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Circulating tumor DNA reveals complex
biological features with clinical relevance
in metastatic breast cancer
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Blanca González-Farré1,7, Patricia Villagrasa2, Joel S. Parker15,
Charles M. Perou15 & Ana Vivancos13

Liquid biopsy has proven valuable in identifying individual genetic alterations;
however, the ability of plasma ctDNA to capture complex tumor phenotypes
with clinical value is unknown. To address this question, we have performed
0.5X shallow whole-genome sequencing in plasma from 459 patients with
metastatic breast cancer, including 245 patients treated with endocrine ther-
apy and a CDK4/6 inhibitor (ET +CDK4/6i) from 2 independent cohorts. We
demonstrate that machine learning multi-gene signatures, obtained from
ctDNA, identify complex biological features, including measures of tumor
proliferation and estrogen receptor signaling, similar to what is accomplished
using direct tumor tissue DNA or RNA profiling. More importantly, 4 DNA-
based subtypes, and a ctDNA-based genomic signature tracking retino-
blastoma loss-of-heterozygosity, are significantly associated with poor
response and survival outcome following ET +CDK4/6i, independently of
plasma tumor fraction. Our approach opens opportunities for the discovery of
additional multi-feature genomic predictors coming from ctDNA in breast
cancer and other cancer-types.

Sequencing of tumor DNA has brought many new biomarkers and
possibilities to precision oncology1. Detection of somatic gene muta-
tions, amplifications, and gene fusions allows the delivery of targeted
therapies in multiple cancer-types, such as lung cancer, colorectal,
melanoma and breast cancer1. In addition, detection of a high number
of somatic mutations (i.e., tumor mutational burden), or a micro-
satellite instability-high phenotype, can help identify candidates for
anti-PD1/PDL1 immune checkpoint inhibitors2,3. Importantly, sequen-
cing of tumor DNA in blood samples (i.e., the so-called liquid biopsy,

and henceforth called “ctDNA”) allows an easy access to some tumor-
based genetic information at any given timepoint and can replace a
tumor tissue biopsy in some cases, thus avoiding delays and compli-
cations of a solid tumor invasive biopsy procedure, which can be quite
challenging sometimes in the metastatic setting.

Identification of single tumor DNA alterations can be clinically
useful1. However, cancer is highly complex and additional biological
information is likely needed to refine the prediction of patients´ prog-
nosis and/or treatment benefit4. Breast cancer is the perfect example
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since RNA-based profiling tests provide clinical and biological useful
informationbeyond individual somaticgenemutationsor amplifications
such as PIK3CA or ERBB2 5–8. In early disease, multi-gene RNA-based
prognostic assays (e.g., OncotypeDX, Mammaprint and Prosigna) are
available and recommended by clinical guidelines. In advanced disease,
RNA-based profiling is becoming a promising prognostic and predictive
tool5–7,9. Unfortunately, tissue samples in patients with advanced disease
are not readily available and, even so, the typeofmetastatic organor site
can compromise the expression patterns obtained from bulk RNA and
might not reflect the intra-patient tumor heterogeneity.

To help overcome these challenges, we previously reported a
supervised learning integrative computational approach topredict RNA-
based tumor expression signatures values using data from DNA copy-
number alterations10. Specifically, we found 150 multi-feature DNA-
based signatures tracking a variety of breast cancer biological processes,
including proliferation status, clinical ER tumor status, tumor histology,
and estrogen-signaling pathway activity, with a high predictive perfor-
mance (i.e., area under the ROC curve ≥0.75)10. This finding opened the
possibility to useDNAsequencingof ctDNA inblood to capture clinically
relevant information beyond single genetic alterations and tumor frac-
tion, the latter being associatedwith patient’s prognosis11. Our approach
could be highly relevant in themetastatic setting,where ctDNAmight be
the only readily available genetic material from tumors.

Here, we hypothesized that (1) DNA-based signatures tracking
breast cancer biological processes can be detected in ctDNA and
provide clinically useful information and (2) DNA-signatures detected
in plasma and tissue can help identify tumor subtypes within hormone
receptor-positive and HER2-negative (HR+/HER2-) breast cancer. Our
work demonstrates that complex tumor phenotypic traits can be
identified in ctDNA andmight be clinically relevant in advanced breast
cancer. Our ctDNA-based multi-gene signature approach opens
potential avenues for discovering and implementing biomarkers in
oncology, especially in the advanced disease setting where liquid
biopsies are becoming commonplace.

Results
To demonstrate that ctDNA can capture complex tumor phenotypes,
150 previously defined multi-feature DNA-based signatures (Table 1)

were applied10 on 0.5X shallow whole genome sequencing (shWGS)
data from a first dataset, hereafter Plasma-1 cohort (Fig. 1a and Sup-
plementary Fig. 1a), composed of 246 plasma samples. Most samples
profiled (n = 209) were from 174 patients with advanced HR+/HER2-
breast cancer. Samples from the same patient were obtained at dif-
ferent timepoints. Additional samples from the other clinical subtypes
were also assayed including 19 plasma samples from 16 patients with
advanced HER2-positive (HER2+) disease, 17 plasma samples from 16
patients with advanced triple-negative breast cancer (TNBC) and 1
plasma sample from 1 patient with advanced disease but unknown HR
and HER2 status.

Plasma tumor fraction
Of 246 plasma samples, 178 (72.4%) had a Tumor cell Fraction (TF) of
≥3% (range 4–84%; median 9.4%), indicating presence of tumor,
according to the ichorCNA tool12 (Supplementary Fig. 1b). The TFs
detected in our study are in line with those reported in other breast
cancer studies13,14. In plasma samples with a TF ≥3%, we measured the
signals of 514 DNA segments and subsequently determined the scores
for each of the 150 previously reported DNA signatures designed to
predict tumor RNA- and protein-based phenotypes10 (Fig. 2a). Of note,
all signatures/models were applied exactly as previously reported10

(Supplementary Data 1 and 2); thus, in this study, no newmodels were
developed and the samples analyzed can be considered ‘test/valida-
tion’ datasets.

As expected, TF as a continuous variable was found strongly cor-
relatedwith the number of altered DNA copy-number segments in each
sample (Pearson’s rho = 0.76) (Fig. S2). In addition, TF was found
strongly correlated (i.e., Pearson’s rho ≥0.70 or ≤−0.70) with 46 of 150
(31.0%) ctDNA-based signature scores (Supplementary Data 3). The
ctDNA-based signatures highly correlated with TF weremostly tracking
biological processes associated with Luminal B disease (i.e., positively
correlatedwith TF) or Luminal A disease (i.e., negatively correlatedwith
TF). To compare the ctDNA-based signature scores across patients,
we used the TF-adjusted tumor copy-number signal, as provided by the
ichorCNA tool12. As expected, this normalization step decreased the
strength of association between TF and the number of altered copy-
number segments, and between TF and each ctDNA-based signature

Table 1 | Description of selected DNA-based signatures

Description DNA-based signatures Original RNA-based signatures

Name DNA segments N genes PMID References

Research-based Mammaprint NKI70 149 60 11823860 46

Estrogen-regulated gene expression Scorr_IE 166 754 16505416 47

TP53 mutational status P53_Mut_Correlation 240 48 17150101 48

Genes up-regulated in Basal-like GSEA_SMID_Basal_UP 232 648 18451135 49

Proliferation/cell cycle Wirapati_Proliferation 112 355 18662380 50

Retinoblastoma loss of heterozygosity RB-LOH 236 345 18782450 16

Research-based PAM50 Luminal A Scorr_LumA_Correlation 197 50 19204204 15

Research-based PAM50 Luminal B Scorr_LumB_Correlation 184 50 19204204 15

Research-based PAM50 HER2-enriched Scorr_Her2_Correlation 66 50 19204204 15

Research-based PAM50 Basal-like Scorr_Basal_Correlation 229 50 19204204 15

Glycolysis gene expression Glycolysis_Signature 123 5 19291283 51

Luminal-related gene expresion Luminal_Cluster 236 78 21214954 18

HER2 amplicon gene expression HER2_Amplicon 34 19 21214954 18

TP53 mutational status in ER + P53_ER + 89 29 21248301 52

P53null luminal mouse model MM_p53null_Luminal 166 224 24220145 20

MYC amplified mouse model MM_Myc 184 228 24220145 20

Estrogen receptor signaling GP7_Estrogen_signaling 255 701 25109877 19

The information for each of the 150 ctDNA-based signatures, including the weights of each DNA segment, can be found in Supplementary Data 11.
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score (Supplementary Data 3). Of note, no ctDNA-based signature was
found moderately or strongly correlated with TF (i.e., Pearson´s rho
≥0.50) after the adjustment (Supplementary Data 3).

