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Abstract 17 

Extreme weather episodes related to anthropogenic climate change have enhanced the frequency 18 

and magnitude of bark beetle disturbance, causing worldwide mortality of forests in the last 19 

decades. Changes in temperature and precipitation regimes are altering the relationships between 20 

host tree populations and associated bark beetle species, as these insect-host systems are highly 21 

sensitive to climate extremes. However, it is not fully understood how climate interacts with the 22 

different components of bark beetle-host systems, and thus the existing knowledge is still 23 

insufficient to face the challenges of understanding the system response to changing environmental 24 

conditions. Here, we review the most important findings of the influence of climatic factors on the 25 

dynamics of bark beetle and host tree populations at different spatiotemporal scales. Future 26 

research should integrate how the effects of climate on individual tree responses to beetle attack 27 

scale up to outbreak patterns at regional scale. Recent advances in plant physiology, disturbance 28 

ecology, ecological niche modelling, and remote sensing can further our understanding of the risks 29 

of bark beetle disturbance in forest ecosystems under changing climate.  30 

Key words: forest mortality, biotic disturbance, heatwaves, extreme drought, host tree resistance, 31 

outbreak dynamics. 32 
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1. Introduction 68 

During the last decades of anthropogenic-driven changes in temperature and precipitation regimes 69 

(IPCC 2019), mortality in forests has been increasing due to abiotic and biotic disturbances such 70 

as bark beetle outbreaks (Weed et al. 2013; Seidl and Rammer 2017; McDowell et al. 2020). An 71 

important feature of the systems composed of host trees and the bark and wood boring insects 72 

colonizing these tree species is that they are highly sensitive to climatic variability, particularly to 73 

extreme weather episodes (Lehmann et al. 2020). Therefore, understanding the response of such 74 

bark beetle-host systems to changing climate is necessary to assess the risk of current and future 75 

outbreaks and their consequences for forest dynamics and resilience.  76 

Bark beetles are among the most important biotic agents affecting forests dynamics. First, 77 

bark beetles inhabit both natural and managed forests over the globe (Hulcr et al. 2015). Second, 78 

the dynamics of these bark beetle-host systems can become irruptive, undergoing natural 79 

intermittent outbreaks that cause tree mortality at landscape extent (Raffa et al. 2015). Third, in 80 

the context of climate change, some bark beetle species are currently showing altered outbreak 81 

dynamics within their historical ranges, and many of them are expanding their latitudinal and 82 
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elevational distribution (Cudmore et al. 2010; Georgiev et al., 2022) and even their host tree 83 

preferences (Cullingham et al. 2011). Fourth, bark beetles strongly impact the structure and 84 

functioning of forest ecosystems, affecting size class distribution, species composition, 85 

successional dynamics and disturbance regimes (e.g., wildfires), carbon stocks, nutrient cycling, 86 

and hydrology (Morris et al. 2017). Bark beetle disturbance can have, therefore, important 87 

consequences to the maintenance of ecosystem services into the future (Hlásny et al., 2019; 88 

McDowell et al., 2020). Yet, the role of climate and its variability on the dynamics of bark beetle-89 

host systems is not completely understood.  90 

Given the relevance of bark beetle disturbance to forest dynamics in the current context of 91 

climate change, we review the existing scientific knowledge of the influence of climatic factors on 92 

bark beetle-host tree dynamics. Particularly, we focus on bark beetle species that have the potential 93 

to kill coniferous forests trees due to their ecological and economical relevance. First, we explain 94 

the bark beetle biology and particularities of species-specific life cycle, the effect of temperature 95 

on bark beetles and the transition from endemic to epidemic stage. Then, we present a brief 96 

overview of the mechanisms of host tree resistance and its relationship with changing climatic 97 

conditions. These aspects provide the conceptual basis for assessing the drivers of current outbreak 98 

dynamics in North America and Europe and of those that may promote the transition from endemic 99 

to outbreak stages under future climates. Finally, we identify major research needs and priorities.  100 

2.  Biology of bark beetles 101 

Bark beetles are a group of small cylindrical insects classified in the subfamily Scolytinae 102 

(Latreille 1804), within the diverse family Curculionidae, order Coleoptera (Linnaeus 1758; 103 

Latreille 1802). Within the subfamily Scolytinae, there are currently ca. 6000 identified species 104 

belonging to 247 genera distributed in all biogeographic regions, excluding the Antarctic (Hulcr 105 
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et al. 2015). Less than 1% of the Scolytinae species are able to colonize and kill healthy trees. 106 

However, tree-killing species such as those breeding in temperate coniferous forests can cause 107 

important ecological and economic impacts (Lindgren and Raffa 2013; Hicke et al. 2016; Morris 108 

et al. 2017; Sommerfeld et al. 2018). This review is focused on this group of conifer tree-killing 109 

species, particularly well-studied species of Dendroctonus, Ips and Tomicus genera in North 110 

American and European forests. 111 

2.1. Life cycle 112 

Bark beetles, sensu stricto, live, breed and feed in galleries inside plant tissues, except 113 

during dispersal periods in the adult stage (Raffa et al. 2015) and for some species that can 114 

overwinter in forest litter (Schebeck et al. 2017). Each generation of bark beetles is organized 115 

around a common life cycle that includes three main stages: attack and establishment in host tree 116 

for reproduction, larval development, and maturation and dispersal (Sauvard 2004). However, 117 

there are many variations among bark beetle species at each stage of the life cycle, in addition to 118 

different reproductive strategies (i.e., monogamous or polygamous), voltinism (i.e., number of 119 

generations per year), and host preferences, that can influence dispersal, host tree colonization 120 

behaviours and their potential risk of developing into outbreak populations. 121 

The attack and establishment in the host tree for reproduction generally begin when pioneer 122 

beetles locate a new susceptible host, bore through the bark into the phloem, and excavate 123 

chambers or galleries to recruit mating partners. In monogamous species, the females are typically 124 

the pioneers, as in the genera Dendroctonus and Tomicus (Lieutier et al. 2015; Six and Bracewell 125 

2015), whilst in polygamous species, it is usually the males, as in the genus Ips (Cognato 2015). 126 

