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ABSTRACT 

Tropospheric reactive bromine is important for atmospheric chemistry, regional air pollution, and global 
climate. Previous studies have reported measurements of atmospheric reactive bromine species in different 
environments, and proposed their main sources, e.g. sea-salt aerosol (SSA), oceanic biogenic activity, polar 
snow/ice, and volcanoes. Typhoons and other strong cyclonic activities (e.g. hurricanes) induce abrupt 
changes in different earth system processes, causing widespread destructive effects. However, the role of 
typhoons in regulating reactive bromine abundance and sources remains unexplored. Here, we report field 
observations of bromine oxide (BrO), a critical indicator of reactive bromine, on the Huaniao Island (HNI) 
in the East China Sea in July 2018. We observed high levels of BrO below 500 m with a daytime average of 
9.7 ± 4.2 pptv and a peak value of ∼26 pptv under the influence of a typhoon. Our field measurements, 
supported by model simulations, suggest that the typhoon-induced drastic increase in wind speed amplifies 
the emission of SSA, significantly enhancing the activation of reactive bromine from SSA debromination. 
We also detected enhanced BrO mixing ratios under high NOx conditions (ppbv level) suggesting a 
potential pollution-induced mechanism of bromine release from SSA. Such elevated levels of atmospheric 
bromine noticeably increase ozone destruction by as much as ∼40% across the East China Sea. Considering 
the high frequency of cyclonic activity in the northern hemisphere, reactive bromine chemistry is expected 
to play a more important role than previously thought in affecting coastal air quality and atmospheric 
oxidation capacity. We suggest that models need to consider the hitherto overlooked typhoon- and 
pollution-mediated increase in reactive bromine levels when assessing the synergic effects of cyclonic 
activities on the earth system. 

Keywords: reactive bromine, atmospheric chemistry, marine boundary layer, atmospheric oxidation 
capacity, marine emission 
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nation [3 ,4 ]. On a regional scale, reactive bromine 
species (originating from blowing snow, SSA, brine- 
covered ice, frost flower and snowpack) initiate sharp 
tropospheric O3 depletion events in polar regions 
[5 ,6 ]. Given its importance, BrO is usually measured 
as the key species to represent the tropospheric re- 
active bromine. The detection of BrO over the 
remote ocean [7 ] and in volcanic plumes [8 ,9 ] led 
to wide interest in bromine chemistry. BrO mixing 
ratios exceeding 100 pptv over salt lake atmospheres 
(e.g. the Dead Sea) have been reported [10 ,11 ]. 

©The Author(s) 2024. Published
Commons Attribution License (h
work is properly cited. 
NTRODUCTION 

eactive bromine species are involved in many atmo-
pheric chemical processes in both the troposphere
nd stratosphere. Reactive bromine species are
nown for altering atmospheric oxidation capacity
ia ozone (O3 ) destruction, HOx and NOx pertur-
ations, as well as oxidation of sulfur species, volatile
rganic compounds (VOCs), and mercury [1 ,2 ]. On
 global scale, the main sources of reactive bromine
n the atmosphere are reported to be ocean-emitted

romocarbons and sea-salt aerosol (SSA) debromi- 
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Figure 1. Time series of the daytime (a) BrO, (b) aerosol extinction coefficient, and (c) NO2 surface layer (0–500 m) concentra- 
tion observed by MAX-DOAS at HNI site, China, (d) surface O3 observed by collocated SP-DOAS at HNI, as well as (e) wind 
speed from ERA 5 ( https://cds.climate.copernicus.eu/) reanalysis data and measured by buoy ( http://csdata.org/p/405/) at 
the location of HNI. The shaded area indicates the typhoon passing period. The missing data of MAX-DOAS retrieval ((a) to 
(c)) on July 22 is due to extreme weather conditions caused by typhoon activity. 
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nthropogenic emissions of gaseous inorganic
romine species and their significant impact on
ir quality were also recently proposed [12 –14 ].
romine abundance and sources are uncertain in
oastal areas due to limited observations and the
nfluence of multiple natural and anthropogenic
rocesses [15 –21 ]. 
Polar c yclonic activ ity induces strong w inds, re-

