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Abstract
This paper is part of a series ofworkswhose ultimate goal is the complete classification
of phase portraits of quadratic differential systems in the plane modulo limit cycles.
It is estimated that the total number may be around 2000, so the work to find them
all must be split in different papers in a systematic way so to assure the completeness
of the study and also the non intersection among them. In this paper we classify the
family of phase portraits possessing one finite saddle-node and a separatrix connection
and determine that there are a minimum of 77 topologically different phase portraits
plus at most 16 other phase portraits which we conjecture to be impossible. Along
this paper we also deploy a mistake in the book (Artés et al. in Structurally unstable
quadratic vector fields of codimension one, Birkhäuser/Springer, Cham, 2018) linked
to a mistake in Reyn and Huang (Separatrix configuration of quadratic systems with
finite multiplicity three and a M0

1,1 type of critical point at infinity. Report Technische
Universiteit Delft, pp 95–115, 1995).

Keywords Quadratic differential systems · Structural stability · Codimension two ·
Phase portrait · Saddle-node
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1 Introduction

In this paper we study the simplest non-linear polynomial differential equations, the
planar quadratic differential systems. A polynomial differential system on the plane is
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a system of the form

dx

dt
= p(x, y),

dy

dt
= q(x, y), (1)

where p, q ∈ R[x, y], i.e. p, q are polynomials in the variables x and y over R. We
call degree of a system (1) the integer n = max(deg(p), deg(q)). In particular we call
quadratic a differential system (1) with degree n = 2.

This paper is part of a series of papers already published (and some more that will
come) whose ultimate goal is the total classification of phase portraits of quadratic
systems, done for several members of a group of researchers. So some parts of the
introduction and the techniques used may be common with them.

The linear differential equations were completely solved by Laplace in 1812 for
every dimension, not just planar. After the resolution of linear differential systems, it
seemed natural to address the classification of quadratic differential systems. However,
it was found that the problem would not have an easy and fast solution. Unlike the
linear systems that can be solved analytically, quadratic systems (not even, therefore,
those of higher degree) do not generically admit a solution of that kind, at least, with
a finite number of terms.

Therefore, for the resolution of non-linear differential systems, another strategy
was chosen and it allowed the creation of a new area of knowledge in Mathematics:
the Qualitative Theory of Differential Equations [37]. The idea is quite simple: since
we are not able to give a concrete mathematical expression to the solution of a system
of differential equations, this theory intends to express by means of a complete and
precise drawing, the behavior of any particle located in a vector field governed by such
a differential equation, i.e. its phase portrait.

Evenwith all the reductionsmade to the problemuntil now, there are still difficulties.
The most expressive difficulty is that the phase portraits of differential systems may
have invariant sets that are not punctual, as the limit cycles. A linear system cannot
generate limit cycles; at most they can present a completely circular phase portrait
where all the orbits are periodic. But a differential system in the plane, polynomial or
not, and starting with the quadratic ones, may present several of these limit cycles. It is
trivial to verify that there can be an infinite number of these cycles in non-polynomial
problems, but the intuition seems to indicate that a polynomial system should not have
an infinite number of limit cycles in a similar way that it cannot have an infinite number
of isolated singular points. And because the number of singular points is linked to the
degree of the polynomial system, it also seems logical to think that the number of limit
cycles could also have a similar link, either directly as the number of singular points,
or even in an indirect way from the number of the parameters of such systems. In fact,
it is already proved that quadratic systems have a finite number of limit cycles [21]
and there are two independent proofs that any given polynomial system has a finite
number of limit cycles [28, 33]. However, it is worth mentioning that none of both has
been yet fully understood by the mathematical community.

In 1900, David Hilbert [30, 31] proposed a set of 23 problems to be solved in the
20th century, and among them his well-known 16th problem asks for the maximum
number of limit cycles H(n) a polynomial differential system in the plane with degree
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n may have. More than one hundred years after, we do not yet have an uniform upper
bound for this generic problem, only for specific families of such a system.

Therefore, the complete classification of quadratic systems is a very difficult task at
the moment and it depends enormously of the culmination of Hilbert’s 16th problem,
even at least partially for H(2). At this moment we simply know that H(2) ≥ 4 but no
example with 5 limit cycles has been found. The first example with 4 limit cycles was
found by Shi Song Ling in [45]. In fact, only three phase portraits have been found
up to now with such number of limit cycles and all three derive directly from phase
portraits with a weak focus of third order which have a limit cycle along a strong
focus [3].

Even so, a lot of problems have been appearing related to quadratic systems and
for which it has been possible to give an answer. In fact, there are more than one
thousand articles published directly related to quadratic systems. John Reyn, from
Delft University (Netherlands), was committed in preparing a bibliography that was
published several times until his retirement [38]. It is worth mentioning that in the
last three decades many other articles related to quadratic systems have appeared,
what figures that the mentioned amount of one thousand papers in that bibliography
has already been widely exceeded. It is worth mentioning that he estimated the total
number of different phase portraits (modulo limit cycles) to be around 2000.

In those more than one thousand papers mentioned, many families have been stud-
ied, partially or completely, but the collection of all the works is not helpful to provide
a complete classification since there are many intersections among the papers (same
phase portrait may belong to several families), or even worse, there may be phase
portraits that have never appeared in any of them.

So, we need to obtain a systematic procedure which studies independent families
producing always different phase portraits with the assurance that after a finite number
of families, all of them will have appeared. With this goal in mind, Reyn tried to study
families according to the number of finite singularities that have escaped to infinity.
He was successful in the cases with two or more singularities escaping to infinity [39,
40, 44]. In the case when just one singularity has escaped to infinity, they published
[43] with the case when one of the infinite singularities is nilpotent or degenerate,
but their work where this singularity is just semi-elemental remained just as a report
[42] since several mistakes were detected. Some missed phase portraits were already
reported in [6] and here we will report an impossible phase portrait which induced a
mistake in [6]. Finally Reyn in his book [41] recognized the impossibility to deal with
the case where no finite singularity escapes to infinity using his tools.

Given the difficulty of solving the 16th Hilbert’s problem, if we want to obtain a
global classification of quadratic systems before this problem is solved, thiswill have to
be donemodulo limit cycles.We propose to carry out a systematic global classification
and, for this, we cannot be attained only to the study of families of systems that do not
give more than extremely local visions of the global parameter space. Even applying
to our quadratic system a linear change of coordinates plus a translation and a time
rescaling, which supposes a reduction from the initial 12 parameters to a limited set
of systems with 5 parameters,R5 is still a very large space. And moreover, there is not
just a single family with 5 parameters that contains all quadratic systems. One needs



   40 Page 4 of 88 J. C. Artés

several such families. The study of families has been very useful to provide examples,
but not for the systematic classification.

The other systematic way to try to obtain the complete classification of phase por-
traits of quadratic systemswas startedwith the study of the structurally stable quadratic
systems, modulo limit cycles. That is, the goal was to determine how many and which
phase portraits of a quadratic system cannot be modified by small perturbations in
their coefficients. To obtain a structurally stable system modulo limit cycles we need
very few conditions: we do not allow the existence of multiple singular points and the
existence of connections of separatrices. Centers, weak foci and semi-stable cycles are
submerged in the quotient modulo limit cycles. This systematic analysis [2] showed
that the structurally stable quadratic systems modulo limit cycles produce a total of
44 topologically distinct phase portraits.

The natural problem to be studied after was the structurally unstable quadratic
differential systems of codimension one. This study [6] was done in approximately
20 years and finally we obtained at least 204 (and at most 211) topologically phase
portraits of codimension one modulo limit cycles.

The pattern of work in these two papers (and the ones continuing after) is quite
similar. First we need to produce by combination of singularities and separatrices, all
potential (see definition below) phase portraits of a given codimension and after one
must either find a concrete example of every phase portrait, or produce a proof which
shows its impossibility.

Definition 1 By a potential phase portrait we understand a phase portrait which is
compatible with the number and type of singularities with what can be obtained in a
fixed class of systems.

So, a potential phase portrait may still be not realizable by other deeper reasons.
In several previous papers these phase portraits were called simply as “possible”

but the interpretation of this word could make people uncomfortable when something
called “possible” finally becomes impossible or non-realizable. So, we have decided
for a different word. The candidates of phase portraits that we first obtain have the
potential of being finally realizable, but maybe they are not at the end.

The types of proofs that work to show impossibilities of phase portraits use to
deal with the number of contact points that the flow can have with a straight line.
Some newer proofs deal with geometric concepts like the position and tangencies of
orbits and characteristic directions. Also, the non realizable phase portraits of a certain
codimension become a key tool to prove the impossibility of related phase portraits
of lower and higher codimension.

The way to obtain examples of the phase portraits comes mainly from already stud-
ied families of the same or higher codimensions. If they are of the same codimension,
they must directly appear in those studies. In case of using higher codimension exam-
ples, then by perturbing one ormore of the unstable elements of that phase portrait, one
obtains the desired phase portrait. In this way the study of structurally stable quadratic
systems is complete, that is, from 72 initially potential phase portraits, we obtained
examples of 44 and proved the impossibility of the remaining 28. And up to now, no
result has contradicted this statement.
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In 1998, just after ending [2] and starting the production of topologically potential
phase portraits of codimension one, the number, and particularly the size of the already
studied families, was not large. But new techniques created by the school of Sibirskii
[9, Chapter 5] about invariant polynomials, allowed a growth in the dimension of the
bifurcation diagrams that could be studied, and it became a gorgeous source of phase
portraits which helped to complete [6].

Anyway, in [6] the work could not be completely ended since after studying more
than 500 potential different phase portraits, finding examples for 204 of them, and
impossibilities of more than 300, there remained seven phase portraits for which we
were unable to provide neither an example nor a proof of impossibility. And all seven
cases are related with the existence of a graphic and the behavior of the focus inside.
The tools of contact points are useless in these cases. The proofs of impossibilities
might be related to the impossibility of certain phase portraits with limit cycles. The
fact that we were not able to prove such impossibility, together with the fact that we
have not found such phase phase portraits in none of the papers previously published,
made us conjecture their impossibility.

This fact will produce a cascade effect in higher codimensions since conjectured
impossibility of some codimension one phase portraits will extend into some more
codimension two phase portraits, plus some new ones which will appear.

The next step is now the study of codimension two phase portraits and this was
already initiated in [14, 15]. In the first paper, the scheme of work for codimension two
was introduced. Since the number of cases in codimension two will exceed by large
those of codimension one, it was proposed to split it in several classes and [15] already
studied the first of them, concretely the phase portraits containing exactly two finite
saddle-nodes, or one cusp as the only unstable elements. In [14] we find a continuation
of theworkwhere phase portraits having exactly one finite and one infinite saddle-node
(this includes two classes) as the only unstable elements, are studied.

In what follows, we recall some definitions and notation used in those papers, and
then we explain all the cases of structurally unstable quadratic systems of codimension
two, one by one, and present the completion of the fourth class.

Let X be a vector field.A point p ∈ R
2 such that X(p) = 0 (respectively X(p) �= 0)

is called a singular point (respectively regular point) of the vector field X .
Let Pn(R2) be the set of all polynomial vector fields on R

2 of the form X(x, y) =
(P(x, y), Q(x, y)), with P and Q polynomials in the variables x and y of degree at
most n (with n ∈ N). In this set we consider the coefficient topology by identifying
each vector field X ∈ Pn(R2) with a point of R(n+1)(n+2) (see more details in [6]).

For X ∈ Pn(R2), we consider the Poincaré compactified vector field p(X) corre-
sponding to X as the vector field induced on S

2 as described in [1, 6, 26, 29, 46]).
Concerning this, a singular point q of X ∈ Pn(R2) is called infinite (respectively finite)
if it is a singular point of p(X) in S1 (respectively in S

2\S1).
Now, we present the local classification of the singular points of p(X). Let q be a

singular point of p(X).
The classical definitions are:

• q is non-degenerate if det (Dp(X)(q)) �= 0, i.e. the determinant of the linear part
of p(X) at the singular point q is nonzero;
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• q is hyperbolic if the two eigenvalues of Dp(X)(q) have real part different from
0;

• q is semi-hyperbolic if exactly one eigenvalue of Dp(X)(q) is equal to 0.