Conspecific recruitment for mating on the new host is promoted by aggregation pheromones or 127 

attractant compounds produced by the pioneer beetles (Blomquist et al. 2010). After mating, 128 
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females excavate oviposition galleries in the phloem to deposit eggs along them for brood 129 

production.  130 

For mass attacking bark beetle species, like Dendroctonus ponderosae, Dendroctonus 131 

rufipennis, and Ips typographus, the use of aggregation pheromones is also a mechanism to deplete 132 

host tree defences (Seybold et al. 2000; Blomquist et al. 2010). Pioneer beetles initiate and 133 

coordinate mass attacks using combinations of pheromones and host tree volatiles released by 134 

damaged tissues (Krokene 2015). The success or failure of the attack relies on the beetle’s 135 

population density and the defensive capacity of the affected tree, which vary among alternative 136 

host species and tree individuals (Christiansen et al. 1987; Boone et al. 2011). Although tree-killing 137 

bark beetle species are capable of incurring host tree mortality alone, associated microorganisms 138 

and fungi may be critical for detoxifying or exhausting tree defences (Raffa 2014; Six and 139 

Wingfield 2011; Chiu et al. 2019). When tree defences are overwhelmed, bark beetles release 140 

inhibitory compounds or anti-aggregation pheromones to prevent subsequent infestations and 141 

minimize conspecific competition (Wood 1982). A tree is typically available for one or, in certain 142 

cases, two beetle generations each year, depending on host size, host nutritional quality, and the 143 

infesting bark beetle species (Raffa et al. 2016).  144 

During the development stage, larvae usually bore individual galleries more or less 145 

perpendicular to the maternal gallery and feed on phloem or fungi which have invaded phloem. 146 

Then, pupation takes place in individual pupal chambers excavated in the phloem, as in Ips 147 

sexdentatus (Sauvard 2004), or in outer bark, as in Tomicus piniperda (Lieutier et al. 2015). Upon 148 

the emergence from the pupa, beetles need a maturation period prior be able to reproduce. In most 149 

species, maturation feeding takes place in the phloem of the natal host tree, as in Dendroctonus 150 

and Ips species (Sauvard 2004; Six and Bracewell 2015). Once mature, beetles emerge from the 151 
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natal host to find a new susceptible tree for brood production. However, in Tomicus species 152 

maturation feeding occurs in the shoots or twigs of healthy trees. In this case, beetles emerge from 153 

natal hosts to disperse for maturation feeding and then disperse again to find susceptible trees for 154 

reproduction (Lieutier et al. 2015).  155 

The dispersal distance to new host trees is influenced by beetles’ fitness (e.g., lipid 156 

reserves, flight muscles), biotic environmental factors (e.g., population dynamics, stand density 157 

and composition), and abiotic environmental factors (e.g., wind, temperature) (Kautz et al. 2016; 158 

Jones et al. 2019). The average dispersal of most bark beetles is from a few hundred meters to a 159 

few kilometres (Jactel, 1991; Werner and Holsten, 1997; Poland et al. 2000; Doležal et al. 2016). 160 

However, beetles have the potential for long-distance dispersal when flight is aided by wind. 161 

Individuals of D. ponderosae have been recorded more than 24 km from their natal tree (Evenden 162 

et al. 2014) and individuals of I. sexdentatus and I. typographus over 40 km (Nilssen 1984, Jactel 163 

and Gaillard 1991).  164 

2.2. Bark beetles responses to temperature 165 

As poikilotherms, bark beetles’ life cycles are directly influenced by temperature (see Fig. 166 

1) (Sauvard 2004, Bentz et al. 2010). Temperature affects the different stages of beetle 167 

developmentFig.1A;(1), overwintering survival Fig.1;A(2),  and number of generations Fig.1;A(3), but also 168 

activities such as gallery construction, mating, oviposition, maturation, emergence and dispersal 169 

flight. Also, it influences the development of associated microorganisms and fungi Fig.1;A(4) and 170 

bark beetle natural enemiesFig.1;A(5) (Six and Wingfield 2011; Wegensteiner et al. 2015). In general, 171 

rising temperatures accelerate the rates of life processes, increasing winter survival and population 172 

densityFig.1;C(13), and thus the attack pressureFig.1;A(6) on host trees. However, the effect of 173 

temperature on developmental processes is not linear. This effect varies according to species-174 
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specific thermal tolerances, species geographical distribution, and in relation to the species strategy 175 

to maintain life-cycle timing (i.e., diapause or direct temperature control) (Bentz et al. 2010).  176 

High temperatures can promote development rateFig.1;A(1) from eggs to adults accelerating 177 

reproduction, larval development and maturation, as well earlier emergence in spring. However, 178 

temperatures that surpass species-specific thermal tolerance, as experienced during heatwaves, can 179 

have negative effects on beetle development and lifespan (Rouault et al. 2006). In I. sexdentatus, 180 

development rate and productivity can increase with temperature, as result of enhanced oviposition 181 

rates and reduced larval developmental time, allowing for two instead of one generation per year 182 

(Pineau et al. 2017). In Tomicus species, warmer temperatures at the end of the winter allow for 183 

early emergence, maturation feeding on shoots and dispersal, thereby promoting the 184 

synchronization of adult emergence in spring (Lieutier et al. 2015). For species with a diapause 185 

strategy, such as I. typographus and D. rufipennis, the effect of temperature depends on the life 186 

stage in which diapause occurs (Bentz et al. 2010; Schebeck et al. 2017). For instance, in D. 187 

rufipennis, their facultative diapause during the prepupal stage may be averted by warm summer 188 

temperatures, resulting in a univoltine life cycle as opposed to two years when diapause is invoked. 189 

On the other hand, higher minimum temperatures could disrupt the obligatory adult diapause of 190 

this species which is initiated by low temperatures (Schebeck et al. 2017).  191 

Temperature during the cold season (i.e, late fall, winter, and early spring) influences the 192 

survival rate Fig.1;A(2) of beetle populations. Larvae and pupae, in general, are especially vulnerable 193 

to mortality by freezing. In D. ponderosae and D. frontalis, very low winter temperatures 194 

contribute to larvae mortality whilst warmer winters increase brood survival (Ungerer et al. 1999; 195 

