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Abstract
In this study, we introduce a family of rules for claims problems called the CEL-family.
The family is defined by means of a parameter θ ∈ [0, 1] as a notion of solidarity
and contribution. It contains the constrained equal losses and the constrained equal
awards rules. We perform an axiomatic analysis considering the main properties in
the literature, for the sake of comparison. We apply the family to the distribution
of the European Regional Development Funds to study how the rules in the family
treat regions with relatively smaller claims compared to regions with relatively larger
claims.

Keywords Constrained equal losses · Sustainability · Minimal rights · Equal
division · ERDF

Mathematics Subject Classification 91C05 · 91B14

1 Introduction

If a firm goes bankrupt, how should its liquidation be divided among stakeholders?
How can fixed taxes be assigned to individuals with different incomes? These kinds
of situations can be addressed in the so-called claims problems. In general, a claims
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problem is defined as a situation in which an infinitely dividable endowment is allo-
cated to a group of agents, while the agents’ aggregate claim exceeds the endowment
(to deepen their understandings, readers are referred to (O’Neill 1982; Aumann and
Maschler 1985); and a comprehensive survey conducted by (Thomson 2019).

To address these challenges, a collection of allocationmethods known as “rules" are
employed. Within the current literature, numerous rules are referenced, including but
not limited to equal division (Aumann and Maschler 1985), claim-proportional divi-
sion, the constrained equal awards, and the constrained equal losses rules (Maimonides
2000). In an axiomatic analysis, these rules undergo evaluation through the application
of a set of principles referred to as “axioms". These axioms aim to harmonize fairness
principles with concepts of equity, solidarity, effort, and rights.

One of the rules we discussed is constrained equal losses, which distributes losses
(i.e., the difference between aggregate claims and the endowment) equally among all
claimants. The distinctive characteristic of this rule lies in its handling of “residual
claims", those relatively small claims which, even after eliminating them from the
problem, would still result in a claims surplus (where the total claims exceed the
endowment). The constrained equal losses completely overlooks these claims. This
particular attributemakes constrained equal losses amore suitable choice for situations
like tax allocation, where individuals with lower incomes are exempt from paying
taxes. However, when the goal is to distribute awards, this rule has the drawback of
leaving residual claims without any portion of the award.

While the claims problems literature may suggest that rules like constrained equal
awards are typically favored for award allocation, there are circumstances in which
constrained equal losses might be a more effective approach for distributing awards.
One such scenario is the study conducted by Solís-Baltodano et al. (2022) that exam-
ines the allocation of the European Regional Development Fund (ERDF)—a financial
aid program designed to support less developed regions—among European Union
member states and it proposes that constrained equal losses is the most suitable
approach for distributing the ERDF. According to Solís-Baltodano et al. (2022), to
provide greater support to the less developed regions, the majority of the fund should
be allocated to them. Consequently, a fair and equitable allocation rule is not appro-
priate for distributing the fund. The study identifies the claim of each region, through
which the less developed regions assert a greater claim on funds compared to the more
developed ones. Subsequently, Solís-Baltodano et al. (2022) demonstrate that by tak-
ing these claims into account, constrained equal losses is the most effective method
for allocating the fund, as it prioritizes larger claimants (less developed regions).

However, what is notable in Solís-Baltodano et al. (2022) is that the constrained
equal losses rule may allocate nothing to some regions with substantially smaller
claims. These regions, as defined by the study, are the most developed ones. Never-
theless, it is not a valid justification to say that these regions do not require any share
of the funds. Consequently, an alternative method should be suggested that not only
supports the larger claimants but also protects the smaller claimants.

To tackle this challenge and address similar scenarios where resource allocation
aims to prioritize larger claims while safeguarding the interests of smaller ones, we
suggest a revision of the constrained equal losses. Our proposal involves introducing
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a minimum allocation before implementing the rule, to guarantee that each agent has
access to a minimum level of resources.1

To determine the minimal amount, we propose to consider the smallest claim (c1)
and ensure a positive amount for it. By doing so, we can guarantee a positive minimum
allocation for all claims across the board.

We suggest expanding upon the concept mentioned earlier by introducing a novel
set of rules encompassing various combinations of the minimal allocation concept and
the constrained equal losses rule. We refer to this new family of rules as the “CEL-
family". Within the CEL-family framework, we examine and analyze all potential
combinations of egalitarian resource division and the application of the constrained
equal losses rule.