However, we will also use new notation introduced in [9] directly related to the
Jacobian matrix of the singularity. We have:

• q is elemental if both of its eigenvalues are non-zero;
• q is semi-elemental if exactly one of its eigenvalues equals to zero;
• q is nilpotent if both of its eigenvalues are zero, but its Jacobian matrix at this point
is non-identically zero;

• q is intricate if its Jacobian matrix is identically zero;
• q is an elemental saddle if det (Dp(X)(q)) < 0, i.e. the product of the eigenvalues
of Dp(X)(q) is negative;

• q is an elemental anti-saddle if det (Dp(X)(q)) > 0 and the neighborhood of q
is not formed by periodic orbits (in which case we would call it a center), i.e., it is
either a node or a focus.

Nodes and foci can be algebraically distinguished by means of the sign of the dis-
criminant of the Jacobianmatrix, but from the topological point of view, this distinction
is useless.

The intricate singularities are usually called in the literature linearly zero. We use
here the term intricate to summarize in a single word the rather complicated behavior
of phase curves around such a singularity. We prefer to avoid the use of the word
“degenerate”. The word “degenerate” has been so widely used for so many different
things that the readermaymisinterpret its meaning easily. In [9] the word “degenerate”
is used only to indicate systems with an infinite number of finite singularities (even
if they are complex). We have seen in some papers an elementary node with iden-
tical eigenvalues being called “degenerate”, or a weak focus, and also any multiple
singularity.

Remark 1 Saddles have always (topological) index −1 and anti-saddles have index
+1 (see [26, 32] for the definition of index of a singular point).

We encourage the reader to recall the definition of characteristic directions and
finite sectorial decomposition of vector fields p(X) ∈ Pn(S2) (or X ∈ Pn(R2)) (for
instance, see [26]).

Let p(X) ∈ Pn(S2) (respectively X ∈ Pn(R2)). A separatrix of p(X) (respectively
X ) is an orbit which is either a singular point (respectively a finite singular point),
or a limit cycle, or a trajectory which lies in the boundary of a hyperbolic sector
at a singular point (respectively a finite singular point). Neumann [35] proved that
the set formed by all separatrices of p(X), denoted by S(p(X)), is closed. The open
connected components ofS2\S(p(X)) are called canonical regionsof p(X).Wedefine
a separatrix configuration as the union of S(p(X)) plus one representative solution
chosen from each canonical region. Two separatrix configurations S1 and S2 of vector
fields of Pn(S2) (respectively Pn(R2)) are said to be topologically equivalent if there
is an orientation-preserving homeomorphism of S2 (respectively R2) which maps the
trajectories of S1 onto the trajectories of S2. However, in order to reduce the number
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of different phase portraits to half, normally the condition of orientation-preserving is
skipped.

Definition 2 We define skeleton of separatrices as the union of S(p(X)) without the
representative solution of each canonical region.

Some canonical regions accept only one representative orbit but other regionswhose
border is a graphic (see definition below) accept two different representatives and thus,
a skeleton of separatrices can still produce different separatrix configurations.

We call a heteroclinic orbit a separatrix which starts and ends on different points
(being a separatrix of both) and a homoclinic orbit as a separatrix which starts and ends
at the same point. A loop is formed by a homoclinic orbit and its associated singular
point. These orbits are also called separatrix connections or saddle connections.

A (non-degenerate) graphic as defined in [27] is formed by a finite sequence of
singular points r1, r2, . . . , rn (with possible repetitions) and non-trivial connecting
orbits γi for i = 1, . . . , n such that γi has ri as α-limit set and ri+1 as ω-limit set
for i < n and γn has rn as α-limit set and r1 as ω-limit set. Also normal orientations
n j of the non-trivial orbits must be coherent in the sense that if γ j−1 has left-hand
orientation then so does γ j . A polycycle is a graphic which has a Poincaré return map.

A degenerate graphic is formed by a finite sequence of singular points r1, r2, . . . , rn
(with possible repetitions) and non-trivial connecting orbits and/or segments of curves
of singular points γi for i = 1, . . . , n such that γi has ri as α-limit set and ri+1 as
ω-limit set for i < n and γn has rn as α-limit set and r1 as ω-limit set. Also normal
orientations n j of the non-trivial orbits must be coherent in the sense that if γ j−1 has
left-hand orientation then so does γ j . For more details, see [27].

A vector field p(X) ∈ Pn(S2) is said to be structurally stable with respect to
perturbations in Pn(S2) if there exists a neighborhood V of p(X) in Pn(S2) such that
p(Y ) ∈ V implies that p(X) and p(Y ) are topologically equivalent; that is, there exists
a homeomorphism of S2, which preserves S1, carrying orbits of the flow induced by
p(X) onto orbits of the flow induced by p(Y ), preserving sense but not necessarily
parameterization.

Since in this paper we are interested in the classification of the structurally unstable
quadratic vector fields of codimension two, we recall the concept of quadratic vector
fields of lower codimension in structurally stability.

Recalling the works of Peixoto [36], restricted to the set of the quadratic vector
fields, we have the following result:

Theorem 1 Consider p(X) ∈ Pn(S2) (or X ∈ Pn(R2)). This system is structurally
stable if and only if

(i) the finite and infinite singular points are hyperbolic;
(ii) the limit cycles are hyperbolic;
(iii) there are no saddle connections.

Moreover, the structurally stable systems form an open and dense subset of Pn(S2) (or
Pn(R2)).

The studies done up to now on structurally stable systems and codimension one
systems are modulo limit cycles, so it is sufficient to consider only conditions (i) and
(iii) of Theorem 1. We refer to these conditions as stable objects.
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According to [2] there are 44 topologically distinct structurally stable quadratic
vector fields. Concerning the codimension one quadratic vector fields, we allow the
break of only one stable object. In otherwords, a quadratic vector field X is structurally
unstable of codimension one if and only if

(I) It has one and only one structurally unstable object of codimension one, i.e. one
of the following types:

(I.1) a saddle-node q of multiplicity two with ρ0 = (∂P/∂x + ∂Q/∂ y)q �= 0;
(I.2) a separatrix from one saddle point to another;
(I.3) a separatrix forming a loop for a saddle point with ρ0 �= 0 evaluated at the

saddle;
(I.4) It has one unstructurally unstable limit cycle of multiplicity 2, that is, which

under perturbation may produce at most two hyperbolic limit cycles;
(I.5) It has a weak focus of order 1.

(II) If the vector field has a saddle-node, none of its separatrices may go to a saddle
point and no two separatrices of the saddle-node are continuation one of the other.

For the structurally unstable phase portraits of codimensiononemodulo limit cycles,
we may tear apart the points (I.4) and (I.5). Also the point (I.3) requires no dedication:
a phase portrait having a separatrix forming a loop for a saddle point with ρ0 = 0
evaluated at the saddle as its only stability is in fact a codimension two phase portrait
which modulo limit cycles is topologically equivalent to another of codimension one.
In what follows, instead of talking about codimension one modulo limit cycles, we
will simply say codimension one∗.

As described in [6, Chapter 5], the codimension one∗ quadratic vector fields can be
allocated in four classes, according to the coincidences that may occur with singular
points or separatrices of structurally stable quadratic vector fields X .

(A) When a finite saddle and a finite node of X coalesce and disappear.
(B) When an infinite saddle and an infinite node of X coalesce and disappear.
(C) When a finite saddle (respectively node) and an infinite node (respectively saddle)

of X coalesce and then they exchange positions.
(D) When we have a saddle-to-saddle connection. This class is split into five sub-

classes according to the type of the connection: (a) finite-finite (heteroclinic
orbit), (b) loop (homoclinic orbit), (c) finite-infinite, (d) infinite-infinite between
symmetric points and (e) infinite-infinite between adjacent points.

Recalling the main result in [6], the phase portraits in all these four classes sum
up 211 topological distinct ones, where 204 of these total are proved to be realizable
and the remaining 7 are conjectured to be impossible. However, when we started the
study of codimension two phase portraits, we needed to rely on the codimension one∗
realizable ones and also on the non realizable ones. And some tricky situations lead
us to discover some mistakes in [6] which make that the number of realizable phase
portraits has been reduced to 202 (maintaining the 7 conjectured impossible). One
mistake was found in [15] and another in this paper. In [15] it was proven that phase
portrait from [6] named asU1

A,49 is not realizable and must be renamed asU1,I
A,49. And

here we will prove that U1
D,62 is also not realizable and must be renamed as U1,I

D,62
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The current step is to classify, modulo limit cycles, the codimension two quadratic
vector fields.

Up to now, we have mentioned many times the word “codimension” and this is a
clear concept in geometry. However, in this classification we want to obtain topolog-
ically distinct phase portraits, and we want to group them according to their level of
genericity. So, what was clear for structurally stable phase portraits and for codimen-
sion one∗ phase portraitsmay become a little weird if we continue in this sameway.We
do not want to classify phase portraits in a simple euclidean space, but on the moduli
space of phase portraits under the topological equivalence and the modulo limit cycles
condition. Thus, some phase portraits which are geometrically different and which
have different geometrical codimension may be topologically equivalent, and it must
be given a unique topological codimension in this moduli space. The works done up
to now in quadratic systems of topological codimension zero, one and two have had
no problem to determine what conditions were required, but starting at codimension
three and higher, the conditions may become less clear. In paper [10] the authors make
a complete description of the concept of codimension related to polynomial systems
and specially to quadratic systems and give a global definition of codimension which
here is adapted to phase portraits:

Definition 3 We say that a phase portrait of a quadratic vector field is structurally
stable (has topological codimension zero) if any sufficiently small perturbation in the
parameter space leaves the phase portrait topologically equivalent the previous one.

Definition 4 We say that a phase portrait of a quadratic vector field is structurally
unstable of topological codimension k ∈ N if any sufficiently small perturbation in
the parameter space either leaves the phase portrait topologically equivalent to the
previous one or it moves it to a lower codimension one, and there exists at least one
such as perturbation which perturbs the phase portrait into one of codimension k − 1,
or there exists at least one couple of chained perturbations which perturbs the phase
portrait into one of codimension k − 2.

Remark 2 1. When applying these definitions, modulo limit cycles, to phase portraits
with centers, it would say that some phase portraits with centers would be of
codimension as low as two, while geometrically they occupy amuch smaller region
in R

12. So, the best way to avoid inconsistencies in the definitions is to tear apart
the phase portraits with centers, that we know they are in number 31 [47], and just
work with systems without centers.

2. The last part of the definition mentioning the possibility of a chain of two pertur-
bations, refers to some special cases of high codimension which are explained in
[10] but has no effect in codimension two.

3. Starting in cubic systems, the definition of topologically equivalence, modulo limit
cycles, becomes more complicated since we can have limit cycles having only one
singularity in its interior or more than one. There is even a proof of existence of up
to 13 limit cycles which are nested in a tricky way with one limit cycle surrounding
all nine singularities of a cubic system [22]. So we cannot collapse the limit cycle
because its interior is also relevant for the phase portrait.

4. Moreover, our definition of codimension also needs more precision starting with
cubic systems due to new phenomena that may happen there.
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Table 1 Classes of structurally unstable quadratic vector fields of codimension two∗ considered from
combinations of the classes of codimension one∗: (A), (B), (C) and (D) (which in turn is split into a, b, c,
d and e)

(A) (B) (C) (D)

(A) (AA) – – –

(B) (AB) (BB) – –

(C) (AC) (BC ) (CC) –

(D) (AD) (5 cases) (BD) (5 cases) (CD) (5 cases) See Table 2

Table 2 Sub-classes of
structurally unstable quadratic
vector fields of codimension
two∗ in the class (DD) (see
Table 1)

a b c d e

a (aa)

b (ab) (bb)

c (ac) (bc) (cc)

d (ad) (bd) (cd) (dd)

e (ae) (be) (ce) (de) (ee)

5. As we have already been doing along this introduction, when we talk about “codi-
mension”, we will refer to the topological codimension as defined in Definitions 3
and 4.

Then, according to this definition concerning codimension two, and the previously
known results of codimension one∗, we have the result:

Theorem 2 Apolynomial vector field in P2(R2) is structurally unstable of codimension
two modulo limit cycles if and only if all its objects are stable except for the break
of exactly two stable objects. In other words, we allow the presence of two unstable
objects of codimension one or one of codimension two.

Combining the classes of codimensionone∗ quadratic vector fields one to eachother,
we obtain 10 new classes, where one of them is split into 15 sub-classes, according to
Tables 1 and 2.

Analogously, instead of talking about codimension two modulo limit cycles, we
will simply say codimension two∗.