Creeden et al. 2014). For that, most species overwinter as adults inside the natal host tree during 196 

their maturation stage waiting for spring to emerge (Sauvard 2004), although individuals of some 197 
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species can temporarily emerge to overwinter in the forest litter, as in I. typographus (Schebeck et 198 

al. 2017). In the case of Tomicus species, adults usually overwinter in maturation shoots or the 199 

base of healthy trees (Lieutier et al. 2015). For species with diapause to survive the cold 200 

temperatures, such as D. rufipennis and I. typographus, temperature and photoperiod play a 201 

primary role in the induction, maintenance and termination of diapause during overwintering 202 

(Schebeck et al. 2017). In this case, high temperatures can be critical for I. typographus when 203 

diapause induction must occur, as they can suppress this process and increase the risk of winter 204 

mortality (Doležal and Sehnal 2007). 205 

Temperature also largely influences the number of beetle generations and sister broods 206 

Fig.1;A(3) (i.e., new brood(s) produced by re-emerged parental beetles in the same year), which in 207 

turn determine population density and attack pressure in the current and following season. In 208 

species with a multivoltine cycle, such as I. acuminatus, I. sexdentatus and I. typographus, and D. 209 

frontalis, high summer temperatures can promote the emergence of more than one generation per 210 

year and increase the number of sister broods (Ungerer at al. 1999; Colombari et al. 2012; Pineau 211 

et al. 2017; Netherer and Hammerbacher 2022). In the case of D. ponderosae and D. rufipennis 212 

species, the development of beetle populations at high elevations or northern latitudes can be 213 

limited by cold temperatures, needing more than one year to complete a generation (i.e., semi-214 

voltine cycle). However, high summer temperatures reduce beetle development time, and prevent 215 

facultative prepupal diapause in D. rufipennis, allowing it to shift from semi- to univoltine cycles 216 

(Six and Bracewell 2015). In addition, the adaptive seasonality in D. ponderosae species, allows 217 

northern beetles to develop rapidly enough, and southern beetles slowly enough, to maintain 218 

univoltine life cycles (Safranyik and Caroll 2006). For Tomicus species, all populations have one 219 
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generation per year, but the number of sister broods may be positively influenced by high summer 220 

temperatures (Sauvard 2004, Lieutier et al. 2015).  221 

 222 

 223 

Figure 1. Network of relationships among the different components of the bark beetle-host system, 224 

operating from the beetle (A) and individual host trees (B), to the stand (C), and the landscape scale (D) 225 

under drought and temperature conditions. The effect among components can be positive or negative 226 

depending on bark beetle species, host tree species and the intensity of drought and temperature (see the 227 
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main text for a more detailed explanation about each particular effect). Numbers in brackets correspond to 228 

superscripts in the main text. 229 

2.3. Transition from endemic to epidemic stage 230 

In most forests, tree-killing bark beetle species are typically found in endemic stage (i.e., low-231 

density populations), which may evolve into an outbreak in case conditions for development 232 

become highly favourable (Lantschner and Corley 2023). During the endemic stage, beetles can 233 

only overcome the defensive mechanisms of trees weakened by suppression, disease, mechanical 234 

damage, or attacked by other insects (Carroll et al. 2006; Boone et al. 2011; Smith et al. 2011; 235 

Hroššo et al. 2020). These trees tend to have a smaller diameter with thinner phloem and low 236 

nutritional quality, which restricts brood production and limits beetle population, maintaining it at 237 

low densities (Bleiker et al. 2014). From this endemic stage, incipient-epidemic beetle populations 238 

can develop when large-diameter host trees are successfully attacked due to a local decline in host 239 

resistance, which increases beetle population density (Safranyik and Carroll 2006). In D. 240 

ponderosae, this transition from endemic to incipient-epidemic stage at stand level can be triggered 241 

by a combination of preceding biotic and abiotic stressors and high tree density, which promote 242 

the spatial aggregation of attacks (Howe 2022). Then, the incipient-epidemic stage is characterized 243 

by clumps of infested trees, in which the bark beetle-host system lays at a critical threshold 244 

between the transition of beetle populations from an incipient-epidemic stage to an epidemic stage 245 

(i.e., outbreaks). Climatic factors such as drought and warm temperatures may promote this 246 

transition, such as in D. ponderosae, D. rufipennis and I. typographus (Creeden et al. 2014; Kolb 247 

et al. 2016; Marini et al. 2017; Netherer et al. 2019). Importantly, climatic conditions including 248 

extreme drought and temperature can disrupt the positive and negative relationships that regulate 249 

the dynamics of bark beetle-host systems from their individual components to landscape scale (see 250 

Fig. 1). These effects include the alteration of (i) host tree characteristics such as growth rate, 251 
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defence capacity, and nutritional quality, (ii) beetle characteristics such as life cycle, development 252 

rate, and dispersal capacity, (iii) presence of beetle-associated microorganisms and beetle natural 253 

enemies, (iv) stand structure and composition, and (v) landscape structure (Wallin and Raffa 2004; 254 

Raffa et al. 2005; Simard et al. 2012; Seidl et al. 2016; Howe et al. 2022).  255 

As result of the growth and expansion of local incipient-epidemic populations at the scale 256 

of forest stands, the epidemic stage occurs at landscape level. Once the epidemic stage has started, 257 

their high population density allows beetles to begin to attack larger and healthier trees that provide 258 

more nutritional quality for brood development, although they have a better defence capacity. At 259 

endemic levels, trees with higher concentrations of defensive compounds are less likely to be 260 

attacked, however, this relationship is reversed during the incipient and epidemic stage (Boone et 261 

al. 2011). When the beetle population attacking a given tree surpasses a critical “threshold of attack 262 

density,” the defensive capacity of the host is exhausted, declining its resistance to subsequent 263 

brood development, leading to tree death (Raffa and Berryman 1983; Christiansen et al. 1987). 264 

Therefore, as the beetle population grows, the insects can kill more vigorous trees regardless of 265 

their stress level (Stephenson et al. 2019). In this situation, the outbreak can be sustained by 266 

positive density-dependent feedbacks (Raffa et al. 2008). Another factor to consider is that new 267 

beetle generations can develop a higher tolerance to host chemical defences and overcome them 268 

even in well defended trees, as has been seen in D. rufipennis (Wallin and Raffa 2004). In addition 269 

to positive density-dependent feedbacks, the heritability of traits that increase tolerance could 270 

explain why some outbreaks continue several years after cessation of a drought and heat event 271 

