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Meiosis is a specialized cell division that generates haploid gametes and is critical
for successful sexual reproduction. During the extended meiotic prophase I,
homologous chromosomes progressively pair, synapse and desynapse. These
chromosomal dynamics are tightly integrated with meiotic recombination (MR),
during which programmed DNA double-strand breaks (DSBs) are formed and
subsequently repaired. Consequently, parental chromosome arms reciprocally
exchange, ultimately ensuring accurate homolog segregation and genetic
diversity in the offspring. Surveillance mechanisms carefully monitor the MR
and homologous chromosome synapsis during meiotic prophase I to avoid
producing aberrant chromosomes and defective gametes. Errors in these
critical processes would lead to aneuploidy and/or genetic instability. Studies
of mutation in mouse models, coupled with advances in genomic technologies,
lead us to more clearly understand how meiosis is controlled and how meiotic
errors are linked to mammalian infertility. Here, we review the genetic regulations
of these major meiotic events in mice and highlight our current understanding of
their surveillance mechanisms. Furthermore, we summarize meiotic prophase
genes, the mutations that activate the surveillance system leading to meiotic
prophase arrest in mouse models, and their corresponding genetic variants
identified in human infertile patients. Finally, we discuss their value for the
diagnosis of causes of meiosis-based infertility in humans.
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1 General aspects of mammalian gametogenesis

The perpetuation of most living beings and their genetic information across generations
relies on a critical biological process-gametogenesis. In mammals, this process includes
oogenesis and spermatogenesis, through which unipotent diploid precursor cells develop
into mature haploid gametes, eggs in females, or sperm in males. After fertilization, the
united egg and sperm form the embryo that develops into a new diploid organism carrying
maternal and paternal genomic material.

During early mouse embryonic development, primordial germ cells (PGCs) are singled
out at the epiblast (at ~ embryonic day (E) 7.25) (Chiquoine, 1954; Ginsburg et al., 1990),
migrate along the developing gut and eventually colonize the future gonads (at ~ E10.5)
(Molyneaux et al., 2001). Soon, PGCs switch from multipotential to bipotential and obtain
the competence to initiate sexual differentiation and meiosis (Lesch and Page, 2012). At ~
E12.5, the expression of the Y chromosome-encoded gene, Sry, determine the gonads to
become the testes (Koopman et al., 1991). Consequently, PGCs commit to divergent
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development based on the cues from the somatic environment:
female and male PGCs differentiate to their specialized gamete
precursors: oogonia and spermatogonia, which initiate meiosis to
form eggs through oogenesis or sperm through spermatogenesis
(Edson et al., 2009).

In mammals, meiosis exhibits substantial sexual dimorphism
(Handel and Eppig, 1997; Morelli and Cohen, 2005). Female meiosis
is initiated roughly simultaneously in all oogonia during fetal
development and subsequently arrests at the end of meiotic
prophase I (dictyotene stage) around birth. It resumes producing
eggs periodically after puberty over a defined reproductive lifetime.
Female meiosis I does not complete until ovulation, and meiosis II
only occurs under the trigger of fertilization, eventually generating
only one haploid oocyte from one oogonium. In contrast, male
meiosis is initiated in separate cohorts of spermatogonia after the
onset of puberty and provides continuous sperm production
throughout most of adult life. The two meiotic cell divisions in
males are consecutive and result in four haploid sperm from each
spermatogonium that initiates meiosis.

Both spermatogonia and oogonia enter meiosis during
preleptotenema but before S phase. The sexually dimorphic
timing of meiosis entry depends on the Stimulated by Retinoic
Acid gene 8 gene (Stra8) (Handel and Schimenti, 2010). In females,
retinoic acid (RA) synthesized in the mesonephric ducts (Bowles
et al., 2006) induces Stra8 expression, resulting in meiosis initiation
(Koubova et al., 2006; Baltus et al., 2006); however, in males, RA is
degraded by CYP26B1 (gene cytochrome P450, family 26, subfamily
b, polypeptide 1) from Sertoli cells, preventing the induction of
Stra8 and thus blocking the meiotic entry (Bowles et al., 2006). The
ability to enter meiosis is gained in males postnatally when the
expression of CYP26B1 is repressed in male gonads (Koubova et al.,
2006; Bowles et al., 2006; Anderson et al., 2008; Lesch and Page,
2012). The exact RA-Stra8 meiotic initiation pathway remains
elusive. This is mainly due to the role of RA as a meiosis-
inducing substance is unclear and has been challenged (Kumar
et al., 2011; Vernet et al., 2020), particularly by a recent study
showing that meiosis can normally occur in the absence of all RA
receptors in female mice (Vernet et al., 2020). The role of STRA8 in
meiotic initiation is more clear and STRA8 is suggested recently to
trigger meiosis initiation in mice together with MEIOSIN in a broad
transcriptional network, probably by activating genes responsible for
suppressing the mitotic program and establishing a meiosis-specific
chromosome structure under the presence of RA (Kojima et al.,
2019; Ishiguro et al., 2020). Notably, other pathways are also
suggested to mediate meiosis initiation in mice, such as the
BMP-ZGLP1 pathway that works in parallel with RA-STRA8
signaling (Nagaoka et al., 2020), STRA8-independent RA-REC8
pathway (Koubova et al., 2014; Soh et al., 2015) and epigenetic
regulated negative controls (Yamaguchi et al., 2012; Yokobayashi
et al., 2013; Endoh et al., 2017).

1.1 Spermatogenesis

Mammalian male fertility requires millions of sperm produced
daily by continuous spermatogenesis throughout reproductive life.
The continual spermatogenesis is founded on a stem cell pool
supplied by spermatogonial stem cells (SSCs) (de Rooij and

Russell, 2000; Oatley and Brinster, 2008). Spermatogenesis
continues with the mitotic expansion of spermatogonia, the
meiotic divisions of spermatocytes, and the morphological
transformations of spermatids.

SSCs are testis-specific stem cells derived from PGCs. In mice,
male PGCs arrested at the G0/G1 phase migrate and differentiate
into SSCs around 3 days postpartum (dpp) (Bellve et al., 1977;
McLean et al., 2003). One subpopulation of these cells
(Neurogenin 3 (NGN3)-negative) initiates the first round of
spermatogenesis during the second week after birth; the other
subpopulation develops into morphologically distinct, NGN3-
positiveSSCs and supplies SSCs for spermatogenesis during
adulthood (Yoshida et al., 2006). SSCs (As (A-single)
spermatogonia) undergo symmetric division to produce SSCs for
self-renewal or progenitor spermatogonia (Apr (A-paired)
spermatogonia) for differentiation, which marks the beginning of
spermatogenesis. SSC self-renewal predominates during the
neonatal period to establish a stem cell pool (Shinohara et al.,
2001) but only occurs periodically under steady-state conditions
during adulthood to maintain the SCC pool (Oatley and Brinster,
2012). Apr spermatogonia undergo seven rounds of mitotic cell
divisions to form undifferentiated Aal spermatogonia (Aal
(A-aligned) spermatogonia)and differentiated A1, A2, A3, A4, In
(Intermediate), and B spermatogonia. B spermatogonia differentiate
into preleptotene spermatocytes via a final round of mitosis and
initiate meiosis (Russell et al., 1993; de Rooij and Russell, 2000; Rato
et al., 2012).

Diploid spermatocytes proceed through meiosis, resulting in
haploid round spermatids. Subsequently, these round spermatids
undergo structural and functional changes, including nuclear
remodeling by chromatin condensation, removing the excess
cytoplasm, and forming an acrosome and a sperm tail
(spermiogenesis) (Hermo et al., 2010; Lehti and Sironen, 2016).
As a result, spermatids become motile spermatozoa and are released
to the central seminiferous lumen (spermiation). Spermatozoa will
complete the final maturation to become fertilizable sperm in the
epididymis.

Spermatogenesis occurs within the seminiferous tubules of the
testis, in which germ cells in different stages of development are
organized into a series of cell associations known as stages. In mouse
testis, 12 stages have been defined (Hasegawa and Saga, 2012). RA
pulses progressively stagger along the tubule and stimulate the
spermatogonia to enter the rigidly timed pathway committed to
meiosis. This determines the seminiferous epithelial cycle initiation
and eventually enables the continuous release of spermatozoa (de
Rooij and Russell, 2000).

In the seminiferous epithelium, Sertoli cells form specialized
tight junctions (so-called “blood-testis barrier” (BTB)) at their base
to separate the seminiferous epithelium into basal (where the
spermatogonial population resides) and the adluminal
compartments (where the meiotic and haploid germ cells reside).
The BTB blocks the elements from the interstitial space to maintain
homeostasis for meiotic and haploid germ cell development in the
adluminal compartment (O’Donnell et al., 2000; Oatley and
Brinster, 2008). The BTB remodels periodically (controlled by
RA) to ensure preleptotene spermatocytes enter the adluminal
compartment to initiate meiosis (Hasegawa and Saga, 2012). The
steroidogenic Leydig cells reside in interstitial tissue between the
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seminiferous tubules and secrete testosterone under the influence
of LH.

1.2 Oogenesis

Mammalian oogenesis begins during embryonic development
and generates primary oocytes assembled in primordial follicles
perinatally. The establishment of the pool of primordial follicles
determines mammalian female fertility. Post-pubertally, primordial
follicles are recruited irreversibly and develop into mature follicles
during the estrous/menstrual cycle, eventually releasing mature and
fertilizable oocytes. As a result, the ovarian reserve is gradually
reduced, defining a finite female reproductive life span (Kerr et al.,
2013; Li and Albertini, 2013; Wear et al., 2016; Hunter, 2017; Ruth
et al., 2021).

In mice, after differentiation of PGCs, oogonia undergo mitotic
divisions with incomplete cytokinesis, forming germ cell cysts in
which daughter cells are connected by intercellular bridges
(McLaren and Monk, 1981; Pepling and Spradling, 1998). On
E13.5, oogonia in the cysts initiate meiosis and eventually
differentiate into primary oocytes, which will complete the first
meiotic prophase and arrest at dictyotene perinatally (Borum, 1961).
After cyst breakdown, primary oocytes are enclosed in a layer of
somatic pre-granulosa cells, forming primordial follicles by 4dpp
(Pepling and Spradling, 2001). The formation of primordial follicles
is a complex process. It requires the presence of germ cells
(McLaren, 1984) and involves communication between oocytes
and pre-granulosa cells (Pepling, 2012).

In mammals, massive oocyte culling accompanies oogenesis.
Mouse oocyte numbers begin to decline since E14.5, remain about
half at birth, and continue reducing postnatally. At 4dpp, eventually,
only 20% of fetal oocytes remain in the ovaries (Malki et al., 2014;
Hunter, 2017; Martínez-Marchal et al., 2020). This massive oocyte
death might result from oocyte quality control (Hunter, 2017).
Oocytes with potential defects due to the activation of
LINE1 transposon are eliminated during embryonic development
(E15.5-18.5) in mice, leaving only oocytes with limited
LINE1 activity (Malki et al., 2014). Postnatally, oocyte culling
occurs in response to errors in meiotic prophase I to remove
oocytes that might have chromosomal defects (Di Giacomo et al.,
2005). Additionally, the loss of oocytes is also suggested to be the
self-sacrifice of the so-called nursing oocytes, similarly to a well-
characterized process that occurs during oogenesis in Drosophila
(Lei and Spradling, 2016). In Drosophila, during oogenesis, nurse
cells surrounding the growing oocyte provide nutrients and other
factors required for development. The nurse cells form a syncytium
with the egg, where the cytoplasm and organelles are shared among
the cells, allowing for efficient transport of substances to the growing
egg. Additionally, the nurse cells also help to regulate the
developmental program of the egg by providing signals and
controlling the expression of specific genes. In this way, the
nursing cells play a crucial role in ensuring the proper
development and survival of the egg. Thus, the oocyte quality
control processes select the most suitable oocytes for the next-
generation.