Geometrically, the codimension two∗ classes can be described as follows. Let X be
a codimension one∗ quadratic vector field. We have the following classes:

(AA) When X already has a finite saddle-node and either a finite saddle (respectively
a finite node) of X coalesces with the finite saddle-node, giving birth to a semi-
elemental triple saddle: s(3) (respectively a triple node: n(3)), or when both
separatrices of the saddle-node limiting its parabolic sector coalesce, giving
birth to a cusp of multiplicity two: ĉp(2), or when another finite saddle-node
is formed, having then two finite saddle-nodes: sn(2) +sn(2). Since the phase
portraits with s(3) andwith n(3) would be topologically equivalent to structurally
stable phase portraits and we are mainly interested in new phase portraits, we
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will skip them in this classification. Anyway, we may find them in the papers
[16] and [19].

(AB) When X already has a finite saddle-node and an infinite saddle and an infinite

node of X coalesce: sn(2)+
(0
2

)

SN .
(AC) When X already has a finite saddle-node and a finite saddle (respectively a

finite node) and an infinite node (respectively an infinite saddle) of X coalesce:

sn(2)+
(1
1

)

SN .
(AD) When X has already a finite saddle-node and a separatrix connection is formed,

considering all five types of class (D).
(BB) When an infinite saddle (respectively an infinite node) of X coalesces with

an existing infinite saddle-node
(0
2

)

SN of X , leading to a triple saddle:
(0
3

)

S

(respectively a triple node:
(0
3

)

N ). This case is irrelevant to the production of
new phase portraits since all the possible phase portraits that may produce are
topologically equivalent to an structurally stable one.

(BC) When a finite anti-saddle (respectively finite saddle) of X coalesces with an

existing infinite saddle-node
(0
2

)

SN of X , leading to a nilpotent elliptic-saddle
̂

(1
2

)

E − H (respectively nilpotent saddle ̂

(1
2

)

HHH − H ). Or it may also happen
that a finite saddle (respectively a finite node) coalesces with an elemental
infinite node (respectively an infinite saddle) in a phase portrait having already an
(0
2

)

SN , having then in total
(1
1

)

SN +(0
2

)

SN .

(BD) When we have an infinite saddle-node
(0
2

)

SN plus a separatrix connection,
considering all five types of class (D).

(CC) This case has two possibilities:

(i) a finite saddle (respectively finite node) of X coalesces with an existing infinite

saddle-node
(1
1

)

SN , leading to a semi-elemental triple saddle
(2
1

)

S (respectively

a semi-elemental triple node
(2
1

)

N ),
(ii) a finite saddle (respectively finite node) and an infinite node (respectively an

infinite saddle) of X coalesce plus another existing infinite saddle-node
(1
1

)

SN ,

leading to two infinite saddle-nodes
(1
1

)

SN+(1
1

)

SN .

The first case is irrelevant to the production of new phase portraits since all
the possible phase portraits that may produce are topologically equivalent to a
structurally stable one.

One could think also in the possibility of two finite singularities coalescing
with an infinite node (respectively saddle) leading to a nilpotent or intricate
singularity. However, it is proved in [9] that such a possibility cannot involve a
unique infinite singularity, but at least two, and then the codimension is higher.
If several finite singularities coalesce with a single infinite singularity, they all
do along the same affine direction and we just get semi-elemental singularities.
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(CD) When we have an infinite saddle-node
(1
1

)

SN plus a saddle to saddle connection,
considering all five types of class (D).

(DD) When we have two saddle to saddle connections, which are grouped as follows:

(aa) two finite-finite heteroclinic connections;
(ab) a finite-finite heteroclinic connection and a loop;
(ac) a finite-finite heteroclinic connection and a finite-infinite connection;
(ad) a finite-finite heteroclinic connection and an infinite-infinite connection

between symmetric points;
(ae) a finite-finite heteroclinic connection and an infinite-infinite connection

between adjacent points;
(bb) two loops;
(bc) a loop and a finite-infinite connection;
(bd) a loop and an infinite-infinite connection between symmetric points;
(be) a loop and an infinite-infinite connection between adjacent points;
(cc) two finite-infinite connections;
(cd) a finite-infinite connection and an infinite-infinite connection between sym-

metric points;
(ce) a finite-infinite connection and an infinite-infinite connection between adjacent

points;
(dd) two infinite-infinite connections between symmetric points;
(de) an infinite-infinite connectionbetween symmetric points and an infinite-infinite

connection between adjacent points;
(ee) two infinite-infinite connections between adjacent points.

Some of these cases have been proved to be empty in an on course paper [11].
The class (AA) with a cusp or two finite saddle-nodes has already been studied in

[15] and the classes (AB) and (AC) with a finite saddle-node and both types of infinite
saddle-nodes have also been completed in [14].

The main goal of this paper is to present the global phase portraits of the vector
fields X ∈ P2(R2) belonging to the class (AD) and make sure that they are realizable.

Let
∑2

0 denote the set of all planar structurally stable vector fields and
∑2

i (S)

denote the set of all structurally unstable vector fields X ∈ P2(R2) of codimension i ,
modulo limit cycles belonging to the set S, where S is a set of vector fields with the
same type of instability. For instance, X ∈ ∑2

2(AD) denote the set of all structurally
unstable vector fields X ∈ P2(R2) of codimension two∗ belonging to the class (AD).

With all of these we can formulate the next theorem.

Theorem 3 If X ∈ ∑2
2(AD) then there are at least 77 topologically different phase

portraits (given in Figs. 1, 2, 3) modulo orientation and modulo limit cycles and at
most 93.

In several papers where the phase portraits of a family of quadratic systems were
classified starting from a given normal form [7, 12, 13] and which split the parameter
region in several hundreds of sets, a classification technique using topological invari-
ants was needed in order to detect topologically equivalent phase portraits which may
occur in different parts. Even though this same technique could be used here, we
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consider it is not necessary since the phase portraits (class (D)) from which we start
producing the potential phase portraits of class (AD) are already different, and thus, we
cannot obtain the same phase portrait from two different sources. We can only obtain
two equivalent phase portraits by colliding two different antisaddles with a saddle
starting from the same phase portrait of class (D), and these cases are easily detected
along the proof of this theorem and the repetitions are conveniently teared appart. For
example in Fig. 14 we will see how phase portrait U1

D,3 which has two antisaddles

which may coalesce with the saddle, produce only one phase portrait U2
AD,3. Other

similar cases appear.
In [6] we already detected seven potential phase portraits of codimension one∗

in class (D) for which we were not able to find an example, neither to produce a
proof of impossibility. All these cases were related with the existence of graphics for
which (once fixed every other direction of the flow) the stability or instability of the
focus inside the graphic could mean the difference between having an example or
not. For several reasons developed in [6], these phase portraits were conjectured to
be impossible. From these seven phase portraits, one can develop easily eleven more
phase portraits of class (AD). However, if the conjecture is true, these phase portraits
will be also impossible. On the contrary, if we had found an example of one of these
eleven phase portraits in class (AD), we could easily bifurcate the corresponding
phase portrait of codimension one∗. But this has not happened as it was expected by
the conjecture. Moreover, when developing all the topological possibilities of phase
portraits in class (AD), we meet again with the same problem we had in [6] and we
detect some skeletons of separatrices for which there are two potential phase portraits,
and we are only able to find example of one of them. That is, from a certain realizable
codimension one∗ phase portrait of class (D) having a graphic one can produce the
coalescence of a finite saddle and a finite node. If the focus inside the graphic has a
certain stability (relative to other stabilities in the phase portrait) we are able to find
an example, but it seems that such coalescence is not possible in the opposite case.
This phenomena produces that the number of conjectured impossible cases increases
from codimension one∗ to codimension two∗. Some more cases will be added when
the classes (BD), (CD) and (DD) are completed. And this will even increase higher
when codimension three is studied.

Conjecture 1 The 11 phase portraits of codimension two∗ that can be developed from
the codimension one∗ portraits (by coalescing a finite saddle and a finite anti-saddle)
shown in Fig.4, plus the 5 codimension two∗ phase portraits shown in Fig.5 are non
realizable.

Note that the five phase portraits shown in Fig. 5 are very similar to other five
realizable cases. The only difference is the stability of the focus inside the graphic.
Consequently, we have named them with a number related with the realizable case.

During the study of this class we have found of a second mistake in [6]. In that book
we claimed to have at least 204 different realizable phase portraits (and 211 at most).
In [15] we already proved that U1

A,49 was impossible (and renamed it to U1,I
A,49). Now,

we have found another impossibility which comes from next proposition:
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Fig. 1 Structurally unstable quadratic phase portraits of codimension two∗ of class (AD)

Proposition 1 Phase portrait U1
D,62 from [6] is impossible (and must be renamed to

U
1,I
D,62). Thus, the realizable cases of structurally unstable phase portraits of quadratic

systems of codimension one∗ is at least 202 and at most 209.

The mistake we did in [6] regarding this phase portrait was due because we trusted
the report [42] and derived an example of realization of U1

D,62 from phase portrait
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Fig. 2 (Cont.) Structurally unstable quadratic phase portraits of codimension two∗ of class (AD)

an18 in [42]. However, now that we have tried to derive codimension two∗ phase
portraits from U

1
D,62 and we have checked that none seems to appear in already done

classifications which could contain them, we have rechecked the arguments given in
[42]. We concluded that they were not strong and finally worked out a proof of its
impossibility.
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Fig. 3 (Cont.) Structurally unstable quadratic phase portraits of codimension two∗ of class (AD)

Fig. 4 Conjectured impossible structurally unstable quadratic phase portraits of codimension one∗

Fig. 5 Conjectured impossible structurally unstable quadratic phase portraits of codimension two∗ of class
(AD)

In Sect. 2 we give a short description of the graphics that have been found in this
paper (or someprevious papers of this research line) linking themwith the classification
given in [27]. And we also explain a little about limit cycles even though they are out
of the goal of this paper. In Sect. 3 we will prove Proposition 1. In Sect. 4 we make a
brief description of phase portraits of codimensions zero* and one* that are needed
in this paper. In Sect. 5, we make the list of topologically potential phase portraits of
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codimension two∗ in the class (AD) removing already some which can be proved to
be impossible at that same moment. In Sect. 6, we prove the realization of 77 of them,
and will justify the reasons why we conjecture the impossibility of the remaining 16.

2 Graphics and Limit Cycles

Even though the goal of this paper deals little with graphics and limit cycles, it is out
of doubt that these are two of the most important elements in Qualitative Theory.

Limit cycles are the most elusive phenomena in phase portraits. They may appear
either from bifurcation of a weak focus (Hopf-bifurcation), by bifurcation of a graphic,
by bifurcation of a multiple singularity (finite or infinite), by bifurcation of a multiple
limit cycle, by bifurcation of a period annulus, or by bifurcation of degenerate systems
(with a common factor between p and q of (1)) and only the first case can be fully
algebraically controlled. The other cases are generically non-algebraic. Examples of
these bifurcations may be found in hundreds of papers, but in [13], by a simple control
of neighbor regions, examples of all these bifurcations may be found.

Our goal to find all the topologically different phase portraits modulo limit cycles
tears apart this big problem, but it is not an irrelevant goal.Whenever themathematical
community finally gets the complete set of phase portraits of quadratic systems (or
whatever other family), the subset of the phase portraits modulo limit cycles will be
the base for such classification.

It is expected to obtain more than one thousand (maybe even up to 2000) different
phase portraits of quadratic systemsmodulo limit cycles. For quitemany of them it will
be trivial to determine that theywill not have limit cycles (in the case they do not have a
finite anti-saddle). And the phase portraits having an invariant straight line are known
to be bounded to just one limit cycle [23, 25]. But for all the others, it will be needed
to determine exactly how many different phase portraits can be obtained from that
skeleton by adding limit cycles. Up to now and up to our knowledge, there is just one
non trivial skeleton of phase portrait which could theoretically have limit cycles, and it
has been proved the absence of limit cycles in it. Concretely structurally stable phase
portrait S27,1 obtained in [2] was conjectured by statistical tools to be incompatible with
limit cycles in [4] and proved in [5]. For all other non-trivial skeletons of phase portraits
found up to now, there is not a single proof determiningwhich is themaximum number
of limit cycles it may have. There are many papers related to maximum number of
limit cycles, but they are always linked to a certain normal form. Most of them simply
prove that a concrete normal form may have just one limit cycle. But this does not
imply that the skeletons of phase portraits obtained in other normal forms, may not
have more limit cycles in the whole classification.