ulting in larger amounts of blowing snow particles,
acilitating autocatalytic chemical chain reactions of
eactive bromine release from the particles (the so-
alled bromine explosion), causing polar surface O3 
epletion events in the Arctic [22 ,23 ]. Cyclonic ac-
ivities (also known as typhoons in the Northwest
acific) substantially alter atmospheric composition
ver the ocean, coastal, and inland regions mostly
hrough physical effects, e.g. atmospheric transport,
recipitation, land-surface exchange, etc. [24 –29 ].
owever, the role of typhoons (and other extra-polar
yclones) in tropospheric reactive bromine sources
nd chemistry has not been reported. 
Here, we report BrO observations using the
ulti-Axis Differential Optical Absorption Spec-

roscopy (MAX-DOAS) technique on Huaniao
Page 2 of 9
Island (HNI) in the East China Sea (ECS) in the 
summer of 2018. Our observations, supported by 
model simulations, suggest that strong winds during 
typhoons amplify the emission of SSA, along with 
stronger pollution-induced activation of bromine 
from SSA, resulting in the unexpected enhancement 
of bromine species in the atmosphere, potentially 
leading to significant changes in O3 levels and 
atmospheric oxidation capacity in the region. 

RESULTS 

Observations of BrO 

Figure 1 presents the daytime (07 : 00–18 : 00 lo-
cal time, LT) observed BrO volume mixing ratios 
(VMR) averaged from the surface up to 500 m, other 
trace gases and aerosol extinction coefficient (AEC) 
together with the surface O3 concentrations. We ob- 
served consistently high levels of BrO with a day- 
time average of ∼9.7 ± 4.2 pptv in marine bound- 
ary layer (MBL) during a 15-day field campaign on 
HNI, with a distinct enhancement by the typhoon 
activity ( Text S1). In polar regions [6 ] and salt lakes

https://cds.climate.copernicus.eu/
http://csdata.org/p/405/
https://academic.oup.com/nsr/article-lookup/doi/10.1093/nsr/nwae074#supplementary-data
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Figure 2. Relationship between BrO VMR with (a) wind speed, AEC, and NO2 and 
(b) Chl-a, on different characterized periods of representative (REP; July 17 to 19), post- 
typhoon (PT; July 24 to 26) and polluted days (POL; July 27 to 29). The bottom and top 
edges of the box in (a) indicate the range of values between the first and third quartiles 
(the 25th and 75th percentiles). The marker inside the box indicates the mean value. 
The whiskers indicate the range of 5th and 95th percentiles. Diamonds in (b) indicate 
the previous BrO measurements (summarized in Table S1) and balls in (b) are the aver- 
ages for three characterized periods with an error bar of standard deviation. (c) THAMO 
model simulation of daytime variation of BrO in response to various parameters, aerosol 
surface area density (ASA), initial bromine levels (INI), ambient NOx levels (NOx ), and 
the combination of them ( Table S2). 
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10 ,11 ,30 ], BrO mixing ratios exceeding 10 pptv
ere commonly reported. However, in the MBL,
revious studies (summarized in Table S1; Text S2)
eported that: in clean MBL, daytime mean maxima
ixing ratios were typically around 2–3 pptv, with
eaks reaching 6 ppt v [7 ,31 –35 ]; up to 7.5 ±1.0 ppt v
as reported in one study in a semi-polluted coastal
nvironment [15 ]; ∼10 pptv was observed only
nce during a cruise-based study along the west
frican coast [17 ]. Compared to the previous re-
orts, our study consistently measured elevated BrO
 ∼10 pptv) in the MBL. 
The observed columnar integrated aerosol

ptical depth (AOD), BrO, and NO2 vertical
olumn densities (VCDs) below 2 km were av-
raged at 0.53, 3.02 × 1013 molec. cm−2 , and
.34 × 1015 molec. cm−2 , which is much higher than
hose over remote ocean areas. These higher values
re due to the short distance to the continent with
oticeable impacts of the anthropogenic emissions
f air pollutants [36 –39 ]. The vertically resolved
EC, BrO, and NO2 presented a declining trend
ith the increase in height ( Fig. S2). Aerosol and
rO spread from the sea surface up to 1 km, whereas
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NO2 is mainly concentrated in the lowest layer (up 
to 0.4 km). This dissimilar vertical distribution may 
be explained by their different sources and transport 
in the MBL. In addition, the day-to-day diurnal 
patterns of the trace gases and aerosols changed as 
typhoon ‘Ampil’ developed and passed through the 
measurement site. 

