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Abstract
The uncapacitated facility location problem (UFLP) is a well-known combinatorial optimization problem that finds practical
applications in several fields, such as logistics and telecommunication networks.While the existing literature primarily focuses
on the deterministic version of the problem, real-life scenarios often involve uncertainties like fluctuating customer demands or
service costs. This paper presents a novel algorithm for addressing the UFLP under uncertainty. Our approach combines a tabu
search metaheuristic with path-relinking to obtain near-optimal solutions in short computational times for the determinisitic
version of the problem. The algorithm is further enhanced by integrating it with simulation techniques to solve the UFLP
with random service costs. A set of computational experiments is run to illustrate the effectiveness of the solving method.

Keywords Facility location problem · Uncertainty · Tabu search · Path-relinking · Simheuristics

1 Introduction

The facility location problem (FLP) was initially addressed
by Stollsteimer [1], Kuehn and Hamburger [2], Manne [3]
and Balinski [4] to determine a set of facilities that mini-
mizes the aggregation of two inversely correlated costs: (i)
the cost of opening facilities; (ii) the cost related to servicing
customers from the opened facilities. Inmost formulations of
the problem, a set of customers and a set of potential facility
locations are known in advance. Likewise, the opening costs
associated with each facility and the costs of servicing each
customer from every potential facility are also known. Hence
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all inputs are deterministic insofar as they are static inputs
that are given from the very beginning. So the FLP is a fre-
quent optimization problem used in very diverse application
fields, from logistics and inventory planning (e.g., where to
allocate distribution or retailing centers in a supply chain) to
telecommunication and computing networks (e.g., where to
allocate cloud service servers in a distributed network, cabi-
nets in optical fiber networks, etc.).

As one of the most frequent optimization problems in the
logistics and supply chainmanagement area, several versions
of the FLP have been analyzed in the scientific literature.
The uncapacitated FLP (UFLP) assumes that each facility’s
capacity is virtually unlimited or is, at least, far beyond
expected customer demands. Despite being known as the
simple facility location problem, the simple warehouse loca-
tion problem, or the simple plant location problem for its
apparent simplicity [5], the UFLP has been proved to be NP-
hard [6]. Therefore, heuristic and metaheuristic approaches
become a natural choice for solving large-scale instances
of the UFLP in reasonably short computing times. This is
because exact and approximate methods are unable to accu-
rately solve large instances during short periods of time.
Another variant is the capacitated FLP (CFLP), where each
open facility has a limited servicing capacity; i.e., there is
limit to customers’ demand that can be served by any sin-
gle facility. According to Silva and de la Figuera [7], both
Lagrangian-based heuristics and metaheuristics have been
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demonstrated as effective methods for solving the CFLP. The
single-source CFLP (SSCFLP) also requires each customer
having to be supplied by exactly one facility. As stated by
Klose and Drexl [8], the SSCFLP is generally more dif-
ficult to solve than the multiple-source CFLP. In fact the
SSCFLP also belongs to the class of NP-hard problems [9].
Therefore, heuristic approaches become a natural choice for
solving large-scale instances of the SSCFLP in reasonably
short computing times.

Uncertainty permeates all real-world systems, including
supply chain management, logistics and facility locations.
The inherent unpredictability of various variables poses a
significant challenge in designing efficient and cost-effective
solutions. Correia and Saldanha-da Gama [10] reviewed
the FLP with stochastic components by exploring differ-
ent methods proposed in the recent literature to optimize
the FLP under uncertainty. These stochastic components
arise when inputs, such as customer demands or service
costs, are random variables instead of deterministic values.
Effectively recognizing and accounting for this uncertainty
become crucial in providing optimal solutions for real-
life combinatorial optimization problems. Simulation-based
optimization approaches have been proposed to tackle such
problems [11, 12]. These approaches encompass diverse
optimization methods, including mathematical program-
ming, metaheuristics, and even machine learning. In recent
decades, the hybridization of metaheuristics with simulation
has emerged as a popular and effective approach for solv-
ing stochastic optimization problems [12]. Simheuristics, a
simulation-optimization method that combines simulation
with metaheuristics, has been widely used to address var-
ious combinatorial optimization problems with stochastic
elements [13, 14]. This work proposes a novel simheuris-
tic algorithm to address the UFLP under uncertainty by
specifically considering stochastic components in the form

of random service costs. These service costs can be modeled
using probability distributions that can be either theoreti-
cal or empirical. Figure 1 provides an illustrative example
of a solution for the UFLP under uncertainty. The example
depicts the locations where facilities have been opened (indi-
cated by red squares) and the closed facilities (represented
by white squares). Customers, depicted by blue circles, are
served by the open facilities to which they are actively con-
nected. Each facility has a fixed opening cost, and servicing
a customer throughout an open facility has an associated ser-
vice cost, which is uncertain and, therefore, modeled as a
random variable.

Accordingly, the main contributions of this paper can
be summarized as follows: (i) a tabu search metaheuristic
[15] to efficiently solve the UFLP in short computational
times; (ii) a path-relinking approach to obtain near-optimal
solutions by exploring paths that connect good quality solu-
tions; (iii) a simheuristic algorithm that integrates the tabu
search metaheuristic and path-relinking approach with sim-
ulation techniques to efficiently solve the aforementioned
problem. Note that the tabu search and path-relinking algo-
rithms are shown to be highly effective in practice for finding
near-optimal or optimal solutions to large-scale optimization
instances in short computational times [16, 17]. However,
without the support of simulation-based extensions like that
introduced in this paper, these techniques do not account for
the inherent unpredictability found in real-life systems when
solving the UFLP under uncertainty.

The remainder of this paper is structured as follows: Sec-
tion 2 formulates the mathematical model for the UFLP
with random service costs. Section 3 reviews the literature
on the UFLP under uncertainty. Section 4 presents a tabu
searchmetaheuristic with path-relinking as a solvingmethod
for the UFLP, and how the algorithm can be extended into
a simheuristic one to solve the UFLP under uncertainty.

Fig. 1 Illustrative example of a
solution for the UFLP under
uncertainty
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Section 5 describes the computational study performed to test
the proposed solvingmethod. Finally, Section 6 discusses the
main conclusions of this work and open research lines.

2 Model formulation

By following the mixed-integer linear programming model
for the deterministic UFLP proposed by Erlenkotter [18], the
stochastic version of the problem can be modeled using the
following set of parameters and variables

I - Set of m alternative facility locations, indexed by i .
J - Set of n customer zones, indexed by j .
fi - Fixed cost of establishing a facility at location i .
Ci j - Random variable that models the cost of servicing
customer j
from facility i .
xi j - It takes the value 1 if the demand of customer j is
supplied from
facility i , and 0 otherwise.
yi - It takes the value1 if facility i is open, and0otherwise.

Then the stochastic UFLP considered in this work is for-
mulated as follows:

Minimize E

⎡
⎣∑

i∈I

∑
j∈J

Ci j xi j

⎤
⎦ +

∑
i∈I

fi yi (1)

subject to:∑
i∈I

xi j = 1 ∀ j ∈ J (2)

xi j ≤ yi ∀ i ∈ I ,∀ j ∈ J (3)

P
(
Ci j ≤ cmax

)
> p0 ∀ i ∈ I ,∀ j ∈ J (4)

yi ∈ {0, 1} ∀ i ∈ I (5)

xi j ∈ {0, 1} ∀ i ∈ I ,∀ j ∈ J (6)

The objective function (1) represents the minimization of
the sum of the expected total cost of servicing customers and
the total fixed costs of facility establishment.

