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Abstract

Extreme weather episodes related to anthropogenic climate change have enhanced the frequency
and magnitude of bark beetle disturbance, causing worldwide mortality of forests in the last
decades. Changes in temperature and precipitation regimes are altering the relationships between
host tree populations and associated bark beetle species, as these insect-host systems are highly
sensitive to climate extremes. However, it is not fully understood how climate interacts with the
different components of bark beetle-host systems, and thus the existing knowledge is still
insufficient to face the challenges of understanding the system response to changing environmental
conditions. Here, we review the most important findings of the influence of climatic factors on the
dynamics of bark beetle and host tree populations at different spatiotemporal scales. Future
research should integrate how the effects of climate on individual tree responses to beetle attack
scale up to outbreak patterns at regional scale. Recent advances in plant physiology, disturbance
ecology, ecological niche modelling, and remote sensing can further our understanding of the risks
of bark beetle disturbance in forest ecosystems under changing climate.

Key words: forest mortality, biotic disturbance, heatwaves, extreme drought, host tree resistance,
outbreak dynamics.

DECLARATIONS

Funding

This research was supported by the Spanish Ministry of Science and Innovation through the
RESIBIO (PID2020-115264RB-100) and BIOCLIM projects (CGL2015-67419-R), and by
AGAUR (Government of Catalonia) through the 2017 SGR 1001 grant.

Conflicts of interest/Competing interests



39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

I declare that the authors have no competing interests as defined by Springer, or other interests that
might be perceived to influence the results and/or discussion reported in this paper.

Availability of data and material

Not applicable.

Code availability

Not applicable.

Authors’ contributions

L.J. wrote the original draft. E.B. and F.L. supervised, reviewed and edited the manuscript.
ACKNOWLEDGMENTS

This research was supported by the Spanish Ministry of Science and Innovation through the
RESIBIO (PID2020-115264RB-100) and BIOCLIM projects (CGL2015-67419-R), and by
AGAUR (Government of Catalonia) through the 2017 SGR 1001 grant. E.B. is a Serra Hunter
Fellow. We thank the helpful comments of two anonymous reviewers that substantially improved

a previous version of this manuscript.

CONTENTS

L INEEOAUCTION L. et ettt et e st e e st e e st e e s e e 4

2. Biology of Dark DEELIES .......ccoeiiiiiiiiiiiiie e 5
B B B3 (<3 o) o] (U PUPUPPRIURPRPPRN 6
2.2. Bark beetles responses t0 tEMPEIratUre .........ccuuveeeeriuiieeeeiiiieeeeriiieeeeriieeeeeeireeeeeeneaeeeenes 8
2.3. Transition from endemic to epidemic StAZE .........ccccvvrieeriuiieeeriiiieeeeiieee e ieee e 12

3. HOSE t1EE TESISLAIICE. ...uteeeuiiieeiiie ettt ettt ettt ettt et e ettt e et e et eesabeeesabeeesabeeesabeeenas 14



61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

3.1. From tree to 1€ZI0Nal SCALE ......c..viiiieiiiiiieeiiiie ettt e e e 14

3.2. Resistance and climate Change ..............ccooviiiiiiiiiiiiiiiieeeee e 17
4. Changes in patterns of bark beetle outbreaks related to observed climate change .................. 18
4.1 INOTER ATNETICA ..ttt ettt e et e et e e st e e sabeeesabeeesabaeenas 19
4.2, BUTOPE ..ottt ettt ettt e e e e e ettt et e e e e e e e et bttt e e e e e e e e e abbbtaeaeaaeeeaannns 21
5. Outbreak predictions under climate change SCeNarios. .........cc.ueeeeruiieeeriiiieeeeniiieeeeiieee e 23
6. Research needs and PrioTities ........ccuuiieeeiiiiieeeiiie e e et e e ettt e e et e e e et eeeeebaeeeeeebaeeeeeenees 25

1. Introduction

During the last decades of anthropogenic-driven changes in temperature and precipitation regimes
(IPCC 2019), mortality in forests has been increasing due to abiotic and biotic disturbances such
as bark beetle outbreaks (Weed et al. 2013; Seidl and Rammer 2017; McDowell et al. 2020). An
important feature of the systems composed of host trees and the bark and wood boring insects
colonizing these tree species is that they are highly sensitive to climatic variability, particularly to
extreme weather episodes (Lehmann et al. 2020). Therefore, understanding the response of such
bark beetle-host systems to changing climate is necessary to assess the risk of current and future
outbreaks and their consequences for forest dynamics and resilience.

Bark beetles are among the most important biotic agents affecting forests dynamics. First,
bark beetles inhabit both natural and managed forests over the globe (Hulcr et al. 2015). Second,
the dynamics of these bark beetle-host systems can become irruptive, undergoing natural
intermittent outbreaks that cause tree mortality at landscape extent (Raffa et al. 2015). Third, in
the context of climate change, some bark beetle species are currently showing altered outbreak
dynamics within their historical ranges, and many of them are expanding their latitudinal and

4
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elevational distribution (Cudmore et al. 2010; Georgiev et al., 2022) and even their host tree
preferences (Cullingham et al. 2011). Fourth, bark beetles strongly impact the structure and
functioning of forest ecosystems, affecting size class distribution, species composition,
successional dynamics and disturbance regimes (e.g., wildfires), carbon stocks, nutrient cycling,
and hydrology (Morris et al. 2017). Bark beetle disturbance can have, therefore, important
consequences to the maintenance of ecosystem services into the future (Hlasny et al., 2019;
McDowell et al., 2020). Yet, the role of climate and its variability on the dynamics of bark beetle-
host systems is not completely understood.

