: 10.1093/geront/9.
3_Part_1.179

Livingston, G., Sommerlad, A., Orgeta, V., Costafreda, S. G., Huntley, J., Ames, D.,
et al. (2017). Dementia prevention, intervention and care. Lancet 390, 2673–2734.
doi: 10.1016/S0140-6736(17)31363-6

Lobo, A., Ezquerra, J., Gómez Burgada, F., Sala, J. M., and Seva Díaz, A. (1979).
El miniexamen, cognoscitivo (un “test” sencillo, práctico, para detectar alteraciones
intelectuales en pacientes médicos). Actas Luso-Espanolas Neurol. Psiquiatr. y Ciencias
Afines 7, 189–202.

López-Sanz, D., Bruña, R., Delgado-Losada, M. L., López-Higes, R., Marcos-
Dolado, A., Maestú, F., et al. (2019). Electrophysiological brain signatures for the
classification of subjective cognitive decline: towards an individual detection in the
preclinical stages of dementia. Alzheimers Res. Ther. 11:49. doi: 10.1186/s13195-019-
0502-3

López-Sanz, D., Bruña, R., Garcés, P., Camara, C., Serrano, N., Rodríguez-Rojo, I. C.,
et al. (2016). Alpha band disruption in the AD-continuum starts in the subjective
cognitive decline stage: a MEG study. Sci. Rep. 6:37685. doi: 10.1038/srep37685

López-Sanz, D., Serrano, N., and Maestú, F. (2018). The role of
magnetoencephalography in the early stages of Alzheimer’s disease. Front. Neurosci.
12:572. doi: 10.3389/fnins.2018.00572

Maris, E., and Oostenveld, R. (2007). Nonparametric statistical testing of EEG- and
MEG-data. J. Neurosci. Methods 164, 177–190. doi: 10.1016/j.jneumeth.2007.03.024

Matsumoto, T., Hoshi, H., Hirata, Y., Ichikawa, S., Fukasawa, K., Gonda, T., et al. (2021).
The association between carotid blood flow and resting-state brain activity in patients
with cerebrovascular diseases. Sci. Rep. 11:15225. doi: 10.1038/s41598-021-94717-0

Melazzini, L., Vitali, P., Olivieri, E., Bolchini, M., Zanardo, M., Savoldi, F., et al. (2021).
White matter hyperintensities quantification in healthy adults: a systematic review and
meta-analysis. J. Magn. Reson. Imaging 53, 1732–1743. doi: 10.1002/jmri.27479

Moretti, D. V., Babiloni, C., Binetti, G., Cassetta, E., Dal Forno, G., Ferreric, F., et al.
(2004). Individual analysis of EEG frequency and band power in mild Alzheimer’s disease.
Clin. Neurophysiol. 115, 299–308. doi: 10.1016/s1388-2457(03)00345-6

Moretti, D. V., Miniussi, C., Frisoni, G., Zanetti, O., Binetti, G., Geroldi, C., et al. (2007).
Vascular damage and EEG markers in subjects with mild cognitive impairment. Clin.
Neurophysiol. 118, 1866–1876. doi: 10.1016/j.clinph.2007.05.009

Mortamais, M., Artero, S., and Ritchie, K. (2014). White matter hyperintensities as early
and independent predictors of Alzheimer’s disease risk. J. Alzheimers Dis. 42, S393–S400.
doi: 10.3233/JAD-141473

Nakamura, A., Cuesta, P., Fernández, A., Arahata, Y., Iwata, K., Kuratsubo, I., et al.
(2018). Electromagnetic signatures of the preclinical and prodromal stages of Alzheimer’s
disease. Brain 141, 1470–1485. doi: 10.1093/brain/awy044

Neto, E., Allen, E. A., Aurlien, H., Nordby, H., and Eichele, T. (2015). EEG spectral
features discriminate between Alzheimer’s and vascular dementia. Front. Neurol. 6:25.
doi: 10.3389/fneur.2015.00025

Nolte, G. (2003). The magnetic lead field theorem in the quasi-static approximation and
its use for magnetoencephalography forward calculation in realistic volume conductors.
Phys. Med. Biol. 48, 3637–3652. doi: 10.1088/0031-9155/48/22/002