The significance of studying the CEL-family as a method for award sharing, when
the goal is to support larger claimants, becomes more apparent when we consider
the lack of any other alternatives in the existing literature for such situations. One
alternative method that can be considered is the sequential priority rule. However, it
should be noted that this rule may result in a higher number of agents receiving zero
allocation.

After defining the family of rules, we provide an axiomatic analysis of the main
properties for the sake of comparison between the main rules. In doing so, we consider
basic properties, besides some solidarity and invariance principles. Finally, we apply
the CEL-family to the ERDF problem, studying the combination of the convergence
and solidarity principles.

The rest of the paper is organized as follows. Section2 provides the definition of the
claims problems and the rules. Sections3 and 4 define the CEL-family and introduce
the axiomatic analysis, respectively. Section5 applies this family to the distribution of
the ERDF, and Sect. 6 provides some final remarks.

2 Preliminary definitions

Consider a set of agents N = {1, 2, ..., n} and an amount E ∈ R+ of an infinitely
divisible resource, the endowment, that has to be allocated among them. Each agent
has a claim, ci ∈ R+ on it. Let c ≡ (ci )i∈N be the claims vector. A claims problem
(O’Neill 1982) is a pair (E, c) with C = ∑

i∈N ci ≥ E > 0 and B is the set of
all claims problems. Without loss of generality, we assume that agents are ordered
according to their claims so that c1 ≤ c2 ≤ . . . ≤ cn .

A rule is a single-valued function ϕ : B → R
n+ such that, 0 ≤ ϕi (E, c) ≤ ci

for all i ∈ N (non-negativity and claims-boundedness) and
∑

i∈Nϕi (E, c) = E
(efficiency).

We provide the definitions of rules which are mentioned throughout the paper:
the proportional, the constrained equal awards, the constrained equal losses, and the
αmin-Egalitarian.

1 Various lower bounds were proposed by the literature such as Tijs et al. (1981), Moulin (2000), Herrero
and Villar (2002), and Thomson (2019).

123



J.-M. Giménez-Gómez et al.

The proportional (P) rule divides the endowment proportionally according to the
agents’ claims. For each (E, c) ∈ B and each i ∈ N , Pi (E, c) = λci , where λ =
E

∑

i∈N
ci

.

The constrained equal awards (CEA) (Maimonides 2000) rule assigns the endow-
ment equally such that no agent receives more than her claim. For each (E, c) ∈ B and
each i ∈ N , CE Ai (E, c) ≡ min {ci , μ} , where μ is chosen so that

∑

i∈N
min {ci , μ} =

E .

Note that the CEA rule derives from the equal awards division (E A). In this
method, the endowment is distributed equally among all members, i.e., for each
(E, c) ∈ B and each i ∈ N , E Ai (E, c) = E

n . Nevertheless, it becomes apparent
that in certain scenarios where equal distribution is applied, an agent might receive a
share exceeding their claim, thus contravening the claim-bound criterion of a claim
rule.

The constrained equal losses (CEL) (Maimonides 2000) rule allocates the differ-
ence between aggregate claims and the endowment (i.e., losses) equally to each agent,
such that no agent receives a negative amount. For each (E, c) ∈ B and each i ∈ N ,

CELi (E, c) ≡ max {0, ci − μ} , where μ is such that
∑

i∈N
max {0, ci − μ} = E .

The αmin-Egalitarian (αmin) (Giménez-Gómez and Peris 2014) rule is a compro-
mise of theEAandP rules. If the endowment is sufficient, the rule guarantees aminimal
amount equal to the smallest claim to all agents and distributes the remaining endow-
ment proportionally to the agents’ revised claims. If the endowment is not enough, then
it is divided equally among the agents. For each (E, c) ∈ B and each i ∈ N , if c1 ≥ E

n ,
then αmini (E, c) = E

n and if c1 < E
n then αmini (E, c) = c1 + Pi (E − nc1, c − c1),

where c1 = (c1, . . . , c1)1×n .
The next example shows how the previous rules work.

Example 1 Let (E, c) = (600, (100, 200, 300, 400)).
P(E, c) = (60, 120, 180, 240), here the endowment is divided proportionally to

each agent’s claim.
CE A(E, c) = (100, 500

3 , 500
3 , 500

3 ), here the first agent is fully compensated and
the remaining endowment is divided equally among the rest of the agents.

CEL(E, c) = (0, 100, 200, 300), divides the losses (L = 1000 − 600) equally
among the agents such that each agent receives the subtraction of her claim and the
equal portion of the losses.

αmin(E, c) = (100, 100+ 100
3 , 100+ 200

3 , 200), allocates a minimal amount to all
agents equal to c1 = 100, then the claims are revised down by the minimal right and
the Proportional rule is applied to allocate the remaining endowment.