(Ryan et al. 2015). Finally, the collapse of outbreaks occurs during the post-epidemic stage 272 

(Safranyik and Carroll 2006) when many trees have been killed and host availability is reduced, 273 

and the beetle population declines at densities low enough that insects cannot overwhelm the 274 
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defences of the remaining healthy trees (Biedermann et al. 2019). Unsuitable weather conditions, 275 

such as extremely cold temperatures during the dispersal period, can also play an important role 276 

in the collapse of outbreaks, such as in D. ponderosae (Sambaraju et al. 2012), as well as predation 277 

and parasitism by natural enemies.  278 

3. Host tree resistance 279 

3.1. From tree to regional scale 280 

During the co-evolution of the host tree and bark beetle species, conifers have developed different 281 

defence mechanisms against bark beetle attack and their associated microorganisms, such as 282 

ophiostomatoid fungi (Raffa 2014; Krokene 2015). These mechanisms are based on constitutive 283 

(i.e., preformed) and inducible (i.e., newly-produced under attack) defences comprising 284 

mechanical and chemical barriers, which are combined through one to four successive stages 285 

(Franceschi et al. 2005; Kolosova and Bohlmann 2012; Celedon and Bohlmann 2019). The first 286 

stage of defence reaction is focused on repelling and inhibiting the initial attack using constitutive 287 

mechanisms. These include bark anatomical structures difficult to bore and consume by the insects, 288 

and chemical compounds such as oleoresin which can flush, repel and seal bark beetle entry. If 289 

constitutive mechanisms fail, a second stage based on inducible defences is activated to kill or 290 

compartmentalize the beetles that successfully penetrate the host tree. Following the attack, trees 291 

respond by increasing the concentration of semiochemicals with inhibitory and toxic effects on 292 

attacking beetles and associated fungi and, anatomically, changing the cell structure around the 293 

injured tissue to create a necrotic area. The necrotic area is impregnated with defence compounds 294 

such as terpenoid and phenolic substances to restrain the infestation and prevent the development 295 

of beetle galleries and the growth of associated fungi (Christiansen et al. 1987). In a third stage, 296 

the damage tissues are sealed and repaired to limit opportunistic or subsequent infestations 297 
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(Franceschi et al. 2005). Finally, once an invading organism is identified, a fourth stage based on 298 

acquired or systemic defence can be induced, including the capacity of synthetizing more 299 

specialized defence responses, such as gene-for-gene, to inhibit future attacks (Franceschi et al. 300 

2005; Eyles et al. 2010).  301 

Properties of individual trees, such as size, tree age, or phenology can determine tree 302 

resistance to bark beetle attacks (see Fig. 1). With regard to tree sizeFig.1;B(7), beetles can easier 303 

overcome the resistance mechanisms of smaller trees as they are less effectively defended 304 

compared to large trees (Raffa et al. 2016). This is due to host resistance might be influenced by 305 

tree ageFig.1;B(11) (Christiansen et al. 1987). Previous studies have found that chemical defences 306 

increased with age in Pinus contorta, Pinus ponderosa and Pinus flexilis (Ferrenberg et al. 2017), 307 

while others report that older stems are less chemically defended than younger ones in trees of P. 308 

contorta (Goodsman et al. 2013). Likewise, the production of bark compounds can vary with tree 309 

age, such as volatile organic compounds in P. abies that act as repellents of I. typographus and 310 

have been shown to decrease with age under laboratory conditions (Blažytė-Čereškienė et al. 311 

2015). Smaller trees might therefore be preferred as hosts during endemic stage, for instance by in 312 

D. ponderosae (Boone et al. 2011). Conversely, species such as D. rufipennis and I. typographus 313 

prefer large-diameter trees, despite they are better defended, because their thicker and more 314 

nutritional phloemFig.1;B(10) supports the development of larger broods (Reid and Robb 1999; 315 

Jenkins et al. 2014; Hroššo et al. 2020). Hence, during epidemic stage, both large and small trees 316 

can be attacked successfully.  317 

Tree phenology also influences tree resistance, since trees can be more susceptible to 318 

infestation during their growth season, which often coincides with the emergence of adult beetles 319 

for reproduction, if more resources are invested into growth than into defense (Rossi et al. 2006; 320 
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Krokene 2015). Defence compounds are costly to produce, so periods of fast growthFig.1;B(9) could 321 

reduce carbon allocation to defencesFig.1;B(8) (Stamp 2003; Matyssek et al. 2012; Cooper et al. 322 

2018). Indeed, in some Pinus species, higher resistance to bark beetle attack has been documented 323 

in those trees that invested more resources in the production of resin ducts than in fast growth 324 

(Kane and Kolb 2010; Ferrenberg et al. 2014, 2015; Hood and Sala 2015; Kichas et al. 2020). 325 

Consistently, in Norway spruce (Picea abies), higher levels of constitutive and inducible defences 326 

have been found in slow-growing trees (Baier et al. 2002). But this is not a general relationship, 327 

since in some cases, such as Pinus taeda, higher levels of induced defences were found in fast-328 

growing trees. Allocation of carbon and water into resin production might become a priority only 329 

after wounding (Lombardero et al. 2000). In the case of P. contorta and P. albicaulis such trade-330 

offs between tree growth and defense (e.g., formation of new resin ducts) have not been observed 331 

(Mason et al. 2019). In addition to variations between tree species, carbon allocation to growth 332 

and defence may differ among populations due to phenotypic variation (Ferrenberg et al. 2023).  333 

Stand-level characteristics including structure (e.g., basal area, stem density, stand density 334 

index, stand age, and spatial distribution) and species composition can also influence the resistance 335 

to bark beetle infestation according to host availabilityFig.1;C(12) (see Fig. 1) (Fettig et al. 2007). 336 