O’Brien, J. T., and Thomas, A. (2015). Vascular dementia. Lancet 386, 1698–1706.
doi: 10.1016/S0140-6736(15)00463-8

Oostenveld, R., Fries, P., Maris, E., and Schoffelen, J.-M. (2011). Fieldtrip: open source
software for advanced analysis of MEG, EEG and invasive electrophysiological data.
Comput. Intell. Neurosci. 2011:156869. doi: 10.1155/2011/156869

Petersen, R. C. (2004). Mild cognitive impairment as a diagnostic entity. J. Intern. Med.
256, 183–194. doi: 10.1111/j.1365-2796.2004.01388.x

Pfeffer, R. I., Kurosaki, T. T., Harrah, C. H., Jr., Chance, J. M., and Filos, S. (1982).
Measurement of functional activities in older adults in the community. J. Gerontol. 37,
323–329. doi: 10.1093/geronj/37.3.323

Prins, N. D., and Scheltens, P. (2015). White matter hyperintensities,
cognitive impairment and dementia: An update. Nat. Rev. Neurol. 11, 157–165.
doi: 10.1038/nrneurol.2015.10

Pusil, S., Torres-Simon, L., Chino, B., López, M. E., Canuet, L., Bilbao, Á., et al. (2022).
Resting-state beta-band recovery network related to cognitive improvement after stroke.
Front. Neurol. 13:838170. doi: 10.3389/fneur.2022.838170

Quandt, F., Fischer, F., Schröder, J., Heinze, M., Lettow, I., Frey, B. M., et al. (2020).
Higher white matter hyperintensity lesion load is associated with reduced long-range
functional connectivity. Brain Commun. 2:fcaa111. doi: 10.1093/braincomms/fcaa111

Reisberg, B., Ferris, S. H., de Leon, M. J., and Crook, T. (1982). The global deterioration
scale for assessment of primary degenerative dementia. Am. J. Psychiatry 139, 1136–1139.
doi: 10.1176/ajp.139.9.1136

Rizzi, L., Rosset, I., and Roriz-Cruz, M. (2014). Global epidemiology of dementia:
Alzheimer’s and vascular types. Biomed. Res. Int. 2014:908915. doi: 10.1155/2014/908915

Santos, C. Y., Snyder, P. J., Wu, W. C., Zhang, M., Echeverria, A., and Alber, J. (2017).
Pathophysiologic relationship between Alzheimer’s disease, cerebrovascular disease and
cardiovascular risk: a review and synthesis. Alzheimers Dement. (Amst) 7, 69–87.
doi: 10.1016/j.dadm.2017.01.005

Schmidt, P., Gaser, C., Arsic, M., Buck, D., Förschler, A., Berthele, A., et al. (2012).
An automated tool for detection of FLAIR-hyperintense white-matter lesions in multiple
sclerosis. Neuroimage 59, 3774–3783. doi: 10.1016/j.neuroimage.2011.11.032

Schomer, D. L., and Lopes da Silva, F. H. (2012). Niedermeyer’s Electroencephalography:
Basic Principles, Clinical Applications And Related Fields. Lippincott Williams & Wilkins
(LWW).

Schreiber, S., Bueche, C. Z., Garz, C., and Braun, H. (2013). Blood brain barrier
breakdown as the starting point of cerebral small vessel disease? - New insights from a
rat model. Exp. Transl. Stroke Med. 5:4. doi: 10.1186/2040-7378-5-4

Sheorajpanday, R. V. A., Marien, P., Weeren, A. J. T. M., Nagels, G., Saerens, J., van
Putten, M. J. A. M., et al. (2013). EEG in silent small vessel disease: sLORETA mapping
reveals cortical sources of vascular cognitive impairment no dementia in the default mode
network. J. Clin. Neurophysiol. 30, 178–187. doi: 10.1097/WNP.0b013e3182767d15

Tak, S., Yoon, S. J., Jang, J., Yoo, K., Jeong, Y., and Ye, J. C. (2011). Quantitative
analysis of hemodynamic and metabolic changes in subcortical vascular dementia
using simultaneous near-infrared spectroscopy and fMRI measurements. Neuroimage 55,
176–184. doi: 10.1016/j.neuroimage.2010.11.046