Given the relevance of bark beetle disturbance to forest dynamics in the current context of
climate change, we review the existing scientific knowledge of the influence of climatic factors on
bark beetle-host tree dynamics. Particularly, we focus on bark beetle species that have the potential
to kill coniferous forests trees due to their ecological and economical relevance. First, we explain
the bark beetle biology and particularities of species-specific life cycle, the effect of temperature
on bark beetles and the transition from endemic to epidemic stage. Then, we present a brief
overview of the mechanisms of host tree resistance and its relationship with changing climatic
conditions. These aspects provide the conceptual basis for assessing the drivers of current outbreak
dynamics in North America and Europe and of those that may promote the transition from endemic
to outbreak stages under future climates. Finally, we identify major research needs and priorities.
2. Biology of bark beetles
Bark beetles are a group of small cylindrical insects classified in the subfamily Scolytinae
(Latreille 1804), within the diverse family Curculionidae, order Coleoptera (Linnaeus 1758;
Latreille 1802). Within the subfamily Scolytinae, there are currently ca. 6000 identified species

belonging to 247 genera distributed in all biogeographic regions, excluding the Antarctic (Hulcr
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et al. 2015). Less than 1% of the Scolytinae species are able to colonize and kill healthy trees.
However, tree-killing species such as those breeding in temperate coniferous forests can cause
important ecological and economic impacts (Lindgren and Raffa 2013; Hicke et al. 2016; Morris
et al. 2017; Sommerfeld et al. 2018). This review is focused on this group of conifer tree-killing
species, particularly well-studied species of Dendroctonus, Ips and Tomicus genera in North
American and European forests.

2.1. Life cycle

Bark beetles, sensu stricto, live, breed and feed in galleries inside plant tissues, except
during dispersal periods in the adult stage (Raffa et al. 2015) and for some species that can
overwinter in forest litter (Schebeck et al. 2017). Each generation of bark beetles is organized
around a common life cycle that includes three main stages: attack and establishment in host tree
for reproduction, larval development, and maturation and dispersal (Sauvard 2004). However,
there are many variations among bark beetle species at each stage of the life cycle, in addition to
different reproductive strategies (i.e., monogamous or polygamous), voltinism (i.e., number of
generations per year), and host preferences, that can influence dispersal, host tree colonization
behaviours and their potential risk of developing into outbreak populations.

The attack and establishment in the host tree for reproduction generally begin when pioneer
beetles locate a new susceptible host, bore through the bark into the phloem, and excavate
chambers or galleries to recruit mating partners. In monogamous species, the females are typically
the pioneers, as in the genera Dendroctonus and Tomicus (Lieutier et al. 2015; Six and Bracewell
2015), whilst in polygamous species, it is usually the males, as in the genus Ips (Cognato 2015).
Conspecific recruitment for mating on the new host is promoted by aggregation pheromones or

attractant compounds produced by the pioneer beetles (Blomquist et al. 2010). After mating,
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females excavate oviposition galleries in the phloem to deposit eggs along them for brood
production.

For mass attacking bark beetle species, like Dendroctonus ponderosae, Dendroctonus
rufipennis, and Ips typographus, the use of aggregation pheromones is also a mechanism to deplete
host tree defences (Seybold et al. 2000; Blomquist et al. 2010). Pioneer beetles initiate and
coordinate mass attacks using combinations of pheromones and host tree volatiles released by
damaged tissues (Krokene 2015). The success or failure of the attack relies on the beetle’s
population density and the defensive capacity of the affected tree, which vary among alternative
host species and tree individuals (Christiansen et al. 1987; Boone et al. 2011). Although tree-killing
bark beetle species are capable of incurring host tree mortality alone, associated microorganisms
and fungi may be critical for detoxifying or exhausting tree defences (Raffa 2014; Six and
Wingfield 2011; Chiu et al. 2019). When tree defences are overwhelmed, bark beetles release
inhibitory compounds or anti-aggregation pheromones to prevent subsequent infestations and
minimize conspecific competition (Wood 1982). A tree is typically available for one or, in certain
cases, two beetle generations each year, depending on host size, host nutritional quality, and the
infesting bark beetle species (Raffa et al. 2016).

During the development stage, larvae usually bore individual galleries more or less
perpendicular to the maternal gallery and feed on phloem or fungi which have invaded phloem.
Then, pupation takes place in individual pupal chambers excavated in the phloem, as in Ips
sexdentatus (Sauvard 2004), or in outer bark, as in Tomicus piniperda (Lieutier et al. 2015). Upon
the emergence from the pupa, beetles need a maturation period prior be able to reproduce. In most
species, maturation feeding takes place in the phloem of the natal host tree, as in Dendroctonus

and Ips species (Sauvard 2004; Six and Bracewell 2015). Once mature, beetles emerge from the
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natal host to find a new susceptible tree for brood production. However, in Tomicus species
maturation feeding occurs in the shoots or twigs of healthy trees. In this case, beetles emerge from
natal hosts to disperse for maturation feeding and then disperse again to find susceptible trees for
reproduction (Lieutier et al. 2015).

The dispersal distance to new host trees is influenced by beetles’ fitness (e.g., lipid
reserves, flight muscles), biotic environmental factors (e.g., population dynamics, stand density
and composition), and abiotic environmental factors (e.g., wind, temperature) (Kautz et al. 2016;
Jones et al. 2019). The average dispersal of most bark beetles is from a few hundred meters to a
few kilometres (Jactel, 1991; Werner and Holsten, 1997; Poland et al. 2000; Dolezal et al. 2016).
However, beetles have the potential for long-distance dispersal when flight is aided by wind.
Individuals of D. ponderosae have been recorded more than 24 km from their natal tree (Evenden
et al. 2014) and individuals of 1. sexdentatus and I. typographus over 40 km (Nilssen 1984, Jactel
and Gaillard 1991).

2.2. Bark beetles responses to temperature

As poikilotherms, bark beetles’ life cycles are directly influenced by temperature (see Fig.
1) (Sauvard 2004, Bentz et al. 2010). Temperature affects the different stages of beetle
developmentFig 1AM gverwintering survival Fie:A2) | and number of generations 121543 but also
activities such as gallery construction, mating, oviposition, maturation, emergence and dispersal
flight. Also, it influences the development of associated microorganisms and fungi FigiA® and
bark beetle natural enemiest&-:A®) (Six and Wingfield 2011; Wegensteiner et al. 2015). In general,
rising temperatures accelerate the rates of life processes, increasing winter survival and population

Fig.1;C(13)
b

density and thus the attack pressure™@!:A©® on host trees. However, the effect of

temperature on developmental processes is not linear. This effect varies according to species-
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specific thermal tolerances, species geographical distribution, and in relation to the species strategy
to maintain life-cycle timing (i.e., diapause or direct temperature control) (Bentz et al. 2010).