Newly formed primordial follicles remain quiescent until
recruited. A cohort of primordial follicles located at the anterior-

dorsal region of the mouse ovary is activated to grow during the first
week of postnatal development, the first wave of folliculogenesis
(Cordeiro et al., 2015). After puberty, quiescent primordial follicles
are continually recruited through primordial activation to initiate
follicular development, forming primary follicles with a single layer
of cuboidal granulosa cells (Lintern-Moore and Moore, 1979).

Primary follicles continue developing through two phases: pre-
antral and antral phases. Through the pre-antral phase, primary
follicles become secondary/pre-antral follicles with two or more
layers of granulosa cells. This development is independent of
gonadotropins and is mainly regulated by autocrine and
paracrine signaling, specifically, the TGF-β family members such
as oocyte-secreted GDF-9 and BMP-15 (Yan et al., 2001;
Günesdogan and Surani, 2016; Namwanje and Brown, 2016).
Through the antral phase, antral follicles are formed. The
presence of an antrum-a granulosa cell-secreted fluid-filled cavity
characterizes antral follicles. The follicle development during this
phase depends on gonadotropins FSH and LH (Williams and
Erickson, 2000). FSH stimulates granulosa cells to proliferate and
secrete estrogens. LH stimulates the theca cells to produce
progesterone and testosterone. More importantly, the rise of the
FSH level during the menstrual cycle allows the selection of
dominant follicles, enabling only some of the growing antral
follicles to develop into ovulatory follicles (Zeleznik, 2004).

Since the initiation of follicular development, oocytes start to
grow in size and are transcriptionally and translationally active
(Lintern-Moore and Moore, 1979). However, they remain arrested
at the end of the meiotic prophase, marked by a large nucleus-the
germinal vesicle-with a prominent nucleolus. This arrest is
maintained by the combined effects of the cyclic adenosine
monophosphate (cAMP) and cyclic guanosine monophosphate
(cGMP) (Norris et al., 2009; Jaffe and Egbert, 2017). When the
follicles reach the preovulatory stage, in response to LH surge,
oocytes will resume meiosis and complete maturation, as seen by
the germinal vesicle breakdown. Subsequently, oocytes complete the
first meiotic division but arrest at metaphase II upon ovulation and
will resume meiosis if fertilized, eventually generating a mature
oocyte with two or three polar bodies that will undergo apoptosis.
Besides the nuclear maturation, which involves the haploidization of
the genome, the oocyte cytoplasm must also mature through major
translational, post-translational, and organellar modifications,
which are essential for the completion of meiosis, fertilization,
and early embryonic development (reviewed in Li and Albertini,
2013).

2 Meiosis

Meiosis is a specialized cell division critical for gametogenesis in
all sexually reproducing organisms. Through meiosis, a diploid
parental cell gives rise to haploid daughter cells, and this is
achieved by a single round of DNA replication followed by two
rounds of cell divisions (Kleckner, 1996). Homologous
chromosomes separate during the first division (meiosis I), and
sister chromatids separate during the second division (meiosis II)
analogously to mitosis, resulting in the generation of haploid cells. A
canonical meiotic program present in most organisms (e.g.,
mammals, budding yeast, plants, etc.) will be briefly described in
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this section and expanded in detail, focusing on the two major
meiotic events, synapsis and meiotic recombination (MR), in the
following sections. Findings in mice will be prioritized to discuss in
line with the scope of this review. However, data from other species,
particularly yeast, will be addressed whenever necessary or of
interest.

Meiosis is characterized by an extended prophase I, during
which MR occurs (Figure 1). MR initiates in early prophase I
with the formation of numerous DNA double-strand breaks
(DSBs) catalyzed by the conserved SPO11 protein (Keeney,
2001). DSB ends undergo resection and generate 3′ssDNA ends,

subsequently bound by the RecA family of strand exchange proteins
(DMC1, RAD51) (San Filippo et al., 2008). This protein
nucleofilament searches and invades homologous repair
templates, initiating the repair pathways to form crossovers
(COs), with reciprocal exchange of chromosome arms flanking
the DSB site, or non-crossovers (NCOs), with no exchange of
flanking parental sequences (Keeney and Neale, 2006; Hunter,
2015). NCOs promote homolog pairing while COs establish the
connections between homologous chromosomes to ensure accurate
segregation at meiosis I and reshuffle parental alleles to increase
genetic diversity in offspring (Hunter, 2015; Lam and Keeney, 2015).

FIGURE 1
Meiotic prophase I overview. This schematic illustrates chromosome dynamics during meiotic prophase I in spermatocytes and oocytes (left panel)
and themeiotic recombination pathway (right panel). Left panel, inmeiotic prophase I, each paternal (black) ormaternal (grey) homologous chromosome
is organized around a chromosomal axis. During leptonema, axial elements (AEs) develop for each chromosome, and programmed SPO11-induced DSBs
are generated as recombination initiates. During zygonema, synapsis initiates between paired homologs. Then it spreads alongwith the entire AEs as
the SC central region (CR) proteins (consisting of the transverse filaments (TFs) and the central element (CE)) are installed between the AE. AEs are then
designated as lateral elements (LEs) of the SC. In the meantime, DSBs are gradually repaired as recombination progresses. By pachynema, homologous
chromosomes are fully synapsed, except for the heteromorphic X and Y chromosomes in the spermatocytes, which synapse only in a short
pseudoautosomal region and form a transcriptionally silent chromatin compartment known as the sex body. By the end of pachynema in spermatocytes
or during late pachynema/early diplonema in oocytes, meiotic recombination completes as DSBs on autosomes are all repaired, and crossovers (COs) are
generated. During diplonema, the CR is disassembled, and homologous chromosomes are only held together at the CO sites (chiasmata). From
diplonema, spermatocytes progress to metaphase I, completing meiotic divisions without interruption. In contrast, oocytes arrest at the dictyate stage
until meiotic resumption after puberty. Right panel, several major events and critical transitions occur duringmeiotic recombination. Mammalian proteins
that are, or are predicted (underlined) to be, involved in each event are listed. SPO11 catalyzes DSB formation in association with its accessory proteins.
DSB ends are further resected through a series of nucleolytic activities mediated by the MRN complex (MRE11- RAD50-NBS1) and others. As a result, a
short oligonucleotide covalently attached to SPO11 (SPO11 oligo) is released, and 3′ ssDNA tails are generated, which are immediately coated by ssDNA
binding proteins (such as RPA, MEIOB, SPATA22, etc.). Recombinases DMC1 and RAD51 assemble at resected 3’ ssDNA tails, promoted by recombination
proteins such as MEILB2, BRCA2, BRME1, etc. RAD51 and DMC1 coated ssDNA are stabilized by HOP2-MND1 and engage in homology search and strand
exchange, resulting in D-loop formation. The repair can proceed by either a double Holliday junction (dHJ) pathway or synthesis-dependent strand
annealing (SDSA). ZMM proteins and other factors control this by processing and stabilizing the recombination intermediates. In the dHJ pathway,
D-loops are further stabilized by MutSγ homologs (MSH4 and MSH5), and the second end of the DSB is captured to form a dHJ, requiring RPA-MEIOB-
SPTATA22 complex. ZMM proteins such as HEI10 and RNF212 facilitate the recruitment ofmismatch repair factors MutLβ homologs (MLH1, MLH3). MutLβ
and EXO1mediate the resolution of dHJ, primarily giving rise to crossover (CO) products. In SDSA, the invading strand is displaced after DNA synthesis and
reanneals to the other end of the DSB, followed by further DNA synthesis and nick ligation, ultimately giving rise to non-crossover (NCO) products.
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MR is tightly integrated with a highly-organized and dynamic
chromosome structure throughout the five substages of meiotic
prophase I (leptonema, zygonema, pachynema, diplonema, and
diakinesis) (Zickler and Kleckner, 1999). During leptonema, the
chromatin condenses at the developing chromosomal axes, and
recombination initiates. The axes provide a rod-like center for
the loops of every pair of chromatids to anchor, defining a loop-
axis structure essential for DSB formation and repair template
choice (Subramanian and Hochwagen, 2014). During zygonema,
maternal and paternal homologs progressively pair. The loop-axis
organization makes this close alignment of homolog axes possible.
However, understanding how base-pair resolution pairing is
achieved in the context of the complex meiotic chromosome
architecture is limited. Several regulation layers, including meiotic
recombination and dynamic chromosome movement, are suggested
to promote homolog pairing (Bolcun-Filas and Handel, 2018).
Synapsis initiates as a tripartite proteinaceous scaffold–the
synaptonemal complex (SC)- which starts to form between the
paired homologous chromosome axes to create an intimate
association between them. While in some organisms (e.g.,
Neurospora, and Coprinus), synapsis initiates only after all
homologs complete pairing, in budding yeast and mammals,
synapsis begins concomitantly with homolog pairing at
zygonema. The telomeres and several interstitial sites of DSB-
mediated inter-homolog associations are often where synapsis
initiates (Fung et al., 2004), while in mice and several organisms
with metacentric chromosomes, including humans, centromeres are
often the last to synapse (Roig et al., 2010; Bisig et al., 2012; Qiao
et al., 2012). Once it initiates, synapsis quickly spreads along the
chromosomes in both directions in a zipper-like manner. At
pachynema, the SC is fully installed along the entire length of all
homologous chromosomes (Fraune et al., 2012). The last
recombination steps after strand invasion occur in the SC
context, which further helps keep the homologs in association,
generating COs at the end of pachynema. Subsequently, the SC
disassembles asymmetrically between homologs throughout
diplonema and diakinesis, accompanied by changes in
chromosome compaction (Gao and Colaiácovo, 2018). By late
diakinesis, the highly condensed bivalents only remain connected
by chiasmata, the cytological manifestation of COs. These inter-
homologous connections ensure correct segregation under tension
by allowing homolog pairs to stably bi-orient at the metaphase I
spindle (Handel and Schimenti, 2010). As Meiosis I completes,
maternal and paternal chromosomes are separated into daughter
cells. Then in Meiosis II, sister chromatids separate, ensured by their
centromeric cohesion, resulting in the generation of haploid cells
(Ishiguro, 2019).