Plasma versus tissue DNA-based signatures
We next explored the correlation of each of the 150 DNA-based sig-
naturesdeterminedusingplasmactDNA (adjustedbyTF) versus tumor
tissue DNA across 54 patients with available paired sample-types
obtained within a timeframe of 8-weeks (n = 27) or more than 8 weeks
(n = 27). Genome-wide copy number data was obtained from formalin-
fixed paraffin-embedded (FFPE) tumors using a capture-based panel,
and from ctDNAusing shWGS (seemethods). Across all 150 signatures,
the average correlation coefficient between tumor and plasma was
0.40 (range 0.02 to 0.66) and 40 signatures (26.7%) had a correlation
coefficient ≥0.50.When the correlationswere evaluated in the 27 cases
where plasma and tumor were obtained within a timeframe of
8.0 weeks, the number of signatures with a correlation coefficient
≥0.50 was 63 (42% versus 19.3% in the 27 cases where plasma and
tumorwere obtainedwithin >8.0weeks; p < 0.001), including 36 of the
40 (90%) signatures with a correlation coefficient ≥0.50 in all patients

(Fig. 2b and Supplementary Data 4). Two of the highly correlated DNA
signatures were the UNC_8q_Amplicon and the UNC_Scorr_P53_Muta-
tion. Overall, these results suggest a moderate association between
ctDNA-based and tumor DNA-based signatures across timepoints and
DNA sequencing approaches (i.e., ctDNA shWGS versus capture-based
using FFPE DNAs). Of note, immune-related DNA-based signatures
showed low correlation coefficients (Supplementary Data 4).

To further demonstrate that copy number alterations (CNA)-
based data from plasma allows the identification of similar biolo-
gical states as in tissue, we calculated the intra-patient correlation
of the CNA-based signals of 514 DNA segments across 54 paired
samples (tumor tissue versus plasma). Overall, 57% of patients had
a correlation coefficient between plasma and tissue >0.50, which
increased to 83% when we evaluated 29 patients with plasma
TF >10%. In these 29 patients with a plasma TF >10%, 59 and 24% had
a correlation coefficient of >0.70 and >0.80, respectively (Fig. 2c
and Supplementary Data 5). Overall, these results strongly suggest
that plasma ctDNA can reliably capture CNA-based signals from
tumor tissue, although the amount of ctDNA might impact the
ability to accomplish this (Fig. 2d and Fig. S3).

Plasma-1
h

n=246 plasma samples

n=207 patients

HR+/HER2-
h

n=209 plasma samplesn=174 patients

HER2+
h

n=19 plasma samplesn=16 patients

TNBC
h

n=17 plasma samplesn=16 patients

unknown
h

n=1 plasma samplen=1 patient

TF>3%
h

n=178 plasma samplesn=156 patients

n=107 RNA samples (nCounter BC360 panel)
n=54 DNA samples (NGS VHIO300 panel) 
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HER2+
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TNBC
h
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TF>3%
h
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a

b
CDK-Validation-1

h
n=124 plasma samplesn=124 patients*

TF>3%
h

n=87 plasma samplesn=87 patients

CDK-Validation-2
h

n=121 plasma samplesn=121 patients* 

TF>3%
h
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* 57.3% 1st line, 53.2% visceral metastasis,
median follow-up=12.5 months

* 59.5% 1st line, 55.4% visceral metastasis,
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Fig. 1 | Summary of plasma samples used in the study. a Description of plasma
samples obtained from patients with advanced breast cancer across Plasma-1
and Plasma-2 cohorts. b Description of samples from patients with advanced

HR+/HER2- breast cancer treated with endocrine therapy and a CDK4/6
inhibitor (CDK-Validation-1 and CDK-Validation-1 cohorts). TF tumor fraction.
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ctDNA-based data versus tissue RNA-based expression data
RNA-based expression data from FFPE tissue using a research-based
PAM50 intrinsic subtype assay15 was available for 108 cases with a
TF ≥3% in plasma. Tissue samples were obtained at various time-
points. To further explore the association between ctDNA

enrichments and RNA expression data, we evaluated the correlation
of 6 PAM50 RNA-based tissue signatures with each of the 150
ctDNA-based signatures (adjusted by TF) (Supplementary Data 6).
To summarize these results, we plotted in an unsupervised cluster
analysis, the correlation coefficients of the most correlated
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Fig. 2 | Circulating tumor DNA (ctDNA) in metastatic breast cancer. a Plasma
sampleswere obtained from207patients (174withHR+/HER2-, 16HER2+, 16 TNBC,
1 N/A). After purification of plasma cell-free DNA, shallow whole genome sequen-
cing (shWGS) was performed. Using the ctDNA-based sequencing data from 514
DNA segments, 150 previously developed DNA copy number-based signatures10

tracking a variety of biological processes were applied in patients with a Tumor cell
Fraction (TF) ≥3%. Individual scores for each signature were obtained. The com-
plete names of the signatures, references and gene lists can be found in Supple-
mentary Data 1. b Examples of correlation between the scores of the
UNC_HER1_Cluster2 (p < 0.001) and the RB-LOH (p < 0.001) signatures when
determined in plasma versus tumor tissue (the correlations for the other signatures
can be found in Supplementary Data 4). Of note, tissue samples were obtained at
different timepoints than the plasma samples. c Examples of correlations of 514
DNA signals between plasma and tissue in two single patients (case#1 p < 0.001,
case#2 p < 0.001). Correlation coefficients (Cor) and p in b and c were determined

by Pearson correlation. d Example of copy number alterations (CNA) plots of
matched timepoint plasma and tissue samples of a HR+/HER2- tumour, PAM50
HER2-enriched and high RB-LOH signature score. e Unsupervised cluster heatmap
analysis of Pearson´s correlation coefficients obtained by comparing the scores of
the top individual ctDNA-based signature versus the scores of each individual
PAM50 RNA-based tissue signature across 58 matched-timepoint paired plasma-
tissue cases. Correlationvalues canbe found in SupplementaryData 6. fBoxplots of
a ctDNA-based signatures tracking ER-related biology in ER-negative (n = 23) and
ER+ tumors (n = 155) (p < 0.001) (left) and boxplots of a ctDNA-based signatures
tracking HER2-related biology in HER2- (n = 165) and HER2+ tumors (n = 13)
(p <0.001) (right). P-value (P) was determined by two-tailed unpaired t-tests. For
the boxplot, center line indicates median; box limits indicate upper and lower
quartiles; whiskers indicate 1.5× interquartile range. Examples of ER and HER2
immunohistochemistry (ICH) stainings (20X) are provided. Source data are pro-
vided as a Source Data file.
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signatures across 58 matched-timepoint paired plasma-tissue cases
(Fig. 3c). In general, ctDNA-based signatures were positively and
negatively correlated with the known biology that each
PAM50 subtype signature is hypothesized to be tracking. For
example, a ctDNA-based signature tracking RB-LOH gene expres-
sion signature16, which is enriched in E2F target genes and tracks
tumor proliferation rates (Supplementary Fig. 4), was found posi-
tively correlated to the PAM50 RNA-based Basal-like, HER2-
enriched and proliferation tumor signatures, and negatively corre-
lated to the PAM50 RNA-based Luminal A tumor signature (Fig. 2e).