Furthermore, in stands with high basal area or tree density (e.g., stem), high levels of among-tree 337 

competition and an associated reduction in tree vigour are expected (Fettig et al. 2014; Kichas et 338 

al. 2021). Competition for water, nutrients, and sunlight may limit resource allocation to produce 339 

defences against bark beetle attack (Raffa and Berryman 1983; Christiansen et al. 1987).  340 

In terms of species composition and structure, bark beetles’ olfactory recognition of host 341 

trees is easier in monospecific and even-aged aggregations of trees (Byers 2004; Raffa et al. 2016). 342 

Therefore, there is a higher likelihood of increased beetle population density Fig.1;C(13) (i.e., 343 
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transition from endemic to epidemic stage) in monospecific, high-density stands with host trees 344 

distributed in a clustered pattern (Akkuzu et al. 2017; Aoki et al. 2018), as bark beetle dispersal is 345 

favoured among nearby host trees. On the contrary, in mixed forests, the chemical stimuli from 346 

non-host trees can produce a “chemical barrier” disrupting host tree recognition by beetles (see 347 

"semiochemical diversity hypothesis", Zhang and Schlyter 2004), thus host trees located in mixed 348 

stands could go unnoticed (Jactel and Brockerhoff 2007). In addition, bark beetles can avoid areas 349 

with non-host volatiles since some bark volatiles and aromatic compounds may indicate the 350 

presence of trees that are not suited as hosts (Byers et al. 1998; Schiebe et al. 2011). However, 351 

Berthelot et al. (2021) recently reported that the risk of bark beetle infestation of less preferred, 352 

host tree genera in mixed forests may increase due to spillover from preferred hosts. Lastly, at 353 

landscape and regional scales, the homogeneity and connectivity of the landscapeFig.1;D(14) can 354 

favour beetle dispersal and the development of large outbreaksFig.1;D(15) (Chapman et al. 2012). 355 

Such epidemics are often driven by drought and high temperatures, which can modulate the 356 

cessation or spread of outbreaks across time and space (Aukema et al. 2008; Marini et al. 2012; 357 

Preisler et al. 2012; Kolb et al. 2016; Seidl et al. 2016; Howe et al. 2011, 2022).  358 

3.2. Resistance and climate change 359 

Extreme temperatures (i.e., heatwaves) can accelerate the susceptibility of host trees to bark beetle 360 

attacks due to their negative effects on tree defence capacity Fig1;B(8) (see Fig. 1) (Huang et al. 2020). 361 

Excessive temperatures influence many tree physiological and biochemical processes, for instance, 362 

leading to an increased emission of volatile organic compounds (Holopainen et al. 2018) that bark 363 

beetles can detect as a stress signal (Raffa et al. 2016), increased evapotranspiration, and declined 364 

photosynthesis (McDowell et al. 2022). Stress physiology is reflected by an increased use of 365 

carbohydrates for the maintenance of tree basal metabolism, decreased growthFig.1;B(9), and an 366 
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increment of foliar damage, reducing tree performance and investment in defence (Teskey et al. 367 

2015; McDowell et al. 2022). Therefore, temperatures experienced during heatwaves can lead to 368 

weakened trees with less defence capacity to resist bark beetle attacks.  369 

Drought stress, in many cases concomitant with high temperatures, also affects the 370 

resistance of host trees (see Fig. 1). Its effects on constitutive and induced tree defences can be 371 

negative, neutral, or even positive depending on the intensity and duration of the dry event and 372 

tree recovery time (Ayres and Lombardero 2000; Gaylord et al. 2013; Netherer et al. 2015; Kolb 373 

et al. 2019; Trowbridge et al. 2021). Moderate water stress might stimulate the production of tree 374 

defences, while severe water stress might decrease tree resistance (Lorio 1968). Different tree 375 

defence responses are due to the fact that carbon allocation in trees is affected by drought in several 376 

ways (Matyssek et al. 2012; McDowell et al. 2022). During moderate drought, tree growthFig.1;B(9) 377 

is more limited than photosynthesis due to the negative effects on turgor-driven cell growth 378 

(McDowell et al. 2022); that might lead to an increase of carbon allocation in secondary 379 

metabolites for both constitutive and induced defencesFig.1;seB(8) (Huang et al. 2020) improving, in 380 

turn, tree resistance to bark beetle attack and their associated fungi (Lombardero et al. 2000; 381 

Rissanen et al. 2021). On the contrary, extreme and/or long-lasting drought stress induces stomatal 382 

closure to reduce transpiration, which diminishes photosynthesis and carbon assimilation, and can 383 

eventually lead to a depletion of carbohydrates reserves (McDowell et al. 2008; Mitchell et al. 384 

2013; Choat et al. 2018). Thus, water and carbon scarcity compromise both growthFig.1;B(9) and 385 

production of secondary metabolitesFig.1; B(8), eventually resulting in slow-growing trees without 386 

enough defensive capacity to cope with bark beetle attack and their associated fungi (Rolland and 387 

Lempérière 2004); but also potentially reducing the host tree acceptance by bark beetles, as it has 388 

been seen in P. abies by I. typographus (Netherer et al. 2015). However, the threshold at which 389 
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drought stress constrains tree defence remains uncertain, mainly due to a scarcity of enough 390 

evidence linking carbohydrates, hydraulics mechanisms and defensive compounds in field 391 

experiments of host mature trees (Huang et al., 2020; McDowell et al. 2022).  392 

4. Changes in patterns of bark beetle outbreaks related to observed climate change   393 

As explained above, warm temperatures and drought conditions influence the dynamics of bark 394 

beetle-host systems and have facilitated, to some extent, past outbreaks (Berg et al. 2006; 395 

Hebertson and Jenkins 2008; Sambaraju et al. 2019; Negrón and Huckaby 2020). However, current 396 

patterns of bark beetle outbreaks documented in North America and Europe appear to be different 397 

from past observations (i.e., mid- to late 20th century), suggesting that changes in some key factors 398 

such as climate are responsible for these emerging new patterns (Raffa et al. 2008; Bentz et al. 399 

2010; Pureswaran et al. 2018; Fettig et al. 2022). First, outbreaks are more frequent, severe, and 400 

their duration is longer (Berg et al. 2006; Werner et al. 2006; Marini et al. 2012; Hlásny et al. 401 