Up to now, it is known that there are examples of phase portraits of quadratics
systems with four limit cycles distributed in two nests around two foci, three aronud
one and one around the other. And even though it is conjectured that four and this
distribution is the effective maximum, there is not yet any conclusive global proof.
The phase portraits for which there are examples with 4 limit cycles belong to just
three skeletons of phase portraits, concretely the structurally stable S24,1 and S

2
11,2 from
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[2], and the codimension one∗
U
1
B,31 from [6], but this (3, 1) distribution is compatible

with many more skeletons. The proof that they may have at least 4 limit cycles was
given in several papers since they appear in classifications with a weak focus of order
3 already having a limit cycle around a strong focus [3].

But not even if the maximum bound were four (and the maximum distribution
(3, 1)), we would be close to obtain all the phase portraits of quadratic systems. Any
of the three above mentioned skeletons of phase portraits may have the topologically
different configurations (0, 0), (1, 0), (2, 0), (3, 0), (1, 1), (2, 1) and (3, 1). That is
7 different configurations. But even this is not a simple criteria to obtain a simple
upper bound of the total number of phase portraits. There are phase portraits like S25,1
from [2] which has up to three finite anti-saddles. One of them receives (or emits)
a single separatrix, a second anti-saddle receives (or emits) exactly two separatrices,
and a third anti-saddle receives (or emits) exactly three separatrices. So, the fact that
a limit cycle could be surrounding any of the three anti-saddles would generate a
topologically different phase portrait. And in case there were two nests of limit cycles,
and assuming that they could have up to 4 limits cycles, the number of cases would
increase up to 25 possibilities. But from these 25 possibilities, up to now only six have
been confirmed to exist. In fact, a very recent paper [48, Theorem 5.4] reduces these
25 possibilities to just 13 (assuming that 3 is the maximum of limit cycles around each
singularity) when proving that a quadratic system with 4 real finite singularities can
only have distributions (n, 0) or (1, 1).

We are collecting a large database and recording the maximum number of limit
cycles found in each one of the skeletons classified up to now.

With all this we want to remark that the topological classification of phase portraits
modulo limit cycles is important since it produces a complete set of skeletons from
which the complete set of phase portraits must be located. For each particular skeleton,
it must be studied if it contains none, one, two or up to three anti-saddles around which
limit cycles may be located (it is easy to prove that at most two of them may be foci).
If there is a complete collection of phase portraits modulo limit cycles, and an upper
bound of limit cycles is found, this will give a quite rough upper bound for the number
of different phase portraits. But the real number will need a deeper study case by case.
Nowadays it seems still quite far themoment to obtain the final complete classification,
but the classification modulo limit cycles is achievable with the current techniques and
affordable with some effort (better said, quite a lot of effort), so we think it is worth
trying for it.

Now we talk a little about graphics. Graphics are also very important because they
can become the bifurcation edge which leads to the formation of limit cycles. There
has been a lot of literature related to graphics in the past, and one of the most relevant
papers is [27] where the authors list the complete set of 121 different graphics that
may appear in quadratic systems. The graphics in this list can be of different types.
Many of them imply the connection of one (or more) couple of separatrices, finite or
infinite. Other graphics are formed simply because a separatrix arrives to the nodal
part of a saddle-node (finite or infinite) or an even more degenerated singularity in
concomitance with other properties of the phase portrait. Unfortunately, most of these
graphics cannot be detected by means of algebraic tools. In many studies of families
of systems where a complete bifurcation is given of the parameter space, after all the
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algebraic bifurcations are given, the use of continuity and coherence arguments allows
the detection of some other non-algebraic bifurcations where these graphics appear.

Our methodical study of phase portraits of quadratic systems modulo limit cycles
started with codimension zero (structurally stable) [2] and of course these phase
portraits cannot have any graphic at all. The second step was the classification of
codimension one∗ phase portraits, and there we could start finding some graphics, but
not toomany. Concretely we could find graphic (F1

2 ) from [27] inU1
A,10,U

1
A,13,U

1
A,37,

U
1
A,43,U

1
A,59,U

1
A,64, andU

1
A,70. This graphic consists simply in one finite saddle-node

which sends its center manifold (separatrix of zero eigenvalue) to the nodal part of
itself. We also have graphic (I 219) from [27] in U

1
B,29, U

1
B,30 (twice), U1

B,33, U
1
B,36

and U
1
B,38. This graphic consists on one elemental infinite saddle which sends one

of its separatrices to the nodal part of an infinite adjacent saddle-node formed by the
coalescence of two infinite singularities. There are no graphics in the class (C) of codi-
mension one∗ phase portraits. Finally, in class (D) we find the graphics (F1

1 ), (H1
1 )

and (I 21 ) from [27]. The first one is just a loop of a finite elemental saddle, the second
one is a separatrix connection between opposite infinite elemental saddles, and the
third one is a separatrix connection between adjacent infinite elemental saddles. The
loop is present in U1

D,1, U
1
D,6, U

1
D,7, U

1
D,8, U

1
D,9, U

1
D,12, U

1
D,19, U

1
D,20, U

1
D,22, U

1
D,23,

U
1
D,30, U

1
D,31, U

1
D,32, U

1
D,46, U

1
D,47, U

1
D,48, U

1
D,49, U

1
D,50, U

1
D,51, U

1
D,52, U

1
D,53 and

U
1
D,54. The second graphic appears inU

1
D,10 andU

1
D,11. And the third one can be seen

inU1
D,28,U

1
D,29,U

1
D,37,U

1
D,38 andU

1
D,39. No other graphic from these five types may

appear since all the remaining 116 imply higher codimension.
In the studies of the classes (AA) [15] and (AB) and (AC) [14], the only graphics we

see, are those which are inherited from the respective phase portraits of codimension
one∗ having already a graphic. In the studies of the classes (AD), (BD) and (CD) we
will start incorporating more graphics from [27] since we will see for example loops
having a saddle-node instead of a saddle. Also the class (DD) will provide graphics
with two separatrix connections. Anyway, the graphics will appear in bigger numbers
when codimension three is studied.

Concretely in (AD) we have already known graphic (F1
1 ) (loop) inU2

AD,8,U
2
AD,10,

U
2
AD,11,U

2
AD,53,U

2
AD,55,U

2
AD,57,U

2
AD,58,U

2
AD,59,U

2
AD,60 andU

2
AD,77; graphic (I 21 )

inU2
AD,35,U

2
AD,36,U

2
AD,37,U

2
AD,38,U

2
AD,39 andU

2
AD,40; and graphic (F1

2 ) inU2
AD,38.

The new graphics we find here are (F1
3 ) (loop with a finite saddle-node) in U2

AD,9,

U
2
AD,12, U

2
AD,23, U

2
AD,24, U

2
AD,25, U

2
AD,54 and U

2
AD,56; graphic (F2

3 ) (heteroclinic
orbit involving a finite saddle and a finite saddle-node having only one separatrix
connection) inU2

AD,7,U
2
AD,46 andU

2
AD,49; graphic (H1

3 ) (heteroclinic orbit involving
a pair of infinite opposite saddles and a finite saddle-node having only one separatrix
connection) in U

2
AD,14, and graphic (I 28 ) (heteroclinic orbit involving two infinite

saddles and a finite saddle-node having only one separatrix connection) in U
2
AD,29,

U
2
AD,32 and U

2
AD,34.
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3 Impossibility ofU1,I
D,62

In order to prove this, we need a couple of technical lemmas.

Lemma 1 There are no contact points of the flow of quadratic systems with straight
lines which are characteristic directions of isolated infinite singularities unless these
straight lines are invariant.

Proof Take an infinite singularity of a quadratic system. By means of a rotation we
may put it at the infinite singular point [1 : 0 : 0], that is, at the end of the x-axis.
Assume there is a contact point of the flow with the x-axis. By means of a translation
we can put that contact point on the affine origin.

Then the system must be

ẋ = a + cx + dy + gx2 + 2hxy + ky2,

ẏ = ex + f y + 2mxy + ny2.
(2)

We use the notation and normal forms from [9] which are the most effective. The
coefficient of x2 in the second equation must be zero in order to fix the infinite singu-
larity, and the constant term of the second equation must be zero in order to force the
contact point of the flow with the x-axis at the origin of the affine plane.

Then the system has a singular point at the origin of the local chart U1 and looks
like

ẇ = (2m − g)w + ez + H .O.T .,

ż = −gz + H .O.T .,
(3)

and the polynomial of characteristic directions is PCD(w, z) = −z(2mw + ez). In
order to have the direction of the x-axis characteristic in the affine plane, the direction
on the z-axis must be characteristic on the U1 chart, and this implies that the variable
w must be a common factor of the PCD(w, z). So we need e = 0. In the case of non
intricate singularities, this is equivalent to compute the eigenvectors of the Jacobian
matrix of the system at the singularity, and we clearly see that in order to have the
vector (0, 1) as eigenvector, we need also e = 0.

And clearly, if e = 0 then y = 0 is an invariant straight line. ��
If there cannot be a contact point in the straight line defined by a characteristic

direction of an infinite singular point, even less we can have a finite singularity on it,
and the flow must be transversal all along the line.

Lemma 2 Consider an elemental or semi-elemental infinite singularity of a quadratic
system having an affine characteristic direction. The orbits which are tangent to an
affine characteristic direction (which is not an invariant straight line) of such an infinite
singularity stay locally on the opposite affine semi-plane than those which are tangent
with the same line on the opposite infinite singular point.



Structurally Unstable Quadratic Vector Fields of… Page 21 of 88    40 

Proof A restricted version of this lemma was already proved in [15] in the case the
infinite singular pointwas a saddle.Now,with the help of Lemma1 and the geometrical
classification of singularities done in [9], we can extend the result. We suspect that this
lemma may be true for every infinite singularity of a quadratic system (having affine
characteristic directions), even for the intricate ones. But then the proof would have to
consider many more cases, and since we only need for elemental and semi-elemental
ones, we restrict the statement to what it is.

For the proof of the lemma, we will need to work at an intermediate point between
the classical topological classification of singularities and the geometrical classifi-
cation since the way the orbits reach the singularities will be relevant. This is the
qualitative equivalence defined by Jiang and Llibre in [34].

In [9] (diagrams from 6.5 to 6.8) one can find all the configurations of infinite
singularities that a quadratic systemcan have according to the geometrical equivalence.
From them, it is easy to count that there are 60 geometrically different real isolated
infinite singularities, from the simplest saddle, to some intricate multiplicity seven
singularities. The possibilities for elemental and semi-elemental are 14.

If we extract from them those which are qualitatively different and which have
affine characteristic directions, one obtains the following points (using the notation

from [9]): N f , N∞, N∗, S,
(0
2

)

SN and
(1
1

)

SN .
It is important to notice the qualitative difference between N f and N∞. In the first

case, all the affine orbits arrive at the singular point tangent to the affine characteristic
direction. In the second case, they arrive tangent to the infinity direction (except just
one). This is related to the biggest eigenvalue of the Jacobian matrix. In the case of N∗
we have a star node. It is also important to notice that the nodal part of the saddle-node
(1
1

)

SN behaves as an N f , while the nodal part (in both local charts) of a saddle-node
(0
2

)

SN behaves as a N∞ (see Fig. 6). Even though someone may find a bit weird the
shape we have given to some nodal orbits, this is exactly the way they behave. Notice
that every regular point close enough to the infinite nodemust have an orbit connecting
to it, and the orbit must arrive to the infinite singularity in the required characteristic
direction. So, for example, in the case of a node N f (see Fig. 6), a regular point close
to infinity and with y < 0 must belong to an orbit which must turn and move into the
upper half-plane so to arrive to the infinite node tangent to the x-axis. The case of the
star node N∗ may also seem strange since one may imagine the star node formed by
straight lines. If that were the case, then the x-axis would be an invariant straight line
but we are assuming precisely that this is not the case. There are quadratic systems
having a star node at infinity (as well as finite ones) and no invariant straight line. So,
the orbit that arrives to the star node tangent to the x-axis leaves a region in the upper
half-plane whose regular points must belong to orbits that must enter in the lower
half-plane in order to arrive to the star node.

Now, for each one of these singularities we will prove with a picture that the orbits
tangent to the characteristic direction of the infinite singularity cannot be all in the
same semi-plane. Assume the contrary and we obtain Fig. 6.

We have also assumed that the infinite singular point is the point [1 : 0 : 0] on local
chart U1 (and their opposite in chart V1), that the characteristic direction is the x-axis
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?

? ??

? ?

Fig. 6 Proof of Lemma 2

Fig. 7 Proof of Lemma 2 (cont.)

and that the flow on that axis goes upwards. This can always be done by means of
rotations, translations, symmetries and time changes.