Beyond PAM50, we evaluated the expression of 771 genes in
tumors using the nCounter Breast Cancer 360 Panel in 107 cases

with a TF ≥3% in plasma. Correlation coefficients of the mRNA
expression of each individual gene with each 150 ctDNA-based sig-
nature scores were also determined. Like the PAM50 RNA tumor
signatures, the mRNA expression of luminal genes (e.g., ESR1 and
GATA3) was positively correlated with luminal ctDNA-based sig-
natures, while proliferation and cell cycle-related genes by mRNA
(e.g., MKI67, AURKA, TTK, E2F1 and CCNE1) were positively corre-
lated with proliferation-related ctDNA-based signatures (Supple-
mentary Fig. 5). Overall, these findings confirm that DNA-copy
number-based signatures coming from ctDNA can track the main
breast cancer phenotypes and their known gene expression
features.
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ctDNA-based signatures versus tissue ER and HER2 status
ER expression by immunohistochemistry (IHC), and HER2 over-
expression by IHC and/or amplification by in-situ hybridization, are
key biological features of breast cancer4,17. To evaluate the relationship
between ctDNA-based information and ER or HER2 tumor clinical
biomarker status, we evaluated the association of each of the 150
adjusted ctDNA-based signatures with either ER clinical status (i.e.,
positive versus negative) or HER2 status (i.e., positive versus negative)
across 177 of 178 samples with a TF ≥3% with known ER and HER2 IHC
status from tumor tissue. As expected, ctDNA-based signatures
tracking luminal biological processes (e.g., luminal_cluster_signature18

and GSEA_Median_GP7_Estrogen_signaling19) were found enriched in
ER-positive (ER+) disease (p <0.001; false discovery rate [FDR] < 1%;
highest AUC =0.77) compared to ER-negative disease. Similarly,
ctDNA-based signatures tracking HER2 expression or amplification
(e.g., HER2-signature15 and HER2-amplified-HER2-amplicon18) were
found significantly enriched (p <0.001; FDR < 1%; highest AUC=0.72)
in HER2+ disease compared to HER2- disease (Fig. 2f and Supplemen-
tary Fig. 6). Overall, these results suggest that ctDNA-based profiling
captures and predicts specific phenotypic tumor traits.

ctDNA-based signatures in metastatic HR+/HER2- disease trea-
ted with endocrine therapy and a CDK4/6 inhibitor
To evaluate the association of each ctDNA-based signatures with
patient’s outcome, we analyzed baseline pre-treatment plasma
samples from 124 patients with advanced HR+/HER2- breast cancer
treated with endocrine therapy and a CDK4/6 inhibitor (CDK-Vali-
dation-1 cohort). Eighty-seven plasma samples had a TF ≥3% (Fig. 1b
and Fig. 3a). The median follow-up was 12.5 months (range 1.0 to
56.7 months), and most patients were defined as endocrine-
sensitive (83.9%) and treated in the first-line setting (59.8%)
(Table 2). TF was associated with poorer progression-free survival
(PFS) but was not associated with overall survival (OS) (Supple-
mentary Fig. 7). Among the different clinical variables, treatment
line (i.e., first versus second/third) and bone-only disease were
associated with better PFS, while ECOG performance status was the
only variable associated with OS (Supplementary Fig. 8).

From the 150 ctDNA-based signatures (adjusted by TF), 36
(24%) and 37 (25%) were found significantly associated with PFS and
OS, respectively (Supplementary Data 7). Twenty-seven (18%) sig-
natures were found significantly associated with both PFS and OS. In
general, signatures associated with poor survival outcome were
those hypothesized to be tracking proliferation and non-ER+/non-
luminal-related biological processes, such as the MM_p53null.-
Luminal (i.e., TP53-deficient) and MM_Myc signatures (i.e., high
c-MYC amplification)20. Conversely, ctDNA-signatures associated
with better outcome were tracking luminal A-related biological
processes. Similar results were obtained when the analysis was
performed in the subset of 52 patients treated with endocrine

therapy and a CDK4/6 inhibitor in the first-line setting (Supple-
mentary Data 7 and Supplementary Fig. 5).

A high score of a ctDNA-signature tracking RB-LOH(19) was
found one of the top biomarkers associated with poor outcome and
treatment response (Fig. 3b, c). Since loss of RB is a known
mechanism of resistance to CDK4/6 inhibitors21–25, we decided to
focus on this signature, which is composed of 224 copy number
features, including amplification of 2p (e.g., ETV6), 3q (e.g., PIK3CA),
8q (e.g., MYC), 20q (e.g., AURKA) and 21q (e.g., TMPRSS2 and ERG),
and deletion of 2q (e.g., PARD3B), 4q, 5q, 12q, 13q (e.g., RB1), 15q and
17p. Interestingly, multivariable analysis showed that the associa-
tion of the ctDNA RB-LOH signature with PFS and OS was indepen-
dent of TF (as a continuous variable), type of CDK4/6 inhibitor, line
of treatment (first-line versus second-line versus later lines), pre-
sence of visceral disease and number of metastatic sites (Fig. 3d).
Finally, the direction (i.e., amplification or deletion) and strength
(i.e., coefficient) of the 48 main features of the original tissue-based
DNA RB-LOH signature10 were properly detected in ctDNA (corre-
lation coefficient between the original coefficient weights of the 48
main DNA segments of the RB-LOH signature and the actual ctDNA
signals measured in plasma = 0.72, p < 0.001; Fig. 3e and Supple-
mentary Fig. 10).

RB-LOH in tumor tissue versus plasma inmetastatic HR+/HER2-
disease treated with endocrine therapy and a CDK4/6 inhibitor
We analyzed tissue samples of 63 patients with advanced HR+/HER2-
breast cancer treated with endocrine therapy and a CDK4/6 inhi-
bitor. RB-LOH signature determined in tumor tissue DNA was sig-
nificantly associated with PFS and OS (Fig. 3d and Supplementary
Fig. 11). Twenty-eight patients had paired tumor tissue and plasma
samples, these were interrogated to compare the ability of the
tissue-based signatures versus the ctDNA-based signatures to better
predict PFS and OS. Of the 150 DNA-based signatures, 17% and 13%
were statistically significantly associated with PFS and OS, respec-
tively, when evaluated in plasma. When the same signatures were
evaluated in tissue, only 2% and 1% were statistically significantly
associated with PFS and OS, respectively (Supplementary Data 8).
Thus, ctDNA-based signatures were better in predicting survival
outcomes in advanced breast cancer treated with endocrine ther-
apy and CDK4/6 inhibition than the same signatures when evaluated
in tissue, suggesting that plasma-based signatures capture “the
most up to date” biological state of the disease before starting
therapy. Furthermore, when the RB-LOH signature was evaluated
head-to-head in the 28 patients with paired tumor tissue and plasma
samples in a bivariate cox model, the RB-LOH ctDNA plasma sig-
nature was found significantly associated with PFS, but not the RB-
LOH tumor signature (Fig. 3d). Overall, baseline pre-treatment
ctDNA better captured the prognosis of patients than archival
tumor tissue DNA.

Fig. 3 | The ctDNA-based RB-LOH signature predicts clinical outcome in
advanced HR+/HER2- breast cancer treated with endocrine therapy and a
CDK4/6 inhibitor. a A plasma sample was obtained from 124 patients within 48h
prior to starting endocrine therapy and CDK4/6 inhibition (CDK-Validation-1
cohort). ctDNA-based signatures were applied in plasma samples with a TF≥3%
(n = 87). b Boxplots of RB-LOH ctDNA-based signature score in patients with
complete or partial response (CR/PR, n = 26), stable disease (SD, n = 32) and pro-
gressive disease (PD, n = 18). For the boxplot, center line indicates median; box
limits indicate upper and lower quartiles; whiskers indicate 1.5× interquartile range.
P-values (p) were determined by two-tailed unpaired t-tests. c Kaplan-Meier curves
of PFS (left) and OS (right) of the RB-LOH ctDNA-based signature. Each patient
group is based on tertiles. P-values (p) were determined by Log Rank Test. d Forest
plots of hazard ratios (HRs) for PFS (left) and OS (right) of the RB-LOH DNA-based
signature when evaluated in plasma alone (i.e., plasma–univariate; n = 87), in