High temperatures can promote development rate™e A1) from eggs to adults accelerating
reproduction, larval development and maturation, as well earlier emergence in spring. However,
temperatures that surpass species-specific thermal tolerance, as experienced during heatwaves, can
have negative effects on beetle development and lifespan (Rouault et al. 2006). In 1. sexdentatus,
development rate and productivity can increase with temperature, as result of enhanced oviposition
rates and reduced larval developmental time, allowing for two instead of one generation per year
(Pineau et al. 2017). In Tomicus species, warmer temperatures at the end of the winter allow for
early emergence, maturation feeding on shoots and dispersal, thereby promoting the
synchronization of adult emergence in spring (Lieutier et al. 2015). For species with a diapause
strategy, such as I. typographus and D. rufipennis, the effect of temperature depends on the life
stage in which diapause occurs (Bentz et al. 2010; Schebeck et al. 2017). For instance, in D.
rufipennis, their facultative diapause during the prepupal stage may be averted by warm summer
temperatures, resulting in a univoltine life cycle as opposed to two years when diapause is invoked.
On the other hand, higher minimum temperatures could disrupt the obligatory adult diapause of
this species which is initiated by low temperatures (Schebeck et al. 2017).

Temperature during the cold season (i.e, late fall, winter, and early spring) influences the

survival rate Fig-:AQ)

of beetle populations. Larvae and pupae, in general, are especially vulnerable
to mortality by freezing. In D. ponderosae and D. frontalis, very low winter temperatures
contribute to larvae mortality whilst warmer winters increase brood survival (Ungerer et al. 1999;

Creeden et al. 2014). For that, most species overwinter as adults inside the natal host tree during

their maturation stage waiting for spring to emerge (Sauvard 2004), although individuals of some
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species can temporarily emerge to overwinter in the forest litter, as in 1. typographus (Schebeck et
al. 2017). In the case of Tomicus species, adults usually overwinter in maturation shoots or the
base of healthy trees (Lieutier et al. 2015). For species with diapause to survive the cold
temperatures, such as D. rufipennis and I. typographus, temperature and photoperiod play a
primary role in the induction, maintenance and termination of diapause during overwintering
(Schebeck et al. 2017). In this case, high temperatures can be critical for 1. typographus when
diapause induction must occur, as they can suppress this process and increase the risk of winter
mortality (Dolezal and Sehnal 2007).

Temperature also largely influences the number of beetle generations and sister broods
Fig LAG) (i.e., new brood(s) produced by re-emerged parental beetles in the same year), which in
turn determine population density and attack pressure in the current and following season. In
species with a multivoltine cycle, such as I. acuminatus, I. sexdentatus and 1. typographus, and D.
frontalis, high summer temperatures can promote the emergence of more than one generation per
year and increase the number of sister broods (Ungerer at al. 1999; Colombari et al. 2012; Pineau
et al. 2017; Netherer and Hammerbacher 2022). In the case of D. ponderosae and D. rufipennis
species, the development of beetle populations at high elevations or northern latitudes can be
limited by cold temperatures, needing more than one year to complete a generation (i.e., semi-
voltine cycle). However, high summer temperatures reduce beetle development time, and prevent
facultative prepupal diapause in D. rufipennis, allowing it to shift from semi- to univoltine cycles
(Six and Bracewell 2015). In addition, the adaptive seasonality in D. ponderosae species, allows
northern beetles to develop rapidly enough, and southern beetles slowly enough, to maintain

univoltine life cycles (Safranyik and Caroll 2006). For Tomicus species, all populations have one
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224 Figure 1. Network of relationships among the different components of the bark beetle-host system,
225  operating from the beetle (A) and individual host trees (B), to the stand (C), and the landscape scale (D)
226  under drought and temperature conditions. The effect among components can be positive or negative

227  depending on bark beetle species, host tree species and the intensity of drought and temperature (see the
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main text for a more detailed explanation about each particular effect). Numbers in brackets correspond to
superscripts in the main text.

2.3. Transition from endemic to epidemic stage

In most forests, tree-killing bark beetle species are typically found in endemic stage (i.e., low-
density populations), which may evolve into an outbreak in case conditions for development
become highly favourable (Lantschner and Corley 2023). During the endemic stage, beetles can
only overcome the defensive mechanisms of trees weakened by suppression, disease, mechanical
damage, or attacked by other insects (Carroll et al. 2006; Boone et al. 2011; Smith et al. 2011;
HrosSo et al. 2020). These trees tend to have a smaller diameter with thinner phloem and low
nutritional quality, which restricts brood production and limits beetle population, maintaining it at
low densities (Bleiker et al. 2014). From this endemic stage, incipient-epidemic beetle populations
can develop when large-diameter host trees are successfully attacked due to a local decline in host
resistance, which increases beetle population density (Safranyik and Carroll 2006). In D.
ponderosae, this transition from endemic to incipient-epidemic stage at stand level can be triggered
by a combination of preceding biotic and abiotic stressors and high tree density, which promote
the spatial aggregation of attacks (Howe 2022). Then, the incipient-epidemic stage is characterized
by clumps of infested trees, in which the bark beetle-host system lays at a critical threshold
between the transition of beetle populations from an incipient-epidemic stage to an epidemic stage
(i.e., outbreaks). Climatic factors such as drought and warm temperatures may promote this
transition, such as in D. ponderosae, D. rufipennis and I. typographus (Creeden et al. 2014; Kolb
et al. 2016; Marini et al. 2017; Netherer et al. 2019). Importantly, climatic conditions including
extreme drought and temperature can disrupt the positive and negative relationships that regulate
the dynamics of bark beetle-host systems from their individual components to landscape scale (see

Fig. 1). These effects include the alteration of (i) host tree characteristics such as growth rate,
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defence capacity, and nutritional quality, (i1) beetle characteristics such as life cycle, development
rate, and dispersal capacity, (iii) presence of beetle-associated microorganisms and beetle natural
enemies, (iv) stand structure and composition, and (v) landscape structure (Wallin and Raffa 2004;
Raffa et al. 2005; Simard et al. 2012; Seidl et al. 2016; Howe et al. 2022).