Constraint (2) ensures that the demand for each customer
zone ismet.Constraint (3)makes sures that customer demand
can only be produced and shipped where the facility is
established. Constraint (4) features probabilistic constraints.
These constraints add a probabilistic aspect to the model by
ensuring that the cost of serving each customer from each
facility falls within a certain threshold cmax with a speci-
fied level of confidence p0. This allows the model to account
for the uncertainty in the cost values and helps more robust
decisions to be made that consider the risk associated with
the random variable Ci j . As discussed later, this can be con-
sidered a soft constraint, which will generate a penalty cost

every time it is violated. Finally,Constraints (5) and (6) define
the binary decision variables. The deterministic version of
this model (considering constant costs ci j instead of variable
ones Ci j ) was implemented using Python and solved with
commercial solver Gurobi to calculate the optimal values for
different instances of the deterministic UFLP. In this way, the
performance of the metaheuristic proposed in this work can
be compared to the mathematical approach. Additionally, a
simheuristic was developed to solve the stochastic version of
the problem at different uncertainty levels, which is a very
common situation in real-life problems.

3 Related work on the UFLP under
uncertainty

The FLP was initially introduced as the plant location prob-
lem by Stollsteimer [1] and Balinski [4]. Traditionally, the
FLP has been approached from several perspectives, includ-
ing worst-case analysis, probabilistic analysis and empirical
heuristics. Although exact algorithms for the problem can
be found in the existing literature, the NP-hard nature of
the FLP makes heuristics a more practical approach for
quickly obtaining solutions, especially for larger and more
realistic instances. One of the first works on the FLP was
carried out by Efroymson and Ray [19], who developed a
branch-and-bound algorithm. They utilize a compact for-
mulation of the FLP by leveraging the fact that its linear
programming relaxation could be solved through inspec-
tion. However, this linear programming relaxation is known
to be weak and does not, therefore, provide tight lower
bounds. Another early approach was proposed by Spielberg
[20], which employs a direct search or implicit enumera-
tion method. The authors present two different algorithms
based on the same directed search: one considering the
facilities to be initially open and another one contemplat-
ing initially closed ones. Later Erlenkotter [18] proposed
a dual-based exact approach that differed from previous
approaches by considering a dual objective function. An
improved version of this work was presented by Körkel [21].
Although exact approaches provide optimal solutions for
small or medium instances, they are unsuitable for solving
large-scale real-world problems in reasonable computational
times. Therefore, employing approximate methods is advis-
able. One of the earliest approximation methods was that by
Hochbaum [22], and it consists of a simple and fast greedy
heuristic. More recently, Ghosh [23] put forward a neighbor-
hood search heuristic by incorporating a tabu search as the
local search component. This approach yields competitive
solutions in significantly shorter computational times com-
pared to exact algorithms. A similar approach with a tabu
search was proposed by Michel and Van Hentenryck [24].
This algorithm shows competitive performance compared
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to previous literature results. The algorithm utilizes a lin-
ear neighborhood approach, where a single facility is flipped
at each iteration. Resende and Werneck [25] introduced an
algorithmbasedon theGRASPmetaheuristic. This algorithm
incorporates a greedy construction phase combined with a
local search operator and path-relinking. It obtains results
that come close to the lower bound values for a wide range
of different instances. Recently,Martins et al. [26] introduced
an ‘agile optimization’ framework for the UFLP. This frame-
work combines a biased-randomized algorithm with parallel
programming techniques to offer real-time solutions. The
key feature of this approach is its ability to react and swiftly
adapt to rapidly changing customer demands. It achieves this
by re-optimizing the system whenever new information is
incorporated into the model.

The FLP was initially introduced as the plant location
problem by Stollsteimer [1] and Balinski [4]. Traditionally,
the FLP has been approached through various perspectives,
including worst-case analysis, probabilistic analysis, and
empirical heuristics. While exact algorithms for the prob-
lem can be found in the existing literature, the NP-hard
nature of the FLPmakes heuristics a more practical approach
for obtaining solutions quickly, especially for larger and
more realistic instances. One of the first works on the FLP
was carried out by Efroymson and Ray [19] who devel-
oped a branch-and-bound algorithm. They utilized a compact
formulation of the FLP, leveraging the fact that its linear
programming relaxation could be solved through inspection.
However, this linear programming relaxation is known to
be weak and therefore does not provide tight lower bounds.
Another early approach was proposed by Spielberg [20],
which employed a direct search or implicit enumeration
method. The authors present two different algorithms based
on the same directed search, one considering the facilities ini-
tially open and another one considering the facilities initially
closed. Later, Erlenkotter [18] propose a dual-based exact
approach, differing fromprevious approaches by considering
a dual objective function. An improved version of this work
was presented by Körke [21]. Although exact approaches
provideoptimal solutions for small ormedium instances, they
are unsuitable for solving large-scale real-world problems in
reasonable computational time. Therefore, it is advisable to
employ approximate methods. One of the earliest approxi-
mationmethodswas proposed byHochbaum [22], consisting
of a simple and fast greedy heuristic. More recently, Ghosh
[23] proposed a neighborhood search heuristic, incorporat-
ing tabu search as the local search component. This approach
yields competitive solutions within significantly reduced
computational times compared to exact algorithms. A similar
approach using a tabu search was proposed by Michel and
Van Hentenryck [24]. This algorithm has shown competi-
tive performance compared to previous literature results. The
algorithm utilizes a linear neighborhood approach, where a

single facility is flipped at each iteration. Resende and Wer-
neck [25] introduced an algorithm based on the GRASP
metaheuristic. This algorithm incorporates a greedy con-
struction phase combined with a local search operator, and a
path-relinking. It achieved results close to the lower bound
values for a wide range of different instances. Recently, Mar-
tins et al. [27] introduced an Agile Optimization framework
[26] for the UFLP. This framework combines a biased-
randomized algorithmwith parallel programming techniques
to offer real-time solutions. The key feature of this approach
is its ability to react and adapt swiftly to rapidly changing
customer demands. It achieves this by re-optimizing the sys-
tem whenever new information is incorporated

Awide range of variants of the FLP have been extensively
addressed in the literature, regardless of the employed solu-
tion method. One of the most studied variants is the SSCFLP.
Similarly to the original version of the FLP, several exact
methods have also been proposed to solve small instances of
this problem. For example, Holmberg et al. [28] described a
matching algorithm incorporated into a Lagrangian heuristic.
In another study,Díaz and Fernández [29] developed an exact
algorithm that integrates a column generation procedure for
finding upper and lower bounds within a branchand-price
framework. Similarly, Yang et al. [9] introduced an exact
algorithm based on a cut-and-solve framework designed
explicitly for the SSCFLP. Regarding the use of approximate
methods, Chen and Ting [30] proposed a hybrid algorithm
that combines a Lagrangian-based heuristic with an ant
colony method. This approach aims to leverage the strengths
of both techniques to solve the problem. Ahuja et al. [31] pre-
sented a large-scale neighborhood search algorithm, which
focuses on efficiently exploring the solution space of the
problem. This approach allows large-scale instances to be
effectively handled in a reasonable computational time. Filho
and Galvão [32] proposed a tabu search metaheuristic that is
also able to handle large instances, while Delmaire et al. [33]
put forward a more sophisticated algorithm also based on a
tabu search, which combines a reactive GRASP algorithm
with a tabu search. This algorithm incorporates elements of
both techniques to enhance search capabilities and to find
high-quality solutions. Finally, Estrada-Moreno et al. [34]
presented a biased-randomized iterated local search meta-
heuristic to solve the SSCFLP with soft capacity constraints.
This variant of the SSCFLP assumes that the maximum
capacity at each facility can be potentially exceeded by
incurring a penalty cost, which increases with the constraint-
violation gap. For a more comprehensive literature review on
the FLP and its variants, readers are referred to [35], [8], and
the book edited by Eiselt and Marianov [36] covers many
relevant works on the FLP.