Meiosis must be carefully monitored to preserve the order of
meiotic events and avoid producing aberrant chromosomes and
defective gametes (Subramanian and Hochwagen, 2014). In mice,
surveillance mechanismsmonitor recombination and synapsis at the
pachytene stage (meiotic checkpoint) (Roeder, 2000) and control
bipolar attachment to the spindle at metaphase I (the spindle
assembly checkpoint, SAC) (Touati and Wassmann, 2016).
Recent mice findings have revealed new mechanistic insights on
how meiotic checkpoints monitor these meiotic prophase events in
mammals, which will be mainly discussed below. The roles of the
meiotic checkpoint machinery in preserving the order of

chromosomal events during the meiotic prophase I will also be
presented in the following sections whenever necessary.

2.1 The synaptonemal complex and synapsis

The SC is a highly conserved meiosis-specific feature. This is
likely attributed to a conserved SC organization, e.g., the coiled-coil
domains (Gao and Colaiácovo, 2018), whereas its component
proteins share little similarity at the amino acid sequence level
(Grishaeva and Bogdanov, 2014; Fraune et al., 2016). The SC
serves as the scaffold for the close juxtaposition of homologous
chromosomes and is intimately associated with chromosome
pairing, synapsis, and recombination (Fraune et al., 2012;
Cahoon and Hawley, 2016; Geisinger and Benavente, 2017; Gao
and Colaiácovo, 2018). Fully formed SC is revealed as a tripartite
structure by electron microscopy, consisting of two LEs that run
along the electron-dense chromatin and flank a CR (Moses, 1969),
composed of a central element (CE) and numerous transverse
filaments (TFs). In mammals, eight meiotic-specific SC proteins
have been identified and characterized so far (Schücker et al., 2018):
SYCP2 and SYCP3 as the LE proteins (Lammers et al., 1994;
Offenberg et al., 1998); SYCP1 as the TF protein (Meuwissen
et al., 1992), and SYCE1, SYCE2, SYCE3, TEX12, and
SIX6OS1 as the CE proteins (Costa et al., 2005; Hamer et al.,
2006; Schramm et al., 2011; Gómez-H et al., 2016).

The SC plays a universal role, as providing order within the
nucleus during prophase, in all species. But it may also have diverse
roles in many organisms. Notably, it is essential for multiple steps
during MR (Zickler and Kleckner, 2015). The SC regulates
programmed DSB formation as synapsis shuts off the
SPO11 activity (Kauppi et al., 2013). The AE proteins are closely
associated with the development of recombination protein
complexes. The CR plays a significant structural role in these
complexes’ assembly, maintenance, and turnover, thereby
enabling the maturation of the DSBs into COs subject to
interference. In mice, recombination can not be completed
without the CR proteins (Bolcun-Filas et al., 2007; Schramm
et al., 2011; Fraune et al., 2012; Gómez-H et al., 2016). Moreover,
the SC is responsible for holding homologs after the repair of NCO-
fated DSBs and maintaining interhomolog interactions until COs
are formed (Zickler and Kleckner, 1999; Qiao et al., 2012). Finally,
the SC might be centrally important in the surveillance of meiotic
recombination and HORMAD-regulated monitoring of synapsis.

The SC undergoes a dynamic cycle through its assembly, a
highly dynamic steady-state, and disassembly (Gao and Colaiácovo,
2018). Its assembly is through integrating the CR proteins to connect
two LEs, a poorly understood process that might differ in various
organisms due to the divergent SC component proteins (Cahoon
and Hawley, 2016).

In mice, a picture of how the SC proteins are assembled in order
has been inferred from mouse knockout studies (Fraune et al., 2012;
Geisinger and Benavente, 2017). After DNA replication in the pre-
meiotic S-phase, each pair of sister chromatids are tightly held
together by cohesin complexes. The chromatin of sister chromatids
is organized in a linear array of loops emanating from the
chromosome axis, forming the meiotic axis-loop organization,
which allows the close juxtaposition of homolog axes during
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meiotic prophase (Zickler and Kleckner, 2015). During preleptotene
stage, the AE/LE proteins: SYCP2 and SYCP3 load onto the cohesin
complex together with the HORMA domain-containing proteins
(HORMAD1 and HORMAD2) (Wojtasz et al., 2009), forming the
chromosome axis during meiotic prophase I (Zickler and Kleckner,
1999; Yuan et al., 2000; Yang et al., 2006; Fujiwara et al., 2020).
Recent studies suggest that SYCP2 mediates the anchoring of
chromatin loops to the axis by associating with the cohesin
complex (Feng et al., 2017; Xu et al., 2019). Moreover,
SYCP2 possesses putative ‘closure motifs’ that might be
responsible for HORMADs recruitment (West et al., 2019). Then,
the CR proteins: SYCP1, SYCE3, and SYCE1, which are essential for
synapsis initiation, are assembled between the AEs in sequence: the
TF protein SYCP1 first associates with the AEs, likely through
interacting with SYCP2 (Winkel et al., 2009; Schücker et al.,
2015); and then recruits SYCE3 through direct interaction
(Schramm et al., 2011; Hernández-Hernández et al., 2016).
Subsequently, SYCE1 is loaded likely through interacting with
SYCE3 (Lu et al., 2014). SYCE1 also interacts with and stabilizes
SYCP1 (Costa et al., 2005). Recently, a novel CE protein, SIX6OS1,
has been shown to be required downstream of SYCP1 at a similar
hierarchy level to SYCE3 (Gómez -H et al., 2016b). Finally, synapsis
spread along the entire length of homolog axes with the required
loading of SYCE2 and TEX12 (Hamer et al., 2006). These proteins
interact with the SC through SYCE2 binding to SYCP1, SYCE3, and
SYCE1 (Costa et al., 2005; Bolcun-Filas et al., 2007; Schramm et al.,
2011) and interact interdependently to promote the assembly and
stabilization of the SC (Cahoon and Hawley, 2016; Geisinger and
Benavente, 2017). All these CR proteins are required for fertility in
female and male mice, unlike LE proteins, whereas knockout
SYCP2 or SYCP3 leads to sterility in males but subfertility in
females (Yang et al., 2006; Bolcun-Filas et al., 2007; Gómez-H
et al., 2016).

The SC is completely assembled between all the lengthwise-
aligned homologs at the pachytene stage. Interestingly, this SC
structure is highly dynamic during early pachytene in yeast and
C. elegans as the SC subunit composition are constantly changing
(Voelkel-Meiman et al., 2012; Pattabiraman et al., 2017) and shifts to
a more stable state in late pachytene as recombination progresses.

After CO formation, the SC disassembles as SYCP1 is lost from
chromosome arms in diplotene. However, SC fragments remain at
centromeres and CO sites, presumably to coordinate local
chromosome organization and separate the homologous axes,
until diakinesis (Bisig et al., 2012; Qiao et al., 2012). After
removing SYCP1 from the centromeres, SYCP3 accumulates and
persists in these regions until late diplotene, before the nuclear-
envelope breakdown, likely to promote proper homologous
centromere bi-orientation, ensuring appropriate homolog
segregation (Bisig et al., 2012; Qiao et al., 2012).

Multiple layers of regulation are imposed on the formation and
disassembly of the SC to coordinate these mechanisms with the MR
in various organisms (Zickler and Kleckner, 2015; Gao and
Colaiácovo, 2018). These include the regulation from structural
axial protein (cohesin and HORMADs), the transcriptional
regulation of the SC genes, translational control of SC proteins
mRNAs, the association of non-structural regulators with SC
components, protein modifications, etc. (Zickler and Kleckner,
2015; Gao and Colaiácovo, 2018).

In mice, AE formation depends on meiotic cohesion with
different contributions from different cohesin (reviewed in
(Ishiguro, 2019). HORMAD1 is essential for both homolog
pairing and synapsis (Shin et al., 2010; Kogo et al., 2012a; Paigen
and Petkov, 2018) as HORMAD1 promotes efficient DSB formation
and enables DSB-mediated homology search (Shin et al., 2010; Kogo
et al., 2012a; Paigen and Petkov, 2018). Moreover,
HORMAD1 might also have a direct role in SC formation
(Paigen and Petkov, 2018). Additionally, both HORMAD1 and
HORMAD2 are required to surveil homolog synapsis (Wojtasz
et al., 2009; Kogo et al., 2012b; Paigen and Petkov, 2018). Their
absence rescues the loss of asynaptic oocytes in the SPO11-deficient
background (details below).

In yeast, synapsis initiation is controlled by the ‘ZMM’ proteins.
Also, the SUMOylation of several SC components is required for SC
assembly (Humphryes et al., 2013; Leung et al., 2015). In mice, SC
initiation depends on the total number of interhomolog
engagements. Reduced DSBs levels lead to fewer interhomolog
engagements, causing delayed synapsis (Kauppi et al., 2013).
Whether SUMOylation is involved in SC assembly in mice is
unclear, although similar to yeast Red1, mouse SYCP3 can also
be SUMOylated (Xiao et al., 2016). A positive feedback system in
yeast controls SC polymerization. The initial assembly of the
transverse filament recruits central-element proteins, which
recruit more transverse filaments. The mechanism controlling SC
polymerization in mice remains unknown (Cahoon and Hawley,
2016). The control of the timing between the formation of a CO and
SC disassembly is vital for proper chromosome segregation. In mice,
this relies on cell-cycle kinases (PLK1, Aurora B, CDK1-Cyclin B1),
which are regulated through transcriptional and translational
mechanisms (Gao and Colaiácovo, 2018).

2.2 Meiotic recombination

Meiotic recombination is homologous recombination (HR)-
where the homologous chromosomes are used as the template
for DSB repair, generating NCO and CO products and impacting
several other meiotic events during meiosis (Keeney, 2008; Lam and
Keeney, 2015). In many organisms, including mammals, MR
promotes the close juxtaposition of each pair of homologous
chromosomes, thus facilitating chromosome synapsis. DSB-
mediated interhomolog interactions generate CO products in the
context of synapsed chromosomes, resulting in the exchange of
alleles between homologs. Besides, COs facilitate the proper
orientation of homologous pairs at metaphase and thus ensure
they segregate accurately at the first meiotic division, eventually
supporting functional gametes formation (Hunter, 2015; Lam and
Keeney, 2015; Marsolier-Kergoat et al., 2018) (Figure 1).

MR initiates when numerous programmed DSBs are induced by
the conserved SPO11 protein, the ortholog of subunit A of TopoVI
DNA topoisomerase (TopoVIA) (Bergerat et al., 1997; Keeney et al.,
1997). It catalyzes DNA cleavage via a transesterification reaction,
generating meiotic DSBs covalently bound by SPO11 at the 5′end
(De Massy et al., 1995; Liu et al., 1995) (Figures 1–5).

In many organisms, accessory DSB proteins are also required for
SPO11-mediated DSB formation (Lam and Keeney, 2015). Notably,
a TopoVIB-like subunit (TOPOVIBL), structurally similar to the
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TopoVIB subunit of Topo VI topoisomerase, is also essential for
meiotic DSB formation in mice and most likely in most eukaryotic
species (Robert et al., 2016; Vrielynck et al., 2016).