plasma when adjusted for TF (n = 87), in plasma when adjusted for PAM50 RNA-
based subtypes (n = 53), in plasma when adjusted for TF+ PAM50+ clinical vari-
ables (n = 53), in tissue alone (i.e., tissue–univariate; n = 63) and in plasma when
adjusted for tissue and vice-versa (n = 28). Data are presented as the hazard ratios
(HR)with errorbars showing95% confidence intervals.eAverage ctDNAsignal of 16
features of the RB-LOH DNA-based signature (column on the left), weight and
direction of each feature (column in the middle) in the original signature as
reported inXia et al.10 andmean changeof the 16 features (column on the right) in 7
patients with paired plasma samples (baseline pre-treatment vs post-CDK4/6
inhibitor treatment). f ctDNA-based signature scores of the RB-LOH signature, the
Luminal A signature, the 13q14.2 RB1 locus, and TF across 7 patients with paired
plasma samples (baseline vs post-CDK4/6 inhibitor treatment). P-values (p) were
determined by two-tailed paired t-tests. Source data are provided as a Source
Data file.
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ctDNA RB-LOH signature versus ctDNA RB1 individual region in
metastatic HR+/HER2- disease treated with endocrine therapy
and a CDK4/6 inhibitor
The DNA-based RB-LOH signature considers the signal of the RB1 locus
(13q14.2) among 224 other features10 (Fig. 3e). The correlation coeffi-
cient between the ctDNA signal of 13q14.2 and the ctDNA RB-LOH sig-
nature score was −0.12 across the 178 samples with TF ≥3%, reinforcing
the concept that the ctDNA RB-LOH signature is different from mea-
suring only the individual 13q14.2 region. Indeed, the ctDNA signal of
the individual 13q14.2 segmentwasnot significantly associatedwith PFS
(p =0.061) but was significantly associated with better OS (p =0.020),
while the RB-LOH signature was strongly associated with PFS and OS in
patients with advanced HR+/HER2-negative breast cancer treated with
CDK4/6 inhibitors. In abivariate coxmodelwith both variables, only the
ctDNA RB-LOH signature was prognostic. Overall, the RB-LOH ctDNA-
based signature better captured the clinical behavior than an individual
DNA region looking only at RB1, thus highlighting the power of amulti-
feature algorithm for sensing pathway activity (Supplementary Fig. 12).

Independent prognostic validation of the RB-LOH signature
To further validate the prognostic value of the RB-LOH signature,
we evaluated pre-treatment baseline plasma samples from a second

independent cohort of 357 plasma samples, hereafter Plasma-2
cohort, which included 121 patients with advanced HR+/HER2-
breast cancer treated with endocrine therapy and a CDK4/6 inhi-
bitor at Hospital Clínic of Barcelona and the Vall d’Hebron Institute
of Oncology (VHIO) and assayed using our ctDNA WGS-assay.
Baseline characteristics of the 121 patients of CDK-Validation-2
cohort are reported in Table 2. Sixty-five patients (54.0%) had a
TF ≥3%. With a median follow-up of 12.3 months, the RB-LOH sig-
nature was significantly associated with worse PFS when evaluated
as a continuous variable (hazard ratio=1.42 [1.03–1.96], p = 0.032),
and using the previously defined cutoffs (i.e., tertiles) derived from
the CDK-Validation-1 cohort (Supplementary Fig. 13a, b). Finally, the
prognostic value of RB-LOH signature was confirmed in the com-
bined CDK-Validation-1 and CDK-Validation-2 cohorts (n = 152)
(Supplementary Fig. 13c, d). Moreover, we evaluated if the ctDNA-
based RB-LOH was significantly associated with PFS and OS in 71
patients with a TF 3–10% before starting endocrine therapy in
combination with a CDK4/6 inhibitor. Like the overall population,
we observed a statistically significant association with both clinical
endpoints (PFS: hazard ratio = 1.32, p = 0.023; OS: Hazard ratio =
1.54, p = 0.011), suggesting that our approach can work in patients
with low TF (3–10%).

Table 2 | Baseline clinical characteristics of patients with HR+/HER2- advanced disease treated with endocrine therapy and a
CDK4/6 inhibitor

Cohort CDK-Validation-1 CDK-Validation-2

All patients Patients with TF ≥3% All patients Patients with TF ≥3%

N % N % N % N %

Number of patients 124 87 121 65

Median age (range) 61 (34-86) 62 (34-86) 60 (31-88) 60 (41-83)

Sex

Female 122 98.4% 87 100.0% 121 100% 121 100%

Male 2 1.6% 0 0.0% 0 0% 0 0%

CDK4/6 inhibitor

Palbociclib 70 56.5% 48 55.2% 48 39.7% 22 33.8%

Ribociclib 50 40.3% 36 41.4% 52 43.0% 26 40.0%

Abemaciclib 4 3.2% 3 3.5% 21 17.4% 17 26.2%

Setting in advanced disease

1st line 71 57.3% 52 59.8% 72 59.5% 37 56.9%

2nd line 27 21.8% 15 17.2% 18 14.9% 10 15.4%

≥3rd line 26 21.0% 20 23.0% 31 25.6% 18 27.7%

Number of metastases

<3 74 59.7% 50 57.5% 56 46.3% 44 67.7%

≥3 50 40.3% 37 42.5% 64 52.9% 21 32.3%

Unknown 0 0.0% 0 0.0% 1 0.8% 0 0.0%

Type of metastasis

Visceral metastasis 66 53.2% 34 39.1% 67 55.4% 38 58.5%

De novo metastasis 30 24.2% 19 21.8% 34 28.1% 22 33.9%

Bone only 12 9.7% 0 0.0% 20 16.5% 12 18.5%

Prior endocrine therapy sensitivity

Sensitive 103 83.1% 73 83.9% 94 77.7% 48 73.8%

Resistant 19 15.3% 14 16.1% 26 21.5% 17 26.2%

Unknown 2 1.6% 0 0.00% 1 0.8% 0 0.0%

ECOG Performance status

0 50 40.3% 38 43.7% 62 51.2% 33 50.8%

1 61 49.2% 39 44.8% 49 40.0% 27 41.5%

2 12 9.7% 10 11.5% 5 4.1% 4 6.2%

Unknown 1 0.8% 0 0.0% 5 4.1% 1 1.5%

*Previous systemic treatments are available for the CDK-Validation-1 cohort (Supplementary Data 17).
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To provide more evidence of the prognostic value of the RB-LOH
signature, we evaluated publicly available data from an independent
cohort of 381 patients with advancedHR+/HER2- breast cancer treated
with endocrine therapy and a CDK4/6 inhibitor at the Memorial Sloan
Kettering Cancer Center (MSK)26. RB-LOH signature scores were
obtained from next-generation-sequencing data of tumor tissue DNA
profiled under the MSK-IMPACT platform, which includes copy-
number data from 468 cancer-associated genes27. With a median
follow-up of 71.0 months, the RB-LOH signature was significantly
associated with PFS (hazard ratio = 1.41, 95% CI 1.21–1.64, p < 0.001)
(Supplementary Fig. 14a, b). Similar results were obtained in the subset
of 223 patients where the MSK-IMPACT assay was performed in biop-
sies taken within 1 year of starting therapy (PFS hazard ratio = 1.61, 95%
CI 1.32–1.96, p < 0.001) (Supplementary Fig. 14c). However, RB-LOH
was not prognostic when assessed in 158 biopsies taken more than 1
year before starting therapy with a CDK4/6 inhibitor (Supplementary
Fig. 14d).

Capturing biological features before and after CDK4/6
inhibition
Scores from the 150 ctDNA-based signatures (adjusted by TF) were
evaluated inpairedplasma samples (i.e., baseline versuspost-treatment
after progressive disease) in 7 patients with advanced HR+/HER2-
breast cancer treated with endocrine therapy and a CDK4/6 inhibitor
(Fig. 3f). Among them, 103 signatures (68.7%) were found differentially
enriched between the two time-points (FDR< 5%). As might be expec-
ted, enrichment of signatures tracking non-luminal/proliferation-rela-
ted biological processes (e.g., RB-LOH) and luminal A-related biological
processes were found significantly increased and decreased, respec-
tively, in post-treatment samples compared to pre-treatment samples
(Fig. 3f and Supplementary Data 9). Of note, TF did not significantly
change between the two timepoints across the 7 patients (Fig. 3f), and 1
patient with a substantial decrease in TF still showed an increase in the
RB-LOH score and a decrease of the luminal A signature. Importantly,
the signal from 12 of the top 16 DNA segments (75%) of the RB-LOH
signature changed in the expected direction in post-treatment samples
compared to pre-treatment samples (Fig. 3f), providing evidence of our
approach providing additional information beyond changes of TF and
signals from individual DNA regions. These biological changes identi-
fied in ctDNA are concordant with similar biological changes identified
across 18 patients with paired tumor-based RNA expression before and
at progression to endocrine therapy and a CDK4/6 inhibitor (Supple-
mental Fig. S15). Specifically, PAM50 Luminal A and proliferation sig-
natures were found significantly decreased and increased, respectively,
in tumor tissue progressing to endocrine therapy and CDK4/6
inhibition.