As result of the growth and expansion of local incipient-epidemic populations at the scale
of forest stands, the epidemic stage occurs at landscape level. Once the epidemic stage has started,
their high population density allows beetles to begin to attack larger and healthier trees that provide
more nutritional quality for brood development, although they have a better defence capacity. At
endemic levels, trees with higher concentrations of defensive compounds are less likely to be
attacked, however, this relationship is reversed during the incipient and epidemic stage (Boone et
al. 2011). When the beetle population attacking a given tree surpasses a critical “threshold of attack
density,” the defensive capacity of the host is exhausted, declining its resistance to subsequent
brood development, leading to tree death (Raffa and Berryman 1983; Christiansen et al. 1987).
Therefore, as the beetle population grows, the insects can kill more vigorous trees regardless of
their stress level (Stephenson et al. 2019). In this situation, the outbreak can be sustained by
positive density-dependent feedbacks (Raffa et al. 2008). Another factor to consider is that new
beetle generations can develop a higher tolerance to host chemical defences and overcome them
even in well defended trees, as has been seen in D. rufipennis (Wallin and Raffa 2004). In addition
to positive density-dependent feedbacks, the heritability of traits that increase tolerance could
explain why some outbreaks continue several years after cessation of a drought and heat event
(Ryan et al. 2015). Finally, the collapse of outbreaks occurs during the post-epidemic stage
(Safranyik and Carroll 2006) when many trees have been killed and host availability is reduced,

and the beetle population declines at densities low enough that insects cannot overwhelm the
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defences of the remaining healthy trees (Biedermann et al. 2019). Unsuitable weather conditions,
such as extremely cold temperatures during the dispersal period, can also play an important role
in the collapse of outbreaks, such as in D. ponderosae (Sambaraju et al. 2012), as well as predation
and parasitism by natural enemies.

3. Host tree resistance

3.1. From tree to regional scale

During the co-evolution of the host tree and bark beetle species, conifers have developed different
defence mechanisms against bark beetle attack and their associated microorganisms, such as
ophiostomatoid fungi (Raffa 2014; Krokene 2015). These mechanisms are based on constitutive
(i.e., preformed) and inducible (i.e., newly-produced under attack) defences comprising
mechanical and chemical barriers, which are combined through one to four successive stages
(Franceschi et al. 2005; Kolosova and Bohlmann 2012; Celedon and Bohlmann 2019). The first
stage of defence reaction is focused on repelling and inhibiting the initial attack using constitutive
mechanisms. These include bark anatomical structures difficult to bore and consume by the insects,
and chemical compounds such as oleoresin which can flush, repel and seal bark beetle entry. If
constitutive mechanisms fail, a second stage based on inducible defences is activated to kill or
compartmentalize the beetles that successfully penetrate the host tree. Following the attack, trees
respond by increasing the concentration of semiochemicals with inhibitory and toxic effects on
attacking beetles and associated fungi and, anatomically, changing the cell structure around the
injured tissue to create a necrotic area. The necrotic area is impregnated with defence compounds
such as terpenoid and phenolic substances to restrain the infestation and prevent the development
of beetle galleries and the growth of associated fungi (Christiansen et al. 1987). In a third stage,

the damage tissues are sealed and repaired to limit opportunistic or subsequent infestations
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(Franceschi et al. 2005). Finally, once an invading organism is identified, a fourth stage based on
acquired or systemic defence can be induced, including the capacity of synthetizing more
specialized defence responses, such as gene-for-gene, to inhibit future attacks (Franceschi et al.
2005; Eyles et al. 2010).

Properties of individual trees, such as size, tree age, or phenology can determine tree
resistance to bark beetle attacks (see Fig. 1). With regard to tree sizef¢:B(), beetles can easier
overcome the resistance mechanisms of smaller trees as they are less effectively defended
compared to large trees (Raffa et al. 2016). This is due to host resistance might be influenced by
tree age™e:BUD (Christiansen et al. 1987). Previous studies have found that chemical defences
increased with age in Pinus contorta, Pinus ponderosa and Pinus flexilis (Ferrenberg et al. 2017),
while others report that older stems are less chemically defended than younger ones in trees of P.
contorta (Goodsman et al. 2013). Likewise, the production of bark compounds can vary with tree
age, such as volatile organic compounds in P. abies that act as repellents of I. typographus and
have been shown to decrease with age under laboratory conditions (Blazyté-Cereskiené et al.
2015). Smaller trees might therefore be preferred as hosts during endemic stage, for instance by in
D. ponderosae (Boone et al. 2011). Conversely, species such as D. rufipennis and I. typographus
prefer large-diameter trees, despite they are better defended, because their thicker and more
nutritional phloemfi¢:B19 gupports the development of larger broods (Reid and Robb 1999;
Jenkins et al. 2014; HrosSo et al. 2020). Hence, during epidemic stage, both large and small trees
can be attacked successfully.