3 The CEL-family rules

We introduce theCEL-family, a collection of rules that extend theCEL rule by ensuring
a guaranteed minimal allocation. Each rule within the CEL-family is differentiated
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by the minimal amount guaranteed to claimants. This minimal allocation is derived
through a comparison between c1 and θE

n . For any value of θ ∈ [0, 1], if θE
n is less

than or equal to c1, the agents are allocated at least θE
n and, if θE

n is greater than c1,
no agent receives less than c1.

By adjusting the parameter θ toward zero,we observe an increase in the inequality of
outcomes produced by the rules within the CEL-family. Specifically, setting θ to zero
results in the application of the CEL rule, which is recognized as the most inequitable
approach to reward allocation within the claims problem context.

Formally, the following holds.

Definition 1 The CEL-family (CELθ ) is defined as all rules such that for some θ ∈
[0, 1], for all (E, c) ∈ B,

CELθ (E, c) =
{(

θE
n

)1 + CEL
(
E − θE, c − (

θE
n

)1)
if θE

n ≤ c1
c1 + CEL

(
E − nc1, c − c1

)
otherwise,

where
(

θE
n

)1 = (
θE
n , . . . , θE

n

)
1×n and c1 = (c1, . . . , c1)1×n .

Equivalently we can say, CELθ (E, c) = min1(E, c) + CEL(E − MI N (E, c),
c − min1(E, c)), where min(E, c) ≡ min{ θE

n , c1}, min1(E, c) = (min(E, c), . . . ,
min(E, c))1×n , and MI N (E, c) ≡ n · min(E, c).2

The CELθ rule initially assigns a minimal right ( θE
n ) to all agents. Then, after

revising down the endowment and the claims by the minimal rights, it applies an equal
division of their losses to the revised claims. As previously mentioned, when θ = 0,
the CELθ rule corresponds to the CEL rule. Furthermore, setting θ = 1 results in the
CEA rule.

Example 2 For the sake of comprehension, let us use Example 1 and θ =
0.25. First, the CEL-family assigns a minimal right equal to min{ θE

n , c1} =
37.5. Then, the endowment and the claims are revised down by the minimal
right. After that, the revised endowment is divided by applying CEL to the
revised claims. Therefore, the final allocation is CELθ (E, c) = (37.5, 87.5,
187.5, 287.5).

4 Axiomatic analysis of the CEL-family

Within this section, we delve into the examination of numerous axioms frequently
employed in claims problems research. Our objective is to determine whether the
rules within the CEL-family adhere to these properties. To facilitate comparisons
with existing literature, we have structured our analysis according to the framework
established by Moreno-Ternero and Villar (2006).

Therefore, we analyze some basic properties like homogeneity, equal treatment
of equals, anonymity, and order preservation which are satisfied by all the rules in

2 Note that for each claims problem (E, c), min(E, c) is a constant and so is MI N (E, c).
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the family, and consistency, which is only satisfied by the CEL rule. We also study
some more specific properties (claim monotonicity, endowment monotonicity, and
composition down) that are satisfied by all the rules in the family. We show that
population monotonicity, composition up, composition from minimal rights, claims
truncation invariance, independence of residual claims, exclusion, and sustainability
are only satisfied by the extreme members of the family.

4.1 Basic properties

Homogeneity states that if the claims and the endowment are multiplied by the same
positive number, then so should all awards. For each (E, c) ∈ B and each λ > 0,
ϕ(λE, λc) = λϕ(E, c).

Equal treatment of equals requires that agents with identical claims must be
allocated an equivalent share. For each (E, c) ∈ B, and each i, j ∈ N , such that
ci = c j , then ϕi (E, c) = ϕ j (E, c).

Anonymity implies that the allocation process should disregard the identification
of individual agents and solely consider their claims as the basis for distribution. For
each (E, c) ∈ B, such that π ∈ �N , and each i ∈ N , then ϕπ(i)(E, c′) = ϕi (E, c),
where c′ ≡ (cπ( j)) j∈N .

Orderpreservation (AumannandMaschler 1985) states that the order of the claims
must be respected. If agent i’s claim is at least as large as agent j’s claim, the awards
and losses allocated to agent i must be at least as much as the ones allocated to agent j .
For each (E, c) ∈ B, and each i, j ∈ N , such that ci ≥ c j , then ϕi (E, c) ≥ ϕ j (E, c),
and ci − ϕi (E, c) ≥ c j − ϕ j (E, c).