In budding yeast, nine other accessory proteins form different
subcomplexes, directly or indirectly interacting with SPO11, and are
all required for DSB formation, including Ski8, Rec102-Rec104
complex, Rec114-Mei4-Mer2 complex, Mre11–Rad50–Xrs2
(MRX) complex (Lam and Keeney, 2015; Yadav and Claeys
Bouuaert, 2021). In mice, three evolutionarily conserved proteins
have also been identified to be required for SPO11-mediated DSB
formation, including IHO1, MEI4, and REC114, the mouse
orthologs of yeast Mer2, Mei4, and Rec114, respectively. These
three proteins colocalize on the axes of the meiotic chromosome
independently of SPO11 activity (Kumar et al., 2010; Stanzione et al.,
2016; Kumar et al., 2018).

IHO1 is a direct interactor of the axial component protein
HORMAD1 in mice (Stanzione et al., 2016). It is required for the
axis-localization of REC114 and MEI4 in vivo. However, its axial
localization is independent of MEI4 or REC114. Thus, IHO1 might
act as a platform to recruit REC114 and MEI4 to the axes (Stanzione
et al., 2016; Kumar et al., 2018). REC114 directly interacts with
TOPOVIBL in mice, regulating the SPO11/TOPOVIBL catalytic
activity (Nore et al., 2022). It is also inferred to perform this function
via ATM-dependent inhibition of DSBs (Subramanian and
Hochwagen, 2014; Boekhout et al., 2019). ATM might target
REC114 directly by phosphorylating it, as in S. cerevisiae
(Carballo et al., 2013), or indirectly by phosphorylating
ANKRD31, a novel interactor of REC114 (Boekhout et al., 2019;
Papanikos et al., 2019).

DSBs are non-randomly distributed along the chromosomes.
They tend to accumulate preferentially at regions called
recombination hot spots (Székvölgyi et al., 2015), which are
determined by PRDM9 in most mammals (Paigen and Petkov,
2018). PRDM9 binds to specific DNA sequences in the genome
through its zinc finger array. It then methylates histone H3 lysines
4 and 36 (H3K4me3 and H3K36me3) of nearby nucleosomes using
its PR/SET domain, activating hot spots (Grey et al., 2018). Activated
hot spots are believed to mainly locate at the DNA loops. It is not
fully understood how they are further associated with the
chromosomal axis where SPO11 and the accessory proteins are
located. Studies have speculated that EWSR1, CDYL, EHMT2, and
CXXC1 proteins might mediate this association through binding the
KRAB domain of PRDM9 and interacting with the DSB proteins
(Imai et al., 2017; Parvanov et al., 2017). As a result, PRDM9 targets
SPO11 to specific genome regions, generating DSBs. Nevertheless,
some DSB sites are targeted independently of PRDM9 in meiosis,
e.g., the pseudoautosomal region (PAR) in male meiosis (Brick et al.,
2012).

DSB formation is tightly controlled to occur in a narrow time
window within prophase I, and in yeast, ATM plays an essential role
in this by regulating further DSB formation via a negative feedback
loop both in trans and cis (Barchi et al., 2008; Lange et al., 2011;
Zhang et al., 2011; Garcia et al., 2015; Pacheco et al., 2015). Depleting
ATM leads to significantly increased DSBs in multiple organisms,
including mice (Joyce et al., 2011; Lange et al., 2011; Kurzbauer et al.,
2012; Pacheco et al., 2015). ATM might prevent repeated DSB
formation at the same chromosomal locus in mice as in yeast (La
Salle and Trasler, 2006; Barchi et al., 2008; Lange et al., 2011; Garcia

et al., 2015; Lukaszewicz et al., 2021). Besides, ATM might be
involved in other feedback circuits to ensure enough DSBs are
formed to support homolog interactions and recombination
(Cooper et al., 2014).

After DSB formation, DSB ends are resected to generate ssDNA
tails (Baudat et al., 2013; Lam and Keeney, 2015) (Figure 1).

The DSB resection is well elucidated in budding yeast. The MRX
complex recognizes DNA-bound Spo11 and generates nicks nearby
with Sae2, leading to the release of Spo11 bound to short
oligonucleotides (Spo11 oligos) (Neale et al., 2005; Cannavo and
Cejka, 2014). The nicks serve as entry points for short-range
3′→5′resection, mediated by Mre11 exonuclease activity, and
long-range 5′→3′resection, mediated by Exo1 exonuclease
activity and Dna2 nuclease (Manfrini et al., 2010; Zakharyevich
et al., 2010; Garcia et al., 2011). The consequence is the generation of
3′ssDNA tails on both sides of the DSB. The full-length resection
requires the DSB-responsive kinase Tel1, which promotes resection
initiation, likely through Sae2 phosphorylation (Cartagena-Lirola
et al., 2008), and regulates resection length (Mimitou et al., 2017).

In mammals, EXO1 is dispensable for DSB resection (Wei et al.,
2003), and the nucleotide-excision repair factor, DNA polymerase-
β, is implicated in SPO11 removal (Kidane et al., 2010). However,
the role of the mammalian MRX complex and Sae2 homologs, the
MRN complex (MRE11-RAD50-NBS1) and CtIP, respectively, in
meiotic DSB repair is poorly understood due to the embryonic
lethality of knocked-out mice of any MRN component (Pacheco
et al., 2015; Zhang et al., 2020a). A recent study has demonstrated
that conditional disruption of NBS1 in mouse testis causes a
dramatic reduction of DNA end resection and severe defect in
chromosome synapsis, eventually leading to meiotic arrest and
infertility (Zhang et al., 2020a). Thus, like MRX in yeast, the
MRN complex is likely essential for mammalian DSB resection.

Resected 3′ssDNA tails are immediately bound by replication
protein A (RPA) and RPA1-related protein MEIOB and its
associated factor, SPATA22. The recombinases DMC1 and
RAD51 further replace these. Then, one of the RAD51/DMC1-
coated ssDNA commences engaging in homology search and
interhomolog interactions. Consequently, unstable nascent
D-loop intermediates are likely generated in vivo. These are
either destabilized in the NCO pathway or stabilized in the CO
pathway (Brown and Bishop, 2015; Hunter, 2015) (Figure 1).

DMC1 and RAD51 are strand-exchange proteins.
RAD51 functions in somatic and meiotic cell cycles, whereas
DMC1 is meiosis-specific (Brown and Bishop, 2015). DMC1 is
the essential DNA strand–exchange factor in meiosis, while
RAD51 could be dispensable but performs a critical regulatory
role in yeast and mammals (Cloud et al., 2012; Hinch et al., 2020).

The assembly of both recombinases is ATP-dependent and
promoted by several recombination factors in mammals such as
ATR, breast cancer 2 protein (BRCA2), TRIP13, the Shu complex
SWS1-SWSAP1, and PALB2, etc. (Zelensky, Kanaar, and Wyman,
2014; Abreu et al., 2018; Roig et al., 2010; Pacheco et al., 2018; Felipe-
Medina et al., 2020; Zhang et al., 2020b; Zhang et al., 2019a; Widger
et al., 2018). Several recent studies identified BRCA2 localizer
(MEILB2) and MEILB2’s stabilizer (BRME1), both of which form
a complex with BRCA2 and function as the recruiter of RAD51 and
DMC1 onto ssDNA (Zhang et al., 2019a; 2020b; Felipe-Medina
et al., 2020). The activity of the DMC1-RAD51 complex to promote
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homology search and strand exchange is driven by the stability of the
formed nucleoprotein filament (Brown and Bishop, 2015), which is
enhanced by the HOP2-MND1 complex (Petukhova et al., 2003;
Petukhova et al., 2005; Chi et al., 2007; Pezza et al., 2007).

In stark contrast to the exclusive inter-sister (IS) recombination
interactions occurring in the somatic cell cycle, MR interactions are
biased towards homologous chromosomes, thereby promoting
pairing, synapsis, and formation of chiasmata between
homologous chromosomes. The precise mechanism of this
meiotic inter-homolog (IH) bias is unclear but is likely achieved
both by inhibiting IS bias and promoting IH bias. The so-far best-
understood mechanism was uncovered in yeast, involving Tel1/
Mec1 (ATM/ATR), Hop1 (homolog of HORMAD1/2), effector
kinase Mek1 (homolog of CHK2), and RAD54, an SWI/SNF-
family ATPase (Subramanian and Hochwagen, 2014).

In the contemporary meiotic recombination models that are
largely built on yeast studies, single-strand invasions result in less
stable nascent joint molecules, presumably D-loops. The
differentiation of D-loops leads to either NCOs via synthesis-
dependent strand annealing (SDSA) or class I COs subject to
interference (details of CO interference will be discussed below)
via forming CO-specific intermediates single-end invasions (SEIs)
and double Holliday junctions (dHJs) (Figure 1). D-loops are
stabilized along the CO pathway to form SEIs, which are the
earliest detectable CO-specific joint molecules. Subsequently, SEIs
become more stable dHJs joint molecules through a second-end
capture coupled with DNA synthesis. Eventually, dHJs are resolved
exclusively into class I COs. By contrast, unstable D-loops are not
stabilized in the NCO pathway after the invading strand extends.
The nascent DNA is annealed to the other end of the broken DNA
molecule resulting in NCOs. Additionally, a minority of D-loops
escape from these two pathways and generate NCOs and non-
interfering class II COs (Baudat et al., 2013; Hunter, 2015; Ranjha
et al., 2018).

The differentiation of the CO and NCO pathways is controlled
by a panel of factors through processing and stabilizing the
recombination intermediates, including ZMM proteins and a
helicase complex, STR/BTR (yeast Sgs1–Top3–Rmi1, metazoan
BLM-TOPIIIα-RMI1-RMI2) (Hunter, 2015). ZMMs stabilize
recombinational joint molecules and promote the formation of
SC, ultimately required for class I CO formation. In budding
yeast, ZMMs are CO-specific. However, in mice and several
other species, ZMMs’ stabilization of recombinational
interactions may be a prerequisite for CO designation, and
D-loops bound by ZMMs could also form NCOs products (De
Vries et al., 1999; Edelmann et al., 1999; Kneitz et al., 2000; Higgins
et al., 2008; Yokoo et al., 2012; De Muyt et al., 2014; Zhang et al.
Liang, 2014).

ZMM is a group of functionally diverse proteins, and several
mammalian ZMM proteins have been identified to have a role in the
CO/NCO decision: MSH4, MSH5, TEX11, RNF212, HEI10, HFM1,
SHOC1, and SPO16. All of these proteins partially colocalize with
recombination foci (defined by RAD51 and DMC1) on synapsed axes
(De Vries et al., 1999; Edelmann et al., 1999; Kneitz et al., 2000;
Adelman and Petrini, 2008; Guiraldelli et al., 2013; Guiraldelli et al.,
2018; Qiao et al., 2014; Prasada Rao et al., 2017; Zhang et al., 2019b).