Tree phenology also influences tree resistance, since trees can be more susceptible to
infestation during their growth season, which often coincides with the emergence of adult beetles

for reproduction, if more resources are invested into growth than into defense (Rossi et al. 2006;
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Krokene 2015). Defence compounds are costly to produce, so periods of fast growthie:B®) could
reduce carbon allocation to defences™&:B® (Stamp 2003; Matyssek et al. 2012; Cooper et al.
2018). Indeed, in some Pinus species, higher resistance to bark beetle attack has been documented
in those trees that invested more resources in the production of resin ducts than in fast growth
(Kane and Kolb 2010; Ferrenberg et al. 2014, 2015; Hood and Sala 2015; Kichas et al. 2020).
Consistently, in Norway spruce (Picea abies), higher levels of constitutive and inducible defences
have been found in slow-growing trees (Baier et al. 2002). But this is not a general relationship,
since in some cases, such as Pinus taeda, higher levels of induced defences were found in fast-
growing trees. Allocation of carbon and water into resin production might become a priority only
after wounding (Lombardero et al. 2000). In the case of P. contorta and P. albicaulis such trade-
offs between tree growth and defense (e.g., formation of new resin ducts) have not been observed
(Mason et al. 2019). In addition to variations between tree species, carbon allocation to growth
and defence may differ among populations due to phenotypic variation (Ferrenberg et al. 2023).

Stand-level characteristics including structure (e.g., basal area, stem density, stand density
index, stand age, and spatial distribution) and species composition can also influence the resistance
to bark beetle infestation according to host availability"&:¢12) (see Fig. 1) (Fettig et al. 2007).
Furthermore, in stands with high basal area or tree density (e.g., stem), high levels of among-tree
competition and an associated reduction in tree vigour are expected (Fettig et al. 2014; Kichas et
al. 2021). Competition for water, nutrients, and sunlight may limit resource allocation to produce
defences against bark beetle attack (Raffa and Berryman 1983; Christiansen et al. 1987).

In terms of species composition and structure, bark beetles’ olfactory recognition of host
trees is easier in monospecific and even-aged aggregations of trees (Byers 2004; Raffa et al. 2016).

Therefore, there is a higher likelihood of increased beetle population density Fig:€03) (je.,
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transition from endemic to epidemic stage) in monospecific, high-density stands with host trees
distributed in a clustered pattern (Akkuzu et al. 2017; Aoki et al. 2018), as bark beetle dispersal is
favoured among nearby host trees. On the contrary, in mixed forests, the chemical stimuli from
non-host trees can produce a “chemical barrier” disrupting host tree recognition by beetles (see
"semiochemical diversity hypothesis", Zhang and Schlyter 2004), thus host trees located in mixed
stands could go unnoticed (Jactel and Brockerhoff 2007). In addition, bark beetles can avoid areas
with non-host volatiles since some bark volatiles and aromatic compounds may indicate the
presence of trees that are not suited as hosts (Byers et al. 1998; Schiebe et al. 2011). However,
Berthelot et al. (2021) recently reported that the risk of bark beetle infestation of less preferred,
host tree genera in mixed forests may increase due to spillover from preferred hosts. Lastly, at
landscape and regional scales, the homogeneity and connectivity of the landscapefie:P(14) can
favour beetle dispersal and the development of large outbreaksF¢::P15) (Chapman et al. 2012).
Such epidemics are often driven by drought and high temperatures, which can modulate the
cessation or spread of outbreaks across time and space (Aukema et al. 2008; Marini et al. 2012;
Preisler et al. 2012; Kolb et al. 2016; Seidl et al. 2016; Howe et al. 2011, 2022).

3.2. Resistance and climate change

Extreme temperatures (i.e., heatwaves) can accelerate the susceptibility of host trees to bark beetle
attacks due to their negative effects on tree defence capacity "21:B® (see Fig. 1) (Huang et al. 2020).
Excessive temperatures influence many tree physiological and biochemical processes, for instance,
leading to an increased emission of volatile organic compounds (Holopainen et al. 2018) that bark
beetles can detect as a stress signal (Raffa et al. 2016), increased evapotranspiration, and declined
photosynthesis (McDowell et al. 2022). Stress physiology is reflected by an increased use of

carbohydrates for the maintenance of tree basal metabolism, decreased growth&!:B®) and an

17



367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

increment of foliar damage, reducing tree performance and investment in defence (Teskey et al.
2015; McDowell et al. 2022). Therefore, temperatures experienced during heatwaves can lead to
weakened trees with less defence capacity to resist bark beetle attacks.

Drought stress, in many cases concomitant with high temperatures, also affects the
resistance of host trees (see Fig. 1). Its effects on constitutive and induced tree defences can be
negative, neutral, or even positive depending on the intensity and duration of the dry event and
tree recovery time (Ayres and Lombardero 2000; Gaylord et al. 2013; Netherer et al. 2015; Kolb
et al. 2019; Trowbridge et al. 2021). Moderate water stress might stimulate the production of tree
defences, while severe water stress might decrease tree resistance (Lorio 1968). Different tree
defence responses are due to the fact that carbon allocation in trees is affected by drought in several
ways (Matyssek et al. 2012; McDowell et al. 2022). During moderate drought, tree growthfie1:8©)
is more limited than photosynthesis due to the negative effects on turgor-driven cell growth
(McDowell et al. 2022); that might lead to an increase of carbon allocation in secondary
metabolites for both constitutive and induced defencest'e!:*B® (Huang et al. 2020) improving, in
turn, tree resistance to bark beetle attack and their associated fungi (Lombardero et al. 2000;
Rissanen et al. 2021). On the contrary, extreme and/or long-lasting drought stress induces stomatal
closure to reduce transpiration, which diminishes photosynthesis and carbon assimilation, and can
eventually lead to a depletion of carbohydrates reserves (McDowell et al. 2008; Mitchell et al.
2013; Choat et al. 2018). Thus, water and carbon scarcity compromise both growthfi¢:LB®) and
production of secondary metabolitest&'!: B®, eventually resulting in slow-growing trees without
enough defensive capacity to cope with bark beetle attack and their associated fungi (Rolland and
Lempériere 2004); but also potentially reducing the host tree acceptance by bark beetles, as it has

been seen in P. abies by I. typographus (Netherer et al. 2015). However, the threshold at which
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drought stress constrains tree defence remains uncertain, mainly due to a scarcity of enough
evidence linking carbohydrates, hydraulics mechanisms and defensive compounds in field
experiments of host mature trees (Huang et al., 2020; McDowell et al. 2022).