Taulu, S., and Simola, J. (2006). Spatiotemporal signal space separation method for
rejecting nearby interference in MEG measurements. Phys. Med. Biol. 51, 1759–1768.
doi: 10.1088/0031-9155/51/7/008

Tecchio, F., Zappasodi, F., Tombini, M., Oliviero, A., Pasqualetti, P., Vernieri, F., et al.
(2006). Brain plasticity in recovery from stroke: An MEG assessment. Neuroimage 32,
1326–1334. doi: 10.1016/j.neuroimage.2006.05.004

Torres-Simón, L., Doval, S., Nebreda, A., Llinas, S. J., Marsh, E. B., and Maestú, F.
(2022). Understanding brain function in vascular cognitive impairment and dementia
with EEG and MEG: a systematic review. Neuroimage Clin. 5:103040. doi: 10.1016/j.nicl.
2022.103040

Tzourio-Mazoyer, N., Landeau, B., Papathanassiou, D., Crivello, F., Etard, O.,
Delcroix, N., et al. (2002). Automated anatomical labeling of activations in SPM using
a macroscopic anatomical parcellation of the MNI MRI single-subject brain. Neuroimage
15, 273–289. doi: 10.1006/nimg.2001.0978

Van Den Berg, E., Geerlings, M. I., Biessels, G. J., Nederkoorn, P. J., and
Kloppenborg, R. P. (2018). White matter hyperintensities and cognition in mild cognitive
impairment and Alzheimer’s disease: a domain-specific meta-analysis. J. Alzheimers Dis.
63, 515–527. doi: 10.3233/JAD-170573

van Straaten, E.C.W., de Haan, W., de Waal, H., Scheltens, P., van der Flier, W. M.,
Barkhof, F., et al. (2012). Disturbed oscillatory brain dynamics in subcortical ischemic
vascular dementia. BMC Neurosci. 13:85. doi: 10.1186/1471-2202-13-85

Van Veen, B. D., van Drongelen, W., Yuchtman, M., and Suzuki, A. (1997). Localization
of brain electrical activity via linearly constrained minimum variance spatial filtering.
IEEE Trans. Biomed. Eng. 44, 867–880. doi: 10.1109/10.623056

Venkat, P., Chopp, M., Zacharek, A., Cui, C., Zhang, L., Li, Q., et al. (2017). White
matter damage and glymphatic dysfunction in a model of vascular dementia in rats with
no prior vascular pathologies. Neurobiol. Aging 50, 96–106. doi: 10.1016/j.neurobiolaging.
2016.11.002

Wahlund, L. O., Barkhof, F., Fazekas, F., Bronge, L., Augustin, M., Sjögren, M., et al.
(2001). A new rating scale for age-related white matter changes applicable to MRI and
CT. Stroke 32, 1318–1322. doi: 10.1161/01.str.32.6.1318

Wahlund, L. O., Westman, E., van Westen, D., Wallin, A., Shams, S., Cavallin, L., et al.
(2017). Imaging biomarkers of dementia: recommended visual rating scales with teaching
cases. Insights Imaging 8, 79–90. doi: 10.1007/s13244-016-0521-6

Wardlaw, J. M., Smith, C., and Dichgans, M. (2019). Small vessel disease: mechanisms
and clinical implications. Lancet Neurol. 18, 684–696. doi: 10.1016/S1474-4422(19)
30079-1

Wechsler, D. (1997). Wechsler Memory Scale, 3rd Edition. Pearson

Wu, L., Chen, Y., and Zhou, J. (2014). A promising method to distinguish
vascular dementia from Alzheimer’s disease with standardized low-resolution brain
electromagnetic tomography and quantitative EEG. Clin. EEG Neurosci. 45, 152–157.
doi: 10.1177/1550059413496779

Yang, D. W., Kim, B. S., Park, J. K., Kim, S. Y., Kim, E. N., and Sohn, H. S. (2002).
Analysis of cerebral blood flow of subcortical vascular dementia with single photon
emission computed tomography: adaptation of statistical parametric mapping. J. Neurol.
Sci. 203–204, 199–205. doi: 10.1016/s0022-510x(02)00291-5

Yesavage, J. A., Brink, T. L., Rose, T. L., Lum, O., Huang, V., Adey, M., et al. (1982).
Development and validation of a geriatric depression screening scale: a preliminary
report. J. Psychiatr. Res. 17, 37–49. doi: 10.1016/0022-3956(82)90033-4