MSH4 and MSH5 are homologs of the bacterial MutS family of
mismatch repair proteins with no known function in mismatch

repair and form the MutSγ heterodimer (Pochart et al., 1997), which
is essential for chromosome synapsis, CO formation, and thus
fertility in mice (De Vries et al., 1999; Edelmann et al., 1999;
Kneitz et al., 2000). HFM1 is essential for mammalian fertility as
mutated HFM1 was found in human patients with azoospermia or
POI syndromes (Baudat et al., 2013; Wang et al., 2014; Zhang et al.,
2017) and removing HFM1 causes a drastic reduction of COs and
partially affects synapsis in mice (Guiraldelli et al., 2013). The
deficiency of SHOC1, TEX11, and SPO16 causes reduced COs
with a relatively minor synapsis defect in mice, suggesting a
conserved role in CO formation as in yeast (Adelman and
Petrini, 2008; De Muyt et al., 2018; Guiraldelli et al., 2018; Zhang
et al., 2019b). Mouse RNF212 andHEI10, a ubiquitin-ligase, regulate
CO by modifying recombination factors (MutSγ) at CO-designated
sites in an antagonistic manner. Subsequently, stabilized
recombination factors enable the recruitment of CO-specific
factors (MLH1-MLH3, MutLγ) for CO maturation (Reynolds
et al., 2013; Qiao et al., 2014; Hunter, 2015; Gray and Cohen,
2016; Prasada Rao et al., 2017).

During early recombination steps, STR/BTR is required for
channeling early joint molecules into CO and non-CO pathways.
Later, STR/BTR promotes the resolution of the final recombination
intermediates into NCOs by its dissolution activity via SDSA
(Hunter, 2015). Distinguishingly, in the CO pathway, the
resolution of joint molecules is mediated by the endonuclease
activity of mismatch repair factors MLH1, MLH3, and EXO1 to
generate class I COs. MLH1 and MLH3 are invaluable markers of
crossovers in the cytological analysis as they localize precisely to
future CO sites in many organisms (Kolas and Cohen, 2004).
Additional factors are found to be required for class I CO
formation in mice, including HEI10 (discussed above), CNTD1,
PRR19 and CDK2 (Holloway et al., 2014; Qiao et al., 2014;
Bondarieva et al., 2020).

For non-interfering class II COs, the resolution of joint
molecules is mediated by structure-specific endonucleases,
Mus81, Yen1, and Slx1/4 in yeast and MUS81 in mice (Holloway
et al., 2008; De Muyt et al., 2012; Zakharyevich et al., 2012). In mice,
interfering COs are estimated to account for ~90% of COs
(Holloway et al., 2008; Serrentino and Borde, 2012), and
consistently, the deletion of MLH1, MLH3, or EXO1 causes
significant loss of chiasmata and, consequently, mice sterility
(Baker et al., 1996; Edelmann et al., 1996; Lipkin et al., 2002;
Wei et al., 2003).

Finally, another layer of control tightly regulates the outcome
of DSB repair. CO numbers per meiosis show a low variation
despite a much more considerable variation in the numbers of
recombinational interactions. This phenomenon is called CO
homeostasis, which is underpinned by the lower and upper limits
for the CO numbers regulated by CO assurance and interference
(Martini et al., 2006; Rosu et al., 2011; Cole et al., 2012; Yokoo
et al., 2012; Hunter, 2015). CO assurance guarantees that each
homolog pair obtains at least one CO to segregate properly at
meiosis I. Meanwhile, interference is defined by an inhibitory
zone around CO-designated sites where other DSBs are
prevented from becoming COs. Interference results in COs
being widely and evenly spaced along the genome (Hillers,
2004; Berchowitz and Copenhaver, 2010; Zhang and Liang,
2014).
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The molecular mechanisms responsible for CO assurance and
interference have been long elusive. Studies in various species have
described different mechanisms regulating CO interference (Zhang
and Liang, 2014; Zhang andWang, 2014; Fowler et al., 2018; Capilla-
Pérez et al., 2021; France et al., 2021; Morgan et al., 2021). A study of
fission yeast S. pombe suggests a clustering model, emphasizing DSB
interference as the basis for CO interference (Fowler et al., 2018). In
this model, in each cluster containing several DSB hotspots, only one
single DSB is formed. Given that DSBs are the precursors to COs,
consequently, at most, a single CO is made in the chromosomal
interval corresponding to the DSB hotspot-clustered interval
(Fowler et al., 2018). Studies in budding yeast described a stress-
and-stress relief mechanism for CO interference (the ‘beam-film’

model), which is SC independent and requires topoisomerase II
(Zhang and Liang, 2014; Zhang and Wang, 2014). Distinctly, recent
work in Arabidopsis demonstrated that the SC is essential for CO
interference (Capilla-Pérez et al., 2021; France et al., 2021). Finally, a
new model (the diffusion-mediated coarsening model) is proposed
to explain CO interference (Morgan et al., 2021). These models may
apply to some but likely not all species since the mechanism and
control of meiotic recombination varies among species.

How the outcome of DSB repair is regulated in mice is poorly
understood, and ATMmay have a role in forming the obligate CO in
the small pseudoautosomal region of homology between sex
chromosomes and controlling the numbers and distributions of
COs on autosomes (Barchi et al., 2008). However, this molecular
mechanism elucidated in S. pombe is likely conserved in diverse
organisms, including flies and mice, based on the features of meiotic
recombination and pericentric regions in these species (Prieto et al.,
2001; Manheim and McKim, 2003; Fukuda et al., 2012;
Bhattacharyya et al., 2019; Hartmann et al., 2019; Smith and
Nambiar, 2020).

2.3 Meiotic prophase surveillance
mechanisms

DSB repair and synapsis are carefully monitored during the
meiotic prophase to choreograph nuclear dynamics and cell
division programs. An intricate meiotic checkpoint network has
emerged to create dependencies between independent processes
when homologous chromosomes pair, synapse, and recombine.
The machinery of this meiotic checkpoint involves many canonical
DNA damage response (DDR) signaling proteins, among which the
two evolutionarily conserved sensor kinases, ATM and ATR, play a
central role (MacQueen and Hochwagen, 2011). They detect and
respond to DSBs with the help of checkpoint cofactors in many
organisms. Once activated, ATM and ATR phosphorylate a large
set of substrates, preferentially containing serine/threonine-glutamine
(S/TQ) cluster domains (Traven andHeierhorst, 2005). Many of these
target proteins act directly to implement the checkpoint response,
while others work as transmitters to relay the checkpoint signals to
downstream effectors, such as CHK1 and CHK2 kinases
(Subramanian and Hochwagen, 2014). This section will discuss
how the surveillance mechanisms of the meiotic prophase
checkpoint monitor these meiotic events, particularly in mammals.

In response to DSB repair or synapsis defects, the cells trigger a
cell cycle arrest at the pachytene stage to provide sufficient time to fix

the errors. If errors persist, this mechanism can eventually activate
apoptosis to cull meiocytes in various organisms (Roeder, 2000;
Bhalla and Dernburg, 2005; Di Giacomo et al., 2005; Lu et al., 2010).
In mammals, observations in mutant mice deficient in meiotic
recombination suggest that two genetically distinct surveillance
mechanisms contribute to the activation of the arrest in both
males and females: the recombination (DNA damage) checkpoint
monitoring the DSB repair process and the synapsis checkpoint
monitoring SC formation (Roeder, 2000; MacQueen and
Hochwagen, 2011; Subramanian and Hochwagen, 2014; Joshi
et al., 2015).

In males defective in DSB repair, like Trip13mod/mod and Dmc1−/−

mice, most spermatocytes arrest before incorporating the testis-
specific histone 1t (H1t) at pachynema (Barchi et al., 2005; Marcet-
Ortega et al., 2017; Testa et al., 2018). In contrast, Spo11−/−

spermatocytes, which do not have programmed DSBs,
incorporate H1t and progress further, reaching mid/late
pachytene. These cells arrest before completing the meiotic
prophase and ultimately apoptose (Barchi et al., 2005; Pacheco
et al., 2015). Therefore, irrespective of the common apoptosis
consequence, spermatocytes respond differently to these two
meiotic defects. Furthermore, the removal of DSBs confers a
Spo11-like phenotype to those DSB repair-deficient mutants
(Dmc1−/− and Trip13mod/mod) (Barchi et al., 2005; Li and
Schimenti, 2007), indicating that separate checkpoints act
sequentially to mediate the apoptosis of these defective
spermatocytes.

Likewise, in females, the elimination of oocytes defective for DSB
repair (Trip13mod/mod) or both DSB repair and synapsis (Dmc1−/−,
Msh5−/−) occurs earlier (around birth) than those defective for
synapsis alone (Spo11−/−, up to 2 months postpartum) (Di
Giacomo et al., 2005; Li and Schimenti, 2007). Also, mutations
disrupting DSB formation (Spo11 and Mei1) are epistatic to those
affecting DSB repair (Dmc1, Atm, Trip13, and Mcmdc2) (Di
Giacomo et al., 2005; Reinholdt and Schimenti, 2005; Li and
Schimenti, 2007; Finsterbusch et al., 2016; Martínez-Marchal
et al., 2020). These lines of evidence further support the existence
of two distinct checkpoint mechanisms in mammals, sensing DNA
damage or synapsis errors and resulting in meiotic prophase arrest.
However, there are also arguments against a specific “synapsis
checkpoint”, at least in females, favoring that a canonical DNA
damage checkpoint primarily accounts for the oocyte loss in
response to both recombination and synapsis defects (discussed
below) (Rinaldi et al., 2017; Rinaldi et al., 2020).

2.3.1 The recombination checkpoint
The recombination checkpoint is likely activated when

recombination intermediates persist at pachynema in mammals
(Di Giacomo et al., 2005; Burgoyne et al., 2009; MacQueen and
Hochwagen, 2011). So far, the study of the recombination
checkpoint in mammals has been challenged because most
mutations that compromise recombination also affect synapsis.
However, a gene-trap-disrupted allele of Trip13, Trip13mod/mod

(also known as Trip13RRB047RRB047, X. Li and Schimenti, 2007; Roig
et al., 2010), which cannot repair DSBs but completes synapsis, has
proven to help study the recombination-dependent arrest and
meiocyte elimination. Analyses of mice doubly or triply deficient
for TRIP13 and other DDR genes uncovered several signaling
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pathways involved in the recombination checkpoint-mediated arrest
and/or apoptosis in both males and females (Bolcun-Filas et al.,
2014; Pacheco et al., 2015; Marcet-Ortega et al., 2017; Rinaldi et al.,
2017; Rinaldi et al., 2020).

In males, the MRN complex, ATM, CHK2, and the p53 family
members, p53 and TAp63, are required to arrest spermatocytes with
unrepaired DSBs at early pachynema before incorporating H1t into
the chromatin (Pacheco et al., 2015; Marcet-Ortega et al., 2017;
Marcet-Ortega et al., 2022) (Figure 2).

In Trip13mod/mod mice, spermatocytes enter pachynema with
homologous chromosomes completely synapsed but with persisting
recombination intermediates. Thus, most spermatocytes arrest and
undergo apoptosis at epithelial stage IV before incorporating the mid-
pachytene histone marker H1t (Li and Schimenti, 2007; Roig et al.,
2010; Pacheco et al., 2015). In comparison, in Trip13mod/mod

Spo11+/−Atm−/− triple mutant mice, where the activity of ATM is
removed, a significant proportion of spermatocytes accumulate H1t
despite containing high levels of unrepaired DSBs. Thus, eliminating
ATM activity allows spermatocytes to progress further, from an H1t-
negative to an H1t-positive stage, despite having significant amounts
of unrepaired DSBs. These findings suggest that ATM may be
required for the recombination-dependent arrest at early
pachynema (Barchi et al., 2005; Pacheco et al., 2015).