Contribution of natural and 

anthropogenic sources 
Figure 2 a shows a comparison of the wind speed,
AEC, BrO and NO2 mixing ratios at the surface 
layer (0–500 m) for different periods, character- 
ized as representative MBL conditions (REP; July 
17 to 19), post-typhoon (PT; July 24 to 26) and 
polluted conditions (POL; July 27 to 29). During 
the representative MBL conditions with moderate 
wind speeds and lower NO2 and aerosol, the BrO 

levels ( ∼6 pptv) are comparable to observations 
at Cape Verde (with a mean maximum value of 
5.6 ± 1.0 pptv) [7 ]. During the post-typhoon pe- 
riod, significant increases in AEC suggested higher 
SSA concentrations and stronger SSA debromina- 
tion, which resulted in higher BrO mixing ratios. 
The emission of SSA into the atmosphere takes place 
through air bubbles bursting at the ocean surface 
and is positively and exponentially correlated with 
wind speed [40 ,41 ]. The observed wind direction 
and the air mass back-trajectories confirmed that 
the air masses predominantly came from the open 
ocean during the measurement period ( Fig. S3). It is 
noteworthy that higher NO2 levels ( > 4 ppbv) were 
observed during the last few days of the campaign, 
during which the BrO mixing ratios sustained at 
relatively high levels of ∼10 pptv. 

Chlorophyll a (Chl-a) is an important indica- 
tor of algal biomass in aquatic ecosystems, which 
can be used as a proxy to provide an estimate of
phytoplankton biomass in seawater [42 ]. Bromocar- 
bons, e.g. bromoform (CHBr3 ), dibromomethane 
(CH2 Br2 ), dibromochloromethane (CHBr2 Cl), 
and bromodichloromethane (CHBrCl2 ), are ubiq- 
uitous in the oceans, and are mainly formed directly 
or indirectly by macro- and microalgae [43 –46 ]. 
Consequently, enhanced Chl-a concentration im- 
plies higher algal biomass and stronger release of 
oceanic bromocarbons [47 ]. As per the previous 
results ( Table S1), the relation between BrO VMR 

and Chl-a concentrations derived from satellite 
observations, indicate organic sources of bromine 
species (Fig. 2 b). The measured data agree with 
the response of oceanic chlorophyll-a abundances 
( R2 = 0.74). A previous study reported high BrO 

mixing ratios (up to 10.2 ± 3.7 pptv) in the East
Atlantic (‘EA’ in Fig. 2 b) during a cruise passing

https://academic.oup.com/nsr/article-lookup/doi/10.1093/nsr/nwae074#supplementary-data
https://academic.oup.com/nsr/article-lookup/doi/10.1093/nsr/nwae074#supplementary-data
https://academic.oup.com/nsr/article-lookup/doi/10.1093/nsr/nwae074#supplementary-data
https://academic.oup.com/nsr/article-lookup/doi/10.1093/nsr/nwae074#supplementary-data
https://academic.oup.com/nsr/article-lookup/doi/10.1093/nsr/nwae074#supplementary-data
https://academic.oup.com/nsr/article-lookup/doi/10.1093/nsr/nwae074#supplementary-data
https://academic.oup.com/nsr/article-lookup/doi/10.1093/nsr/nwae074#supplementary-data
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hrough the Mauritanian upwelling system suggest-
ng a potentially important role of oceanic biogenic
ources for bromine species [48 ,49 ]. Cyclone-
riven strong disturbance, mixing, and upwelling
n the upper layer of the oceans can enhance the
oastal euphotic layer, which is reported to induce
he phytoplankton and algal bloom [50 ,51 ]. Chl-a
bundances in ECS are significantly higher than
n other marine regions, possibly related to the
utrophication in the coastal seas of China [52 –54 ].
he additional segmented observation at HNI in the
pring of 2018 also suggested the even higher Chl-a
nd comparable levels of BrO to the representative
eriods in summer ( Fig. S4). The complex linkage
etween algal bloom emission and its feedback on
tmospheric and fluvial nutrients highlights the
mportance of investigating the biogeochemical
ycling of reactive bromine species [55 ,56 ]. 
Figure 2 c demonstrates the response of the