In real life, the inputs of combinatorial optimization
problems are typically nondeterministic. This means that
they are subject to random events; i.e.., random failures of
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some components, stockouts due to random demands, etc.
Therefore, Simulation-based optimization approaches are
required. These methods aim to find a solution that performs
well for any possible realization of the random variables,
i.e., a robust solution that can handle variations and fluctua-
tions in the problem parameters that may occur in real-world
scenarios s [37]. Although the stochastic FLP has not been
paid significant attention in the literature, we can find sev-
eral works, some of which have been published only a few
years after the problem’s definition. For example, Balachan-
dran and Jain [38] presented a stochastic FLP model with
piece-wise linear production. This model takes demands
to be random and continuous variables. Later Correia and
Saldanha-da Gama [10] examined distinct modeling frame-
works for facility location under uncertain conditions, which
specifically distinguish among robust optimization, stochas-
tic programming and chance-constrained models. Another
simulation-optimization approach to address this problem is
the simheuristics [39], which is a promising approach based
on the combination of simulation with metaheuristics, used
for solving efficiency different combinatorial optimization
problems with stochastic elements. Indeed simheuristics has
been used by different authors to solve the UFLP under
uncertainty. De Armas et al. [40] proposed a simheuris-
tic approach to address the UFLP with random service
costs. This simheuristics combines an ILSmetaheuristicwith
MonteCarlo simulation to dealwith uncertainty by providing
flexibility to consider diverse optimization objectives beyond
minimizing the expected cost. A similar approach is that
proposed in Quintero-Araujo et al. [41], which proposes a
SimILS framework, a simheuristic algorithm that combines
Monte Carlo simulation with a biased-randomized meta-
heuristic algorithm to solve the capacitated location routing
problem (CLRP) with stochastic demands. Another inter-
esting approach i that reported Bayliss and Panadero [42],
where a learnheuristic algorithm [43] is presented to solve
the temporary-facility location and queuing problem. It inte-
grates a biased randomization algorithm with simulation and
a machine-learning component to tackle not only uncertain
components, but also dynamics components of problems.

To further extend the landscape of facility location prob-
lems under uncertainty, other methodological approaches
have emerged in recent years. Marques and Dias [44] intro-
duced a dynamic UFLP by considering uncertainty in fixed
and assignment costs, customer and facility locations. They
aimed to minimize the expected total cost, while explicitly
considering regret. Regret, as ameasure of loss for not choos-
ing an optimal scenario solution, is upper-bounded. Their
mixed integer programming model and solution approach
demonstrates potential through illustrative examples and
computational results. Another exciting approach was that
proposed by Zhang et al. [45], which tackles another vari-
ant, the squared metric two-stage stochastic FLP by focusing

on uncertainty in client sets and facility costs with squared
metric connection costs. They proposed a new integer lin-
ear programming formulation and evaluated two algorithms’
performance by analyzing approximation ratios and per-
scenario bounds. Moreover, Ramshani et al. [46] explored
disruptions in two-level UFLPs by including additional facil-
ities between customers and the main facilities, and by
acknowledging disruptions’ impact on facility reliability for
meeting customer demands. They developed mathematical
formulations and algorithms, such as a tabu search and a
problem-specific heuristic, to address disruptions in a two-
level distribution chain scenario. By extending this research,
Koca et al. [47] addressed two-stage stochastic UFLPs by
emphasizing system nervousness. They introduced models
to consider uncertain location and allocation decisions adapt-
able to realizations of uncertain parameters. Their proposed
models incorporated restricted recourse to control deviations
between first-stage and scenario-dependent allocation deci-
sions by showcasingBenders-typedecomposition algorithms
and computational enhancements.

4 Proposedmethodology

Simulation methods are frequently employed by experts
to address stochastic uncertainty because they enable sev-
eral scenarios to be analyzed to support decision-making
processes. However, it is important to note that simula-
tion itself is not an optimization tool. Therefore, hybrid
simulation-optimization methodologies have been proposed
to efficiently cope with large-scale optimization problems
under uncertainty. One such simulation-optimizationmethod
is simheuristics, which combines metaheuristics with simu-
lation [48]. Its efficiency as a method for solving different
combinatorial optimization problems with stochastic ele-
ments has been shown in several studies [43]. This success
can be attributed to the method’s ability to evaluate solutions
using simulation and problem-specific analytical expres-
sions. Simheuristic algorithms are ‘white-box’ approaches
designed specifically to solve large-scale and NP-hard com-
binatorial optimization problems with stochastic elements,
which can come in the form of stochastic objective functions
or probabilistic constraints [49]. The proposed simheuristic
method combines a tabu search metaheuristic with path-
relinking, which is then integrated with Monte Carlo simula-
tion (MCS) to solve the UFLP with random service costs.
Using the tabu search metaheuristic with path-relinking
combination allows us to obtain near-optimal solutions to
the deterministic version of the problem in short compu-
tational times. This combination is successfully employed
to solve NP-hard optimization problems in vehicle routing
and scheduling domains [50, 51]. The algorithm is further
combined with simulation techniques to guide the algorithm
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during the search for near-optimal solutions to the stochastic
version of the problem.

4.1 Tabu search with path-relinking

The algorithm for a tabu search with path-relinking is now
described. We represent a state in the tabu search by vector
yi as defined in the model formulation. It is a natural choice
seeing that the facility locations are the only combinatorial
component. To solve the UFLP, it is enough to know the set
of open facilities because customer zones are connected to
the cheapest open facilities.

As shown in Algorithm 1, three sections can be identi-
fied. The first section applies the tabu searchmetaheuristic N
times to the same problem instance, but uses different seeds.
The best solutions are stored in a pool of elite solutions of
size L . Subsequently, the path-relinking technique is applied
for each pair of elements in the elite solution pool. The new
solutions produced to create the next pool of elite solutions
are employed (new generation pool). Only those solutions
that improve the two used in the path-relinking process are
considered the candidates to be inserted into the new gener-
ation pool of size L . Note that the best solution found so far
is inserted directly into the new generation of elite solutions
(1-elitism). The criterion for inserting a new solution into
the elite solutions pool is the lowest total cost. The creation
of new pools is repeated as long as new generation pools of
at least two solutions are produced. After the path-relinking
phase, the algorithm begins a local search process around
solbest . This procedure consists of applying a well-known 2-
opt local search to every possible combination of two facility
locations in the solution.