In each one of the cases (see Fig. 6) there is always a contradiction since it is needed
that some orbits cut the x-axis in the opposite direction. Otherwise, if the tangencies
in one of the local charts take place in the lower half-plane (see Fig. 7) all cases are
compatible with the flow on the x-axis. ��

The next corollary follows immediately from Fig. 6.
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Fig. 8 Phase portrait U1
D,62

Corollary 1 A separatrix of an infinite elemental or semi-elemental singularity of a
quadratic system cannot cross the straight line defined by its characteristic direction.

Now we are able to prove Proposition 1 and state clearly that phase portrait U1
D,62

from [6] is impossible.

Proof We start by bringing here the image of this phase portrait. We have drawn it
in the left of Fig. 8, exactly as it is given in [6] and in the right we plot an equivalent
one, with a saddle at the origin of the affine plane and an infinite node at the end of
the x-axis. The third infinite singularity may be moved to [1 : 1 : 0] by means of an
affine change. This is a codimension one∗ phase portrait since there is a separatrix
connection of type (c) that joins the finite saddle at the origin with the infinite saddle
at the end of the y-axis.

Now one must realize that the separatrices of the infinite saddle do not seem to
satisfy Lemma 2. But this may be due that we simply have not plotted them well. One
needs to prove that in a stronger way.

We start by plotting just the infinite singularities at N [1 : 0 : 0], S[0 : 1 : 0] and
N [1 : −1 : 0], plus the saddle which will have the connection at the origin, plus both
axes which are not invariant, so the characteristic directions arriving to the infinite
singular points N [1 : 0 : 0] and S[0 : 1 : 0] are not the axes. We also assume that the
infinite saddle which will produce the separatrix connection is on the local chart V2.
All this can be done by means of affine linear changes. Assume that the characteristic
directions are situated in the most natural way as appear in Fig. 9a. Since the separatrix
from the saddle S[0 : 1 : 0] on the negative y semi-planemust connectwith a separatrix
of the saddle at the origin, it must be on the left of the characteristic direction. Thus,
by Lemma 2, the separatrix of the saddle S[0 : 1 : 0] on the positive y semi-plane
must be on the right, and then it is impossible to arrive to the node N [1 : 0 : 0] on the
negative x semi-plane.

So, let us put the characteristic direction in the less natural way, that is, in the left
of the origin (see Fig. 9b). Now it seems that the separatrices of the infinite saddle fit
correctly. However, we still need to plot the opposite stable separatrix of the saddle
at the origin so that it comes from the infinite node N [1 : 0 : 0] on the negative x
semi-plane. Well, it seems compatible with the flow (see Fig. 9c) on the positive y
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Fig. 9 Impossibility of phase portrait U1,I
D,62

semi-plane, but the problem stays in the negative y semi-axis. The flow there moves
to the left, and since the origin is a saddle, the only way this may happen is like we
see in Fig. 9d. This forces that the flow on the x-axis must go down when x > 0 and
up in x < 0.

We must situate the second finite saddle in the fourth quadrant because this saddle
must receive one separatrix from the infinite node in the fourth quadrant and send one
to the finite anti-saddle we have in third quadrant. But then, this saddle cannot receive
its remaining stable separatrix from N [1 : 0 : 0] in local chart V1. Thus, we see that
this is incompatible with phase portrait U1

D,62. ��
Even though two errors have been found in [6], one in class (A) and one in class

(D), which would force a renumbering of phase portraits, we have preferred to keep
the gaps unfilled in order to avoid incompatibilities between papers which would
increase confusion. Anyway, in the error for class (D) we have been lucky since it is
the last numbered case of (D) the one which has turned to be impossible. Within time,
a new complete and consistent notation will be created based on the classification of
singularities given in [11].

Since two errors have been already found in [6], we have wanted to convince
ourselves and the scientific community that the remaining 202 phase portraits are
realizable, we have reproduced all the examples given in the book. All of them have
been tested numerically with the program P4 [26] and even though many of them are
infinitesimal perturbations of codimension two systems, all of them can be checked
to be what they represent. We offer the complete collection of P4 files in a zip file
that is free for downloading at “http://mat.uab.cat/~artes/articles/SU2AD/P4su1.zip”.
Please, be careful since several of the examples are on the limit ofwhat canbe computed
numerically with P4. For some of them it is needed to adapt the integration parameters
in order to obtain the desired phase portrait. The arguments and techniques to modify
those parameters are explained in the last chapter of [26]. One needs to reproduce the
examples of that chapter which grow in increasing difficulty in order to understand
the use of P4. There are pairs of several examples in [6] which show exactly the same
coefficients. This is perfectly normal since we forgot to add the parameter ε which is
positive in one of them and negative in the other, making a saddle-node to split in a
saddle and a node, or to disappear. Anyway, the value of ε is not the same for every
example. In some of them, it can be relatively large so to allow a better view of the
phase portraits and in other cases it must be very small since a bigger one may imply
more bifurcations than wished. In the zipped file we offer, the values of ε are already

http://mat.uab.cat/{~}artes/articles/SU2AD/P4su1.zip
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given and they have been checked to work. Also, there are some of the examples that
show limit cycles. Since the classification was done modulo limit cycles, they are
perfectly acceptable as representatives of their class.

So, the conclusion is that structurally unstable quadratic systems of codimension
one∗ can have at least 202 different phase portraits and at most 209, and this gap of
seven remains as a conjecture to be impossible. Moreover we confirm the goodness
of these 202 phase portraits, it is also true that there are some typos in [6] that need to
be corrected. We make here a list of them:

1. In equation (6.9), the coefficient of xy in the second equation must be ((2 + 2h −
n)(1 − ε) − 2l).

2. In page 198, Table 6.4, the example for U1
A,66 must be (h, l, n) = (4/10,−194

/10,−1).
3. In page198,Table 6.4, the example forU1

A,67 must be (h, l, n) = (−99/1000, 1/10,
81/100). Moreover, it is not a bifurcation of V113 from [18], but of V122.

4. In page 211, Table 6.5, the example for U1
B,5 must be (h, l, n) = (1 + √

7 +
10−6, n − 2h − 42/100, 7) (the same as U1

B,23 but with different sign of ε).

5. In page 211, Table 6.5, the example for U1
B,7 must be (h, l, n) = (−5, 10, 10) (the

same as U1
B,10 but with different sign of ε).

6. In page 211,Table 6.5, the example forU1
B,24 must be (h, l, n) = (40001/1000, 206

/100, 25).
7. In page 212, Table 6.6, the example for U1

B,38 must be (h, l, n) = (96/100, 1/10,
81/100).

8. In page 212, Table 6.6, the example for U1
B,39 must be (h, l, n) = (98/100, 1/10,

81/100).
9. In equations (6.101) and (6.102), the coefficient of y2 in the second equation must

be 3321/400.
10. In equation (6.103), the coefficient of y2 in the second equation must be 5229/100.

Since the mistake (in [6]) detected in this paper came from a mistake in [42], we
have checked with special care all other examples which came also from that paper.
There was no problem at all in the examples of class (C) since the normal form was
given, the parameters were fixed and all are right. And with respect to class (D), the
paper [42] was used twice in page 239, Section 6.5.5. The first usewas of phase portrait
an18 which we have proved impossible here. The second use was of phase portrait
en09 without giving it explicitly. Anyway, en09 does really exist, and from it, we can
really obtain U

1
D,40. Concretely system ẋ = 2x/5 − 3y/10 − y2 − 3xy − x2/10,

ẏ = xy + x/5 is a representative of U1
D,40 and ẋ = 2x/5 − 3y/10 − y2 − 3xy,

ẏ = xy + x/5 is a representative of en09.

4 Quadratic Vector Fields of Codimension Zero and One

In this section we summarize all the needed results from the book of Artés, Llibre and
Rezende [6]. The following result is a restriction of Theorem 1.1 of [6] to the class
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(D). We denote by
∑2

1(D) the set of all structurally unstable vector fields X ∈ P2(R2)

of codimension one∗ belonging to the class (D).

Theorem 4 If X ∈ ∑2
1(D), then its phase portrait on the Poincaré disc is topologically

equivalent modulo orientation and modulo limit cycles to one of the 61 phase portraits
of Figs.10 and 11, and all of them are realizable.

Here we have already corrected the error detected in this paper and have reduced
the number of phase portraits of class (D) from 62 to 61.

In [6], quite many topologically potential phase portraits of codimension one∗ were
discarded because they were not realizable. From all of them, we just need one phase
portrait which appeared in page 77 of [6] but did not receive a formal name until [14,
Figure 13].

Proposition 2 Phase portrait U1,I
A,3 given in Fig.12 is not realizable.

An important result to study the impossibility of somephase portraits is [6,Corollary
3.29].

Corollary 2 If one of the structurally stable vector fields that bifurcates from a poten-
tial structurally unstable vector field of codimension one∗ is not realizable, then this
unstable system is also not realizable.

It would be nice if this theorem could be adapted to higher codimensions, but
unfortunately this is not so clear. The idea is that if a phase portrait shows several
unstabilities, one can produce potential phase portraits bifurcating from it just breaking
one of such unstabilities. For example, a codimension three phase portrait with a finite

saddle-node sn(2) and two infinite saddle-nodes
(1
1

)

SN and
(0
2

)

SN could be susceptible
to be bifurcated in up to six possibilities of codimension two. But maybe there are
some linked unstabilities which cannot be broken independently. One clear case is
a phase portrait with a graphic and a center inside. One can break the center, while
respecting the graphic, but not otherwise: If one breaks the graphic, the center must
also disappear. Also some very intricate singularities in some phase portraits force the
existence of invariant straight lines which are separatrix connections. We can break
the intricate singularity while respecting the invariant line, but we cannot break the
invariant line and produce new phase portraits with the same intricate singularity. This
is a result that must be considered for every particular class of systems. For the class
we are involved now (AD), we can prove it. In fact, the main problem deals with the
concept of “codimension” which may be thought from a geometrical or a topological
point of view, and which for lower codimensions up to 2 has been easy to deal with,
but that starting at codimension 3 has turned much more difficult. We are working
in the preprint [10] which deeply affords the concept of codimension in polynomial
differential systems, and particularly for quadratic systems. In the paper, it is explained
that at some level of degeneracy of the system, the codimension of the configuration
of singularities, or the codimension of the phase portrait is not a simple direct sum of
the individual codimensions of the different unstable objects it may have. The paper
also determines the topological codimension of every topological configuration of
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singuarities from [11]. These topological configurations of singularitieswere extracted
in [8] from the geometrical configurations given in the book [9]. The topological
codimension of every topological configuration of singularities will be the skeleton
upon which we will be able to study the phase portraits of codimension 3 and higher.

Fig. 10 Unstable quadratic systems of codimension one∗ (cases with a separatrix connection)
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Fig. 11 (Cont.) Unstable quadratic systems of codimension one∗ (cases with a separatrix connection)

Fig. 12 Non realizable unstable
quadratic system of codimension
one∗
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In this sense, wemust put in stand-by our own result [15, Theorem 6] until these higher
codimension systems are studied.

Theorem 5 If one of the phase portraits of codimension one∗ that bifurcates from a
potential codimension two∗ class (AD) phase portrait is not realizable, then this latter
phase portrait is also not realizable.

Proof In our case, we have a finite semi-elemental saddle-node and a separatrix
connection which is not necessarily algebraic. We can always break the separatrix
connection by means of a rotated vector field, and this respects the number of finite
singularities. It is true that a rotated vector field may turn a semi-elemental saddle-
node into a cusp, but in order to break the connection we just need an infinitesimal
perturbation, and under these conditions, the saddle-node remains unaffected.

If we want to break the saddle-node, we must simply do first a perturbation of the
system as we did in [6, Lemma 3.24] in order to make it disappear or split it into two
singularities. Of course, this perturbationmay (almost surely) break also the separatrix
connection. But by means of another rotated vector field which preserves all the finite
singularities, we may recover the separatrix connection. ��

This same theorem will be also be true in the case of the class (CD) with a very
similar proof. However, it is not clear in the class (BD) because after splitting an infinite

saddle-node
(0
2

)

SN , the required rotated vector field needed to recover the separatrix
connection may affect the infinite singularities. One would like to think that the main
parameters needed to produce both perturbations are of different types, for example,
one being the parameters of the quadratic part of the equation and other of the linear or
constant part. Thus the effect of each parameter would be stronger for the bifurcation
for which it is required and weaker for the collateral effect it produces. Anyway, this
is something which will be considered at its proper time.