rO levels to various factors as simulated by a
ne-dimensional chemical and transport model
THAMO) [57 ,58 ] constrained with available ob-
ervations at HNI ( Text S5; Table S2). The results
how that higher NOx levels lead to lower BrO,
igher initial inorganic bromine levels lead to higher
rO, and higher aerosol surface areas lead to en-
anced aerosol release and recycling of inorganic
romine resulting in higher BrO. The combination
f higher NOx and higher initial inorganic bromine
pecies (or higher SSA) leads to similar levels of BrO,
uggesting the possibility of high BrO under high
Ox environments with the presence of sufficient
romine precursors. Note that high BrO levels have
een previously reported in high NOx environments
15 ]. Recent observations at a polluted coastal site
n Hong Kong reported significant daytime levels
f molecular bromine, revealing a potentially large
romine source through nitrate aerosol photolysis
21 ]. Here we highlight the competing role of NOx 
n controlling the level of BrO: (1) NO2 reacts
ith BrO, directly reducing BrO mixing ratio and
2) NO2 forms nitrate aerosol which further pho-
olyzes (with the presence of bromide-containing
erosol) to produce gaseous reactive bromine, there-
ore indirectly enhancing BrO level. The simulated
esponses of BrO to these key factors are in line with
he observation-derived relationship (Fig. 2 a). 
In addition to the chemical activation mecha-

ism emphasized above, acid displacement and gas-
article processes are also affected by the typhoon,
nfluencing the source as well as the sink of reactive
romine gases: (1) a larger amount of SSA and more
resh SSA implies more Br− leading to more HBr
eing transferred to the gas phase, under favourable
onditions li ke simi lar or higher temperature;
2) the strong winds, induced by typhoons, uplift
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more sea spray drops, resulting in more liquid water 
in the atmosphere and larger aerosol surface area, 
leading to more uptake of gaseous bromine onto the 
liquid drops, hence a sink for reactive bromine gases. 
We note that the heterogeneous uptake of HOI on 
SSA producing IBr is also considered in our study 
[58 ], and contributes to the total bromine. Our mod- 
elling results (HAL case) show that the simulated IBr 
mixing ratio is only 0.24 pptv at HNI during the ob-
servation period ( July 16 to 31); the sum of species
(i.e. HOBr, BrNO2 , BrNO3 , Br2 , and BrCl) related 
to the bromine self-activation processes ( Table S3), 
however, is ∼50 times larger (14.0 pptv), therefore, 
dominating the source of bromine in this region. 

We have also considered the influence of oceanic 
dimethyl sulfide (DMS) on BrO levels. We have con- 
ducted a sensitivity case (wthDMS) including the 
oceanic DMS sources using the method developed 
by Li et al. [59 ], and the DMS oxidation by halo-
gen radicals (BrO, Cl, and IO) following Veres et al. 
[60 ]. Our sensitivity test suggests that the inclusion 
of DMS source and chemistry reduces the simulated 
BrO at HNI during the observation period ( July 16–
31) by ∼10% ( Fig. S5), which is non-negligible as 
shown in previous works (e.g. Hoffmann et al. [61 ]). 
However, we note that the temporal pattern of simu- 
lated BrO mixing ratio before and after the typhoon 
( Fig. S5), i.e. typhoon-induced bromine enhance- 
ment, remains the same with the inclusion of DMS 
source and chemistry. 