Consistency (Aumann and Maschler 1985) states that if some agents leave the
problem, the remaining agents should not be affected. For each (E, c) ∈ B, and each
N ′ ⊆ N , if x = ϕ(E, c), then xN ′ = ϕ(

∑
N ′ xi , cN ′).

Proposition 1 All the ruleswithin theCEL-family satisfy homogeneity, equal treatment
of equals, anonymity, and order preservation.

Proof Let (E, c) ∈ B and λ > 0.
Since CEL satisfies homogeneity, we have

CELθ (λE, λc) = λmin1(E, c) + CEL(λE − λMI N (E, c), λc − λmin1(E, c))

= λmin1(E, c) + λCEL(E − MI N (E, c), c − min1(E, c))

= λCELθ (E, c).

Next, we prove equal treatment of equals. Let i, j ∈ N such that ci = c j ,

CELθ (E, c) = min1(E, c) + CEL(E − MI N (E, c), c − min1(E, c)).

Therefore for i, j we have,

CELθ
i (E, c) = min(E, c) + CELi (E − MI N (E, c), c − min1(E, c))
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and

CELθ
j (E, c) = min(E, c) + CEL j (E − MI N (E, c), c − min1(E, c)).

Since CEL satisfies equal treatment of equals, it is proved that

CELθ
i (E, c) = CELθ

j (E, c).

To prove anonymity, let π ∈ �N , and c′ ≡ (cπ( j)) j∈N .

CELθ (E, c) = min1(E, c) + CEL(E − MI N (E, c), c − min1(E, c))

and

CELθ
π(i)(E, c′) = min1(E, c′) + CELπ(i)(E − MI N (E, c′), c′ − min1(E, c′)).

By anonymity of CEL, we have that for all j ∈ N ,

CELθ
π( j)(E, c′) = CELθ

j (E, c).

Therefore, since min(E, c) = min(E, c′), we have CELθ
π( j)(E, c′) = CELθ

j (E, c)
for all j ∈ N .

Finally, we prove order preservation. Let i, j ∈ N such that ci ≤ c j .
Since CEL satisfies order preservation, we have,

CELθ
i (E, c) = min(E, c) + CELi (E − MI N (E, c), c − min1(E, c))

≤ min(E, c) + CEL j (E − MI N (E, c), c − min1(E, c))

= CELθ
j (E, c).

Again by order preservation satisfied by CEL,

ci − CELθ
i (E, c) = ci − min(E, c) − CELi (E − MI N (E, c), c − min1(E, c))

≤ c j − min(E, c) − CEL j (E − MI N (E, c), c − min1(E, c))

= c j − CELθ
j (E, c).

	

Proposition 2 None of the rules within the CEL-family (except CEA and CEL) satisfy
consistency.

Proof Note that for any θ ∈ (0, 1]whenever cn−cn−1 ≥ E−MI N (E, c), consistency
does not hold. Indeed, the only rules in the CEL-family that satisfy consistency are
CEA and CEL (Thomson 2003). 	
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4.2 Solidarity properties

In this section, we study monotonicity properties that have been considered as soli-
darity axioms in the literature (Moreno-Ternero and Roemer 2006).

Claimmonotonicity(Thomson 2003) states that if an agents’ claim increases, they
should receive at least as much as they did initially. For each (E, c) ∈ B, each i ∈ N ,
and each c′

i > ci , ϕi (E, (c′
i , c−i )) ≥ ϕi (E, c).

Endowment monotonicity (Curiel et al. 1987; Young 1987) requires that if the
endowment increases, the agents are allocated at least the amounts they received
initially. For each (E, c) ∈ B and each E∗ ∈ R+ such that C > E∗ > E, then
ϕi (E∗, c) ≥ ϕi (E, c), for each i ∈ N .

Population monotonicity (Thomson 1983) indicates that as the number of agents
increases while keeping the endowment constant, each agent’s allocation should not
exceed the initial amount. For each N ∈ N ,3 each (E, c) ∈ B, and each N ′ ⊂ N , if∑

N ′ ci ≥ E , then ϕ(E, cN ′) ≥ ϕN ′(E, c).

Proposition 3 All the rules within the CEL-family satisfy claim monotonicity and
endowment monotonicity. None of the rules within the CEL-family (except CEA and
CEL) satisfy population monotonicity.

Proof (i) We prove claim monotonicity.

CELθ (E, c) = min1(E, c) + CEL
(
E − MI N (E, c), c − min1(E, c)

)
.