The tabu search is presented in Algorithm 2. First, a
random solution is generated to provide each facility loca-
tion with an opening probability. The neighborhood consists
in flipping the state of a facility from open to closed,
or vice versa. After scanning the neighborhood, if there
is an improvement is calculated. Then the facility loca-
tion involved in the improvement is added to the tabu list
to prevent it from being chosen for a defined number of
iterations (tenure). The tabu list is implemented by asso-
ciating a simple counter tabu[i] for each facility i . When
a facility is inserted on the tabu list, the counter tabu[i] is
updated by adding the actual iteration count, plus the tenure
(tabu[i] = i teration + tenure). This expression states that
the facility will remain in the tabu search memory for as
many iterations as the value of the tenure parameter. The
algorithm can quickly check if a facility is on the tabu list
if tabu[i] > i teration. If there is no improvement in the
solution, the algorithm randomly closes a previously open
facility location. If only one site remains to be closed, a new
one is randomly opened. Tenure is adjusted during the search
process. If the algorithm finds improvements in the neigh-

Algorithm 1 Tabu search with path-relinking

1 Function TSPR(instanceData, N , L)
2 eli teSols ← ∅
3 for i ← 1 to N do
4 seed ← get NewSeed()

5 solnew ← T S(seed, instanceData) /* Tabu
search */

6 if |eli teSols| < L then
7 insert(eli teSols, solnew)

8 else if |eli teSols| = L and
cost(solnew) < worstCost(eli teSols) then

9 solworst ← getWorst Sol(eli teSols)
10 replace(eli teSols, solworst , solnew)

11 repeat
12 newEli teSols ← ∅
13 solbest ← get Best Sol(eli teSols)
14 insert(newEli teSols, solbest )
15 foreach solO ∈ eli teSols do
16 foreach solR ∈ eli teSols do
17 if solO �= solR then
18 solnew ← PR(solO , solR)

/* Path-relinking */
19 if cost(solnew) <

min(cost(solO ), cost(solR)) then
20 if |newEli teSols| < L then
21 insert(newEli teSols, solnew)

22 else if |newEli teSols| = L and
cost(solnew) <

worstCost(newEli teSols) then
23 solworst ←

getWorst Sol(newEli teSols)
24 replace(newEli teSols,solworst,

solnew)

25 eli teSols ← copyFrom(newEli teSols)
26 until |newEli teSols| < 2
27 solbest ← LS(solbest ) /* 2-opt local search

*/
28 return solbest

borhood, it decreases tenure to improve exploitation. On the
contrary, if it does not find improvements when changing the
state of any of the facility locations of a solution, tenure is
increased to improve search diversification (never without
exceeding a given maximum value). The process is repeated
until the stopping criterion is met, which consists in exceed-
ing a numberM of iterationswithout finding an improvement
in the solution. The tabu search algorithm uses three different
pieces of information for each customer zone j : the number
of open facilities that offer the cheapest connection to j, the
cost of that connection, and the cost of the second cheap-
est connection to an open facility. These details allow the
gains from opening and closing a facility to be incrementally
updated by eliminating the need to compute the entire objec-
tive function for a new solution (line 10). A similar approach
is used in Michel and Van Hentenryck [24].
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Algorithm 2 Tabu search

1 Function TS(seed, instanceData)
2 solbest ← randomSolution(seed)

3 bestCost ← cost(solbest )
4 f ailedRuns ← 0
5 tabuList ← ∅
6 repeat
7 cost Flip ← ∞
8 foreach i ∈ I do
9 if i /∈ tabuList then

10 costi ← cost( f li p(solini , i))
11 if costi < cost Flip then
12 cost Flip ← costi
13 f li pFac ← i

14 if cost Flip < bestCost then
15 solbest ← f li p(solbest , f li pFac))
16 bestCost ← cost Flip
17 insert(tabuList, f li pFac)
18 decreaseT enure()
19 f ailedRuns ← 0
20 else
21 increaseT enure()
22 f ailedRuns ← f ailedRuns + 1
23 if countOpened(solbest ) > 2 then
24 closeRandomFacili t y()
25 else
26 openRandomFacili t y()

27 until f ailedRuns ≥ M
28 return solbest

Algorithm 3 Path-relinking

1 Function PR(solO , solR)
2 if cost(solO ) ≤ cost(solR) then
3 solbest ← solO
4 else
5 solbest ← solR

6 foreach i ∈ I do
7 if solO [i] �= solR[i] then
8 cardinali t y ← cardinali t y + 1

9 while cardinali t y > 0 do
10 solbestMove ← allOpen()

11 foreach i ∈ I do
12 if solO [i] �= solR[i] then
13 soltemp ← solO
14 f li p(soltemp, i)
15 if cost(soltemp) < cost(solbestMove) then
16 solbestMove ← soltemp

17 if cost(soltemp) < cost(solbest ) then
18 solbest ← soltemp

19 solO ← solbestMove
20 cardinali t y ← cardinali t y − 1

21 return solbest

The path-relinking subroutine is comprehensively described
in Algorithm 3. Given the origin and reference solutions, we
first calculate which one gives the best cost and store it in
solbest . Then cardinality is calculated as the number of dif-
ferences between the origin and reference solutions. Next,
the algorithm starts from solO and gradually transforms into
solR by flipping the facilities that are different between the
two solutions. During this transformation process, interme-
diate solutions are evaluated to see if they improve the overall
result. Finally, the best found solution is returned.

The algorithm’s computational complexity is next reported.
For the tabu search component, the complexity per iteration is
O(n·log(m)),wheren represents the number of clients andm
denotes the number of facilities. This complexity accounts
for the calculation of the cost of flipping each facility in a
solution, while tracking the best and second-best facilities to
assign clients to. These operations are repeated until a num-
ber of failed runs is reached,which contributes to the constant
factor of the computational complexity. In other words, as the
number of iterations is constant (not dependent on the size
of the problem), the overall computational complexity of the
tabu search component is expressed as O(n · log(m)). The
path-relinking component has a similar complexity per iter-
ation of O(n · log(m)). This also involves updates to the best
and second-best facilities assigned to clients, because inter-
mediate solutions have to be evaluated to see if they improve
current solutions. Similar to the tabu search component, the
actual number of iterations performed by the path-relinking
component depends on the cardinality of solutions alongwith
the number of elite generations, which are not dependent on
the size of the instance. Thus, the overall computational com-
plexity of the path-relinking component is O(n · log(m)).
The local search component, the computational complexity
per iteration is associated with the process of exploring the
neighborhood of the current solution. This involves flipping
each facility in the solution and checking if the newsolution is
improved,whose computational complexity is O(n·log(m)).
This process is repeated until no further improvements are
found, so the overall computational complexity of the local
search is O(n · log(m)). Finally, as the three components
discussed are executed in a serial manner, we can conclude
the proposed algorithm has a worst-case computational com-
plexity of O(n · log(m)).

4.2 The simheuristic framework

Figure 2 illustrates a flow chart of our simheuristicmethodol-
ogy for dealing with the UFLP under stochastic uncertainty.
Every time a new solution is generated by the tabu search,
path-relinking or a local search, it is simulated with a few
runs to obtain an estimate of the solution’s average stochas-
tic cost. On the one hand, regarding the tabu search, all the N
times when the algorithm reaches the stopping criterion and
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Fig. 2 Flowchart of the simheuristic methodology

finds the best solution (Algorithm 1), the fast simulation is
run. On the other hand, the simulations of the path-relinking
solutions are themost important in the proposed simheuristic.
Path-relinking as an intensive process done on a set of elite
solutions allows a sufficiently large set of potential solutions
to be explored that could performwell in a stochastic environ-
ment. For this reason, every time a new solution is generated
during the gradual transformation of solO into solR , it is
simulated regardless of whether it improves the determinis-
tic solution. In addition, whenever the local search procedure
reaches a new improved solution, this is also simulated. The
solutions with the best-estimated cost are stored in a pool of
elite stochastic solutions. Once an overall stopping criterion
is met, a limited set of elite stochastic solutions is sent to a
more intensive simulation stage to obtain accurate estimates
on their behavior in a stochastic scenario. The general stop-
ping criterion consists of satisfying the stopping criteria of
each section of the proposed metaheuristic (M failed tabu
search runs, a new pool generation with < than 2 solutions
during path-relinking and no new improvements during the
local search).