We will have a similar problem when looking for examples in Sect. 6 that can be

derived from systems having a
(0
2

)

SN at infinity since we will need to perturb it and
reproduce a separatrix connection.Wewill do it so that all our exampleswill be certain,
but this is not enough to turn this fact into a general theorem as we have done for the
class (AD).

5 Proof of Theorem 3: The Topologically Potential Phase Portraits

Here we consider all 61 realizable structurally unstable quadratic vector fields of
codimension one∗ from class (D).

This paper leads more with the topology of the space than with a bifurcation dia-
gram. We do not work with normal forms, neither parameters. So, we think it is better
to talk on more topological terms.

Let H0 be the set of all the quadratic systems. That is H0 can be assimilated with
R
12 (thus including also the linear systems and even the constant and null systems).

Or if preferred to work in a compact set, H0 can be assimilated to S11 (removing just
the null system). Since each differential system has a unique phase portrait, H0 can
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be considered to contain all the phase portraits of quadratic systems (including also
lower degree ones).

The equivalence relation modulo limit cycles is defined in H0 as follows:

Definition 5 Two systems S1, S2 are equivalent modulo limit cycles, S1 ∼LC S2, if
and only if by identifying the unique focus inside each eye of limit cycles with each
one of the points inside the closed region bounded by the largest one of the limit cycles
of an eye of limit cycles, the two phase portraits become topologically equivalent with
the resulting quotient topology on the plane.

So we obtain the space of all the different phase portraits modulo limit cycles of
quadratic systems as Ĥ0 = H0/ ∼. The structurally stable quadratic systems occupy
a generic space in Ĥ0 while the non stable ones occupy a space of measure zero.

Let H1 be the complementary space of the structurally stable systems. That is, H1 is
the space of all the non stable phase portraits. Equivalently, we can define the space of
all the different (modulo limit cycles) non stable phase portraits of quadratic systems
as Ĥ1 = H1/ ∼. So Ĥ0\Ĥ1 is exactly the space of the structurally stable ones. Ĥ0\Ĥ1
is divided into disconnected pieces. All these pieces are open sets bordered by parts of
Ĥ1. So, each piece of Ĥ0\Ĥ1 must have a common border with at least another piece
of Ĥ0\Ĥ1.

In a similar way, the set of the codimension one∗ phase portraits occupy a generic
part of Ĥ1 and the set of higher codimension phase portraits (modulo limit cycles) that
we may call Ĥ2 is an hyper-surface of Ĥ1.

Thus, the set of codimension one∗ phase portraits is Ĥ1\Ĥ2.
We will say that two structurally stable systems modulo limit cycles (equivalently

two pieces of Ĥ0\Ĥ1) are adjacent if they share a border which is a piece of Ĥ1\Ĥ2.
That is, we ask them to share a border of non-null measure in Ĥ1.

We can extend these definition to higher codimensions naturally.
It is not known the number of disconnected pieces of Ĥ0\Ĥ1 but we know for sure

that there are at least 44 since this is the number of topologically different structurally
stable quadratic phase portraits modulo limit cycles that exist. It could happen that
different pieces of Ĥ0\Ĥ1 would share the same phase portrait. It is convenient to
define another equivalence relation between pieces of Ĥ0\Ĥ1 and say that two pieces
are equivalent if they produce the same topological phase portrait. In this sense, we
may say that H̃0 = (Ĥ0\Ĥ1)/ ∼ has exactly 44 pieces. We may extend the same
definition to higher codimensions.

In the same way, we know that H̃1 = (Ĥ1\Ĥ2)/ ∼ has between 202 and 209 (7
conjectured impossible) pieces. In this paper we are looking for the number of pieces
of H̃2 = (Ĥ2\Ĥ3)/ ∼ that contain a finite saddle-node and a separatrix connection.

With the list of potential phase portraits of class (AD) we have the list of all the
potential borders that we may have between some pieces of H̃1 (those having the
required conditions of unstability), but maybe some of them are not realizable. In
order to exist, the bifurcations of the potential phase portrait must really exist.

In order to check this, we need to consider all the phase portraits of codimension
one∗ (of the required subfamilies), and study which are the potential borders of the
pieces in H̃1
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Definition 6 We will call evolution of a phase portrait in H̃k (with k = 0, 1, . . .) to
the tree of phase portraits in H̃k+1 which border it, and complemented with the phase
portraits in H̃k that can be found beyond that border by a small perturbation.

We use the term evolution because we want to avoid the use of the term “perturba-
tion”. A “perturbation” is classically a small modification in the parameter space so
to break and bifurcate some degeneracy. An “evolution” is a trip to the borders of the
region to look what can be found in their borders and what is beyond them. Notice that
we only consider the border of exactly one dimension less of the starting region. The
pieces of border of lower dimension will be considered when studying the evolution
of the phase portraits of the previous borders. In order to use a simpler language, we
will say that a phase portrait produces by evolution the corresponding tree of phase
portraits, or simply produces the corresponding tree of phase portraits. Moreover we
will describe the tree first mentioning the borders, and later the phase portraits beyond
the borders.

Remark 3 It is important to mention that phase portraits corresponding to some low
codimension may also appear in some higher codimensions. The simple reason is that
two geometrically distinct singularities may be topologically equivalent. The simplest
cases are the triple semi-elemental nodes and saddles which topologically behave as if
they were elemental ones. Then for example, some codimension two∗ phase portraits
may be topologically equivalent to structurally stable ones. In this sense, one may
have a piece of H̃0 which is bordered by a piece of H̃1 and this last one has a border
in H̃2 which is topologically equivalent to what we had in the original piece of H̃0.

Remark 4 Even more curious is a situation that we will see several times in the paper.
We have a phase portrait with a finite saddle-node and a separatrix connection which
uses one (or two) separatrix of the saddle-node. Then, if the saddle-node disappears,
obviously the connection must also disappear. So, we have an object of codimension
two∗ and while looking for one of their first level bifurcations which should be in
codimension one∗, it is forced to be in codimension 0. We have already found several
of these cases in different bifurcation diagrams (see for example Figures 40, 41 and
42 in [7]), and the simplest explanation is that the separatrix connection simply “per-
sists” in the complex space. Anyway, the phase portrait allows other perturbations in
codimension one which confirms its codimension two by Definition 4.

In order to find all the topologically potential phase portraits belonging to the class
(AD) of codimension two∗, it is necessary to consider all possible ways of coalesc-
ing two finite singular points (in a phase portrait that already contains a separatrix
connection) producing a finite saddle-node and maintaining the connection. It is not
necessary to study the already known non-realizable phase portraits of class (D). Tech-
nically it could also be possible to start from phase portraits in class (A) and check all
the possible separatrix connections than can be produced. However, this alternative
algorithm does not guarantee that we do not miss some possibilities.

So we will consider one by one all the 61 realizable phase portraits from class (D)
and determine the set of potential phase portraits of class (AD). In other studies where
the determination of impossible phase portraits needed long proofs, we were forced
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to use a temporary notation for the set of candidates. But in this case, the proofs are
much easier, and we can provide the definitive notation. Anyway, this notation cannot
be considered definitive until we provide the example which proves the realization in
Sect. 6.

After the coalescence of a finite saddle and a finite node, we will obtain a codi-
mension two∗ phase portrait. We can bifurcate this phase portrait in several ways,
either producing the disappearance of the saddle-node or by breaking the separatrix
connection (and normally this last option produces two possibilities). If the separatrix
connection is related with the saddle-node, its disappearance may produce also the
disappearance of the connection and we will have a structurally stable system. But
in some tricky case, a (or even two) new separatrix connection may appear after the
disappearance of the saddle-node. Then we will obtain an unstable phase portrait of
class (D) and several related structurally stable ones. In case we break the separatrix
connection, we will always obtain phase portraits of class (A).

Phase portrait U1
D,1 cannot produce by evolution any portrait of class (AD) since

its only anti-saddle (more concretely a focus) is already confined inside the graphic.
If that focus coalesces with the only available finite saddle, it will produce a cusp,
and the connection disappears. In this case, the border of the region is phase portrait
U
2
AA,1 from [6]. This is not its unique border. Other borders may be phase portraits

where another saddle-node (finite or infinite) appears. This will happen in some other
cases so we will not comment any more these possibilities.

Phase portrait U1
D,2 may produce by evolution phase portraits U2

AD,1 and U
2
AD,2

(see Fig. 13). After bifurcation by disappearance of the saddle-node, the separatrix
connection is lost and we get the structurally stable phase portrait S22,1 (see Remark 4).
Aperturbation breaking just the connection produces codimension one∗ phase portraits
U
1
A,5 or U

1
A,2 fromU

2
AD,1 and phase portraits U

1
A,4 or U

1
A,5 from U

2
AD,2. In Fig. 13 we

have drawn the complete bifurcation diagram.
Phase portraitU1

D,3 may produce phase portraitU2
AD,3 (see Fig. 14) and after bifur-

cation we get phase portraits S22,1, U
1
A,2 or U

1
A,3. By symmetry, the other anti-saddle

coalescing with the saddle leads to same conclusion.
Phase portraitU1

D,4 may produce phase portraitU2
AD,4 (see Fig. 15) and after bifur-

cation we get phase portraits S22,1, U
1
A,7 or U

1
A,6. By symmetry, the other anti-saddle

coalescing with the saddle leads to same conclusion.
Phase portrait U1

D,5 may produce phase portraits U2
AD,5, U

2
AD,6 and U

2
AD,7 (see

Fig. 16). After bifurcation by disappearance of the saddle-node of the first two we get
phase portraits S22,1. However, in the third case, the separatrix connection may remain

andwe get phase portraitU 1
D,1. If it does not remain, we get phase portrait S22,1 without

limit cycle, or with limit cycle. Of course, generically the connection will not survive.
If bifurcation breaks the separatrix connection we get phase portraitsU1

A,7 from all

of them in one of the possible breaks, or respectively phase portraits U1
A,9, U

1
A,8 and

U
1
A,10 with the other break.
For the sake of the argumentation we will describe the evolution of phase portrait

U
1
D,7 before U

1
D,6.
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Fig. 13 Unstable phase portraits U2
AD,1 and U

2
AD,2

Fig. 14 Phase portrait U2
AD,3
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Fig. 15 Phase portrait U2
AD,4

Phase portraitU1
D,7 may produce phase portraitsU2

AD,8 andU
2
AD,9 (see Fig. 17). In

the first phase portrait the separatrix connection has no relation with the saddle-node
and may remain. So, if the saddle-node disappears we get a phase portrait of class (D),
concretely U

1
D,1. From U

2
AD,9, if the saddle-node disappears, the loop also vanishes

and we get S22,1 (with limit cycle). If we break the loop, we obtain U
1
A,4 (with limit

cycle) or U1
A,8 from the first, and U

1
A,3 (with limit cycle) or U1

A,10 from the second.

We want just to remark the subtle difference betweenU2
AD,9 andU

2
AD,7. In the case

ofU2
AD,9 the separatrix connection involves only the saddle-node and if the singularity

disappears, the connection also. But in the case of U2
AD,7 the separatrix connection

involved the saddle-node and a saddle, and there exists the possibility that even after
the disappearance of the saddle-node, a new separatrix connection may be formed
with separatrices of the saddle. We will also see later (see U

2
AD,47) a case in which

after the disappearance of the saddle-node, two different separatrix connections (and
3 generic possibilities) may appear.

Phase portrait U1
D,6 may produce phase portraits U2

AD,77 and U
2,I
AD,9 (see Fig. 18).

The reason why we jump numeration from expected 10 to 77 is that for a long time we
have thought that U2

AD,77 would be impossible and thus was given the name U2,I
AD,8.

However we have delayed the completion of this paper until the complete study of the
family of quadratic systems with a finite saddle-node and a weak focus (QSwf1sn)
of first order which was on process [20]. Finally from this paper we have obtained a
clear example of U2

AD,77 proving it is realizable. Since the numeration in this paper
was already done, and a renumbering could lead to mistakes, we have preferred to call
it as U2

AD,77.
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Fig. 16 Phase portraits U2
AD,5, U

2
AD,6 and U

2
AD,7

Phase portraits U2
AD,77 and U

2,I
AD,9 have the same skeleton of separatrices, as the

phase portraits U2
AD,8 and U

2
AD,9 (respectively), but now the focus inside the loop has

opposite stability. As we will show in Sect. 6, bothU2
AD,8 andU

2
AD,77 can be obtained

from class (AB) and QSwf1sn (respectively) but we have only been able to found
U
2
AD,9 and U

2,I
AD,9 remains not found.