If we increase the claim of claimant i ∈ N from ci to c′
i , c

′
i > ci . Let c′ = (c′

i , c−i )

the vector of claims where only i’s claim changes, the rest remaining equal.
CELθ (E, (c′

i , c−i )) = min1(E, c′) + CEL
(
E − MI N (E, c′), (c′

i , c−i )−
min1(E, c′)

)
.

If i 
= 1. Notice that in this case, min(E, c) = min(E, c′), then MI N (E, c) =
MI N (E, c′). Therefore, as the CEL rule satisfies claim monotonicity, we have,

CELθ
i (E, c) = min(E, c) + CELi

(
E − MI N (E, c), c − min1(E, c)

)

≤ min(E, c′) + CELi
(
E − MI N (E, c′), c′ − min1(E, c′)

)

= CELθ
i (E, (c′).

If i = 1 we have min(E, c) ≡ min{c1, θE
n } ≤ min{c′

1,
θE
n } ≡ min(E, c′),

min1(E, c′) = (min(E, c′), . . . ,min(E, c′))1×n . Then by claim monotonicity of the
CEL rule, we have

CELθ
1(E, c) = min(E, c) + CEL1

(
E − MI N (E, c), c − min1(E, c)

)

≤ min(E, c′) + CEL1
(
E − MI N (E, c′), c′ − min1(E, c′)

)

= CELθ
1(E, c′).

3 We denote by N the family of finite subsets of the set of natural numbers.
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(ii) Next, we prove endowment monotonicity. Let C ≥ E∗ > E . Let denote
by min(E∗, c) ≡ min{c1, θE∗

n } which satisfies min(E, c) ≤ min(E∗, c),
and MI N (E∗, c) ≡ n · min(E∗, c), and min1(E∗, c) = (min(E∗, c), . . . ,
min(E∗, c))1×n . Since CEL satisfies endowment monotonicity we have,

CELθ (E, c) = min1(E, c) + CEL(E − MI N (E, c), c − min1(E, c))

≤ min1(E∗, c) + CEL(E − MI N (E, c), c − min1(E, c))

≤ min1(E∗, c) + CEL(E∗ − MI N (E∗, c), c − min1(E, c))

= min1(E∗, c) + CEL(E∗ − MI N (E∗, c), c − min1(E∗, c))
= CELθ (E∗, c).

(iii) The rules in the CEL-family do not satisfy population monotonicity. For any

θ ∈ (0, 1)whenever c1 ≤ θE
n , and for any i 
= 1 ∈ N , ci ≥

θ
n∑

i=2
CELθ

i (E,c)

n−1 , popula-
tion monotonicity does not hold. For instance, consider (E, c) = (30, (5, 20, 30)),
CEL1(E, c) = (5, 7.5, 17.5). By considering, N ′ = {2, 3}, CEL1(E, c) =
(15, 15), since c2 ≤ (CEL1

2(E, c) + CEL1
3(E, c))/2.

Finally, note that only for the CEL rule, and, when θ = 1 and c1 ≥ E
n , i.e.,

CEL1 = CE A, Population monotonicity holds (Thomson 2003). 	


4.3 Composition properties

Within this subsection, we explore scenarios where, after applying a rule to allocate
the initial endowment, the total endowment undergoes a change. The following two
properties outline distinct approaches to address this circumstance.

Composition down (Moulin 2000) examines a scenario where we initially allo-
cate the endowment using a specific rule, but upon reassessment, the endowment’s
value is found to be lower than initially assessed. In response to this situation, two
alternative actions emerge. First, we can nullify the initial distribution and reallocate
the adjusted endowment using the same division rule. Alternatively, we may treat the
initial allocation as the agents’ claims and apportion the revised endowment among
these newly defined claims. The principle of composition down stipulates that the
outcomes of both options must be equivalent. For each (E, c) ∈ B, and each E∗ < E ,
ϕ(E∗, c) = ϕ(E∗, ϕ(E, c)).

Composition up (Young 1988) presents a contrasting scenario to composition
down. It pertains to situations where, following the division of the endowment accord-
ing to the division rule, a re-evaluation reveals that the endowment is worth more than
its initial assessment. In response to this situation, two actions can be considered. First,
onemay nullify the initial allocation and reallocate the revised endowment. The second
option involves providing agents with their initial allocation, subsequently adjusting
their claims down from these initial allocations, and distributing the additional amount
of the endowment among agents based on their revised claims. In this case, agents
receive a combined sum of their initial allocation and the supplementary allocation.
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Composition up asserts that the allocation from both options must be identical. For
each (E, c) ∈ B, and each E ′ > E, ϕ(E ′, c) = ϕ(E, c) + ϕ(E ′ − E, c − ϕ(E, c)).