4. Changes in patterns of bark beetle outbreaks related to observed climate change

As explained above, warm temperatures and drought conditions influence the dynamics of bark
beetle-host systems and have facilitated, to some extent, past outbreaks (Berg et al. 2006;
Hebertson and Jenkins 2008; Sambaraju et al. 2019; Negrén and Huckaby 2020). However, current
patterns of bark beetle outbreaks documented in North America and Europe appear to be different
from past observations (i.e., mid- to late 20th century), suggesting that changes in some key factors
such as climate are responsible for these emerging new patterns (Raffa et al. 2008; Bentz et al.
2010; Pureswaran et al. 2018; Fettig et al. 2022). First, outbreaks are more frequent, severe, and
their duration is longer (Berg et al. 2006; Werner et al. 2006; Marini et al. 2012; Hlasny et al.
2021) This may result from warming temperatures which could be enhancing the number of beetle
generations per year of multivoltine bark beetle species (Colombari et al. 2012; Siitonen 2014;
Marini et al. 2017; Netherer and Hammerbacher 2022). Second, the spatiotemporal synchronicity
between outbreaks may be increasing. Outbreaks of several bark beetle species are occurring
simultaneously at regional scales (Jkland et al. 2005; Aukema et al. 2006; Sherriff et al. 2011).
Third, some bark beetle species are extending their distribution beyond their historical range,
spreading geographically (Carroll et al. 2004; Weed et al. 2013; Siitonen 2014) and with the risk
of behaving as invasive species, such as D. ponderosae (Cudmore et al. 2010). Finally, some bark
beetle species are infesting new and previously non-recorded coniferous species, suggesting

expansions in host tree preferences (Logan et al. 2010; Cullingham et al. 2011; Raffa et al. 2013).
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The global trade of wood products can increase the risk of beetle invasive species and host
preference switches (Lantschner et al. 2017).

4.1. North America

In the last two decades, a dramatic number of coniferous trees have been killed by bark beetles
across millions of hectares from Mexico to Canada (Fettig et al. 2022). Only in the western United
States, during 2000-2018, more than 36 million forest ha were affected by outbreaks of tree-killing
species belonging to Dendroctonus and Ips genera (Hicke et al. 2020; USDA 2020). Particularly,
D. ponderosae and D. rufipennis caused much of the tree mortality over major forested areas
(Bentz and Klepzig 2014). For instance, in British Columbia (Canada), D. ponderosae outbreaks
have resulted in the mortality of mature P. contorta trees over 14 million ha (Woods et al. 2010),
converting the forest from a net carbon sink to a carbon source (Kurz et al. 2008). Although the
mechanisms that contribute to such widespread outbreaks are complex, there is strong evidence
that climate change is amplifying the joint influence of insect disturbances and tree stress induced
by warming conditions and extreme drought events, leading to devastating effects on forests
(Bentz et al. 2010; Preisler et al. 2012; Seidl and Rammer 2017).

Some studies suggest that irruptive bark beetle outbreaks across North America are
primarily being driven by the influence of warming on beetle life cycles, whereas drought-induced
reduction of host defences appear to be a secondary driver, such as for D. rufipennis outbreaks in
Picea engelmannii forests (Pettit et al. 2020). This has been seen in south-central Alaska and
Yukon Territory since the 1990s, where consecutive years of warmer temperatures have promoted
massive and spatiotemporally synchronized D. rufipennis outbreaks (Berg et al. 2006; Sherriff et
al. 2011). For other bark beetle species, the effects of drought conditions on the host tree appear

to be the most determinant in driving recent outbreaks, as in D. rufipennis (Hart et al. 2014, 2017)
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and Ips confusus infestation in western North America (Breshears et al. 2005; Kleinman et al.
2012; Kolb et al. 2019). For D. ponderosae and D. frontalis, both warming and drought conditions
greatly influence ongoing impact and expansion (Preisler et al. 2012; Weed et al. 2013; Sidder et
al. 2016; Cooper et al. 2018; Lombardo et al. 2023). This reveals that climate change effects on
beetle outbreaks and the response of host populations vary both regionally and among different
bark beetle-host systems, likely due to differences in bark beetles life cycles and critical feedbacks
loops that coordinate host tree species responses (Reed and Hood 2021).

The response of host tree populations under the interacting effects of drought and bark
beetle disturbances have also varied across species’ distribution ranges. For instance, stands of
Pinus edulis with historically suitable climatic conditions for tree populations were more damaged
by bark beetle outbreaks concurrent with a recent severe drought event (Kleinman et al. 2012;
Lloret and Kitzberger 2018). Similar patterns were observed for P. engelmannii forests attacked
by D. rufipennis in the Southern Rocky Mountains (Jaime et al. 2022b). In addition, warming
temperatures can facilitate range shifts of bark beetle species by turning climatically unsuitable
habitats for these insects into suitable ones, or vice versa (Ungerer et al. 1999; Williams and
Liebhold 2002; Sambaraju et al. 2019). In D. ponderosae, its evolutionary potential (e.g., selection
for cold tolerance) to adapt to novel habitats and the removal of climatic constraints (Samarasekera
et al. 2012) has allowed its range expansion to northern areas in Canada, where the number of
attacks has increased in regions that were not climatically suitable in the past (Carroll et al. 2004;
Cudmore et al. 2010; de la Giroday et al. 2012). Moreover, the range expansion of this beetle
species could allow it to infest other coniferous species, such as Pinus banksiana, throughout zones
in which this tree species hybridizes with lodgepole pine at its western range edge in north-central