Remark 5 Notice that if phase portrait U2,I
AD,9 would exist, then a perturbation of it

would produce U
1
A,10 with a limit cycle. We have not found any example in all the

bibliography we have checked. If it could be proved to be impossible, then by The-
orem 5 we would obtain the impossibility of U2,I

AD,9. The opposite is not true. The

existence of U1
A,10 with a limit cycle is not yet a proof of the existence U2,I

AD,9 but it
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Fig. 17 Phase portraits U2
AD,8 and U

2
AD,9

Fig. 18 Phase portrait U2
AD,77 and conjectured impossible U2,I

AD,9
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Fig. 19 Unstable phase portrait U2
AD,10

is a nice starting point from which trying to produce it. This is an argument why we
have conjectured U

2,I
AD,9 to be non-realizable. Similar arguments apply to the rest of

conjectured impossible cases.

Before considering phase portrait U1
D,8 we must point out a small drawing typo in

this phase portrait (and the same typo inU1
D,9,U

1
D,20,U

1
D,31,U

1
D,48,U

1
D,53 andU

1
D,54)

in [6]. In all of them the orbits inside the loop must turn in the same sense as the loop.
Phase portrait U1

D,8 may produce phase portrait U2
AD,10 (see Fig. 19) and after

bifurcation we get phase portraits U1
D,1 (plus S

2
2,1 with or without limit cycle), U1

A,5

or U1
A,6 (with limit cycle).

Phase portrait U1
D,9 may produce phase portrait U2

AD,11 (see Fig. 20) and after

bifurcation we get phase portraits U1
D,1 (plus S

2
2,1 with or without limit cycle), U1

A,6

or U1
A,5 (with limit cycle).

Phase portraits U1
D,10 and U

1
D,11 may not produce phase portraits of class (AD)

since they do not have finite saddles.
Phase portraitU1

D,12 may produce phase portraitsU2
AD,12 andU

2,I
AD,12 (see Fig. 21).

Even though this may seem a symmetrical situation, it is not and both resulting phase
portraits are different regardless they share the same skeleton.Moreover,wehave found
an example for one of them and the other is conjectured impossible. After bifurcation
by disappearance of the saddle-node, the separatrix connection is lost and we get the
structurally stable phase portrait S24,1 (with limit cycle). By breaking just the loop can

produce codimension one∗ phase portraitsU1
A,12 (with limit cycle) or U1

A,13. We must

mention here that the phase portrait U2,I
AD,12 it is drawn in [18] as phase portrait 5.7L9

in Fig. 10. However there is a typo there since the focus inside the graphic must have
the opposite stability, and then in fact corresponds to U

2
AD,12. In order to confirm the

typo, one must look at Figs. 63 and 64 where the region 5.7L5 (which is in fact 5.7L9
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Fig. 20 Unstable phase portrait U2
AD,11

Fig. 21 Unstable phase portrait U2
AD,12 and conjectured impossible U2,I

AD,12

due to another typo) is surrounded by regions V53, V54, V87 ≡ V94 and V95 ≡ V107
and all them have that focus as attractor.

Phase portraitU1
D,13 may produce phase portraitsU2

AD,13 andU
2
AD,14 (see Fig. 22).

After bifurcation of U2
AD,13 by disappearance of the saddle-node, the separatrix con-

nection is lost and we get the structurally stable phase portrait S24,1. By breaking just

the connection one can produce codimension one∗ phase portraits U1
A,12 or U1

A,11.

After bifurcation of U2
AD,14 by disappearance of the saddle-node, the separatrix con-

nection may persist and we get phase portrait U1
D,10 or S24,1 with limit cycle on one

or other anti-saddle (which must be a focus). By breaking just the connection one can
produce codimension one∗ phase portrait U1

A,13 (just one because of symmetry).

Phase portrait U1
D,14 may not produce phase portraits of class (AD) since it does

not have finite anti-saddles.
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Fig. 22 Unstable phase portraits U2
AD,13 and U2

AD,14

Phase portraitU1
D,15 may produce phase portraitsU2

AD,15 andU
2
AD,16 (see Fig. 23).

After bifurcation of U2
AD,15 by disappearance of the saddle-node, the separatrix con-

nection may remain and we get phase portraitU1
D,14 (plus S

2
6,1 just one by symmetry).

By breaking just the connection one can produce phase portraitsU1
A,14 orU

1
A,15. After

bifurcation of U2
AD,16 by disappearance of the saddle-node, the separatrix connection

is lost and we get phase portrait S26,1. By breaking just the connection one can produce

phase portraits U1
A,16 and U

1
A,14.

Phase portrait U1
D,16 may produce phase portrait U2

AD,17 (see Fig. 24). After bifur-
cation by disappearance of the saddle-node, the separatrix connection is lost and we
get phase portrait S26,1. By breaking just the connection one can produce phase portraits

U
1
A,18 and U

1
A,15.

Phase portrait U1
D,17 may produce phase portrait U2

AD,18 (see Fig. 25). After bifur-
cation by disappearance of the saddle-node, the separatrix connection is lost and we
get phase portrait S26,1. By breaking just the connection one can produce phase portraits

U
1
A,17 and U

1
A,16.
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Fig. 23 Unstable phase portraits U2
AD,15 and U2

AD,16

Fig. 24 Unstable phase portrait U2
AD,17
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Fig. 25 Unstable phase portrait U2
AD,18

Fig. 26 Unstable phase portrait U2
AD,19

Phase portrait U1
D,18 may produce phase portrait U2

AD,19 (see Fig. 26). After bifur-
cation by disappearance of the saddle-node, the separatrix connection may remain and
we get phase portrait U1

D,14 (plus S26,1 just one by symmetry). By breaking just the

connection one can produce phase portraits U1
A,17 and U

1
A,18.

Phase portraits U1
D,19, U

1
D,20, U

1
D,22 and U

1
D,23 may not produce phase portraits of

class (AD) for the same reason as U1
D,1. And obviously U

1
D,21 neither may by lack of

finite singularities.
Phase portrait U1

D,24 may produce phase portrait U2
AD,20 (see Fig. 27). After bifur-

cation by disappearance of the saddle-node, the separatrix connection may remain and
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Fig. 27 Unstable phase portrait U2
AD,20

Fig. 28 Unstable phase portrait U2
AD,21

we get phase portrait U1
D,21 (plus S28,1 just one by symmetry). By breaking just the

connection one can produce only phase portrait U1
A,19 (because of symmetry).

Phase portrait U1
D,25 may produce phase portrait U2

AD,21 (see Fig. 28). After bifur-
cation by disappearance of the saddle-node, the separatrix connection vanishes and
we get phase portrait S28,1. By breaking just the connection one can produce phase

portraits U1
A,19 and U

1
A,20.

Phase portrait U1
D,26 may produce phase portrait U2

AD,22 (see Fig. 29). After bifur-
cation by disappearance of the saddle-node, the separatrix connection may remain and
we get phase portrait U1

D,21 (plus S28,1 just one by symmetry). By breaking just the

connection one can produce phase portraits U1
A,20 and U

1
A,21.
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Fig. 29 Unstable phase portrait U2
AD,22

Fig. 30 Unstable phase portrait U2
AD,23

Phase portraits U1
D,27, U

1
D,28 and U

1
D,29 may not produce phase portraits of class

(AD) since they do not have finite saddles.
Phase portrait U1

D,30 may produce phase portrait U2
AD,23 (see Fig. 30). After bifur-

cation by disappearance of the saddle-node, the separatrix connection vanishes and
we get phase portrait S211,1 (with limit cycle). By breaking just the connection one can

produce phase portraits U1
A,64 and U

1
A,57 (with limit cycle).

Phase portrait U1
D,31 may produce phase portrait U2

AD,24 and U
2,I
AD,24 which we

conjecture as impossible (see Fig. 31). After bifurcation of U2
AD,24 by disappearance

of the saddle-node, the separatrix connection is lost and we get the structurally stable
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Fig. 31 Unstable phase portrait U2
AD,24 and conjectured impossible U2,I

AD,24

Fig. 32 Unstable phase portrait U2
AD,25

phase portrait S211,3 (with limit cycle). By breaking just the connection one can produce

phase portraits U1
A,58 (with limit cycle) or U1

A,59.

Phase portrait U1
D,32 may produce phase portrait U2

AD,25 (see Fig. 32). After bifur-
cation by disappearance of the saddle-node, the separatrix connection vanishes and
we get phase portrait S211,2 (with limit cycle). By breaking just the connection one can

produce phase portraits U1
A,70 and U

1
A,66 (with limit cycle).

Phase portraitU1
D,33 may produce phase portraitsU2

AD,26 andU
2
AD,27 (see Fig. 33).

After bifurcation of U2
AD,26 by disappearance of the saddle-node, the separatrix con-

nection is lost and we get the structurally stable phase portrait S211,1. By breaking just

the connection one can produce phase portraits U1
A,62 or U1

A,68. After bifurcation of

U
2
AD,27 by disappearance of the saddle-node, the separatrix connection may remain

and we get phase portraitU1
D,27 (plus S

2
11,2 and S

2
11,3). By breaking just the connection

one produces phase portraits U1
A,61 or U

1
A,67.
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Fig. 33 Unstable phase portraits U2
AD,26 and U2

AD,27

Phase portraitU1
D,34 may produce phase portraitsU2

AD,28 andU
2
AD,29 (see Fig. 34).

After bifurcation of U2
AD,28 by disappearance of the saddle-node, the separatrix con-

nection is lost and we get the structurally stable phase portrait S211,1. By breaking just

the connection one can produce phase portraits U1
A,68 or U1

A,63. After bifurcation of

U
2
AD,29 by disappearance of the saddle-node, the separatrix connection may remain

and we get phase portrait U1
D,29 (from which S

2
11,1 with limit cycle or S211,2 without

may bifurcate). By breaking just the connection one produces phase portraits U1
A,67

or U1
A,64.

Phase portrait U1
D,35 may produce phase portraits U

2
AD,30, U

2
AD,31 and U

2
AD,32

(see Fig. 35). After bifurcation of U2
AD,30 by disappearance of the saddle-node, the

separatrix connection is lost and we get the structurally stable phase portrait S211,3. By

breaking just the connection one can produce phase portraits U1
A,60 or U1

A,61. After

bifurcation of U2
AD,31 by disappearance of the saddle-node, the separatrix connection

is lost and we get phase portrait S211,3. By breaking just the connection one produces

phase portraits U1
A,61 or U

1
A,58. After bifurcation of U2

AD,32 by disappearance of the

saddle-node, the separatrix connection may persist and we get phase portrait U1
D,28

(or its respective bifurcations S211,1 and S
2
11,2 with limit cycle if the connection does
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Fig. 34 Unstable phase portraits U2
AD,28 and U2

AD,29

not persist). By breaking just the connection one produces phase portraits U1
A,59 or

U
1
A,62.

Phase portraitU1
D,36 may produce phase portraitsU2

AD,33 andU
2
AD,34 (see Fig. 36).

After bifurcation of U2
AD,33 by disappearance of the saddle-node, the separatrix con-

nection is lost and we get the structurally stable phase portrait S211,2. By breaking just

the connection one can produce phase portraits U1
A,69 or U1

A,67. After bifurcation of

U
2
AD,34 by disappearance of the saddle-node, the separatrix connection may persist

and we get phase portrait U1
D,28 (or its respective bifurcations S211,1 and S

2
11,2 with

limit cycle if the connection does not persist). By breaking just the connection one
produces phase portraits U1

A,70 or U
1
A,68.

Phase portraitU1
D,37 may produce phase portraitsU2

AD,35 andU
2
AD,36 (see Fig. 37).

After bifurcation of any of them by disappearance of the saddle-node, the separatrix
connection may persist and we get the phase portrait U1

D,28 (and also its possible

unfoldings S211,1 and S
2
11,2 with limit cycle). By breaking just the connection inU2

AD,35

one can produce phase portraitsU1
A,56 orU

1
A,65 (with limit cycle). By breaking just the

connection in U2
AD,36 one produces phase portraits U

1
A,57 or U

1
A,66 (with limit cycle).



Structurally Unstable Quadratic Vector Fields of… Page 47 of 88    40 

Fig. 35 Unstable phase portraits U2
AD,30, U

2
AD,31 and U2

AD,32

For the next example we need a classical result [24, Theorem 3]:

Lemma 3 Assume a phase portrait of a quadratic system with two foci (or centers).
The flow around these foci must always rotate in opposite clockwise sense. The same
happens with two graphics which are not nested.