Proposition 4 The rules within the CEL-family fulfill composition down. None of the
rules (except CEA and CEL) satisfy composition up.

Proof (i) Let E∗ < E , thereforemin(E, c) ≥ min(E∗, c). Then, since CEL satisfies
composition down and E∗ − MI N (E∗, c) ≤ E − MI N (E, c), we have:

CELθ (E∗,CELθ (E, c)) = CELθ (E∗, (min1(E, c) + CEL(E − MI N (E, c), c

− min1(E, c))))

= min1(E∗, c) + CEL(E∗ − MI N (E∗, c),min1(E, c)

+ CEL(E − MI N (E, c), c − min1(E, c)) − min1(E∗, c))
= min1(E∗, c)

+ CEL(E∗ − MI N (E∗, c), c
− min1(E, c) + min1(E, c) − min1(E∗, c))

= min1(E∗, c) + CEL(E∗ − MI N (E∗, c), c − min1(E∗, c))
= CELθ (E∗, c).

(ii) Note that for any θ ∈ (0, 1) whenever CELn−1(E − MI N (E, c), c −
min1(E, c)) 
= 0, then, cn − CELn(E − MI N (E, c), c − min1(E, c)) =
cn−1 − CELn−1(E − MI N (E, c), c − min1(E, c)). So, E∗ − E is equally dis-
tributed between these two claimants. It is straightforwardly obtained that this
allocation does not coincide with the direct distribution of E∗, where the distance
between cn and cn−1 remains.

Finally, note that the two rules in the CEL-family satisfying composition up are
CEL and the particular case when c1 ≥ θE

n , and θ = 1, i.e., CEL1= CEA (Moulin
2000). 	


4.4 Lower-bound and upper-bound properties and self-duality

In this section,we study some properties related to the structure of the claims problems,
considering changes in the claims or in the endowment.

Composition fromminimal rights (Dagan and Volij 1993) states that every agent
is guaranteed a minimum allocation of resources. This minimum allocation represents
the residual portion of the endowment after all other claims have been satisfied, as long
as this allocation remains non-negative. For each (E, c) ∈ B, ϕ(E, c) = m(E, c) +
ϕ(E − M(E, c), c − m(E, c)), where m(E, c) = (mi (E, c))i∈N = (max{0, E −∑

j∈N−{i} c j })i∈N and M(E, c) = ∑
i∈N mi (E, c).

Claims truncation invariance (Curiel et al. 1987; Dagan and Volij 1993) indicates
that agents cannot demand more than the available endowment. When an agent’s
claim surpasses the endowment, the portion of the claim exceeding the endowment is
disregarded. For each (E, c) ∈ B, ϕ(E, c) = ϕ(E, (min{ci , E})i∈N ).
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Self-duality (Aumann andMaschler 1985) examines the issue from two contrasting
angles: one from the perspective of the awards received and the other from the portion
of the claim that remains unfulfilled. Consequently, it suggests that the challenge of
dividing either “what is available" or “what is missing" should yield identical awards.
for each (E, c) ∈ B and each i ∈ N , ϕi (E, c) = ci − ϕi (C − E, c).

Proposition 5 None of the rules within the CEL-family satisfy composition from mini-
mal rights (except CEL), claims truncation invariance (except CEA), and self-duality.

Note that this statement is straightforwardly obtained from the definitions of the
rules. On the one hand, from Thomson (2003), it is clear enough that within the
CEL-family, only the particular case when c1 ≥ θE

n , and θ = 1, i.e., CEL1= CEA,
and CEL satisfy claims truncation invariance and composition from minimal rights,
respectively. Moreover, none of them satisfies self-duality (Aumann and Maschler
1985).

On the other hand, note that if θ ∈ (0, 1), then each claimant will receive a strictly
positive allocation of the endowment, violating minimal rights that may be zero when
either the resources are too small or the are claims are large enough. Furthermore, by
definition, the CEL rule recommendation depends on the distance between claimants.
Then, if this distance varies, the recommendation also varies, so the CEL-family does
not satisfy claims truncation invariance either. Finally, by definition of the CEL-family,
a part of the endowment is distributed by CEL, so it does not satisfy self-duality.

4.5 Protective properties

In this section, we explore properties that demonstrate reverse behaviors when con-
fronted with extremely small claims. These properties were studied in the literature by
Herrero and Villar (2001), Herrero and Villar (2002), and Yeh (2006). The properties
are sustainability, independence of residual claims, and exclusion.