Identifying ctDNA-based tumor subtypes
Phenotype-based classification in metastatic breast cancer using
tumor tissue RNA expression profiling such as intrinsic subtyping (i.e.,
Luminal A, Luminal B, HER2-enriched and Basal-like) is prognostic and
might predict treatment benefit5–7. To evaluate if the biology displayed
by the 150 ctDNA-based signatures (adjusted by TF) can identify sub-
types with clinical relevance, we performed an unsupervised hier-
archical cluster analysis of all 150 signatures across 178 plasma samples
with a TF ≥3% (Fig. 4a). Four main clusters/groups of samples were
identified using consensus clustering plus (Supplementary Fig. 16) and
then validated in an independent cohort of 357 plasma samples
(Plasma-2 cohort), including 193with a TF ≥3% (Supplementary Fig. 17).

Clusters 3 and4 showedhigh scores of ctDNA-basedproliferation-
related signatures and low scores of differentiation status and of
luminal A-related signatures. Compared to Cluster 4, Cluster 3 showed
high expression of basal-like-related gene expression (p <0.001).
Cluster 2 showed high enrichment of differentiation and luminal
B-related signatures, and low enrichment of basal-like related biology.

Visually, cluster 2 could be further subdivided (minimum 20 samples
and a correlation coefficient >0.75) into Cluster2A and Cluster2B, both
of which showed differences in the enrichment of ctDNA-based pro-
liferation features, and luminal A-related signatures. Consistent with
the luminal A-related biology identified in Custer 2 A, this group was
characterized by 16p amplification and 16q deletion (Supplementary
Data 10 and Fig. S18), both of which are known features of low-grade
and low-proliferative breast cancers28–30. Finally, Cluster 1 showed low
enrichment of proliferation and luminal B-related signatures and high
enrichment of luminal A subtype related signatures. Plasma TF in
Cluster 1 was significantly lower compared to the other clusters com-
bined (average 6.8% vs. 9.8%), p <0.001; Fig. 4a and Supplementary
Fig. 19, which might be predicted for slow growing luminal A tumors.

RNA-based expression data from FFPE tissue using a research-
based PAM50 intrinsic subtype assay15 was available for 108 cases with
a TF ≥3% in plasma. Tissue samples were obtained at various time-
points. As expected, Cluster 3 was enriched for tumors with a PAM50
non-luminal subtype (i.e., HER2-enriched or Basal-like) compared to
the other clusters (85.7% versus 25%, p <0.001) (Supplementary
Fig. 20). Concordantwith thisfinding, the PAM50 Luminal A andHER2-
enriched signatures (as a continuous variable) were found differen-
tially expressed in Cluster 3 versus the other clusters (Fig. 4b). In
addition,weobserved thatCluster 2Bwas enriched for PAM50Luminal
B tumors compared to Cluster 2A (53.3% versus 18.8%, p = 0.044).

Prognosis of ctDNA-based tumor subtypes in patients with
metastatic HR+/HER2- disease treated with endocrine therapy
and a CDK4/6 inhibitor
This work demonstrates that tumor profiles identify samples with
similar patterns of expression, and these patterns are associated with
clinically relevant genotypes. We then hypothesized that ctDNA-
defined subtypes, representing repeatably observed combinations of
these patterns, may explain variation in clinical outcomes. Regarding
the relationship between clusters 1–4 and treatment response, we
observed an overall response rate (ORR) of 52.7%, 34.0%, 7.1% and
16.7% in Cluster 1, Cluster 2, Cluster 3 and Cluster 4, respectively
(p < 0.001). Regarding the relationship between cluster 1–4 and prior
endocrine sensitivity, this was observed in 91.7%, 80.0%, 57.1%, and
55.6% in Cluster 1, Cluster 2, Cluster 3 and Cluster 4, respectively
(p = 0.004) (Fig. 4c).

Next, we evaluated the prognostic value of the 4 ctDNA-based
tumor groups in the CDK-Validation 1 and 2 cohorts combined
(n = 152). Compared to Cluster 1 (median PFS = 18.3 months), Clusters
2, 3 and 4 were found significantly associated with worse PFS (median
PFS of 10.2, 2.9, and 6.4 months, respectively). Median OS was not
reached forCluster 1 and 2,whilemedianOSwere 16.8 and 17.8months
for Clusters 3 and 4, respectively. Cluster 3, which has the highest
ctDNA-based RB-LOH signature score (p <0.001; Supplemental
Fig. S21), was significantly associatedwithworse PFS andOS compared
to Cluster 1 (PFS hazard ratio = 4.76, 2.29–9.91, p <0.001; OS hazard
ratio = 5.21, 1.68–16.19, p <0.001) (Fig. 4d).

DNA-based tumor subtypes in tissue samples
To explore how tumor subtypes identified in ctDNA data perform
when applied to tumor tissue DNA, the scores of the 150 DNA-based
signatures were determined and evaluated using tumor DNAs from
1,689 patients with early-stage breast cancer from the publicly avail-
able METABRIC dataset29, and 381 patients with advanced HR+/HER2-
breast cancer fromtheMSK-IMPACTdataset (Fig. 5a andSupplemental
Fig. 22a). We developed a 4-class subtype classifier from the ctDNA
groups identified in Plasma-1 cohort (Fig. 4a) and applied thispredictor
onto METABRIC’s and MSK´s tumor DNA data. Overall, the 4 main
clusters were identified in both cohorts (Fig. 5a and Supplemental
Fig. 22a), and these clusters showed the expected DNA signal across
chromosomes (Fig. 5b). Concordant with this finding, the PAM50 non-
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luminal subtypes in the METABRIC cohort were enriched in Cluster 3
compared to the other clusters (79.6% versus 11.6%, p <0.001) (Fig. 5c).
In addition, TP53 somatic mutations in METABRIC were also enriched
in Cluster 3 compared to the other clusters (80.7% versus 51.2%, p <
0.001) (Fig. 5d). Finally, the 4 main clusters were found significantly
associatedwith disease-free survival (DFS) andOS in all patients, and in
patients with early-stage HR+/HER2- breast cancer (Fig. 5e), and PFS in

patientswith advancedHR+/HER2- breast cancer in theMSKCCdataset
(Supplemental Fig. 22b). Similar results were obtained in the subset of
223 patients where the MSK-IMPACT assay was performed in tumor
tissue biopsies obtained within 1 year of initiating therapy (Supple-
mental Fig. 22c, d).

Finally, to understand whether the identification of the 4 clusters/
subtypes is independent of the tissue profiled (i.e., primary versus
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metastasis), we analyzed the 150 DNA-based signatures across 158
tumor tissues (either primary tumors or metastatic tumors). The pro-
portion of primary tumors falling in Clusters 1, 2, 3 and 4 was 47.6%,
27.0%, 11.1% and 14.3%, respectively. The proportion of metastatic
tumors falling in Clusters 1, 2, 3 and 4 was 27.0%, 39.3%, 19.1% and
14.6%, respectively (Supplementary Fig. 23). Thus, an enrichment for
cluster 1 (better prognosis) was observed in primary tumors compared
to metastatic tumors (p = 0.010). This enrichment for a more aggres-
sive tumor biology in themetastatic setting is consistent with previous
studies31,32.

Discussion
Through in-silico supervised learning analysis of The Cancer Genome
Atlas (TCGA) early-stage breast cancer dataset wepreviously identified
150 DNA copy-number-based multi-feature predictors able to track a
variety of biological processes at the RNA and protein level10. Here, we
addressed if our approach could be applicable in liquid biopsies (i.e.,
plasma ctDNA). In this report, we predict complex tumor phenotypes
like tumor cell proliferation rates using blood samples from patients
withmetastatic cancer. Our discovery should lead to opportunities for
biomarker discovery, validation, and implementation in oncology.