Impact of bromine on O3 

Such elevated levels of BrO imply a significant role 
of bromine on atmospheric ozone in this region dur- 
ing the typhoon period. One-dimensional model 
(THAMO) simulations constrained with observa- 
tions at HNI ( Text S5; Table S2) indicate that Br 
chemistry (33.2%) is the second largest contribu- 
tor to the total O3 destruction (Fig. 3 a), after NO 

(55.8%). Photolysis of O3 makes a smaller fraction 
of 10.6% and other minor loss pathways contribute 
0.4%, including O3 reactions with OH, HO2 , and 
NO2 . By neglecting reactive bromine chemistry, one 
might leave out a critical fraction of the O3 loss 
in this region (clean open ocean to semi-polluted 
coast), influencing the representation of background 
air in simulating air quality in the Yangtze River 
Delta (YRD) region. Please note that by using 
the observation-based model, we only quantify the 
bromine impacts on O3 loss but we are not able to 
estimate the bromine influence on O3 production or 
O3 concentration, due to the lack of concurrent ob- 
servations of volatile organic compounds (VOCs). 

To further explore the potential impacts of 
typhoon-driven reactive bromine on O3 abundance 

https://academic.oup.com/nsr/article-lookup/doi/10.1093/nsr/nwae074#supplementary-data
https://academic.oup.com/nsr/article-lookup/doi/10.1093/nsr/nwae074#supplementary-data
https://academic.oup.com/nsr/article-lookup/doi/10.1093/nsr/nwae074#supplementary-data
https://academic.oup.com/nsr/article-lookup/doi/10.1093/nsr/nwae074#supplementary-data
https://academic.oup.com/nsr/article-lookup/doi/10.1093/nsr/nwae074#supplementary-data
https://academic.oup.com/nsr/article-lookup/doi/10.1093/nsr/nwae074#supplementary-data
https://academic.oup.com/nsr/article-lookup/doi/10.1093/nsr/nwae074#supplementary-data
https://academic.oup.com/nsr/article-lookup/doi/10.1093/nsr/nwae074#supplementary-data
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Figure 3. Bromine chemistry effects on O3 during July 17–31, 2018. (a) THAMO- 
simulated contribution of individual channels to O3 loss rate at HNI. The O3 loss rate of 
‘Others’ mainly includes O3 reactions with OH, HO2 , and NO2 . The loss of O3 due to chlo- 
rine and iodine processes are not included in the THAMO calculation. (b) WRF-Chem 

simulated spatial distribution of the bromine effects (between noBr and HAL cases in 
percentage) on the O3 mixing ratio at the surface layer (the first modelling layer, from 

ground/sea level to ∼40 m). Chlorine and iodine sources and chemistry are included in 
both the noBr and HAL WRF-Chem cases. 
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n this region, we apply an emission-based chemical
ransport model (Weather Research and Forecast-
ng model coupled with Chemistry, WRF-Chem;
ext S6; Table S3). WRF-Chem simulation re-
ults (HAL case with the complete halogen species
ources and chemistry) reproduce the observed tem-
oral trend in the BrO mixing ratio with a noticeable
ncrease under the influence of the typhoon ( Fig.
5). WRF-Chem results (Fig. 3 b) show that bromine
educes the O3 mixing ratio (R10 in Supplementary
aterial) in most of the oceanic regions by as much
s ∼40%, and increases O3 in the continental area
up to ∼10%; R3 to R8 in Supplementary material),
here large anthropogenic emissions of NOx and
OCs are located. Such an enhancement in O3 abun-
ance due to bromine chemistry is comparable to the
eterioration of ozone pollution in the last 10 years
n eastern China [62 ,63 ]. Omitting such effects of re-
ctive bromine chemistry leads to potential uncer-
ainty in formulating O3 pollution control strategies.
he cleansing effect of bromine chemistry on tropo-
pheric O3 has been widely documented [1 ,2 ]; the
nhancement effect of bromine on O3 and secondary
erosol has also been reported in northern China
14 ]. Therefore, the competing role of bromine
hemistry in regulating oxidation capacity and air
uality highlights the need to consider the typhoon-
riven enhancement of bromine levels in typhoon
mpact assessments in the East China Sea region. 