2021) This may result from warming temperatures which could be enhancing the number of beetle 402 

generations per year of multivoltine bark beetle species (Colombari et al. 2012; Siitonen 2014; 403 

Marini et al. 2017; Netherer and Hammerbacher 2022). Second, the spatiotemporal synchronicity 404 

between outbreaks may be increasing. Outbreaks of several bark beetle species are occurring 405 

simultaneously at regional scales (Økland et al. 2005; Aukema et al. 2006; Sherriff et al. 2011). 406 

Third, some bark beetle species are extending their distribution beyond their historical range, 407 

spreading geographically (Carroll et al. 2004; Weed et al. 2013; Siitonen 2014) and with the risk 408 

of behaving as invasive species, such as D. ponderosae (Cudmore et al. 2010). Finally, some bark 409 

beetle species are infesting new and previously non-recorded coniferous species, suggesting 410 

expansions in host tree preferences (Logan et al. 2010; Cullingham et al. 2011; Raffa et al. 2013). 411 
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The global trade of wood products can increase the risk of beetle invasive species and host 412 

preference switches (Lantschner et al. 2017).  413 

4.1. North America  414 

In the last two decades, a dramatic number of coniferous trees have been killed by bark beetles 415 

across millions of hectares from Mexico to Canada (Fettig et al. 2022). Only in the western United 416 

States, during 2000-2018, more than 36 million forest ha were affected by outbreaks of tree-killing 417 

species belonging to Dendroctonus and Ips genera (Hicke et al. 2020; USDA 2020). Particularly, 418 

D. ponderosae and D. rufipennis caused much of the tree mortality over major forested areas 419 

(Bentz and Klepzig 2014). For instance, in British Columbia (Canada), D. ponderosae outbreaks 420 

have resulted in the mortality of mature P. contorta trees over 14 million ha (Woods et al. 2010), 421 

converting the forest from a net carbon sink to a carbon source (Kurz et al. 2008). Although the 422 

mechanisms that contribute to such widespread outbreaks are complex, there is strong evidence 423 

that climate change is amplifying the joint influence of insect disturbances and tree stress induced 424 

by warming conditions and extreme drought events, leading to devastating effects on forests 425 

(Bentz et al. 2010; Preisler et al. 2012; Seidl and Rammer 2017).  426 

Some studies suggest that irruptive bark beetle outbreaks across North America are 427 

primarily being driven by the influence of warming on beetle life cycles, whereas drought-induced 428 

reduction of host defences appear to be a secondary driver, such as for D. rufipennis outbreaks in 429 

Picea engelmannii forests (Pettit et al. 2020). This has been seen in south-central Alaska and 430 

Yukon Territory since the 1990s, where consecutive years of warmer temperatures have promoted 431 

massive and spatiotemporally synchronized D. rufipennis outbreaks (Berg et al. 2006; Sherriff et 432 

al. 2011). For other bark beetle species, the effects of drought conditions on the host tree appear 433 

to be the most determinant in driving recent outbreaks, as in D. rufipennis (Hart et al. 2014, 2017) 434 
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and Ips confusus infestation in western North America (Breshears et al. 2005; Kleinman et al. 435 

2012; Kolb et al. 2019). For D. ponderosae and D. frontalis, both warming and drought conditions 436 

greatly influence ongoing impact and expansion (Preisler et al. 2012; Weed et al. 2013; Sidder et 437 

al. 2016; Cooper et al. 2018; Lombardo et al. 2023). This reveals that climate change effects on 438 

beetle outbreaks and the response of host populations vary both regionally and among different 439 

bark beetle-host systems, likely due to differences in bark beetles life cycles and critical feedbacks 440 

loops that coordinate host tree species responses (Reed and Hood 2021).   441 

The response of host tree populations under the interacting effects of drought and bark 442 

beetle disturbances have also varied across species’ distribution ranges. For instance, stands of 443 

Pinus edulis with historically suitable climatic conditions for tree populations were more damaged 444 

by bark beetle outbreaks concurrent with a recent severe drought event (Kleinman et al. 2012; 445 

Lloret and Kitzberger 2018). Similar patterns were observed for P. engelmannii forests attacked 446 

by D. rufipennis in the Southern Rocky Mountains (Jaime et al. 2022b). In addition, warming 447 

temperatures can facilitate range shifts of bark beetle species by turning climatically unsuitable 448 

habitats for these insects into suitable ones, or vice versa (Ungerer et al. 1999; Williams and 449 

Liebhold 2002; Sambaraju et al. 2019). In D. ponderosae, its evolutionary potential (e.g., selection 450 

for cold tolerance) to adapt to novel habitats and the removal of climatic constraints (Samarasekera 451 

et al. 2012) has allowed its range expansion to northern areas in Canada, where the number of 452 

attacks has increased in regions that were not climatically suitable in the past (Carroll et al. 2004; 453 

Cudmore et al. 2010; de la Giroday et al. 2012). Moreover, the range expansion of this beetle 454 

species could allow it to infest other coniferous species, such as Pinus banksiana, throughout zones 455 

in which this tree species hybridizes with lodgepole pine at its western range edge in north-central 456 

Alberta (Cullingham et al. 2011).  457 



22 
 

4.2. Europe 458 

Bark beetle outbreaks - mostly caused by tree-killing species belonging to Ips and Tomicus genera 459 

are an important driver of the recently doubled tree mortality across Europe, in combination with 460 

other disturbances and stressors (Lieutier et al. 2004; Senf et al. 2018; Pattaca et al. 2022). The 461 

most injurious species is I. typographus, which has attacked a large part of the European spruce 462 

forests in the last decades (Seidl et al. 2014; Georgiev et al. 2022). Only in the Czech Republic, 463 

more than 23 million m3 of P. abies trees were killed by I. typographus beetles during 2017-2019 464 

(Hlásny et al. 2021). In central and eastern Europe, the transition of bark beetle populations from 465 

an endemic to an epidemic stage has been typically triggered by windthrows, which damage host 466 

trees and provide large amounts of breeding material (Schelhaas et al. 2003; Mezei et al. 2017; 467 

Seidl et al. 2017; Hroššo et al. 2020). However, the severity of recent outbreaks and the decline of 468 

host tree resistance also appear to be modulated by increased climatic variability, waves of hotter-469 

droughts, and synchronicity of extreme weather events across European landscapes (Rouault et al. 470 