In metastatic breast cancer, phenotype-based classification using
tumor tissue RNA expression profiling (i.e., Luminal A, Luminal B,
HER2-enriched and Basal-like) is prognostic and might predict
treatment benefit5–7. Specifically, both non-luminal subtypes within
HR+/HER2- disease have been associated with a poor outcome in the
context of endocrine-based treatment. In addition, the Basal-like sub-
type within HR+disease is associated with a lack of benefit from
endocrine therapy andCDK4/6 inhibition5, afinding highly concordant
with ours. Another example within metastatic HER2+ disease is the
result of a phase II PATRICIA trial (NCT02448420), where the benefit of
endocrine therapy and palbociclib seemed restricted to ∼50% of
patientswith a LuminalAorB subtype33. Finally, in advancedTNBC, the
identification of the Basal-like versus non-Basal-like subtypes revealed
significant differences in response rates to carboplatin versus doc-
etaxel in non-Basal-like disease in the TNT phase III trial9. Based on
these findings, several prospective clinical trials are currently selecting
patients based on their tumor’s RNA-based phenotype (e.g., TATEN
(NCT04251169), PATRICIA II (NCT02448420), NEREA (NCT04460430)
and HARMONIA (NCT05207709)).

Among the different phenotypic features identified in ctDNA, the
RB-LOH signature16 was found as one of the top signatures associated
with survival outcomes in patients with advanced HR+/HER2- breast
cancer treated with endocrine therapy in combination with a CDK4/6
inhibitor. CDK4/6 kinases associate with cyclin D proteins during
transition from G1 to S phase of the cell cycle21. The cyclin D/CDK4/6
complex phosphorylates RB, dissociating it from the E2F transcription
factors, which are ultimately responsible for cell cycle progression34. In
this scenario, loss of RB is an evident cause of resistance to CDK4/6
inhibitors21, and various preclinical studies support this hypothesis22,23.
In addition, mutations in RB, which are rare, are responsible for resis-
tance to CDK4/6 inhibition in a few patients24,25,35.

The RB-LOH mRNA-signature was originally developed by com-
paring gene expression betweenDNA assessedRB-LOH-positive breast
tumors versus LOH-normal tumors16. Expression of 452 genes varied
with RB-LOH status and 423 were highly expressed in tumors with RB-
LOH. These genes were associated with cell cycle-related biological
processes, including cell division, DNA metabolism, spindle organiza-
tion and biogenesis and response to DNA damage, and many were
known E2F-regualted genes16. If one closely examines the selected
features of the DNA-copy number based RB-LOH signature, it includes
10s of features that encompass many chromosomal regions known to
harbor unambiguous acknowledged players of the cell cycle including
RB1, E2F1,3, CCND1,2,3, CDK6 and MYC; thus an important quality of
thesemulti-feature Elastic Net predictors is that they have been trained
to ‘sense’manyparts of a given pathway and to combine these into one
objective machine learning trained predictor, which links these toge-
ther into a single quantitative score. As expected, the frequency of the
RNA-based RB-LOH signature varied by intrinsic subtype with the
lowest and highest LOH frequencies observed in the Luminal A (15%)
and Basal-like (72%) subtypes, respectively, concordant with the
known lack of RB function in Basal-like tumors and thus a lack of
benefit of CDK4/6 inhibitors biology5.

The ability to detect and monitor tumor phenotypes in blood
samples opens opportunities for precision oncology. On one hand,
tumor tissue biopsies of metastatic disease are difficult to perform,
pose risks to the patient and do not fully capture the intra-patient
tumor heterogeneity36. On the other hand, tumor biology evolves over
time and the biology captured in a tissue sample might not fully
recapitulate the biology present at the latter times decisions are often
made in the metastatic setting. For example, ∼1/3 of primary breast
tumors switch molecular subtype when relapse occurs31,32,37, a pro-
portion that increases to ∼50% if the primary tumor was Luminal A. In
addition, large relative changes in tissue gene expression have been
found between primary andmetastatic breast cancer. For example, 47
of 105 breast cancer-related genes (45%) were found differentially
expressed across 123 paired primary-metastatic tumors31. Interest-
ingly, expression of proliferation-related genes was better at predict-
ing OS in metastatic disease when analyzed in metastatic tissue rather
than primary tissue31. This is concordant with our findings that the RB-
LOH ctDNA-signature is better associated with prognosis when mea-
sured in ctDNA prior to initiating therapy compared to the same sig-
nature evaluated in archival tissue samples coming from the primary
tumor,which typically predate themetastatic specimenbymany years.

Our findings should facilitate the development of prospective
trials in specific clinical scenarios selecting patients with a more
homogenous tumor biology. For example, patients with HR+/HER2-
advanced breast cancer and a high score in the ctDNA-based RB-LOH
signature could be randomized to a chemotherapy-based treatment
strategy versus the standard-of-care of endocrine therapy and CDK4/6
inhibition. In addition, tracking RB-LOH and other ctDNA-signatures
might better help to understand why tumors progress and make
treatment decisions based on that information. For example, a trial
could evaluate endocrine therapy alone in patients with HR+/HER2-

Fig. 4 | ctDNA-based profiling of metastatic breast cancer. a Unsupervised
cluster analysis of 178 plasma samples with a TF≥3% (columns) and the scores of
150 ctDNA-based signatures (rows). Orange and violet colors represent scores
above and below the median score of the signature across the dataset. Below the
array tree, the IHC subtype and the PAM50 molecular subtype are shown for each
sample. Four clusters of samples (clusters 1 to 4) were identified. Within cluster 2,
two subgroups of samples were also identified (clusters 2A and 2B).b Expression of
2 tissue PAM50 RNA-based signatures (i.e., Luminal A [p =0.0005] and HER2-
enriched [p =0.006]) in cluster 3 versus the other clusters. This analysis was per-
formed in 107 paired plasma and tumor tissue samples. Of note, 58 tumor tissue
samples were obtained at the same timepoint as the plasma sample and 49 tumor

tissue samples were obtained at different timepoints prior to obtaining the plasma
sample. P-values (p) were determined by two-tailed unpaired t-tests. For the box-
plot, center line indicates median; box limits indicate upper and lower quartiles;
whiskers indicate 1.5× interquartile range. c Association of ctDNA-based clusters
with response to endocrine therapy and CDK4/6 inhibition (p <0.001) and prior
endocrine sensitivity (p <0.001) in 152 patients from the combinedCDK-Validation-
1 andCDK-Validation-2 cohorts. P-values (p) were determined by Fisher’s exact test.
d Kaplan-Meier curves of PFS (Log Rank p <0.001; Cluster 3 vs Cluster 1 p <0.001)
(left) and OS (Log Rank p <0.001; Cluster 3 vs. Cluster 1 p =0.004) (right) of the 4
ctDNA-based clusters in 152 patients of the combined CDK-Validation-1 and CDK-
Validation-2 cohorts. Source data are provided as a Source Data file.
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were determined using a multi-class SAM analysis (FDR < 5%) c PAM50 molecular
subtype distribution across the 4 DNA-based clusters in 1689 breast tumors of the
METABRIC dataset29. d TP53mutation distribution across the 4 DNA-based clusters
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(DFS Log Rank p = 3.51e-10; Cluster 1 vs 3 p <0.001; OS Log Rank p = 1.56e−09;
Cluster 1 vs 3 p < 0.001) and HR+/HER2- tumors (n = 1131) (DFS Log Rank p <0.001;
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METABRIC database29. Source data are provided as a Source Data file.
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advanced breast cancer with a high score of the ctDNA-based Luminal
A signature, and then add CDK4/6 inhibition when the ctDNA-based
Luminal B signature increases during therapy versus initiating endo-
crine therapy andCDK4/6 inhibition upfront. Another clinical situation
is when one is forced to change treatment after a single metastatic
lesion progresses while the other metastatic lesions are radiologically
under control and the patient is doing clinically well. In this context,
detection of a low proliferation status in ctDNA might open opportu-
nities suchas considering local therapy approaches on the progressing
lesion and continue with the same systemic therapy.