ISCUSSION 

yclones, characterized by an intense low-pressure
ystem, are one major atmospheric event affecting
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atmospheric compositions and dynamics [64 ,65 ]. 
Cyclones significantly impact the summertime air 
quality in the mid-latitude regions, e.g. East Asia 
[26 ,66 –68 ], South Asia [69 ,70 ], and Central and
Northern America [71 ,72 ]. By combining multiple 
tools, including direct field measurement, meteo- 
rological data, satellite observations, measurement- 
based box modelling, and emission-based regional 
modelling, the present work establishes a link from 

c yclone activ ity, to the substantially increased sur- 
face wind speeds, to the amplified SSA emission, to 
the larger fresh SSA abundance in the MBL, and 
eventually to the enhanced bromine release. Such 
a bromine release, similar to the polar bromine ex- 
plosion events [73 –75 ], is a self-accelerated process, 
which is terminated when SSA is deposited to the 
sea surface (resulting in an atmospheric lifetime up 
to a few days [76 ]) or depleted in bromide content.
Such interaction between two natural processes (cy- 
clone activity and SSA heterogeneous process) is ex- 
pected to occur in all parts of the ocean with strong
c yclone activ ities, e.g. West Pacific, Indian Ocean, 
and the Atlantic Ocean, and further affect the atmo- 
spheric composition and processes over coastal areas 
in tropical and subtropical regions. Under the chang- 
ing climate, warming of the ocean surface is likely 
fuelling and increasing the intensity of tropical cy- 
clones [77 ], which might lead to increased cyclone- 
driven bromine release. The current study focuses 
on the enhancement in reactive bromine abundance 
in the MBL due to typhoons, while it is possible
that the sources of other reactive halogens (e.g. chlo- 
rine and iodine) and non-halogen biologically pro- 
duced emissions (i.e. DMS) are also altered during 
typhoons. The reader is referred to Text S8 for a 
more detailed discussion on such a possibility. 

The clear positive correlation between the field- 
observed BrO and satellite-derived Chl-a (Fig. 2 b) 
suggests that either BrO depends on Chl-a (through 
biogenic organic bromine emission from the ocean), 
or both BrO and Chl-a depend on the same vari-
able/process. During the representative days ( Jul 
17–19), applying a lower emission flux of oceanic 
organic bromine in WRF-Chem (lowORG case) 
leads to a noticeable reduction ( ∼20%) in the simu-
lated BrO compared to the HAL scenario ( Fig. S5); 
therefore, in terms of long-term effects, a noticeable 
amount of atmospheric reactive bromine originates 
from oceanic organic bromine emission (indicated 
by the Chl-a). During the days of typhoon passing 
( July 21–23), the simulated BrO in lowORG and 
HAL only shows a small difference ( < 5%; Fig. S5);
hence, the oceanic biogenic process (Chl-a) has lit- 
tle effect in the short term on atmospheric reactive 
bromine considering the longer lifetime ( ≥14 days) 
of ocean emitted organic bromines [78 ,79 ]; instead, 

https://academic.oup.com/nsr/article-lookup/doi/10.1093/nsr/nwae074#supplementary-data
https://academic.oup.com/nsr/article-lookup/doi/10.1093/nsr/nwae074#supplementary-data
https://academic.oup.com/nsr/article-lookup/doi/10.1093/nsr/nwae074#supplementary-data
https://academic.oup.com/nsr/article-lookup/doi/10.1093/nsr/nwae074#supplementary-data
https://academic.oup.com/nsr/article-lookup/doi/10.1093/nsr/nwae074#supplementary-data
https://academic.oup.com/nsr/article-lookup/doi/10.1093/nsr/nwae074#supplementary-data