The MRN complex is responsible for DSBs sensing and activating
ATM in somatic cells (Stracker and Petrini, 2011). It is also required for
meiotic recombination in many organisms, including mammals
(Keeney and Neale, 2006; Cherry et al., 2007). CHK2 is an effector
kinase of the ATM signaling pathway activated in response to ionizing
radiation (Matsuoka et al., 1998). Interestingly, disruption of the MRN
complex or the CHK2 kinase in Trip13mod/modmutants confers a meiotic
progression phenotype similar to Trip13mod/mod Spo11+/−Atm−/−mutants
(Pacheco et al., 2015). Thus, theMRN-ATM-CHK2 signaling cascade is
likely to respond to persistent unrepaired DSBs, mediating the
recombination-dependent pachytene arrest in male mice (Pacheco
et al., 2015). Similarly, p53 and TAp63, two canonical CHK2’s
downstream targets (Lu et al., 2010; Bolcun-Filas et al., 2014), have
been inferred to act in the recombination-dependent arrest mechanism.
This is based on the observations that Trip13mod/mod p53−/− and
Trip13mod/mod TAp63−/− spermatocytes can progress to an H1t-
positive stage (Marcet-Ortega et al., 2017).

In Trip13mod/mod mutants lacking ATM or with defective MRN
complex, spermatocytes cannot correctly repair abundant DSBs caused
by the disability of ATM’s negative feedback in DSBs formation (Lange
et al., 2011; Pacheco et al., 2015). Thus these spermatocytes fail to
complete synapsis, which impedes the sex body formation (Barchi
et al., 2008; Burgoyne et al., 2009; Roig et al., 2010; Pacheco et al.,
2015). On the contrary, in Trip13mod/mod Chk2−/−, Trip13mod/mod p53−/−, and
Trip13mod/mod TAp63−/− spermatocytes, although the sex body is formed,
sex chromosomes are not correctly silenced, which explains why these
spermatocytes eventually undergo arrest and apoptosis at late pachynema
(Pacheco et al., 2015; Marcet-Ortega et al., 2017). These lines of evidence
further support an alternative arrest mechanism mediating sex body
defects in male mice (Barchi et al., 2005) (discussed below).

In females, an ATR-CHK1/CHK2-p53/TAp63-PUMA/NOXA-
BAX signaling pathway is proposed to mediate the DNA damage
checkpoint response in the oocytes (Bolcun-Filas et al., 2014; Rinaldi
et al., 2017; ElInati et al., 2020; Martínez-Marchal et al., 2020; Rinaldi
et al., 2020) (Figure 2).

Deletion of CHK2 rescues developing oocytes in 3-week-postnatal
Dmc1−/− mice, although the absence of primordial follicles eventually
results in a nearly complete oocyte depletion by 2 months postpartum.
This pattern of oocyte loss is highly similar to that in Spo11−/− or
Spo11−/−Dmc1−/− mice, suggesting that the loss of CHK2 allows the
deficient oocytes to surpass the DSB repair but not the synapsis arrest.
Moreover, the deletion of CHK2 can reach amore successful rescue in
Trip13mod/mod mice, which complete synapsis. Trip13mod/mod Chk2−/−

mice have a significant pool of oocytes at 3 weeks postpartum, many
follicles at 2 months of age, and sustained fertility for many months.
Abundant γH2AX staining was detected in all dictyate Trip13mod/mod

Chk2−/− oocytes indicating the persistence of unrepaired DSBs like in
Trip13mod/mod. Thus, CHK2 is required for the DNA-damage
checkpoint-mediated oocyte elimination (Bolcun-Filas et al., 2014).

The lack of p53 and TAp63 enables nearly a complete rescue of
Trip13mod/mod oocytes. Compared to wild-type mice, indistinguishable
numbers of primordial and growing follicles are found in the triple
mutant Trip13mod/mod p53−/− TAp63−/− mice (Rinaldi et al., 2020).
Therefore, like in males, p53 and TAp63 might also act
downstream of CHK2 in the DNA-damage checkpoint pathway in
females. However, CHK2 deficiency only rescues Trip13mod/mod

oocytes to around one-third of wild-type levels (Bolcun-Filas et al.,
2014), implying other factors might signal these two effectors p53 and

FIGURE 2
Recombination checkpoint pathway. Model showing the
proposed signaling pathway in response to unrepaired SPO11-
dependent DSBs in male (left) and female (right) mice. Asterisks
represent predicted checkpoint factors. In males, DSBs are
sensed by theMRN complex, leading to the activation of ATM,which in
turn activates effector CHK2. CHK2 acts on target proteins p53 and
TAp63, which implement the recombination-dependent arrest that
blocks progression to mid/late pachynema. In females,
RNF212 prevents the repair of residual DSBs in the late prophase.
Unrepaired DSBs likely activate ATR, which may activate CHK2 before
birth and CHK1 after birth. CHK1 and CHK2 signal to p53 and TAp3.
Pro-apoptotic BCL-2 pathway components PUMA, NOXA, BAX, and
other unknown factors act downstream to trigger oocyte apoptosis.
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TAp63 in parallel with CHK2. Indeed, CHK1 is likely to perform this
function (Martínez-Marchal et al., 2020; Rinaldi et al., 2020). Studies
have shown that when CHK2 is absent in ovaries, CHK1 is activated
by persistent DSBs and is responsible for eliminating Chk2−/− oocytes
(Martínez-Marchal et al., 2020; Rinaldi et al., 2020) (Figure 2).

Interestingly, the pro-apoptotic BCL-2-dependent pathway acts
downstream of CHK2/p53/TAp63 and eliminates recombination-
defective oocytes (ElInati et al., 2020). The BCL-2-dependent
pathway consists of the known targets of p53 and TAp63 PUMA,
NOXA, and BAX (Su et al., 2013). PUMA and NOXA or BAX
deletion rescue oocyte numbers in DSB-repair mutants (Dmc1−/− and
Msh5−/−). However, like CHK2 deletion, this rescue does not reach
wild-type levels, indicating that other components of this pathway
also control the oocyte population (Bolcun-Filas et al., 2014; Rinaldi
et al., 2017; ElInati et al., 2020) (Figure 2). Indeed, other p53 targets
(e.g., BAK, PERP, or CDKN1A) have been proposed to play a role in
this mechanism (ElInati et al., 2020).

Non-etheless, the factors acting upstream of CHK2 in the
recombination checkpoint pathway are not clearly understood in
females. The loss of ATM triggers oocyte elimination by DNAdamage
checkpoint in mice, which can be rescued by the deficiency of
CHK2 to a degree similar to the rescue by CHK2 in Dmc1−/−

ovaries (Bolcun-Filas et al., 2014; Rinaldi et al., 2020). Thus, it has
been proposed that ATR, the other canonical DDR kinase, activates
CHK2 in the recombination checkpoint pathway in females.

Furthermore, RNF212, a SUMO ligase required for crossover
formation, is also suggested to promote the apoptosis of DSB repair-
defective oocytes since Rnf212 deletion significantly restores the oocyte
pool at 18 days postpartum inDSB-repairmutant females (Msh4−/−) (Qiao
et al., 2018). RNF212 is proposed to impede DSB repair via inter-sister
recombination (IS-HR) by stabilizing the association ofHORMAD1along
desynapsed chromosome axes during the late prophase. Thus, residual
DSBs, the repair of which via IS-HR are prevented by RNF212, trigger
CHK2-mediated DNA damage checkpoint, resulting in oocyte
elimination (Qiao et al., 2018; ElInati et al., 2020).

Notably, in both spermatocytes and oocytes, a certain level of
unrepaired DSBs is required to activate the recombination-dependent
arrest pathways during the meiotic prophase (Marcet-Ortega et al.,
2017; Rinaldi et al., 2017). This is particularly important in
spermatocytes, where DSBs on the X chromosome arms lacking
homologous partners are repaired using the sister chromatids at
mid-late pachytene, later than on autosomes (Page et al., 2012;
Baudat et al., 2013). Thus, the DSB threshold level for arrest
activation must be high enough, or all wild-type spermatocytes
would be arrested. Only spermatocytes reaching the threshold
could activate both p53 and p63, which work independently but
additively to trigger apoptosis response (Marcet-Ortega et al., 2017).
In females, the primordial follicle pool is wholely abolished in wild-
type ovaries when the newborn ovaries are exposed to more than
0.3 Gy of irradiation. This dosage induces 10.3 RAD51 foci per oocyte
(Rinaldi et al., 2017). Therefore, like inmales, a threshold level of DSBs
also triggers cell arrest in females.

2.3.2 The syapsis checkpoint
Defects in chromosome axis formation or SC assembly can activate

a cell response to asynapsis independently of DSB formation in many
organisms, leading to cell cycle arrest and even apoptosis (MacQueen
and Hochwagen, 2011). In mammals, this synapsis checkpoint is

debated: whether a specific surveillance mechanism monitoring
asynapsis exists and how it senses it is unclear. Even if the synapsis
checkpoint exists, it might not be like a formal checkpoint response
(Cloutier et al., 2015; Turner, 2015; Rinaldi et al., 2017). In any case, the
meiotic silencing of the unsynapsed chromatin (MSUC) plays a vital
surveillance role in this so-called “synapsis checkpoint” in both males
and females (Burgoyne et al., 2009; Cloutier et al., 2015; Turner, 2015).

The MSUC is a chromatin remodeling process by which
unsynapsed regions are transcriptionally inactivated during meiotic
prophase I (Turner, 2015) (Figure 3). It is achieved through the
crosstalk between the axially located sensors signaling asynapsis, such
as the axial component proteins HORMAD1/2 proteins (Wojtasz
et al., 2009; Fukuda et al., 2010), and the loop-located effectors
mediating gene silencing such as the histone variant H2AX

FIGURE 3
Meiotic response to asynapsis in male. Upper panel, meiotic
silencing of the unsynapsed chromatin (MSUC). Axially located
proteins signal asynapsis and recruit ATR with cofactors, such as
BRCA1. If asynapsis persists, ATR translocates to chromatin loops,
phosphorylating H2AX (γH2AX). This signaling spreads all over the
chromatin with the help of MDC1, leading to the recruitment of
silencing factors for the irreversible silencing of this region. Lower
panel, in wild-type spermatocytes, the physiological MSUC occurs at
XY chromosomes (MSCI), resulting in the silencing of sex
chromosome-linked lethal genes (Zfy1 and Zfy2).However, in Spo11−/−

spermatocytes, despite extensive asynapsis, localized MSUC are
triggered by SPO11-independent DSBs on unsynapsed autosomes. As
BRCA1 accumulates at these DSB sites, MSCI fails to form, and lethal
genes are expressed.
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(Fernandez-Capetillo et al., 2003).HORMAD1 and HORMAD2 load
onto chromosome axes at leptonema and are depleted from the axes
by TRIP13 as the homologs synapse (Wojtasz et al., 2009; Fukuda
et al., 2010; Roig et al., 2010; Koubova et al., 2014). By the late zygotene
stage, HORMAD1/2 acts together with SYCP3 to recruit the breast
cancer 1 (BRCA1) protein to the unsynapsed axes (Turner et al., 2004;
Kouznetsova et al., 2009; Royo et al., 2013). Then, in a HORMAD1/2-
and BRCA1-dependent manner, ATR is recruited to unsynapsed axes
(Turner et al., 2004; Wojtasz et al., 2012; Paigen and Petkov, 2018),
which further promotes the enrichment of BRCA1 and ATR-
activating cofactors: TOPBP1, ATRIP (Perera et al., 2004; Refolio
et al., 2011; Royo et al., 2013) as well as regulate phosphorylation of
HORMAD1/2 (Fukuda et al., 2012). If asynapsis persists until
pachytene, ATR translocates into the chromatin loops and
phosphorylates H2AX (γH2AX) with the help of the γ-H2AX-
binding factor MDC1, resulting in the irreversible silencing of this
region (Ichijima et al., 2011).