Alberta (Cullingham et al. 2011).
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4.2. Europe
Bark beetle outbreaks - mostly caused by tree-killing species belonging to Ips and Tomicus genera
are an important driver of the recently doubled tree mortality across Europe, in combination with
other disturbances and stressors (Lieutier et al. 2004; Senf et al. 2018; Pattaca et al. 2022). The
most injurious species is 1. fypographus, which has attacked a large part of the European spruce
forests in the last decades (Seidl et al. 2014; Georgiev et al. 2022). Only in the Czech Republic,
more than 23 million m? of P. abies trees were killed by L. typographus beetles during 2017-2019
(Hlasny et al. 2021). In central and eastern Europe, the transition of bark beetle populations from
an endemic to an epidemic stage has been typically triggered by windthrows, which damage host
trees and provide large amounts of breeding material (Schelhaas et al. 2003; Mezei et al. 2017;
Seidl et al. 2017; HrosSo et al. 2020). However, the severity of recent outbreaks and the decline of
host tree resistance also appear to be modulated by increased climatic variability, waves of hotter-
droughts, and synchronicity of extreme weather events across European landscapes (Rouault et al.
2006; Seidl et al. 2016; Senf and Seidl 2018; Neumann et al. 2017; Netherer et al. 2019). The
spatio-temporal synchronicity of these weather factors can promote the increase of bark beetle
populations, according to the Moran effect (Tobin et al. 2023).

Unprecedented events of extreme drought concomitant with very high temperatures in
2003, 2015, and 2018 (Hanel et al. 2018) have promoted bark beetle attack and beetle populations’
growth over Central European forests (Rouault et al. 2006; Schuldt et al. 2020; Jaime et al. 2022a).
Notably, regional summer droughts and prolonged water stress are triggering infestation pulses of
1. typographus on spruce tree populations (Seidl et al. 2016). Severe water-limiting conditions
decrease P. abies resistance to bark beetle attack due to impaired constitutive defence traits, such

as resin flow (Netherer et al. 2015). Similarly, recent drought events are weakening the resistance
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of Pinus sylvestris populations to bark beetle attacks (Rebetez and Dobbertin 2004; Krams et al.
2012; Jaime et al. 2022a), particularly in locations with historically suitable climatic conditions
(Jaime et al. 2019). Moreover, warmer temperatures are promoting population increases of the
most frequent bark beetle species that attack this pine: 7. piniperda, T. minor, 1. sexdentatus, and
1. acuminatus (Lieutier et al. 2004; Dobbertin et al. 2007; Wermelinger et al. 2008).

Warming temperatures can also shift the voltinism of beetles from one to two or even three
generations per year, allowing the increase of population size and the likelihood of outbreaks
(Bentz and Jonsson 2015). Multivoltinism has been observed in the last decades in populations of
1. typographus in northern Europe (Jonsson et al. 2009, 2011) and 1. acuminatus in the south-
eastern Alps (Colombari et al. 2012). Further, dry summers are also altering the distribution and
aggressiveness (i.e., capacity to kill healthy trees) of secondary bark beetle species, such as 1.
acuminatus, with increased attack levels on P. sylvestris trees in southern Finland (Siitonen 2014).
5. Outbreak predictions under climate change scenarios
The observed changes in historical bark beetle-host dynamics foreshadow extensive modifications
in forest ecosystems as climate change accelerates. Global warming is predicted to dramatically
affect the frequency, magnitude, and distribution of bark beetle outbreaks (Bale et al. 2002;
Biedermann et al. 2019). In North America, increases in mean temperature will increase the risk
of D. ponderosae outbreaks in higher elevations and northern latitudes (Sambaraju et al. 2012).
By contrast, at lower elevations and latitudes, further warming could reduce the current
climatically suitable habitat for this beetle species (Williams and Liebhold 2002; Evangelista et al.
2011; Sidder et al. 2016) by disrupting its adaptive seasonality (Logan and Powell 2001). For D.
rufipennis, warming will also promote expansions to higher altitudes, mediated by alterations in

spruce forests susceptibility (DeRose et al. 2013). Accordingly, simulations under climate change
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scenarios predict a drought- and beetle-induced reduction of large P. engelmannii trees, which may
trigger a shift in forest composition and structure (Temperli et al. 2015; Foster et al. 2018). For
other Dendroctonus species, such as D. frontalis, climatically suitable habitat will continue to
increase over time towards northern latitudes and higher elevations (Evangelista et al. 2011; Lesk
et al. 2017).

In Europe, cumulative forest growing stock affected by 1. typographus could be strongly
amplified into the future, with projected increases between 59%, under a moderate climate scenario
(RCP 4.5), to 205%, under a hot climate scenario (RCP 8.5) (Kausrud et al. 2012; Sommerfeld et
al. 2020), as result of the development of more beetle generations per year (Jonsson et al. 2011).
Such increase in beetle abundance and attack pressure will reduce the dominance of P. abies in
the forested landscape of many European countries (Sommerfeld et al. 2020). For other Ips species,
such as I. sexdentatus, more generations per year are also expected to increase beetle population
levels, triggering more frequent outbreaks under future climate scenarios (Pineau et al. 2017).
However, warmer temperatures could alter the interactions between bark beetles and their natural
enemies adding complexity to future predictions (Wermelinger et al., 2021).

Despite the accelerated beetle population development and the drought-induced decline in
host resistance associated with climate change, the emerging forest composition and landscape
structure could be less susceptible to subsequent infestation in both North America and Europe.
Empirical and simulation studies revealed that past bark beetle outbreaks exerted negative
feedbacks on subsequent ones (Kashian et al. 2011; Hart et al. 2015; Temperli et al. 2015), mainly
due to shifts in tree species composition and the reduction of host availability. Accordingly, future
predictions indicate that ongoing beetle-induced changes in forest structure and composition could

dampen future outbreak dynamics (Thom et al. 2017; Honkaniemi et al. 2020). However, other

24



527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

studies indicate that such negative feedbacks may not fully compensate favourable outbreak
conditions in areas where host trees are still abundant (Sommerfeld et al. 2020) or are recovered
over time, evidencing the complexity of predicting the effects of climate change on bark beetle-
host systems.