2006; Seidl et al. 2016; Senf and Seidl 2018; Neumann et al. 2017; Netherer et al. 2019). The 471 

spatio-temporal synchronicity of these weather factors can promote the increase of bark beetle 472 

populations, according to the Moran effect (Tobin et al. 2023).  473 

Unprecedented events of extreme drought concomitant with very high temperatures in 474 

2003, 2015, and 2018 (Hanel et al. 2018) have promoted bark beetle attack and beetle populations’ 475 

growth over Central European forests (Rouault et al. 2006; Schuldt et al. 2020; Jaime et al. 2022a). 476 

Notably, regional summer droughts and prolonged water stress are triggering infestation pulses of 477 

I. typographus on spruce tree populations (Seidl et al. 2016). Severe water-limiting conditions 478 

decrease P. abies resistance to bark beetle attack due to impaired constitutive defence traits, such 479 

as resin flow (Netherer et al. 2015). Similarly, recent drought events are weakening the resistance 480 
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of  Pinus sylvestris populations to bark beetle attacks (Rebetez and Dobbertin 2004; Krams et al. 481 

2012; Jaime et al. 2022a), particularly in locations with historically suitable climatic conditions 482 

(Jaime et al. 2019). Moreover, warmer temperatures are promoting population increases of the 483 

most frequent bark beetle species that attack this pine: T. piniperda, T. minor, I. sexdentatus, and 484 

I. acuminatus (Lieutier et al. 2004; Dobbertin et al. 2007; Wermelinger et al. 2008).  485 

Warming temperatures can also shift the voltinism of beetles from one to two or even three 486 

generations per year, allowing the increase of population size and the likelihood of outbreaks 487 

(Bentz and Jönsson 2015). Multivoltinism has been observed in the last decades in populations of 488 

I. typographus in northern Europe (Jönsson et al. 2009, 2011) and I. acuminatus in the south-489 

eastern Alps (Colombari et al. 2012). Further, dry summers are also altering the distribution and 490 

aggressiveness (i.e., capacity to kill healthy trees) of secondary bark beetle species, such as I. 491 

acuminatus, with increased attack levels on P. sylvestris trees in southern Finland (Siitonen 2014).  492 

5. Outbreak predictions under climate change scenarios 493 

The observed changes in historical bark beetle-host dynamics foreshadow extensive modifications 494 

in forest ecosystems as climate change accelerates. Global warming is predicted to dramatically 495 

affect the frequency, magnitude, and distribution of bark beetle outbreaks (Bale et al. 2002; 496 

Biedermann et al. 2019). In North America, increases in mean temperature will increase the risk 497 

of D. ponderosae outbreaks in higher elevations and northern latitudes (Sambaraju et al. 2012). 498 

By contrast, at lower elevations and latitudes, further warming could reduce the current 499 

climatically suitable habitat for this beetle species (Williams and Liebhold 2002; Evangelista et al. 500 

2011; Sidder et al. 2016) by disrupting its adaptive seasonality (Logan and Powell 2001). For D. 501 

rufipennis, warming will also promote expansions to higher altitudes, mediated by alterations in 502 

spruce forests susceptibility (DeRose et al. 2013). Accordingly, simulations under climate change 503 
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scenarios predict a drought- and beetle-induced reduction of large P. engelmannii trees, which may 504 

trigger a shift in forest composition and structure (Temperli et al. 2015; Foster et al. 2018). For 505 

other Dendroctonus species, such as D. frontalis, climatically suitable habitat will continue to 506 

increase over time towards northern latitudes and higher elevations (Evangelista et al. 2011; Lesk 507 

et al. 2017).  508 

In Europe, cumulative forest growing stock affected by I. typographus could be strongly 509 

amplified into the future, with projected increases between 59%, under a moderate climate scenario 510 

(RCP 4.5), to 205%, under a hot climate scenario (RCP 8.5) (Kausrud et al. 2012; Sommerfeld et 511 

al. 2020), as result of the development of more beetle generations per year (Jönsson et al. 2011). 512 

Such increase in beetle abundance and attack pressure will reduce the dominance of P. abies in 513 

the forested landscape of many European countries (Sommerfeld et al. 2020). For other Ips species, 514 

such as I. sexdentatus, more generations per year are also expected to increase beetle population 515 

levels, triggering more frequent outbreaks under future climate scenarios (Pineau et al. 2017). 516 

However, warmer temperatures could alter the interactions between bark beetles and their natural 517 

enemies adding complexity to future predictions (Wermelinger et al., 2021).   518 

Despite the accelerated beetle population development and the drought-induced decline in 519 

host resistance associated with climate change, the emerging forest composition and landscape 520 

structure could be less susceptible to subsequent infestation in both North America and Europe. 521 

Empirical and simulation studies revealed that past bark beetle outbreaks exerted negative 522 

feedbacks on subsequent ones (Kashian et al. 2011; Hart et al. 2015; Temperli et al. 2015), mainly 523 

due to shifts in tree species composition and the reduction of host availability. Accordingly, future 524 

predictions indicate that ongoing beetle-induced changes in forest structure and composition could 525 

dampen future outbreak dynamics (Thom et al. 2017; Honkaniemi et al. 2020). However, other 526 
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studies indicate that such negative feedbacks may not fully compensate favourable outbreak 527 

conditions in areas where host trees are still abundant (Sommerfeld et al. 2020) or are recovered 528 

over time, evidencing the complexity of predicting the effects of climate change on bark beetle-529 

host systems.  530 

Changing climatic conditions will also affect the habitat suitability and, in the long-term, 531 

the distribution of host tree species (McKenney et al. 2007; Fei et al. 2017; Dyderski et al. 2018; 532 

Kelsey et al. 2018). Under warmer and highly fluctuating environmental conditions, coniferous 533 

species could locally disappear, potentially migrating to other areas, or persist by adapting to new 534 

conditions. Species-specific responses will depend on multiple factors such as phenotypic 535 

variation and plasticity, acclimation capacity, fecundity, dispersal ability, and biotic interactions 536 