Our study has limitations. First, ∼39% of patients had a TF < 3%,
and ctDNA-signatures could not be evaluated. In addition, ∼30% of
patients had a TF of 3–10% and this might limit the detection of the
ctDNA-based signatures. Further studies evaluating deeper ctDNA
sequencing strategies and signaturedetection inpatientswith very low
TF, including thosewith early-stage disease, is warranted. For example,
expressed genes might be inferred by evaluating nucleosome foot-
prints from whole-genome sequencing of plasma DNA38. Second, this
was an exploratory study, and we did not use a sample size calculation
but we used all the samples available for the correlative analysis. The
lack of formal design through pre-planned analysis prohibits inference
of negative results. Third, we did not address if any of the 150 sig-
natures predict clinical outcome in advanced HER2+ or TNBC or ben-
efit from other targeted therapies. Fourth, we decided to focus on
signatures previously identified and validated. Fifth, although both
independent datasets collected plasma samples prospectively from
patients treated with endocrine therapy and a CDK4/6 inhibitor, the
cohorts are not from clinical trials and are prone to potential biases
such as patient selection, inconsistent evaluation of the disease during
therapy and subjectivity indeterminingdrug response andprogressive
events. Sixth, we did not compare the prognostic value of the ctDNA-
based signatures measured at baseline with the prognostic value of
early ctDNA dynamics after 2–4 weeks of initiating therapy11,39.
Seventh, ctDNA-signatures might not capture well tumor immune-
related biology as tumor tissue DNA-signatures.

To date, DNA sequencing has identified few FDA-approved
actionable genetic alterations in cancer, especially breast cancers.
Phenotypic characterization using multi-gene RNA-based expression
might add biological and clinically relevant information. However,
implementation of tumor-based RNA-based gene expression profiling
in themetastatic setting is amajor challenge since tumor tissue is often
not readily available. Here, we demonstrate that complex tumor phe-
notypic traits can be identified in ctDNA and may provide clinical
value. Our ctDNA-basedmulti-gene signature approach opens avenues
for discovering and implementing biomarkers in oncology, especially
in the advanced disease setting where liquid biopsies are becoming
commonplace.

Methods
The Hospital Clínic Barcelona institutional ethics committee approved
the study in accordance with the principles of Good Clinical Practice,
the Declaration of Helsinki, and other applicable local regulations
(HCB/2019/0666). Written informed consent was obtained from all
patients before enrolment. The medical records were retrospectively
reviewed to obtain the necessary clinical data.

Study participants and samples
We collected 246 plasma samples from 207 patients (Plasma-1 cohort)
treated atHospital Clinicof Barcelona (n = 190), Hospital 12 deOctubre
in Madrid (n = 15) and Institut Català d’Oncologia (n = 2) at different
stages of their metastatic disease: 209 plasmas from 179 patients with
advanced HR+/HER2- breast cancer, 19 plasmas from 16 patients with
HER2+ advanced breast cancer, 17 plasmas from 16 patients with
advanced TNBC and 1 plasma from 1 patient with unknown ER and
HER2 status (Fig. 1a). Plasma-1 cohort included 124 baseline pre-

treatment blood plasma samples from 124 patients with HR+/HER2-
advanced breast cancer treated with endocrine therapy in combina-
tion with a CDK4/6 inhibitor (i.e., palbociclib, ribociclib or abemaci-
clib) between the years of 2018 and 2021 (CDK-Validation-1 cohort). All
plasma samples were obtained before the start of treatment (Fig. 1b).
In 7 patients, we obtained an additional plasma sample after progres-
sing while on therapy.

Additionally, we included a second independent cohort of 357
plasma samples of patients with advanced breast cancer (Plasma-2
cohort) (Fig. 1A), including 121 baseline samples of patients with
HR+/HER2- advanced breast cancer treatedwith endocrine therapy
in combination with a CDK4/6 inhibitor (i.e., palbociclib, ribociclib
or abemaciclib) at Hospital Clinic of Barcelona (n = 50) and Vall
d’Hebrón Institute of Oncology (n = 71) (CDK-Validation-2)
(Fig. 1b). Only baseline pre-treatment plasma samples were avail-
able from this cohort. Moreover, we analyzed plasma samples from
14 healthy individuals.

In addition, 185 FFPE tumor tissues from patients treated at Hos-
pital Clinic of Barcelona were collected, including samples from 110
patients with available plasma samples (in Plasma-1 cohort), and
samples from 17 patients with HR+/HER2- advanced breast cancer who
did not have plasma samples but were treated with endocrine therapy
and a CDK4/6 inhibitor.

Publicly available DNA, RNA and clinical data fromMETABRIC and
the MSKCC datasets were obtained from cBioportal.

DNA-sequencing of plasma samples
Approximately 30mL of peripheral blood was collected into K2-EDTA
Vacutainer tubes (Becton Dickinson) and plasma isolation was per-
formedwithin 2 hof blood collection through two centrifugation steps.
Centrifugation at 1600 x g for 10min at 4 °C separated plasma from
peripheral-blood cells. Approximately 12mL of plasma were obtained
per patient, which were subsequently centrifugated at 16,000 x g for
10min at 4 °C to remove the residual supernatant and any remaining
contaminants including cells. Plasma samples were then aliquoted in
1.5mL tubes and immediately stored at −80 °C. cfDNA was obtained
from 3mL of plasma using the QIAamp Circulating Nucleic Acid Kit
(QIAGEN Inc.) according to the manufacturer’s instructions and quan-
tified with a Qubit dsDNA high-sensitivity assay kit and the Qubit 4.0
fluorometer (Life Technologies, Carlsbad, CA, USA). cfDNA was con-
centrated using SpeedVac to fulfil the requirements for library pre-
paration. Library preparation was performed by ligating unique dual
indexes (UDI) custom adapters to a minimum of 10 ng of the isolated
cfDNA (10–50 ng dsDNA). More specifically, the fragment ends of
cfDNAwere blunted and 5′phosphorylated and, after that, 3′ endswere
A-tailed to favour adapter ligation. Adapters were 10bp – UDI as
recommended to mitigate errors introduced by index-hopping or
switching in Illumina instruments with patterned flow cells, such as the
NovaSeq 6000. Indexed libraries were quantified by qPCR using the
KAPA Library Quantification Kit (Roche Sequencing Solutions), pooled,
and sequenced in aNovaSeq 6000 Illumina at 0.5Xmean coveragewith
read length of 2 ×150 bp. ShWGS was analyzed with hmmcopy_utils
(https://github.com/shahcompbio/hmmcopy_utils) and ichorCNA
v0.2.0 (https://github.com/broadinstitute/ichorCNA), with a bin size of
500kbanddefault parameters12. ichorCNA is a previously reported tool
by Adalsteinsson et al.12 for estimating the fraction of tumor in cfDNA
from ultra-low-pass WGS. ichorCNA uses a probabilistic model, imple-
mented as a hidden Markov model, to simultaneously segment the
genome, predict large-scale copy number alterations, and estimate the
TF of an ultra-low-passwhole genome sequencing samples. ichorCNA is
optimized for low coverage (~0.1X) sequencing of samples and has
been benchmarked using patient and healthy donor cfDNA samples.
Adalsteinsson et al. reported that, using a TF cutoff of 3%, ichorCNA
achieves a sensitivity of 0.95 for detecting presence of tumor and a
specificity of 0.91 for correctly classifying a healthy donor12.
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Analytical validation analysis of the methodological approach
To validate the approach, the following analytical analyses were per-
formed. First, since the coverage used in this study was at the higher
end of what is considered ultra-low pass WGS by definition (0.1–0.5X
coverage), we performed an in-silico downsampling of sample cover-
age for 12 samples in order to assess performance at different coverage.
Different TFs were represented within these 12 samples. For each
sample, a subset of aligned reads was selected to account for: 2X (40M
reads, 151 nucleotide [nt] long), 1X (20M reads, 151 nt long), 0.5X (10M
reads, 151 nt long) and0.1X (2M reads, 151 nt long) coverages. Reported
TFs were consistent across coverages (Supplementary Data 12).