Changing climatic conditions will also affect the habitat suitability and, in the long-term,
the distribution of host tree species (McKenney et al. 2007; Fei et al. 2017; Dyderski et al. 2018;
Kelsey et al. 2018). Under warmer and highly fluctuating environmental conditions, coniferous
species could locally disappear, potentially migrating to other areas, or persist by adapting to new
conditions. Species-specific responses will depend on multiple factors such as phenotypic
variation and plasticity, acclimation capacity, fecundity, dispersal ability, and biotic interactions
(Aitken et al. 2008). For instance, range contractions of major host tree species are predicted at
low latitudes, such as P. sylvestris in Europe and P. engelmannii in North America (Rehfeldt et al.
2006; Matias et al. 2017; Dyderski et al. 2018), whereas range expansions are predicted towards
higher altitudes and latitudes. Since shifts in host trees’ distribution will determine, in turn, range
shifts of their attacking bark beetle species (Temperli et al. 2013, 2015), further attention will be
needed to study the combined behaviour of bark beetle and conifers distribution under climate
change scenarios.
6. Research needs and priorities
As outlined in the previous sections, multiple factors govern beetle infestation and current and
future patterns of beetle activity. Therefore, understanding the response of components of different
bark beetle-host systems to climate change requires addressing a multiplicity of issues.

(1) Given that the components of the bark beetle-host system and their complex interactions

are not equally affected by climate changes, it is essential to better discern how the bark beetle-
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host system's temperature- and water-dependent processes will be affected (Anderegg et al. 2015;
Ryan et al. 2015). This question demands additional studies to specifically assess the performance
of the different relationships of bark beetle-host systems and increasing drought and temperature
(Fig. 1). For instance, long-term field studies designed to measure the climate change effects on
the complex interactions between host trees, bark beetles, microorganisms associated, and natural
enemies are needed (Wermelinger et al. 2021; Hofstetter et al. 2022). Since climate-induced
responses may vary among different bark beetle-host systems (Reed and Hood 2021), the analysis
of their influence on host tree physiology and beetle life cycle dynamics should be analysed for
each specific system. The quantification of the net effects of climatic parameters on species-
specific bark beetle and host tree populations may be suitable for this purpose, in which net effects
could result from different functions to assess the change of bark beetle and host tree traits in
relation to climate parameters. The integration of this information into modelling approaches will
enhance predictions of host tree resistance and infestation trends under more frequent and extreme
weather events.

(2) Development of additional methods to scale up from tree- to stand-level susceptibility
are needed. At stand scale, no consistent patterns have been identified to explain why some host
tree populations are more susceptible to outbreaks, while others maintain beetle populations at an
endemic stage. It has been shown how drought weakens individual host trees and makes them
more susceptible to bark beetle attack (Gaylord et al. 2013; Kolb et al. 2019; Netherer et al. 2015).
However, the translation from individual trees to stand susceptibility is not straightforward, and in
some cases, it is more determined by warming conditions that promote beetle development than
by the effects of drought stress on trees (Pettit et al. 2020). Indeed, similar climatic conditions may

be experienced distinctly by different beetle and host tree species. Therefore, the application of
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standardized indices across species, such as species climatic suitability or the location of
populations within the species' climatic niche obtained from ecological modelling, could be useful
to assess the response patterns of both host tree and insect populations and to anticipate stand
mortality episodes driven by bark beetles under increasingly frequent extreme weather events
(Lloret and Kitzberger 2018; IPCC 2019; Jaime et al. 2019, 2022b).

(3) Early detection of bark beetle attack in which trees have yet to show visual signs of
infestation stress will be crucial to relate the point in time of infestation with weather data,
particularly under extreme climatic periods. In addition to supporting management actions aiming
to minimize outbreak's impacts, this would allow a better understanding of the effects of climate
change on outbreak emergence and to identify host tree populations that are more susceptible to
be affected. New technologies such as satellite-derived data or LIDAR have shown potential to
develop tools for early detection of beetle activity and parametrize spatiotemporal models of
outbreak dynamics (Meddens and Hicke 2014; Hart and Veblen 2015; Hais et al. 2016; Abdullah
et al. 2019; Rodman et al. 2021). Moreover, chemical-based techniques such as using trained dogs
or drones with gas sensor arrays could allow optimizing the early detection of beetle-attacked trees
(Johansson et al. 2019; Paczkowski et al. 2021).

(5) Characterizing thresholds of change in forest ecosystems to anticipate regime shifts
(i.e., sudden changes to a new system state) is a pressing scientific issue. At landscape scale, more
frequent and extensive bark beetle outbreaks can exceed the historical boundaries of the resilience
of forest ecosystems, causing long-term impacts on ecosystem structure and community dynamics
(Raffa et al. 2008; Bentz et al. 2010; Thom et al. 2017). Importantly, ecosystem legacies of
previous climatic, biotic, and human-induced disturbances may also determine forest resistance to

subsequent outbreaks (Johnstone et al. 2016; Kannenberg et al. 2020; Sommerfeld et al. 2020).
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Additional research fully integrating the climatic and legacy effects on both beetle and host tree
historical distribution ranges could better estimate forest resilience to ongoing and future
outbreaks.

(5) Risk assessment considering insect invasiveness into new areas, the potential for tree
hybridization under changing tree species distribution, and tree susceptibility to native and
invasive bark beetle species is crucial to anticipate future invasions and derived impacts. Climate
change, international trade, and land use are leading to an increase in the number of invasive plant
and insect species with important ecological and economic impacts (Marini et al. 2011; Lantschner
et al. 2020). Many bark beetle species have already been established in regions outside their native
range (Faccoli et al. 2020), with potentially far-reaching impacts on the dynamics of native host
trees (Lantschner et al. 2017). Similarly, homogeneous plantations of exotic conifers offer
excellent opportunities to previously, non-aggressive native bark beetles to extend their
distribution range, resulting in increased damage and, in some cases, becoming significant pests
(Bertheau et al. 2009; Branco et al. 2015; Howe et al. 2021). The integration of the bark beetle-
host species climatic niche (Jaime et al. 2022a) would allow more accurate predictions of the
expected patterns of species distribution changes under climate change scenarios.
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