Algorithm 4 depicts the main characteristics of our
simheuristic algorithm. The code is similar to that shown in
Algorithm 1. The solutions obtained by the tabu search are
quickly simulated, while those with the lowest expected cost
are included in the pool of elite stochastic solutions (lines
13-17). Then when the path-relinking (PR-SIMH) and local

search (LS-SIMH) functions are called, the pool is passed
as an argument to be updated according to the simulations
of the newly generated solutions (as explained above). In
lines 34-38, intensive simulation is performed to obtain bet-
ter estimates of the elite solutions. The best solutions are
selected according to the lowest expected cost. However,
other estimates, such as risk or reliability, may also be used
as discussed in Chica et al. [52].

5 Computational study

Several computational experiments were carried out to eval-
uate and assess the performance of our solving method. To
comprehensively illustrate the experiments conducted in this
section, a detailed presentation of the utilized benchmark
instances, that outlines their characteristics, is first provided.
Next the presented benchmark instances are extended to con-
sider random service costs, which model the uncertainty
that is inherent in practical scenarios, and penalty costs, by
addressing several real-world situations. Then Section 5.4
identifies the significantly affected parameters and decides
the optimal parameter settings for the algorithm through the
Design of Experiments (DoE). Last, the obtained results and
the discussion are presented in Section 5.5. All the numerical
experiments were implemented using the C++ program-
ming language. The code was compiled on a Manjaro Linux
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Algorithm 4 Simheuristic for the UFLP

1 Function
SIMHUFLP(instanceData, N , L, L2, short Sim, longSim)

2 eli teSols ← ∅
3 eli teStochSols ← ∅
4 for i ← 1 to N do
5 seed ← get NewSeed()

// Tabu search
6 solnew ← T S(seed, instanceData)

7 if |eli teSols| < L then
8 insert(eli teSols, solnew)

9 else if |eli teSols| = L and
cost(solnew) < worstCost(eli teSols) then

10 solworst ← getWorst Sol(eli teSols)
11 replace(eli teSols, solworst , solnew)

12 simulation(solnew, short Sim)

13 if |eli teStochSols| < L2 then
14 insert(eli teStochSols, solnew)

15 else if |eli teStochSols| = L2 and
expCost(solnew) <

worst ExpCost(eli teStochSols) then
16 solworst ← getWorst StochSol(eli teSols)
17 replace(eli teStochSols, solworst , solnew)

18 repeat
19 newEli teSols ← ∅
20 solbest ← get Best Sol(eli teSols)
21 insert(newEli teSols, solbest )
22 foreach solO ∈ eli teSols do
23 foreach solR ∈ eli teSols do
24 if solO �= solR then

// Path-relinking
simheuristic

25 solnew ←
PR-SIMH(solO , solR, eli teStochSols)

26 if cost(solnew) <

min(cost(solO ), cost(solR)) then
27 if |newEli teSols| < L then
28 insert(newEli teSols, solnew)

29 else if |newEli teSols| = L and
cost(solnew) <

worstCost(newEli teSols) then
30 solworst ←

getWorst Sol(newEli teSols)
31 replace(newEli teSols, solworst

, solnew)

32 eli teSols ← copyFrom(newEli teSols)
33 until |newEli teSols| < 2

// 2-opt local search simheuristic
34 solbest ← LS-SIMH(solbest , eli teStochSols)
35 foreach sol ∈ eli teStochSols do
36 simulation(sol, longSim)

37 eli teSols ← sort(eli teSols)
38 topSols ← selectT op(eli teSols)
39 return topSols

machine with the GCC version 12.3 compiler and executed
on a computer with an Intel Core i5-9600K 3.7 GHz and 16
GB RAM.

5.1 Description of benchmark instances

In order to evaluate the performance of the proposed
simheuristic algorithm for the UFLP with random service
costs, we used the classic instances originally proposed for
the p-median problem by Ahn et al. [53], later employed in
the UFLP context by Barahona and Chudak [54]. This set
of large instances is called MED, which is the most used
set of instances in the UFLP literature for being the most
challenging ones to solve. To the best of our knowledge,
the results of these instances have not been improved from
2006 [25]. This makes them the perfect benchmarks to test
the quality of our algorithm. Each instance is composed of
a set of n points picked uniformly at random in the unit
square. A point represents both a user and facility, and the
corresponding Euclidean distance determines service costs.
Additionally, each instance is characterized by the follow-
ing nomenclature x − y, where x represents the number of
facilities and customers, while y refers to the opening cost
scheme. The set of instances consists of six different subsets,
eachwith a different number of facilities and customers (500,
1000, 1500, 2000, 2500 and 3000), and three different open-
ing cost schemes per subset (

√
n/10,

√
n/100, and

√
n/1000

corresponding to 10, 100, and 1000 instance suffixes, respec-
tively). The larger instances and those with suffix 1000 are
the most difficult to solve. As they have lower opening costs,
the number of open facilities in the solution is bigger, which
increases the number of possible combinations and, thus, the
complexity of finding the optimal solution.

5.2 Extending benchmark to address uncertainty

To the best of our knowledge, there are no stochastic FLP
instances that employ random service costs to be used as a
benchmark. So instead of assuming constant service costs ci j
(∀i ∈ I ,∀ j ∈ J ), we consider a more realistic scenario in
which service costs aremodeled as randomvariablesCi j . The
service cost represents the cost required to service a customer
zone j ∈ J throughout a facility location i ∈ I under perfect
conditions. Accordingly, we extend the previously described
set of instances called MED to assess both the performance
and quality of the proposed simheuristic algorithm. The
dataset construction process involves transforming the deter-
ministic service costs into random service costs following a
probability distribution function. Specifically, the determin-
istic service costs are transformed into stochastic ones when
solutions are sent to the simulation phase. Hence the service
costs ci j found in instances are used as the expected values
of the random service costs Ci j , which are modeled to fol-
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low a log-normal probability distribution. The log-normal
distribution is a natural choice for describing nonnegative
random variables, such as service costs [55]. The log-normal
distribution has two parameters: the location parameter, μi j ,
and the scale parameter, σi j , which relate to the expected
value E[Ci j ] and to variance Var [Ci j ], respectively. Equa-
tions 7-8 define how these parameters have been modeled.
We assume service cost Ci j ∼ LogNormal(μi j , σi j ) with
E[Ci j ] = ci j , where ci j is the deterministic service delay
found in instances, and variance Var [Ci j ] = k · E[Ci j ].
Parameter k is a design parameter that allows us to set up
the uncertainty level. It determines how much stochastic
costs deviate from their expected values (ci j derived from
deterministic costs) and, therefore, influences the degree of
randomness or uncertainty in the simulated costs. So as k
converges to zero, the more the results will move toward
the deterministic state, and by increasing the value of k,
the results will converge to the stochastic state. The selec-
tion of k values depends on the uncertainty level desired in
stochastic costs. We consider three different uncertainty lev-
els: low (k = 5), medium (k = 10) and high (k = 20). The
main objective of setting different k values is to simulate a
range of real-world scenarios for the variability and unpre-
dictability of service costs. By employing multiple k values,
the algorithm’s performance can be evaluated under diverse
conditions, which allows for a comprehensive assessment of
its robustness and adaptability to varying cost uncertainty
levels.