(Aitken et al. 2008). For instance, range contractions of major host tree species are predicted at 537 

low latitudes, such as P. sylvestris in Europe and P. engelmannii in North America (Rehfeldt et al. 538 

2006; Matias et al. 2017; Dyderski et al. 2018), whereas range expansions are predicted towards 539 

higher altitudes and latitudes. Since shifts in host trees’ distribution will determine, in turn, range 540 

shifts of their attacking bark beetle species (Temperli et al. 2013, 2015), further attention will be 541 

needed to study the combined behaviour of bark beetle and conifers distribution under climate 542 

change scenarios.  543 

6. Research needs and priorities  544 

As outlined in the previous sections, multiple factors govern beetle infestation and current and 545 

future patterns of beetle activity. Therefore, understanding the response of components of different 546 

bark beetle-host systems to climate change requires addressing a multiplicity of issues.  547 

(1) Given that the components of the bark beetle-host system and their complex interactions 548 

are not equally affected by climate changes, it is essential to better discern how the bark beetle-549 
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host system's temperature- and water-dependent processes will be affected (Anderegg et al. 2015; 550 

Ryan et al. 2015). This question demands additional studies to specifically assess the performance 551 

of the different relationships of bark beetle-host systems and increasing drought and temperature 552 

(Fig. 1). For instance, long-term field studies designed to measure the climate change effects on 553 

the complex interactions between host trees, bark beetles, microorganisms associated, and natural 554 

enemies are needed (Wermelinger et al. 2021; Hofstetter et al. 2022). Since climate-induced 555 

responses may vary among different bark beetle-host systems (Reed and Hood 2021), the analysis 556 

of their influence on host tree physiology and beetle life cycle dynamics should be analysed for 557 

each specific system. The quantification of the net effects of climatic parameters on species-558 

specific bark beetle and host tree populations may be suitable for this purpose, in which net effects 559 

could result from different functions to assess the change of bark beetle and host tree traits in 560 

relation to climate parameters. The integration of this information into modelling approaches will 561 

enhance predictions of host tree resistance and infestation trends under more frequent and extreme 562 

weather events.  563 

(2) Development of additional methods to scale up from tree- to stand-level susceptibility 564 

are needed. At stand scale, no consistent patterns have been identified to explain why some host 565 

tree populations are more susceptible to outbreaks, while others maintain beetle populations at an 566 

endemic stage. It has been shown how drought weakens individual host trees and makes them 567 

more susceptible to bark beetle attack (Gaylord et al. 2013; Kolb et al. 2019; Netherer et al. 2015). 568 

However, the translation from individual trees to stand susceptibility is not straightforward, and in 569 

some cases, it is more determined by warming conditions that promote beetle development than 570 

by the effects of drought stress on trees (Pettit et al. 2020). Indeed, similar climatic conditions may 571 

be experienced distinctly by different beetle and host tree species. Therefore, the application of 572 
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standardized indices across species, such as species climatic suitability or the location of 573 

populations within the species' climatic niche obtained from ecological modelling, could be useful 574 

to assess the response patterns of both host tree and insect populations and to anticipate stand 575 

mortality episodes driven by bark beetles under increasingly frequent extreme weather events 576 

(Lloret and Kitzberger 2018; IPCC 2019; Jaime et al. 2019, 2022b). 577 

(3) Early detection of bark beetle attack in which trees have yet to show visual signs of 578 

infestation stress will be crucial to relate the point in time of infestation with weather data, 579 

particularly under extreme climatic periods. In addition to supporting management actions aiming 580 

to minimize outbreak's impacts, this would allow a better understanding of the effects of climate 581 

change on outbreak emergence and to identify host tree populations that are more susceptible to 582 

be affected. New technologies such as satellite-derived data or LiDAR have shown potential to 583 

develop tools for early detection of beetle activity and parametrize spatiotemporal models of 584 

outbreak dynamics (Meddens and Hicke 2014; Hart and Veblen 2015; Hais et al. 2016; Abdullah 585 

et al. 2019; Rodman et al. 2021). Moreover, chemical-based techniques such as using trained dogs 586 

or drones with gas sensor arrays could allow optimizing the early detection of beetle-attacked trees 587 

(Johansson et al. 2019; Paczkowski et al. 2021).   588 

(5) Characterizing thresholds of change in forest ecosystems to anticipate regime shifts 589 

(i.e., sudden changes to a new system state) is a pressing scientific issue. At landscape scale, more 590 

frequent and extensive bark beetle outbreaks can exceed the historical boundaries of the resilience 591 

of forest ecosystems, causing long-term impacts on ecosystem structure and community dynamics 592 

(Raffa et al. 2008; Bentz et al. 2010; Thom et al. 2017). Importantly, ecosystem legacies of 593 

previous climatic, biotic, and human-induced disturbances may also determine forest resistance to 594 

subsequent outbreaks (Johnstone et al. 2016; Kannenberg et al. 2020; Sommerfeld et al. 2020). 595 
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Additional research fully integrating the climatic and legacy effects on both beetle and host tree 596 

historical distribution ranges could better estimate forest resilience to ongoing and future 597 

outbreaks. 598 

(5) Risk assessment considering insect invasiveness into new areas, the potential for tree 599 

hybridization under changing tree species distribution, and tree susceptibility to native and 600 

invasive bark beetle species is crucial to anticipate future invasions and derived impacts. Climate 601 

change, international trade, and land use are leading to an increase in the number of invasive plant 602 

and insect species with important ecological and economic impacts (Marini et al. 2011; Lantschner 603 

et al. 2020). Many bark beetle species have already been established in regions outside their native 604 

range (Faccoli et al. 2020), with potentially far-reaching impacts on the dynamics of native host 605 

trees (Lantschner et al. 2017). Similarly, homogeneous plantations of exotic conifers offer 606 

excellent opportunities to previously, non-aggressive native bark beetles to extend their 607 

distribution range, resulting in increased damage and, in some cases, becoming significant pests 608 

(Bertheau et al. 2009; Branco et al. 2015; Howe et al. 2021). The integration of the bark beetle-609 

host species climatic niche  (Jaime et al. 2022a) would allow more accurate predictions of the 610 

expected patterns of species distribution changes under climate change scenarios. 611 
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