Second, correlation analyses of the bin-to-bin log2 values of these
samples indicated a decrease in correlation of log2 values reported by
iChorCNA for the 0.1X condition in samples of TF< 10%, although 0.5X
(the coverage used in the presented study) performs similarly to 1X
(Supplementary Data 13). Of note, the 0.5X coverage samples raise
similar signature score values to 1X and 2X. For TFs below 20%, 0.1X
coverage may raise different scores and is not recommended for this
approach. Moreover, we applied our CNA signatures on the 11 samples
with TF ≥3%. Again, 0.5X coverages raise similar profiles across all
signatures to 1X and 2x (Supplementary Data 14). As an example, RB-
LOH signature score using different coverage is shown in Supple-
mentary Fig. 24.

Third, regarding determining the sensitivity of each signature
according to TF, we performed ‘serial’ dilutions of TF by in-silico
mixing reads from the 6 cases with TF> 50% with reads from the
pooled 14 healthy control samples to generate TFs of: 50%, 20%, 10%,
5%, and 1%. The resulting samples were analyzed with iChorCNA, and
CNA signatures run on each (Supplementary Data 15). At 1% TFs,
iChorCNAmay fail to detect tumor profiles in the shWGSdata (5/6 fails
at 1% in-silico TF). According to our data, 5–10% TF has an acceptable
overall failure rate (<20%). With regards to applying the CNA sig-
natures, there is a good correlation between samples >10% TF. As an
example, RB-LOH signature score is shown in Supplementary Fig. 25.

Next, we evaluated, from a prognostic perspective, the effect of
removing an increasing number of segments of a determined sig-
nature. For instance, we randomly removed 20, 40, 80, or 160 DNA-
based segments of the RB-LOH signature (measured in plasma) and
evaluated its association with PFS.We repeated this analysis 500 times
and estimated the average hazard ratio and p. Removing features of
the RB-LOH signature affected its prognostic ability (i.e., hazard ratio
decreased, and p increased) (Supplementary Fig. 26).

Finally, shWGS was performed in 14 healthy individuals, and the
log2 values by ichorCNA estimates were determined to be on average
0 (Supplementary Data 16).

DNA-sequencing of FFPE tumor samples
DNAobtained from FFPE-derived tissues waspurifiedwith theQIAamp
DNA FFPE Tissue kit (QIAGEN Inc.) for all samples available, following
manufacturer’s instructions. Quantification was performed with a
Qubit dsDNAbroad-range assay kit and theQubit 4.0 fluorometer (Life
Technologies, Carlsbad, CA, USA). A minimum of 100ng of extracted
DNA was processed for library preparation using a custom
hybridization-based capture panel targeting 435 genes with reported
somatic mutations in different tumor types (VHIO-300 v4 panel) per-
formed with Agilent SureSelectXT Low Input Target Enrichment Sys-
tem (Agilent Technologies, Inc). Indexed libraries were quantified by
qPCR using the KAPA Library Quantification Kit (Roche Sequencing
Solutions), pooled, and sequenced in a HiSeq 2500 Illumina (2 x
100bp) at an average coverage of 500X. Reads were aligned to the
hg19 reference genomewith BWA40, applied GATK41 base quality score
recalibration, indel realignment, and duplicate removal. Variant calling
(VarScan2 v2.4.3) required a minimum of 7 reads supporting the var-
iant allele to call a mutation. The sensitivity of the technique is 5%
Minor allele frequency (MAF) for Single nucleotide variant (SNVs) and

10% MAF for INDELs. Frequent single nucleotide polymorphisms
(SNPs) in the population were removed based on the gnomAD data-
base (allele frequency ≤0.0001). CNA were calculated from an in-built
genome-wide SNP backbone targeting 20000 SNPs using CNVkit
(v0.9.6.dev). Data was manually curated, and classification of identi-
fied variants was performed using publicly available databases (COS-
MIC, cBioPortal, ClinVar, VarSome, OncoKB).

DNA-based signature estimation
For both tumor DNA sequencing and plasma cell-free ctDNA sequen-
cing, segmentation files from CNVkit output (for tumor DNA) and
ichorCNA output (ctDNA) were first mapped to gene-level feature.
Values from 514 DNA segments were then determined as described in
Xia et al.10. Briefly, each segment scorewas calculated as themeancopy
number score across genes within the segment. The coefficients of
DNA segments for predicting gene signatures were obtained from Xia
et al. DNA-based signature scores were calculated as the weighted
average of DNA segment values for each sample.

For ctDNA, TF and tumor ploidy were estimated by ichorCNA. For
ctDNA samples with TF >0, TF and tumor ploidy adjusted signature
scores were calculated by first adjusting copy number values in
ichorCNA segmentation file: adjusted_copy_number_ratio =
log2(logR_copy_number/tumor_ploidy). Then DNA-based signature
scores were derived the same as described for tumor tissue. For cal-
culating the number of altered segments, we used arbitrary gain/loss
threshold of +/− 0.07 for unadjusted segment values and 0.32/−0.42
for adjusted segment values10. Segments with values above the gain
threshold or below the loss threshold were called altered.

Gene expression analysis of FFPE tumor samples
RNAwasextractedusing theHigh Pure FFPETRNA isolation kit (Roche,
Indianapolis, IN, USA) following manufacturer’s protocol. One to five
10-μm FFPE slides depending on tumor cellularity were used for each
tumor sample, and macrodissection was performed, when needed, to
avoid normal tissue contamination. A minimum of ∼100 ng of total
RNA was analyzed on the nCounter platform42 (Nanostring Technolo-
gies, Seattle, USA) using the 770-gene Breast Cancer 360TM Gene Panel,
which includes the 50 PAM50 genes. Gene expression for each sample
was independently normalized to the geometric mean of 5 house-
keeping (ACTB, MRPL19, PSMC4, RPLP0, and SF3A1), and research-
based PAM50 subtyping was determined15.

METABRIC and MSK breast cancer datasets
Clinical-pathological data was obtained from cbioportal43. Processed
DNA segment values were downloaded, and DNA-based signature
scoreswere calculated as theweighted average of DNA segment values
for each sample. Treatment and clinical outcome information from the
MSK dataset was obtained from Table S2 from Razavi et al.26.

A DNA-based 4 subtype predictor
To identify the 4 subtype clusters using DNA-based data, we selected
signatures that were significantly differentially expressed across the 4
clusters identified in ctDNA using a multi-class significance analysis of
microarrays (SAM)44 with <5% FDR. Thenwe used the selected gene list
and calculated 4 centroids from the training data. For every new
sample in METABRIC29, we calculated the Euclidean distances to the 4
centroids and assigned a cluster class to each sample based on the
nearest centroid.

General statistical procedures
Categorical variables were expressed as number (%) and compared by
χ2 test or Fisher’s exact test. Differentially expressed signatures
between two groups were identified using a two-class unpaired SAM
with an FDR < 5%. Differentially expressed signatures between two
timepoints (i.e., baseline versus post-progression to endocrine therapy
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and a CDK4/6 inhibitor) were identified using a two-class paired SAM
with an FDR < 5%. Estimates of survival were from the Kaplan–Meier
curves and tests of differences by the log-rank test. Univariate and
multivariable Cox models for PFS and OS were used to test the prog-
nostic significance of each variable. The Bonferroni correctionmethod
was used to control the family-wise error rate in case of multiple
comparisons. PFS was defined as the period from initiation of endo-
crine therapy and a CDK4/6 inhibitor until disease progression or date
of last follow-up. OS was defined as the period from initiation of
endocrine therapy and a CDK4/6 inhibitor until death or date of last
follow-up. All cluster analyses were displayed using Java Treeview
version 1.1.3. Average linkage hierarchical clustering was performed
using Cluster v3.045. Two-sided p < 0.05 were considered statistically
significant. Statistical computations were carried out in R 4.0.3 (http://
cran.r-project.org).

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
Thedata collected for the study are not available, as participants of this
study did not agree for their data to be shared publicly. However, we
encourage investigators interested in data access and collaboration to
contact the corresponding author (Aleix Prat, alprat@clinic.cat).
Access can be obtained for academic use only under a data transfer
agreement and upon Ethics Committee approval. The timescale for
this process is approximately 6 months and the data will be available
for 3 years. The data generated in this study and presented in the
figures are provided in the Supplementary Data/Source Data
files. Source data are provided with this paper.
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