Natl Sci Rev, 2024, Vol. 11, nwae074

Representative

BrO
BrO BrO

Organic
bromine

Inorganic
bromine

Inorganic
bromine

Nutrition
upwelling

Algae
explosion

Inorganic
bromine

Organic
bromineBr Br Br

O3
O3 O3

Typhoon Polluted

SSA SSASSA NO2

Figure 4. Schematic figure of the reactive bromine source and chemistry during the rep- 
resentative (left), typhoon (middle) and polluted (right) periods. The typhoon activities 
induce larger wind speeds over the ocean, enhancing the emissions of SSA, leading to 
larger sources of reactive bromine, which, in the presence of O3 , generates more BrO, 
i.e. ‘typhoon→ larger wind speed→ more SSA→ more bromine’. The polluted condi- 
tion with a high abundance of both NO2 and initial inorganic bromine species (or higher 
SSA) can sustain a similar enhancement of BrO, suggesting the possibility of high BrO 
under high NOx environments with the presence of sufficient bromine precursors. The 
background picture shows the HNI coast in which the observation was conducted. 
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e propose that during the typhoon passing period,
hl-a and SSA are influenced by the same process,
.g. air-sea exchange. This cyclone-driven process
nd impact were pointed out by a simulation study
n which a hypothetical cyclone caused an extremely
arge release of CHBr3 from the macroalgae farm into
he atmosphere, resulting in significant CHBr3 mix-
ng ratios in the atmosphere, especially at altitudes
elow 5 km [80 ]. 
Typhoon activity amplifies the air-sea exchange

‘Typhoon’ in Fig. 4 ) which (1) facilitates the mix-
ng of nutrients in the seawater causing macroal-
ae blooms, and (2) breaks the sea-water bubbles
nd forms more SSA, resulting in higher BrO mix-
ng ratios in the MBL. As a two-way process, air-
ea exchange, significantly enhanced by the typhoon
ctivity, may also lead to an enhanced sink of halo-
ens, which needs further investigation. Despite the
ell-established chain of evidence suggesting the en-
anced bromine sources from SSA-dehalogenation,
hich was impacted by the large windspeeds re-
ulting from the typhoon activity, we note that fur-
her measurement and laboratory studies oriented to
nvestigate the complex processes during typhoons
hould be performed in order to refine the proposed
echanism. 
One interesting phenomenon is the co-existence

f high BrO and high NO2 (‘Polluted’ in Fig. 4 ). A
revious work [15 ] suggested that such co-existence
ould only occur if an unknown local source of
romine (or rapid recycling processes) existed. In
ur THAMO model simulations, we show that a
arger initial level of reactive bromine could cancel
ut the effect of a higher NOx level and maintain
Page 6 of 9
a similar simulated BrO mixing ratio. The WRF- 
Chem results (noANT and HAL cases; Fig. S5), 
however, show that during the simulation period, the 
currently known sources of anthropogenic bromine 
emission [14 ] have little effect on the simulated 
BrO level at HNI, suggesting that there could be a 
previously unrecognized source of reactive bromine 
that supports the elevated level of BrO during high 
NOx days. A possible source is the nitrate-initiated 
bromine release from bromide-containing aerosols, 
e.g. SSA [21 ]. Future work is needed to further 
quantify the competing role of NOx in bromine 
source and chemistry. 

While the physical/meteorological factors (wind 
and precipitation) are known to affect O3 during ty- 
phoons [81 –83 ], here we show that reactive bromine 
chemistry, enhanced by t yphoon activit y, could also 
lead to a significant change in surface O3 in coastal ar- 
eas. Such a chemical effect of typhoons on the coastal 
air quality, not reported until now, is worthy of fur- 
ther investigation. The continental outflow with ele- 
vated levels of NOx and nitrate aerosol might lead to 
enhanced bromine activation from SSA and higher 
bromine burden in the coastal air and result in a 
stronger chemical effect on coastal O3 pollution. 

METHODS 

Detailed descriptions of all methods and materials 
are presented in the Supplementary material. Briefly, 
the observation of BrO, NO2 and aerosol were per- 
formed by MAX-DOAS instrument in the field mea- 
surements in July 2018 at the Huaniao Island site in 
the MBL of ECS [39 ] ( Text S3). The spectral analy- 
sis and profile retrieval are descried in Text S4. The 
Tropospheric Halogen Chemistry Model (THAMO 

[15 ,58 ]) is used to show the response of BrO levels
to a few critical factors ( Text S5), while the regional 
chemical transport model (WRF-Chem), incorpo- 
rated with comprehensive bromine chemistry, is 
utilized to investigate the potential influences of 
various sources on the abundance and impacts of 
reactive bromine species at HNI and the surround- 
ing region (West Pacific and East Asia) ( Text S6). 
Designs of the simulations and input settings are 
presented in Tables S2, S3 and S5. 

SUPPLEMENTARY DATA 

Supplementary data are available at NSR online. 
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