μi j = ln(E[Ci j ]) − 1

2
· ln

(
1 + Var [Ci j ]

E[Ci j ]2
)

(7)

σi j =
∣∣∣∣∣

√
ln

(
1 + Var [Ci j ]

E[Ci j ]2
)∣∣∣∣∣ (8)

This approach enables us to test the effectiveness of our
simheuristic algorithm in handling UFLP instances with
varying uncertainty levels, and to showcase its adaptability
at different degrees of random service costs without having
to create brand-new datasets.

5.3 Extend benchmark with penalty costs

In order to address real-world situations where certain facili-
ties’ costs need to be controlled or limited, a nonlinear penalty
cost is added. This approach aligns the optimization process
with practical considerations and allows decision makers to
make more informed choices regarding facility selection and
cost management. Note in the basic UFLP under uncertainty
with a linear objective function that the solution which mini-
mizes the total expected cost will be the same as the optimal
solution for the deterministic UFLP. This property will not
hold if, for instance, a nonlinear penalty cost is added in

the objective function to account for facilities with a total
higher service cost than a threshold, etc. Thus we introduce
a non linear penalty cost that is twice the cost of opening
a facility if the instance maximum service cost of a deter-
ministic solution is exceeded. This parameter, denoted as
cmax = max ci j , represents the maximum ci j value between
all the facilities opened in the best-found deterministic solu-
tion. It is worth noting that when this nonlinear penalty is
incorporated into the objective function of the UFLP under
uncertainty, the solution that minimizes the total expected
cost may no longer be the same as the optimal solution for
the deterministic UFLP. This deviation from linearity arises
because the penalty cost is included. In other words, the best-
known deterministic solution, which will still be optimal in
a deterministic scenario for not being affected by the cmax

threshold, will perform quite poorly in a stochastic scenario
because in many simulation runs there will be service costs
that will exceed the cmax threshold, which will result in a
severe penalty. Furthermore, the simheuristic algorithm tends
to open some more facilities than those in the determinis-
tic solution to avoid the number of times that the threshold
is exceeded. Therefore, the simheuristic approach aims to
search for solutions that mitigate the impact of penalties
associatedwith exceeding the cmax threshold inmultiple sim-
ulation runs.

5.4 Parameter analysis by design of experiments

In this section, we use DoE to identify the significantly
affected parameters and decide the best combination of each
parameter for the TS+PR algorithm. As shown in Table 1,
a two-level full factorial design with three replications [56]
is adopted to investigate the significant effect of four param-
eters of the TS+PR algorithm on both the objective value
and the calculation time. The following parameters are con-
sidered: N (maximum runs of the algorithm with different
seeds), M (maximum number of the tabu iterations without
improvement), L (elite pool length) and T enure (number of
iterations a move is considered to be tabu, expressed as a per-
centage of the number of facility locations of the problem).
The high and low levels of each parameter are displayed in
Fig. 4.

The results are shown in Table 1 for a randomly gen-
erated test problem of size (|I | = |J | = 2000). The
problemwas created following the same structure as the large
instances called MED. The selected opening cost scheme
was

√
n/1000 because, as previously mentioned, it is the

most challenging. The response variable AVG GAP (%) is
the average gap of 30 different independent runs compared
to the optimal solution obtained with Gurobi for the gener-
ated test problem. The response variable AVG TIME is the
average execution time for the 30 independent runs. In all, 3
* 24 * 30 = 1440 trials were conducted in this experiment.
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Table 1 Results of the
experiment

Trial N M L Tenure Response Response Best Gap (%)
(A) (B) (C) (D) AVG GAP (%) AVG TIME (s)

1 32 100 10 10% 0.132835 32.76 0.07

2 32 100 10 5% 0.135464 32.44 0.07

3 32 100 5 10% 0.152310 14.8 0.08

4 32 100 5 5% 0.152735 14.89 0.08

5 32 500 10 10% 0.092844 34.23 0.03

6 32 500 10 5% 0.094845 34.79 0.03

7 32 500 5 10% 0.128187 18.18 0.03

8 32 500 5 5% 0.125694 18.18 0.03

9 64 100 10 10% 0.123540 41.97 0.07

10 64 100 10 5% 0.119235 41.86 0.07

11 64 100 5 10% 0.155751 24.24 0.09

12 64 100 5 5% 0.158389 24.27 0.09

13 64 500 10 10% 0.091934 48.18 0.02

14 64 500 10 5% 0.090722 48.59 0.02

15 64 500 5 10% 0.120690 34.84 0.04

16 64 500 5 5% 0.120690 34.79 0.04

17 32 100 10 10% 0.133327 34.43 0.06

18 32 100 10 5% 0.135646 34.44 0.06

19 32 100 5 10% 0.143706 15.89 0.09

20 32 100 5 5% 0.147852 15.91 0.03

21 32 500 10 10% 0.108991 36.22 0.04

22 32 500 10 5% 0.109735 36.26 0.04

23 32 500 5 10% 0.124821 20.17 0.04

24 32 500 5 5% 0.125669 20.16 0.04

25 64 100 10 10% 0.126754 41.26 0.02

26 64 100 10 5% 0.132349 41.03 0.02

27 64 100 5 10% 0.164728 22.82 0.05

28 64 100 5 5% 0.167919 22.79 0.05

29 64 500 10 10% 0.101987 48.07 0.03

30 64 500 10 5% 0.103133 47.83 0.03

31 64 500 5 10% 0.119810 31.99 0.04

32 64 500 5 5% 0.121653 31.92 0.04

33 32 100 10 10% 0.125990 34.62 0.02

34 32 100 10 5% 0.124843 35.45 0.02

35 32 100 5 10% 0.159718 15.57 0.04

36 32 100 5 5% 0.159103 15.57 0.04

37 32 500 10 10% 0.113147 36.22 0.03

38 32 500 10 5% 0.111038 36.55 0.03

39 32 500 5 10% 0.134593 20.37 0.03

40 32 500 5 5% 0.13636 20.39 0.03

41 64 100 10 10% 0.134480 39.38 0.06

42 64 100 10 5% 0.134480 39.8 0.05

43 64 100 5 10% 0.144753 22.98 0.06
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Table 1 continued Trial N M L Tenure Response Response Best Gap (%)
(A) (B) (C) (D) AVG GAP (%) AVG TIME (s)

44 64 100 5 5% 0.143463 22.98 0.06

45 64 500 10 10% 0.098653 47.65 0.03

46 64 500 10 5% 0.098507 47.68 0.03

47 64 500 5 10% 0.126413 31.72 0.04

48 64 500 5 5% 0.128014 31.78 0.04

Table 1 shows the average (best) values for the 30 runs and
displays 48 trials.

According to the ANOVA results (Table 2) and the Pareto
chart (Fig. 3) for the response AVG GAP (%), only param-
eters M and L are statistically significant for the proposed
problem. The values RSquare = 92.21%, RSquare(Adj) =
88.19%, and Square(Pred) = 81.33% obtained in Statgraph-
ics mean that this model fits the data well and can be used to
accordingly determine the suitable parameters (Fig. 4).

For the response AVG TIME (see Fig. 5), all the parame-
ters except T enure are the algorithm’s most significant and
critical parameters at α = 0.05. The model fits the data
very well (RSquare = 99.25%, RSquare(Adj) = 98.86%, and
Square(Pred) = 98.20%).