Sustainability states that claims identified as “sustainable" must be fully honored.
Sustainable claims are characterized by their minimal magnitude to such an extent
that if the claims of other agents are replaced with that of the sustainable claim, the
cumulative claims would not surpass the endowment, thereby the claims problems
issue is resolved. For all (E, c) ∈ B, and each i ∈ N , if

∑
j∈N min{ci , c j } ≤ E then

ϕi (E, c) = ci .
Independence of residual claims disregards the so-called “residual" claims. The

residual claims are of such minimal magnitude that, even upon their subtraction from
the claims of other claimants, the aggregate claims continue to exceed the available
endowment. For all (E, c) ∈ B, if E ≤ ∑

j∈N max{0, c j − ci } then ϕi (E, c) = 0.
Exclusion (Herrero and Villar 2001) is interpreted as a subset of the “Independence

of residual claims" property. It states that all claims smaller than the per capita loss
((C − E)/n) should be excluded from the allocation process. For two-claimant cases,
independence of residual claims and exclusion are equivalent. For all (E, c) ∈ B, and
each i ∈ N , if ci ≤ C−E

n then ϕi (E, c) = 0.

Proposition 6 None of the rules within the CEL-family satisfy sustainability (except
CEA), independence of residual claims (except CEL), and exclusion (except CEL).
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Proof (i) By Herrero and Villar (2001), CEA satisfies sustainability, i.e., if c1 ≥ θE
n

and θ = 1, thenCELθ also does. If θ 
= 1 it is straightforward to see that it does not.
Consider the following example, (E, c) = (30, (5, 10, 50)), CELθ

2(E, c) < c2,
violating sustainability.

(ii) By Herrero and Villar (2001), CEL satisfies independence of residual claims and
exclusion, i.e., if θ = 0, then CELθ also does. If θ 
= 0, it is straightforward to
see that it does not, since CELθ

i (E, c) > 0, for any (E, c) ∈ B.
	


4.6 Summary of properties and families

To conclude the axiomatic analysis of the CEL-family, we study its relationship with
two prominent families of rules: the parametric rules (Young 1987) and the ICI rules
(Thomson 2003).

As defined byYoung (1987), a rule is parametric if the i th agent’s award is a function
that depends only on ci and a parameter λ, which is related to the size of the amount
to be divided.

Young (1987) shows that a rule is parametric if and only if it satisfies equal treatment
of equals, continuity, and consistency. Therefore, the proportional rule, the constrained
equal awards, the constrained equal losses, and the Talmud (Aumann and Maschler
1985) rules are parametric rules. However, as a consequence of Proposition 2, the
CEL-family of rules are not parametric rules.

The ICI-family (Thomson 2003) contains the constrained equal awards, the con-
strained equal losses, the Talmud, and the minimal overlap (O’Neill 1982) rules.

ICI rules exhibit the evolution of each claimant’s award as a function of the endow-
ment: it is increasing first, constant next, and finally increasing again.

Thomson (2008) shows that a rule belongs to the ICI-family if and only if it is
consistent, among other properties. Therefore, as a consequence of Proposition 2, the
CEL-family of rules are not ICI-family rules.

In the following table, we summarize all the results from the previous sections.
Here, we have the main properties and which are the rules in the CEL-family that
satisfy each one of them.

5 ERDF allocation

The European Regional Development Fund (ERDF) is an aid program established by
the European Union (EU) to support its member states. The fund’s primary objective
is to reduce the economic development gap between regions within the EU. In other
words, it aims to address the backwardness of less developed countries and push them
toward improving their development level.

To distribute this fund, member states are categorized into three groups of regions
based on their gross domestic product (GDP) per capita. The less developed regions
(R3) have a GDP per capita less than 75% of the average GDP per capita of EU-27,
transition regions (R2) have a GDP per capita between 75% and 100% of the average
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Table 1 Summary of the examined properties for all the rules in the CEL-family, the CEA, and the CEL

Properties CEL-family CEA CEL

Equal treatment of equals � � �
Anonymity � � �
Order preservation � � �
Homogeneity � � �
Claim monotonicity � � �
Endowment monotonicity � � �
Composition down � � �
Population monotonicity × � �
Composition up × � �
Claims truncation invariance × � ×
Independence of residual claims × × �
Self-duality × × ×
Sustainability × � ×
Exclusion × × �
Consistency × � �
Composition from minimal rights × × �

GDP per capita of EU-27, and more developed regions (R1) have a GDP per capita
above 100% of the average GDP per capita of EU-27. This classification results in the
definition of 47 regions within the EU.