In males, spermatocyte loss mediated by the DSB-independent
response to asynapsis involves the failure of Meiotic Sex
Chromosome Inactivation (MSCI) (Burgoyne et al., 2009) (Figure 3).
MSCI is a physiological MSUC process that responds to the unavoidable
partial asynapsis of the sex chromosomes (Turner et al., 2006). MSCI is
reflected by the formation of the sex body, a specialized subnuclear
domain encompassing the asynapsed portions of the X and Y
chromosomes in pachytene spermatocytes. The sex body is
characterized by the lack of gene expression and sequestration of an
array of proteins, which are primarily heterochromatin-related (e.g.,
H2A, H3meK9, CBX1/3) and recombination-related (e.g., MRE11,
γH2AX, and RAD51) (Handel, 2004). In mutant mice with extensive
asynapsis (e.g., Spo11−/−,Dmc1−/−), MSCI cannot occur, and the sex body
fails to form, likely due to the limited association of silencing factors with
the XY axes (Mahadevaiah et al., 2008; Kouznetsova et al., 2009). At the
zygotene/pachytene transition in wild-type spermatocytes, as DSBs get
repaired, BRCA1 is released from the DSB sites and accumulates at the
HORMAD1-coated asynapsed XY axes, initiating MSCI response
(Mahadevaiah et al., 2008; Burgoyne et al., 2009). However, in
mutants with extensive asynapsis, BRCA1 is widely sequestered at
unrepaired SPO11-dependent DSB sites (e.g., Dnmt3l−/−), thus failing
to form MSCI (Mahadevaiah et al., 2008) or accumulates at SPO11-
independent DSB sites, randomly triggering localizedMSUC response at
autosomal axes (Carofiglio et al., 2013). As a result, lethal sex
chromosome-linked genes (e.g., Zfy1 and Zfy2) are expressed, leading
to spermatocyte progression arrest and apoptosis (Royo et al., 2010).
Thus, physiological MSCI is required to allow the exit of the pachytene
stage.

On the other hand, females possess two X chromosomes; thus,
MSCI does not occur in the oocytes. So, the roles of the MSUC in
response to asynapsis are different from that in males (Cloutier et al.,
2015; Turner, 2015) (Figure 4).

In asynapsismodels without associated recombination defects, such
as Spo11−/− mice and mice harboring chromosome abnormalities, such
as Turner syndrome (XO) with only one X chromosome, unsynapsed
chromosomes undergo MSUC, and oocytes with these unsynapsed
chromosomes are eliminated (Daniel et al., 2011; Wojtasz et al., 2012;
Cloutier et al., 2015). Deletion of the MSUC factors HORMAD1 or
HORMAD2 in Spo11−/− mice (Daniel et al., 2011; Wojtasz et al., 2012)
or H2AX in XOmice (Cloutier et al., 2015) restores the oocyte numbers
to wild-type levels. Thus, theMSUC is suggested to transduce asynapsis

into germ cell arrest. The MSUC factors, HORMAD1 and
HORMAD2 would be the putative synapsis checkpoint components
in females (Turner, 2015).

However, it seems that the response to asynapsis in females ca
not be simply explained only by this checkpoint signaling model.
Other mechanisms are also proposed to account for the loss of
oocytes harboring asynapsis: the MUSC might render oocytes
deficient in multiple gene products required for oocyte survival
and development (Cloutier et al., 2015; Cloutier et al., 2016).

In mouse models carrying extra/supernumerary chromosomes,
oocytes with asynapsed chromosomes are not eliminated as in XO
females, despite the presence of HORMAD1 and other meiotic
silencing factors on the asynaptic supernumerary chromosomes
(Cloutier et al., 2015). Silencing these asynaptic supernumerary
chromosomes does not affect the normal gene expression from
the entire genome. In contrast, asynapsis of chromosomes in XO or
other chromosomally unbalanced females would likely lead to the
silencing of multiple housekeeping genes, oogenesis-essential genes,
or critical genes. Therefore, the fate of oocytes with asynapsis
probably depends on the gene content of the silenced asynapsed
chromosomes (Cloutier et al., 2015; Turner, 2015). In Spo11−/−

oocytes, chromosomes are extensively unsynapsed, and the
MSUC takes place on only a part of them (Carofiglio et al.,
2013). This MSUC might silence some essential genes (e.g.,
oogenesis-essential genes), leading to oocyte arrest and ultimately
triggering oocyte death. The rescue of oocyte loss by the deletion of
silencing components HORMADS and H2AX in Spo11−/− mice and
other asynapsis models (Daniel et al., 2011; Wojtasz et al., 2012;
Cloutier et al., 2015) could be explained by the restoration of
standard gene expression patterns, rather than the disruption of
checkpoint signaling per se (Turner, 2015).

Recent findings show that the CHK2-dependent DNA damage
checkpoint also culls SPO11-deficient oocytes (Rinaldi et al., 2017;
Rinaldi et al., 2020). These data argue against the existence of a
specific synapsis-checkpoint mechanism. Most Spo11−/− oocytes
have some DSBs (Carofiglio et al., 2013; Malki et al., 2014).
Thus, authors speculate that it could be enough to reach the
threshold to trigger the CHK2-dependent recombination
checkpoint (Rinaldi et al., 2017). So, a model in which two major
mechanisms are responsible for the elimination of oocytes with
synapsis defect is proposed: the meiotic silencing mechanism, as
discussed above, which primarily works in oocytes with a small
number of asynapsed chromosomes that carry meiotic-essential
genes but the amount of unrepaired DSBs does not reach the
threshold (Cloutier et al., 2015). The recombination checkpoint
could function in oocytes with multiple asynapsed chromosomes
(e.g., Spo11−/− oocytes) that accumulate a sufficient number of DSBs
to trigger the checkpoint (Rinaldi et al., 2017; Rinaldi et al., 2020).

Interestingly, the CHK2 deficiency can only restore a limited
number of Spo11−/− oocytes (Rinaldi et al., 2017; Martínez-Marchal
et al., 2020). Also, HORMAD2 and CHK2 are not functioning in a
single linear checkpoint pathway (Rinaldi et al., 2017; Martínez-
Marchal et al., 2020). Therefore, other mechanisms eliminating most
of the Spo11−/− oocytes cannot be excluded, for instance, through the
MSUC mechanism and/or the CHK1-dependent DNA damage
checkpoint (Rinaldi et al., 2017; Martínez-Marchal et al., 2020).
Moreover, the lack of both p53 and TAp63 can protect nearly all
Spo11−/− oocytes from elimination. However, the deletion of the
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BCL-2 components (PUMA, NOXA, and BAX) does not rescue the
oocyte loss in Spo11−/− females (ElInati et al., 2020). These data
suggest that at least two distinct and partially overlapping genetic
signaling pathways likely respond to recombination and synapsis
errors in females. Noticeably, a more recent study showed that
RAD51 might not be a reliable DSB marker in oocytes, and although
DNA damage signaling from asynaptic axes participates in
removing Spo11−/− oocytes, it does not require high numbers of
SPO11-independent DSBs as suggested in the study from Carofiglio
et al (Carofiglio et al., 2013; Ravindranathan et al., 2022).

Collectively, compared to the recombination checkpoint, the
genetic pathways responsible for the “synapsis checkpoint” control
remain much less understood in both males and females. Rather
than being a typical checkpoint, the surveillance mechanisms that
respond to asynapsis in mammals might be more complex. At least
in females, the DNA damage signaling pathway, the MSUC-
mediated checkpoint signal-transducing, and the depletion of
essential genes for oocyte development and survival might
conspire to drive the elimination of oocytes with asynapsed
chromosomes.

3 Genetic cause of infertility

Successful reproduction requires the precise regulation of
complex processes essential for developing reproductive organs,
performing gametogenesis, acquiring neuroendocrine
competency, and the ability to carry a pregnancy (Yatsenko and
Rajkovic, 2019). Infertility, a common, multifactorial pathological
condition defined as the inability to establish a clinical pregnancy
after at least 1 year of regular unprotected sexual intercourse, affects
approximately 50 million couples worldwide (Mascarenhas et al.,
2012). Among the infertility cases with identified causes, one-third is
due to a female factor, another third is due to a male factor, and the
remaining third is due to combined female and male factors
(Mallepaly et al., 2017). Furthermore, genetic defects contribute
to nearly 50% of these infertility cases. More unknown genetic causes

are suggested in infertility and need to be uncovered (Zorrilla and
Yatsenko, 2013).

Male infertility derives etiologically from quantitative
spermatogenic defects, ductal obstruction or dysfunction,
hypothalamic-pituitary axis dysfunction, and qualitative
spermatogenic defects (from most to least common) (Tournaye
et al., 2017). Genetic factors account for at least 15% of male
infertility and involve all these etiological categories (Krausz and
Riera-Escamilla, 2018). Diagnosing male infertility relies on semen
(and hormone) analysis, which results in two major phenotypes:
oligozoospermia (reduced sperm count) and azoospermia (no
spermatozoa in the ejaculate) (Tüttelmann et al., 2018).
Qualitative spermatogenic defects or ductal obstruction usually
manifest as azoospermia, and multiple genetic factors are
validated as the causes, including numerical and structural
chromosomal anomalies (e.g., Klinefelter’s syndrome, 46, XX
male syndrome), Y-chromosome micro-deletions (e.g.,
azoospermia factor (AZF) deletions), gene mutations (e.g.,
TEX11 deletions), and cystic fibrosis transmembrane conductance
regulator (CFTR) mutations (Krausz and Riera-Escamilla, 2018).
AZF deletions are the most frequent genetic cause of azoospermia
(Krausz et al., 2014). Most numerical and structural chromosomal
anomalies and TEX11 deletions are thought to cause spermatogenic
defects due to errors during meiosis that activate the surveillance
mechanisms (Sun et al., 2007; Yang et al., 2015; Yatsenko et al.,
2015). Currently, some of these genetic infertility causes can be
clinically diagnosed by widely applied analyses, such as karyotyping,
AZF deletion screening, and CFTR mutation analysis (Tournaye
et al., 2017).