To find the best parameters for the algorithm, we focus
mainly on the response AVG GAP (%). The best parameter
settings on N ,M , L andT enure, according toAVGGAP(%),
are 64, 500, 10 and 10%, respectively (see Fig. 4). Although
M and L prolong the computation time (see Fig. 6), they are
statistically significant and their higher values are necessary.
Coosing a value of 64 vs. 32 for N negatively affects the

execution time (it increases by more than 40%) and is not
statistically significant. Furthermore, the best gap for N =
64 is 0.02% and 0.03% for N = 32, a minimal difference
for the longer computational time required. Finally, T enure
does not statistically affect either AVG GAP or AVG TIME.
As explained previously, the reason lies in the algorithm’s
capacity to adjust the tenure value as the search progresses.
So it does not affect starting with a slightly higher or lower
value.

The main objective of this paper is not to obtain the best
possible solutions in the deterministic environment. So we
explore the possibility of considering N = 64 and of even
analyzing the results of larger values for the most significant
factors, such as M and L . This paper focuses on uncer-
tain conditions using a simulation optimization approach,
such as the simheuristics concept. For this reason, having a
good deterministic search algorithm (i.e. 0.03% gap) with
reasonable computation times is sufficient. In this way, the
algorithm can be efficiently combinedwithMonteCarlo sim-
ulations to search for the best solutions under uncertainty. For
all these reasons, the values chosen for the adjustment of the

Table 2 Analysis of variance
for AVG GAP (%)

Source Sum of squares Df Mean square F-ratio P-value

A 0.000138063 1 0.000138063 2.90 0.0987

B 0.0096685 1 0.0096685 202.98 0.0000

C 0.00721629 1 0.00721629 151.50 0.0000

D 0.00000643618 1 0.00000643618 0.14 0.7157

AB 0.000154193 1 0.000154193 3.24 0.0817

AC 0.0000411748 1 0.0000411748 0.86 0.3597

AD 6.2062E-9 1 6.2062E-9 0.00 0.9910

BC 6.47327E-7 1 6.47327E-7 0.01 0.9079

BD 6.47327E-7 1 6.47327E-7 0.04 0.8423

CD 8.92547E-7 1 8.92547E-7 0.02 0.8920

ABC 0.0000178064 1 0.0000178064 0.37 0.5454

ABD 4.03663E-7 1 4.03663E-7 0.01 0.9272

ACD 0.00000109935 1 0.00000109935 0.02 0.8802

BCD 1.43664E-9 1 1.43664E-9 0.00 0.9957

blocks 0.00023501 2 0.000117505 2.47 0.1013

Total error 0.00147664 31 0.0000476335

Total (corr.) 0.0189591 47
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Fig. 3 Pareto chart for AVG
GAP(%)

Fig. 4 Main effect plot for AVG GAP(%)

Fig. 5 Pareto chart for AVG
TIME(s)
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Fig. 6 Main effect plot for AVG TIME(s)

TS+PR algorithm, used later within the simheuristic frame-
work, are N = 32, M = 1000, L = 10 and T enure = 10%.

Three more parameters are defined by applying the
simheuristic approach described in Algorithm 2, which are
longSim, short Sim and L2. The first parameter is defined
as being large enough to have a full, meaningful simulation
of a solution under stochastic uncertainty. The second param-
eter attempts to quickly evaluate a solution in an uncertain
environment to guide the search for better ones. The last
parameter consists of a pool of elite solutions (quickly eval-
uated) to be finally validated in the complete simulation. This
pool is ordered from the best to the worst result of the fast
simulation. A solution in a lower position may obtain a better
result in the long simulation than another in a higher initial
position. For this reason, pool size must be large enough to
capture the best possible solution in the global simulation.
The exploratory studies indicate that the best final solution
after the full simulation appears before the first five positions
of the elite pool. To ensure that the best solution is obtained
in the complete simulation, a value higher than five is finally
chosen.

Table 3 summarizes all the parameters and the values
selected for the following computational experiments applied
to the benchmark instances described in the previous points
(Table 4).

5.5 Results and discussion

Table 5 includes the results obtained for four different
approaches to solve the UFLP with the MED benchmark
instances. The first column displays instances, whose names
are combinations of the number of demand points and the
opening cost scheme. The next two columns show the solu-
tions obtained using the Gurobi Optimizer solver, along
with the corresponding computational time required to reach
those solutions. The subsequent three columns present the
best-found solutions obtained from our tabu search with
the path-relinking approach, along with the computational
time needed to obtain them. Each instance is run 30 times
using a different seed for the random number generator,
and the best and average results are reported. Furthermore,
the three columns that follow depict the best-found solu-
tions achieved using the multi-start heuristic proposed by
Resende and Werneck [25], along with the computational
time required for each solution. The next three columns illus-
trate the best-found solutions obtained with the ILS-based
approach proposed by De Armas et al. [40], along with the
computational time taken to achieve those results. Finally, the
last three columns display the best-found solutions obtained
using the multi-wave algorithm approach by Glover et al.
[57], plus the computational time taken to reach these solu-

Table 3 Parameter setting Parameter Description Value

N Maximum runs of the algorithm with different seeds 32

M Maximum number of tabu iterations without improvement 500

L Elite solutions pool size 10

Tenure Number of iterations that a move is considered tabu 0.1 ∗ |I |
longSim Number of long MCS runs 100,000

shortSim Number of short MCS runs 1,000

L2 Elite stochastic solutions pool size 10
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Table 4 Performance measures between different computers used in
the literature to evaluate MED instances of the UFLP

Literature PC PLUS

De Armas et al. [40] Intel Core i5-7400T 2.4 GHz 1.62x

Glover et al. [57] Intel Xeon E3-1505M 2.8 GHz 1.32x

Ours Intel Core i5-9600K 3.7 GHz 1.00x

tions. To deal with the different CPU performance times for
each previous method found in the literature, the results can
be refactored in time using the performance characteristics of
the employedCPUs.We used the tables published on special-
izedwebsites; i.e., http://www.techarp.com andhttps://www.
userbenchmark.com, which evaluate CPU performance, to
complete the conversion and normalisation for fair results.
Based on the PLUS column, in Table 4 we include the num-
ber of times that our computer was faster than each computer
used in the literature. It should be noted that it was not possi-
ble to normalize the times reported in Resende and Werneck
[25] due to lack of comparative information and the diffi-
culty of the conversion process when employing a CPU with
a different architecture (RISC). However, it is reasonable to
assume that the normalized times of their workwould be very
competitive.

Table 6 presents the results obtained for the uncertainty
levels considered using theMED benchmark instances. Each
instance was run 10 times using our simheuristic algorithm
with different seeds for the random number generator, and
the best results are reported. The first column identifies
the instances, while the following three display the results
obtained by our approach for the deterministic UFLP. First,
the column labeled BKS reports the best-known solutions
provided by the Gurobi Optimizer solver, along with our
best-found deterministic solutions labeled OBD. We also
calculate the percentage gaps of the best-found determin-
istic solutions compared to the best-known solutions. The
remaining columns showcase the results obtained for three
different uncertainty levels. In the second section of the table,
we report the results obtained for the low uncertainty level.
TheOBD-S columndisplays the expected cost obtainedwhen
evaluating the best deterministic solution (OBD) in a stochas-
tic scenario with a low uncertainty level. To compute the
expected cost, an intensive simulation process is applied to
theOBD. This process aims to assess the quality of our best-
found deterministic solutions at varying uncertainty levels.
The next column (OBS) shows the expected cost obtained
using our simheuristic approach for the stochastic version
of the problem. This approach considers the random service
costs during the solution search. The subsequent section of
the table presents the results for themediumuncertainty level.
In the OBD-S column, we report the expected cost obtained
when evaluating the best deterministic solution (OBD) in

a stochastic scenario with medium uncertainty. Similarly,
the next column (OBS) displays the expected cost obtained
using our simheuristic algorithm. Finally, the last section of
the table exhibits the results for the high uncertainty level.
The OBD-S column shows the expected cost obtained when
evaluating the best deterministic solution (OBD) in a stochas-
tic scenario with high uncertainty. The last column (OBS)
displays the expected cost obtained with our simheuristic
approach.