Zalesky, A., Fornito, A., and Bullmore, E. T. (2010). Network-based statistic: identifying
differences in brain networks. Neuroimage 53, 1197–1207. doi: 10.1016/j.neuroimage.
2010.06.041

Frontiers in Human Neuroscience 11 frontiersin.org

https://doi.org/10.3389/fnhum.2023.1068216
https://doi.org/10.1016/s0165-0173(98)00056-3
https://doi.org/10.1212/WNL.0000000000000505
https://doi.org/10.3389/fneur.2022.819603
https://doi.org/10.1111/jgs.17173
https://doi.org/10.1093/geront/9.3_Part_1.179
https://doi.org/10.1093/geront/9.3_Part_1.179
https://doi.org/10.1016/S0140-6736(17)31363-6
https://doi.org/10.1186/s13195-019-0502-3
https://doi.org/10.1186/s13195-019-0502-3
https://doi.org/10.1038/srep37685
https://doi.org/10.3389/fnins.2018.00572
https://doi.org/10.1016/j.jneumeth.2007.03.024
https://doi.org/10.1038/s41598-021-94717-0
https://doi.org/10.1002/jmri.27479
https://doi.org/10.1016/s1388-2457(03)00345-6
https://doi.org/10.1016/j.clinph.2007.05.009
https://doi.org/10.3233/JAD-141473
https://doi.org/10.1093/brain/awy044
https://doi.org/10.3389/fneur.2015.00025
https://doi.org/10.1088/0031-9155/48/22/002
https://doi.org/10.1016/S0140-6736(15)00463-8
https://doi.org/10.1155/2011/156869
https://doi.org/10.1111/j.1365-2796.2004.01388.x
https://doi.org/10.1093/geronj/37.3.323
https://doi.org/10.1038/nrneurol.2015.10
https://doi.org/10.3389/fneur.2022.838170
https://doi.org/10.1093/braincomms/fcaa111
https://doi.org/10.1176/ajp.139.9.1136
https://doi.org/10.1155/2014/908915
https://doi.org/10.1016/j.dadm.2017.01.005
https://doi.org/10.1016/j.neuroimage.2011.11.032
https://doi.org/10.1186/2040-7378-5-4
https://doi.org/10.1097/WNP.0b013e3182767d15
https://doi.org/10.1016/j.neuroimage.2010.11.046
https://doi.org/10.1088/0031-9155/51/7/008
https://doi.org/10.1016/j.neuroimage.2006.05.004
https://doi.org/10.1016/j.nicl.2022.103040
https://doi.org/10.1016/j.nicl.2022.103040
https://doi.org/10.1006/nimg.2001.0978
https://doi.org/10.3233/JAD-170573
https://doi.org/10.1186/1471-2202-13-85
https://doi.org/10.1109/10.623056
https://doi.org/10.1016/j.neurobiolaging.2016.11.002
https://doi.org/10.1016/j.neurobiolaging.2016.11.002
https://doi.org/10.1161/01.str.32.6.1318
https://doi.org/10.1007/s13244-016-0521-6
https://doi.org/10.1016/S1474-4422(19)30079-1
https://doi.org/10.1016/S1474-4422(19)30079-1
https://doi.org/10.1177/1550059413496779
https://doi.org/10.1016/s0022-510x(02)00291-5
https://doi.org/10.1016/0022-3956(82)90033-4
https://doi.org/10.1016/j.neuroimage.2010.06.041
https://doi.org/10.1016/j.neuroimage.2010.06.041
https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org/journals/human-neuroscience#articles
https://www.frontiersin.org

	The effects of white matter hyperintensities on MEG power spectra in population with mild cognitive impairment
	Introduction
	Methods
	Neuropsychological assessment
	Magnetic resonance recordings and analysis
	WMH volume cut point
	MEG data acquisition
	Statistical procedure
	Data availability

	Results
	Segregation of patients with MCI based on their WMH volume
	Electrophysiological power differences between groups
	Correlations between electrophysiological markers and brain health

	Discussion
	Increment in theta power
	Decrement in beta power

	Limitations
	Conclusions
	Data availability statement
	Ethics statement
	Author contributions
	Funding
	Conflict of interest
	Publisher's note
	Supplementary material
	References