Solís-Baltodano et al. (2022) studied the allocation of the ERDF and proposed that
this allocation can be viewed as a claims problem situation. Their research focused
on the 2014–2020 period when the budget was around 182.150 million euros. They
defined the claims of the regions in a way that reflects the amount of money each
region needs. As a result, it can be deduced that less developed regions demand more
money and have larger claims.

The EU pursues the objective of achieving equalization in economic development
across its territory. This implies providing greater support to less developed regions,
thereby allocating more funding from the ERDF to enhance their development. The
implementation of different claims problem rules in the research by Solís-Baltodano
et al. (2022) concluded that CEL can serve equalization in the EU. The CEL is a rule
that deprives smaller claimants (i.e., more developed regions) and allocates the main
part of the endowment to larger claimants (i.e., less developed regions). Although
their proposal seems logical, their results show that CEL allocates nothing to some of
the regions with smallest claims. Therefore, the application of CEL in the real world
cannot be deemed to be practical.

The rules of the CEL-family present preferable options. This is because they ensure
a minimum entitlement to all agents, adjustable through parameter θ . Decreasing
θ brings the CEL-family rule closer to CEL, thereby resulting in a more unequal
allocation of endowments favoring larger claimants. This adjustment aligns with the
objective of ERDF allocation, which prioritizes greater support for larger claimants,
namely less developed regions.
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Table 2 shows the results of distributing the ERDF using various rules, including
P, CEA, CEL, and αmin, in combination with the CEL-family. The parameter θ in
CEL-family is set to two extreme values of 0 (which corresponds to CEL) and 1, as
well as a value close to 0. This table facilitates a comparison of the results obtained
from these different rules in conjunction with the CEL-family.

The ERDF data reveal that when the θ is greater than or equal to 0.08, the minimal
right allocated to regions equals c1. However, an issue arises here as c1 represents the
claims of the richest region. Consequently, allocating a minimal right of c1 completely
satisfies the needs of this affluent region, potentially conflicting with the primary
objective of the ERDF, which is to support less developed regions. To address this
concern, we can adjust the value of θ to be smaller than 0.08, leading to a partial
satisfaction of the richest region. As θ decreases, the allocation to the richest region
also decreases. For instance, we can select θ equal to 0.001 as an illustrative example.
Determining the optimal value of θ and achieving an effective allocation that promotes
the development of disadvantaged regions requires careful consideration of multiple
economic aspects.

When comparing the allocation of CELwith the CEL-family, we observe that CEL-
family effectively addresses the issue of zero allocation to smaller claims by ensuring
they receive a minimal positive amount. Notably, when θ is set to 1, even the smallest
claim is fully honored. However, as previously noted, we have the flexibility to adjust
this behavior by reducing the value of θ .

6 Final remarks

The paper presents a family of rules called CEL-family which encompasses all the
possible combinations of the egalitariandivisionof the endowment and theConstrained
equal losses rule. The rules within this family serve the concept of unequal allocation,
and allow us to select either the egalitarian division of resources or of losses, depending
on the context. So, if θ = 0, it would correspond to the constrained equal losses, and
if θ = 1, in a particular case (i.e., when θE

n is smaller than c1 ), it would correspond to
the constrained equal awards rule. Customizing θ allows the CEL-family to be tailored
to specific contexts and fairness criteria. By adjusting θ , we can make the allocation
more equitable or more efficient, depending on the goals of the resource allocation.
This flexibility is a significant advantage over other allocation rules, which may not be
as easily adapted to different scenarios. The CEL-family maintains a balance between
equity and efficiency, two common competing criteria in resource allocations. By
allowing θ to be adjusted, the CEL-family can navigate the compromise between
these two criteria, leading toward more equity or more efficiency as needed. This
balance is crucial for achieving fair outcomes that also consider the overall efficiency
of resource allocation.

The application of theCEL-family to the allocation of theEuropeanRegionalDevel-
opment Fund (ERDF) demonstrates its effectiveness in reducing the allocation tomore
developed regions and concurrently increasing the share of less developed regions at
any level of θ . As the value of θ decreases, the allocation to less developed regions
further increases, aligning with the ERDF’s objective of reducing backwardness in
underdeveloped regions.
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Finally, it must be noted that future research could explore the identification of
essential factors to consider when determining the optimal value of θ , thus enhancing
the practicality of the CEL-family in various real-world scenarios.

Additionally, it is noteworthy that one could try to find an axiomatic characterization
of the CEL-family that, to the best of our knowledge, is still an open problem.
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