Female infertility can result from a wide range of factors
affecting ovarian development, oocyte maturation, fertilization
competence, and the potential of a fertilized egg for implantation
and development (Yatsenko and Rajkovic, 2019). Ovulation
disorders are the leading cause of female infertility, which often
occur as a result of conditions classified into three categories:
hypothalamic failure, dysfunction of hypothalamic-pituitary-
ovarian axis-mostly polycystic ovary syndrome (PCOS), and

FIGURE 4
Meiotic response to asynapsis in female. Several mechanisms are proposed to be responsible for eliminating Spo11−/− oocytes. MSUC might trigger
an unknown checkpoint signaling pathway in these oocytes or silence essential genes for development, leading to oocyte apoptosis. In parallel, in
response to SPO11-independent DSBs, CHK2-mediated DNA damage signaling, which partially overlaps the recombination checkpoint pathway, also
contributes to the elimination of Spo11−/− oocytes.
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primary ovarian insufficiency (POI) (National Institute for Health
and Care Excellence, 2013). Genetic factors are suggested to play a
role in all these disorders. For example, mutations of the GNRHR
gene encoding the gonadotropin-releasing hormone (GnRH)
receptor and genes causing Kallmann syndrome have been
identified in women affected by hypothalamic amenorrhea.
Alternations in multiple genes such as CYP17, CYP19, LHCGR,
DENND1A are linked to PCOS, suggesting its polygenicity
(reviewed in Beke, 2019).

POI has become a significant cause of female infertility due to
premature exhaustion of the primordial follicular pool in most cases
(Rossetti et al., 2017). The most common contributors to POI are the
X chromosome-linked defects, in which Turner syndrome (TS) is
the primary cause of syndromic POI. In contrast, premutation of the
FMR1 (fragile X mental retardation 1) gene is the most common
gene mutation associated with non-syndromic POI. In most cases of
POI, the activation of the surveillance mechanisms leading to a
reduced ovarian reserve are responsible for infertility. For instance,
the absence of one X chromosome in TS causes oocyte loss during
early meiotic prophase and ovarian development, leading to ovarian
dysgenesis and primary amenorrhea since infancy (Fechner et al.,
2006). In other cases, how particular mutations (e.g.,
FMR1 premutation) lead to POI is not clear yet. The
FMR1 premutation may cause a deficiency of proteins required
for oocyte or follicle development and survival (Rossetti et al., 2017).
Even though nowadays POI cannot be reverted, the identification of
the causative genetic alterations in POI patients is beneficial for her
female relatives, who can undertake precautionary measures (e.g.,
egg freezing, embryo cryopreservation, anticipated pregnancy
planning, etc.) in case of being positive in the genetic screening
(Rossetti et al., 2017). This perspective is becoming increasingly
important due to the modern tendency to delay childbirth in
societies.

Despite the revealed genetic factors contributing to female and
male infertility, many genetic causes remain unexplained for the
majority of infertility cases, including idiopathic infertility cases,
which are identified in 25%–30% of infertility couples and likely
have a genetic etiology (Smith et al., 2003; Mallepaly et al., 2017).
Furthermore, with the increasing use of assisted reproductive
technology (ART), which removes the natural barrier to egg
fertilization, concerns about its safety and possible adverse
outcomes are rising (Davies et al., 2012). Diagnosing the genetic
causes of infertility becomes more clinically significant for infertility
treatment and the health of patients and their children. Thus,
identifying unknown genes involved in mammalian
gametogenesis, which could contribute to human infertility, is
demanding and essential for clinical infertility diagnosis in the
near future.

3.1 Mutations of meiotic prophase genes in
mice

In recent years, advances in genomic approaches, particularly
next-generation sequencing (NGS) technologies, allowed unbiased
genomic studies of human infertility and uncovered many
infertility-associated genes or gene variants in males and females
(Yatsenko and Rajkovic, 2019; Precone et al., 2021; Heddar et al.,

2022). Advanced filtering techniques are required for selecting the
bona fide causes of human infertility from the discovered genes or
gene variants, and mouse studies are the gold standard for defining
the genotype-phenotype connection in fertility, at least in males
(Houston et al., 2021). Moreover, functional studies in mouse
models are usually prerequisites to attributing a disease-causing
role to a newly discovered gene (Riera-Escamilla et al., 2019), thus
offering a panel of strong candidate genes for screening human
infertility factors.

Here, we summarized genes that are functionally involved in
meiotic prophase I, and mutating any of them could trigger
recombination/synapsis checkpoint, leading to spermatocyte
arrest in males and/or oocyte depletion in females
(Supplementary Table S1).

Of these 77 genes, many of them have essential roles in
chromosome pairing, synapsis, and meiotic recombination
(detailed roles are discussed above), including components of the
chromosome axis or the SC, recombination factors required for DSB
formation and repair, or proteins participating in telomere-
mediated chromosome movements. The rest are mainly
functionally related to silencing retrotransposons, chromatin
modification, and transcriptional and translational regulation of
essential proteins required for SC formation and DSB repair.

Intriguingly, more than half of these meiosis-deficient mutants
display sexually dimorphic phenotypes. Less stringent checkpoint
controls in females could explain these phenotypic differences.
Consequently, oocytes could tolerate more meiotic prophase I
error, which would explain why oogenesis is more error-prone
than spermatogenesis (Hunt and Hassold, 2002). In male mice
deficient for Brca2, Mei1, Hormad1, Smc1b, or Sycp3 genes,
spermatocytes are arrested at the pachytene stage due to the
defective meiotic prophase events, resulting in male sterility
(Supplementary Table S1). However, these mutant oocytes are
only partially arrested at meiotic prophase I in females, and some
progress beyond prophase I despite carrying asynaptic homologs,
unrepaired DSBs, or other chromosomal abnormalities. Other
mechanisms during oogenesis can eliminate these defective
oocytes later, but some even complete meiosis and form
unbalanced oocytes. As a result, some of these meiosis-deficient
mutant females are even subfertile (Reinholdt and Schimenti, 2005;
Daniel et al., 2011; Felipe-Medina et al., 2020).

Another explanation could be that some of these genes have
sexually dimorphic roles. For example, Hells and Rad21l genes have
distinct roles in males and females. While the deficient males are
infertile due to meiotic prophase I arrest, the mutant females exhibit
lethality (Hells), or subfertility (Rad21l), due to other defects rather
than failed synapsis or incomplete meiotic recombination. On the
other hand, Asz1, Dnmt3l,Mybl1,Mov10l1, Piwil2, Piwil4, Pld6, and
Tdrd9 are specifically required for the silencing of retrotransposons
in males, whileDmrt7 has significant roles in meiotic silencing of the
XY chromosomes which only exist in spermatocytes. Thus, the
disruption of these genes causes male infertility due to a complete
arrest in spermatocytes, but female fertility is grossly unaffected
(Supplementary Table S1).

Furthermore, some recombination factors, such as BRCA1,
BRME1, MEILB2, and TEX15, recruit recombinases RAD51/
DMC1 to DSB sites in spermatocytes. The mutations of these
genes result in male infertility but only have mild or no effects
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on female fertility (Supplementary Table S1). While if they have
similar roles in females is unclear or cannot be excluded, the milder
phenotypes in female mutant mice might be a consequence of
combined effects from the weak checkpoint control and less-
required roles during meiotic recombination in oocytes.

In humans, meiotic defects typically result in non-obstructive
azoospermia (NOA), whereas in females, they are usually associated
with POI (Krausz et al., 2020). We searched these 77 meiotic
prophase genes, the mutation of which could trigger meiotic
prophase arrest in mice, in ClinVar and Pubmed, and found
monogenetic mutations of 28 genes (145 variants) have been
reported to be associated with human infertility conditions such
as spermatogenetic failure, NOA, POI, spermatogenesis maturation
arrest, pregnancy loss, etc. (Supplementary Table S2).

Based on the interpretations for clinical significance in ClinVar,
55 of these variants are considered as “likely pathogenic” or “uncertain
significance” (Supplementary Table S2). This is mainly due to the lack
of evidence or inconsistent interpretations. Of the 145 variants,
67 variants from 21 genes are classified as ‘pathogenic’, 52 variants
from 16 genes have only 1 or 2 publications reporting independent
probands, and single submitters provide the remainder without
publications. Moreover, only five variants from five genes (Six6os1,
Meilb2, Msh5, Stag3, and Syce1) have supporting biological evidence
from knockout mouse models in which human phenotypes are
recapitulated (Supplementary Table S2). Thus, in the future, more
independent validation studies and functional evidence are required,
including introducing gene variants using CRISPR/Cas9 genome
editing technology in mice to validate the infertility-causing roles of
human gene variants (Houston et al., 2021), not only for distinguishing
between variants that cause disease from variants that are rare but
benign (Araujo et al., 2020), but also for providing robustness to the
clinical validity of these possible disease-causing genes linked to human
infertility (Oud et al., 2019).

Additionally, multiple levels of evidence should also be
considered to confidently link variation in individual genes to
human infertility (Oud et al., 2019). Indeed, an unstructured
assessment has reported three genes, including Tex11, that fulfill
this requirement for a link to male infertility (Tüttelmann et al.,
2018). Recently, in another study of an extensive literature review
and standardized clinical validity assessment of a large number of
genes, some of these meiotic prophase genes were shown to be
associated with male infertility with ‘strong’ evidence (Tex11 and
Tex15), with ‘moderate’ evidence (Sycp3), or with ‘limited’ evidence
(Dmc1, Mei1, Meiob, Spo11, Syce1, and Tdrd9) (Oud et al., 2019).

Importantly, the associated conditions of all these 28 genes in
humans are well matched with the phenotypes of their mutant mice
(Supplementary Table S2). For example, the mutation of SYCP3 causes
male infertility with complete meiotic prophase arrest. Still, it exhibits
subfertility in female mice with a sharp reduction in litter size due to the
presence of aneuploid oocytes. Correspondingly, its linked conditions in
humans are infertility/spermatogenetic failure in men and pregnancy
loss in women. This further support the values of mouse models for
attributing a disease-causing role to a new gene. Thus, the remaining
meiotic prophase genes with no monogenic mutation identified in this
list are worthy of screening in human patients.

However, it is essential to point out that we must be cautious when
using the findings from mouse studies to interpret the causative factors
and mechanisms underlying human infertility regarding considerable

differences still exist between humans and mice (Azhar et al., 2021). A
recent study has shown that the metaphase checkpoint is more
frequently activated than the pachytene checkpoint in human males
with severe spermatogenic impairment (Enguita-Marruedo et al., 2019),
which is in contrast to observations in themouse, where knockout of the
meiotic prophase genes (as we summarized above) most frequently
results in pachytene checkpoint arrest. The underlying reasons are not
clear. It could be that the observed arrest in this study is caused mainly
by mutations in proteins required for the metaphase-anaphase
transition or functioning in cell cycle regulation rather than involved
in meiotic prophase major events (Enguita-Marruedo et al., 2019).
Alternatively, mutation of meiotic prophase genes may trigger a later
metaphase arrest in humans rather than prophase arrest in mice.
Differences in the pachytene surveillance mechanisms between
humans and mice could cause this. Most studies (58 out of
78 publications in Supplementary Table S1) reporting mutations of
meiotic prophase genes in infertile males lack detailed analysis of
meiotic or testicular phenotypes. Thus, to clarify this possibility, it
will be worthwhile to assess the exact spermatocyte arrest phase in
infertile patients carrying meiotic prophase gene mutations in the
future.
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