For the sake of completeness, Table 7 covers the addi-
tional details of the computational results omitted in Table 6.
The first column identifies the instances, while the follow-
ing four columns display the facilities open cost, the related
nonlinear penalty cost, the threshold defined as the instance
maximum service cost and the number of open facilities of
the best-found solution, respectively. The remaining columns
showcase the percentage gaps obtained for three different
uncertainty levels, along with the number of open facilities
of the best-found stochastic solutions. In the second sec-
tion of the table, we report the results obtained for the low
uncertainty level. The OBD-S GAP (%) column displays the
percentage gap obtained when comparing the best determin-
istic solutions simulated in a low uncertainty scenario with
the best-known solutions (BKS). The next column (OBSGAP
(%)) shows the percentage gap obtained when comparing
our simheuristic approach. The subsequent column (OPEN)
presents the number of open facilities of the best-found
stochastic solution. The subsequent section of the table offers
the results for the medium uncertainty level. In the OBD-S
GAP (%) column, we report the percentage gap obtained
when comparing the best deterministic solution at a medium
uncertainty level to the best-known solutions (BKS). The
next column (OBS (%)) displays the percentage gap obtained
using our simheuristic algorithm. Moreover, the subsequent
column (OPEN) presents the number of open facilities of
the best-found stochastic solution. Finally, the last section of
the table exhibits the results for the high uncertainty level.
The OBD-S GAP (%) column depicts the percentage gap
obtained when comparing the best deterministic solution at
a high uncertainty level. The next column (OBS GAP (%))
displays the percentage gap obtained using our simheuristic
algorithm. The last column (OPEN) displays the number of
open facilities of the best-found stochastic solution.

Figures 7, 8 and 9 depict an overview of Table 6 by
showing our algorithm’s performance for all the considered
uncertainty levels. In these box plots, the horizontal and
vertical axes represent the three uncertainty levels and the
percentage gap obtained in relation to the BKS reported by
the Gurobi Optimization solver, respectively. Note for the
deterministic version of the UFLP, that our tabu search with
the path re-linking approach nearly reaches the BKS for the√
n/10,

√
n/100, and

√
n/1000 opening cost schemes, with

a gap of approximately 0.00%, 0.03%, and 0.04%, respec-
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Fig. 7 Gaps of
√
n/10 opening

cost scheme instances w.r.t the
BKS

tively. These results highlight the quality of our algorithm
because our approach provides highly competitive solutions.
Regarding the stochastic version of the UFLP, which is the
main contribution of this paper, the obtained results show
that the solutions provided by our heuristic approach for
the three different uncertainty levels clearly outperform the
solutions for the deterministic UFLP when they are simu-
lated at the corresponding uncertainty level. In other words,
our best-found solutions for the deterministic version of
the problem (OBD) might be suboptimal when uncertainty
is considered. Hence the importance of integrating simula-
tion methods when dealing with optimization problems with

uncertainty. Note also that theOBD can be seen as a reference
lower bound in an ideal scenario with perfect information
(i.e., without uncertainty) for the expected cost under uncer-
tainty conditions. Similarly, OBD-S can be seen as an upper
bound for the expected cost at the different uncertainty lev-
els. As expected, the gaps for all three opening cost schemes
worsen as the uncertainty level of k increases. For the spe-
cific case of the

√
n/10 opening cost scheme, gaps increase

more than for others. As shown in Table 7, this is because the
penalty cost (opening cost) is higher in this case. The penalty
amounts to 3-5% of the total costs, but is less than 1.5% for
the

√
n/100 opening cost scheme and less than 0.5% for the

Fig. 8 Gaps of
√
n/100

opening cost scheme instances
w.r.t the BKS
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remaining one. In addition, the number of open facilities is
much smaller. These are cases in which a few facilities with
high capacity serve many customers. The average number
of open facilities for this opening cost scheme is around 18
in the best-found deterministic solutions, but rises to over
430 for the instances with suffix 1000. In this high opening
cost scheme, where there are few viable facilities to open
and with a high cost penalty, the OBD-S result is that which
obtains the worst values on average, with a gap of 8.99%,
15.42% and 30.56% for all three uncertainty levels. In this
environment, our simheuristic approach is able to achieve a 3
to 5 times better improvement (1.81%, 3.80%, and 10.71%).
For the remaining cases (suffixes 100 and 1000) where the
penalty costs are lower and the number of open installations
is bigger, and the gaps shown in Table 7 and Figs. 7, 8 and 9
are smaller. It is not surprising that the OBD solutions better
perform under uncertainty when the penalty cost is lower.
Our OBS solutions improve the deterministic model’s per-
formance for all the different k uncertainty levels, and also
for all the opening cost schemes, which demonstrates the
validity of the proposed approach.

When taking everything into account, the findings validate
the significance of factoring in uncertainty while searching
for a solution because it can greatly affect the quality of
our best-found solutions. For instance, when our best deter-
ministic solution is simulated in a stochastic scenario, it
yields a much higher expected cost. Conversely, our best-
found stochastic solution (OBS) provides a lower expected
cost. Therefore, incorporating uncertainty aspects during the
search process produces better results than when simulating
uncertainty elements after finding a solution for the deter-
ministic version of the problem.

6 Conclusions

In this paper, we analyze the UFLP under uncertainty, which
occurs in several real-life systems. This uncertainty arises
when inputs, such as customer demands or service costs,
are random variables instead of deterministic values. To
solve this optimization problem, we propose a novel solv-
ing methodology that combines a tabu search metaheuristic
with path-relinking. The proposed algorithm is tested on the
largest instances from the literature because they are the
most challenging ones. The results show that our approach
is capable of obtaining near-optimal solutions in short com-
putational times. Additionally, the results are compared to
the BKS from the literature, along with other competitive
approaches, to validate our algorithm’s effectiveness in the
deterministic scenario. Then the algorithm is converted into
a simheuristic by integrating it with a simulation compo-
nent to solve the UFLP with random service costs. The
log-normal probability distribution is employed to model
the random service costs. The obtained results show our
simheuristic approach outperforms the simulated determin-
istic solutions when uncertainty is considered. Thus our
simheuristic approach constitutes a generalmethodology that
can be employed to efficiently solve several FLP variants
under uncertainty.

One of the limitations of the present work is that it consid-
ers only uncertainty of a stochastic nature. Thus extending
the simheuristic algorithm to address the UFLP in a more
general setting, including stochastic and nonstochastic uncer-
tainty elements like type-2 fuzzy systems [58] and rough sets
[59], is a future research line. Another limitation is that sim-
ulations are performed on a single CPU core. As a future

Fig. 9 Gaps of
√
n/1000

opening cost scheme instances
w.r.t the BKS
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research line, it would be interesting to consider a parallel
version of the simheuristic algorithm to obtain optimal solu-
tions in an even shorter time, which may allow fast decision
making in time-sensitive scenarios. Finally, another possible
extension for this paper is to develop a similar combination of
a tabu search metaheuristic with a path-relinking simheuris-
tic to obtain near-optimal solutions in short computational
times for other optimization problems under uncertainty, for
example, vehicle routing problems, arc routing problems and
scheduling problems.
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