Proof The proof of this lemma follows easily from the fact that a straight line passing
through two singular points cannot have more contact points. ��

Phase portrait U1
D,38 may produce phase portraits U

2
AD,37 and U

2
AD,38. Topo-

logically, it could also produce phase portrait U2,I
AD,38 (see Fig. 38) but this case is

impossible by Lemma 3. After bifurcation of U2
AD,37 by disappearance of the saddle-

node, the separatrix connection may persist and we get the phase portrait U1
D,28 (and



   40 Page 48 of 88 J. C. Artés

Fig. 36 Unstable phase portraits U2
AD,33 and U2

AD,34

also its possible unfoldings S211,1 with limit cycle and S211,2 ). By breaking just the con-

nection in U
2
AD,37 one can produce phase portraits U1

A,63 or U
1
A,69 (with limit cycle).

After bifurcation of U2
AD,38 by disappearance of the saddle-node, the separatrix con-

nection may persist and we get the phase portrait U1
D,29 (with limit cycle and also its

possible unfoldings). By breaking just the connection in U
2
AD,38 one produces phase

portraits U1
A,64 or U

1
A,70 (with limit cycle).

Phase portraitU1
D,39 may produce phase portraitsU2

AD,39 andU
2
AD,40 (see Fig. 39).

They are very similar but not identical, and their different bifurcations will corroborate
it. After bifurcation of any of them by disappearance of the saddle-node, the separatrix
connection persists and we get the phase portrait U1

D,29 in the first case and U
1
D,28 in

the second, both without limit cycle. By breaking just the connection in U
2
AD,39 one

can produce phase portraits U1
A,67 or U1

A,68 (with limit cycle). By breaking just the

connection in U
2
AD,40 one produces the same phase portraits, but now the limit cycle

is in U1
A,67.

Phase portraitU1
D,40 may produce phase portraitsU2

AD,41 andU
2
AD,42 (see Fig. 40).

After bifurcation of any of them by disappearance of the saddle-node, the separatrix
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Fig. 37 Unstable phase portraits U2
AD,35 and U2

AD,36

connection vanishes and we get the phase portrait S29,1. By breaking just the connec-

tion in U
2
AD,41 one can produce phase portraits U1

A,31 or U
1
A,28. By breaking just the

connection in U2
AD,42 one can produce phase portraits U1

A,32 or U
1
A,27.

Phase portraitU1
D,41 may produce phase portraitsU2

AD,43 andU
2
AD,44 (see Fig. 41).

After bifurcationofU2
AD,43 bydisappearanceof the saddle-node, there is the possibility

of the separatrix connection surviving and we get the phase portrait U1
D,25 (or its

bifurcations in stable systems S
2
9,1 and S

2
9,2). In the case of U2

AD,44 the separatrix

connection vanishes and we get S29,1. By breaking just the connection in U
2
AD,43 one

can produce phase portraitsU1
A,31 orU

1
A,34. By breaking just the connection inU

2
AD,44

one can produce phase portraits U1
A,35 or U

1
A,33.

Phase portrait U1
D,42 may produce phase portraits U

2
AD,45 and U

2
AD,46. Topo-

logically, it could also produce phase portrait U2,I
AD,46 (see Fig. 42) but this case is

impossible since the vanishing of the saddle-node would produce phase portrait I9,1.
After bifurcation of U2

AD,45 by disappearance of the saddle-node, the separatrix con-

nection disappears and we get the phase portrait S29,1. By breaking just the connection

one can produce phase portraits U1
A,52 or U

1
A,42.

After bifurcation of U2
AD,46 by disappearance of the saddle-node, we get a tricky

situation since two separatrices in U2
AD,46 arrive to the nodal part of the saddle-node,

and the separatrix connection originally produced by the center manifold may persists
in two different ways, to knowU

1
D,23 andU

1
D,25 (with limit cycle). And if the connec-
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Fig. 38 Unstable phase portraits U2
AD,37, U

2
AD,38 and impossible U2,I

AD,38

tion does not persist there are three possibilities, to know S
2
9,2 (with limit cycle) if we

are between the two unstable possibilities, S29,3 if we are beyond U
1
D,23 and S

2
9,1 (with

limit cycle) if we are beyond U
1
D,25.

By breaking just the connection in U
2
AD,46 one produces phase portraits U

1
A,51 or

U
1
A,43.

Phase portrait U1
D,43 may produce phase portraits U

2
AD,47, U

2
AD,48 and U

2
AD,49

(see Fig. 43). After bifurcation of U2
AD,47 by disappearance of the saddle-node, the

separatrix connection disappears and we get the phase portrait S29,3. By breaking just

the connection one can produce phase portraits U1
A,50 or U

1
A,36.

After bifurcation of U2
AD,48 by disappearance of the saddle-node, the separatrix

connection disappears and we get the phase portrait S29,2. By breaking just the con-

nection one can produce phase portraits U1
A,47 or U

1
A,38.

After bifurcation of U2
AD,49 by disappearance of the saddle-node, the separatrix

connection may persist and we get the phase portrait U1
D,22 (and also its possible
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Fig. 39 Unstable phase portraits U2
AD,39 and U2

AD,40

Fig. 40 Unstable phase portraits U2
AD,41 and U2

AD,42
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Fig. 41 Unstable phase portraits U2
AD,43 and U2

AD,44

unfoldings S29,3 with limit cycle or S29,2). By breaking just the connection in U
2
AD,49

one produces phase portraits U1
A,37 or U

1
A,48.

Phase portrait U1
D,44 may produce just phase portrait U2

AD,50 by symmetry (see

Fig. 44). After bifurcation of U2
AD,50 by disappearance of the saddle-node, the sepa-

ratrix connection disappears and we get the phase portrait S29,1. By breaking just the

connection one can produce phase portraits U1
A,54 or U

1
A,55.

Phase portraitU1
D,45 may produce phase portraitsU2

AD,51 andU
2
AD,52 (see Fig. 45).

After bifurcation of U2
AD,51 by disappearance of the saddle-node, the separatrix con-

nection disappears and we get the phase portrait S29,1. By breaking just the connection

one can produce phase portraits U1
A,53 or U

1
A,45.

After bifurcation of U2
AD,52 by disappearance of the saddle-node, the separatrix

connection disappears and we get the phase portrait S29,3. By breaking just the con-

nection one can produce phase portraits U1
A,51 or U

1
A,46.

Phase portraitU1
D,46 may produce phase portraitsU2

AD,53 andU
2
AD,54 (see Fig. 46).

After bifurcation of U2
AD,53 by disappearance of the saddle-node, the separatrix con-
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Fig. 42 Unstable phase portraits U2
AD,45, U

2
AD,46 and impossible U2,I

AD,46

nection may remain and we get the phase portrait U1
D,22 (or its stable bifurcations

S
2
9,2 or S

2
9,3 with limit cycle). By breaking just the connection one can produce phase

portraits U1
A,38 or U

1
A,24 with limit cycle.

After bifurcation of U2
AD,54 by disappearance of the saddle-node, the separatrix

connection disappears and we get the phase portrait S29,3 with limit cycle. By breaking

just the connection one can produce phase portraits U1
A,37 or U

1
A,23 with limit cycle.

Phase portrait U1
D,47 may produce phase portrait U2,I

AD,55 but we conjecture it to
be impossible (see Fig. 47). Even though we have not shown previously the possible
bifurcation of conjectured impossible phase portraits, it is worth to do it in this case.
After bifurcation of U2,I

AD,55 by disappearance of the saddle-node, the separatrix con-

nection may remain and we get the phase portrait U1
D,23 (or its stable bifurcations
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Fig. 43 Unstable phase portraits U2
AD,47, U

2
AD,48 and U2

AD,49

S
2
9,2 with limit cycle or S29,3). By breaking just the connection one can produce phase

portraits U1
A,26 or U

1
A,40 with limit cycle.

The fact that all the possible bifurcations from a codimension two∗ phase portrait
may exist, it is not a proof that such portrait exist. However, if at least one of the possible
topological bifurcations does not exist, it is a proof of its impossibility. Maybe in this
case, it occurs that phase portrait U1

A,40 which is realizable, maybe cannot exist with
limit cycle.

Phase portraitU1
D,48 (with the same skeleton asU1

D,47) may produce phase portrait

U
2
AD,55 (see Fig. 48). After bifurcation of U2

AD,55 by disappearance of the saddle-

node, the separatrix connection may remain and we get the phase portrait U1
D,22 (or

its stable bifurcations S29,2 or S
2
9,3 with limit cycle). By breaking just the connection
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Fig. 44 Unstable phase portrait U2
AD,50

Fig. 45 Unstable phase portraits U2
AD,51 and U2

AD,52
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Fig. 46 Unstable phase portraits U2
AD,53 and U2

AD,54

Fig. 47 Conjectured impossible phase portrait U2,I
AD,55
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Fig. 48 Unstable phase portrait U2
AD,55

one can produce phase portraits U1
A,26 with limit cycle or U1

A,40. We may see that
this case is very similar with the previous one, and only changes the stability of the
focus inside the loop. And the bifurcations obtained are also very similar, with limit
cycles in different cases. But when looking for examples of U2

AD,55 we have been

successful while looking for U2,I
AD,55 not. That is, we have been able to produce U

1
A,26

with limit cycle while nowhere appears U1
A,40 with it. This is clearly not a proof, but

being already aware of the existences of these dual cases where one is possible, and
another is not found, we believe that our conjecture is certain.

Phase portraitU1
D,49 may produce by evolution phase portraitU2,I

AD,56 (conjectured

impossible) and impossible phase portrait U2,I
AD,56a (see Fig. 49). Why U

2,I
AD,56a is

impossible?Because after the disappearance of the saddle-node,we get a phase portrait
with a loop which was not even named in [6] since it bifurcates in I9,1. However, we
have not a proof of the impossibility ofU2,I

AD,56. We have simply not found an example
for it, and we have done for its dual case that we will see in the next example.

After bifurcation of U2,I
AD,56 by disappearance of the saddle-node, the separatrix

connection does not persist and we get the phase portrait S29,1. By breaking just the

connection one can produce phase portraits U1
A,43 with limit cycle or U1

A,28. Maybe

U
1
A,43 is not realizable with limit cycle.

Phase portraitU1
D,50 has the same skeleton asU1

D,49 and thus has a similar evolution.

It may produce by evolution phase portrait U2
AD,56 and impossible phase portrait

U
2,I
AD,56b (see Fig. 50). Phase portrait U2,I

AD,56b is impossible for the same reason as

U
2,I
AD,56a . By the way, the names U2,I

AD,56a and U
2,I
AD,56b are somehow artificial. The

conjectured impossible phase portrait which has the same skeleton of separatrices
as U

2
AD,56 is U

2,I
AD,56. Phase portraits U

2,I
AD,56a and U

2,I
AD,56b share a same skeleton
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Fig. 49 Conjectured impossible phase portrait U2,I
AD,56 and impossible U2,I

AD,56a

Fig. 50 Unstable phase portrait U2
AD,56 and impossible U2,I

AD,56b

(different from the one ofU2
AD,56) and are proved both to be impossible. We just want

to give a name to these impossible phase portraits for if ever we need to use them in a
future paper in order to prove the impossibility of other phase portraits. And since the
name U2,I

AD,56 is already needed to denote a conjectured impossible case, thus we give
them a close name. We do not want to use a number at the end of the list like 78 for if
ever a conjectured impossible phase portrait is finally found to be realizable and that
number were needed.
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Fig. 51 Unstable phase portrait U2
AD,57

After bifurcation of U2
AD,56 by disappearance of the saddle-node, the separatrix

connection does not persist and we get the phase portrait S29,1 with limit cycle. By

breaking just the connection one can produce phase portraits U
1
A,43 or U1

A,28 with
limit cycle.

Phase portraitU1
D,51 may produce by evolution phase portraitU2

AD,57 (see Fig. 51).

After bifurcation of U2
AD,57 by disappearance of the saddle-node, the separatrix con-

nection may persist and we get the phase portrait U1
D,22 (or its stable bifurcations

S
2
9,2 or S

2
9,3 with limit cycle). By breaking just the connection one can produce phase

portraits U1
A,39 with limit cycle or U1

A,29.

Phase portraitU1
D,52 may produce by evolution phase portraitU2

AD,58 (see Fig. 52).

After bifurcation of U2
AD,58 by disappearance of the saddle-node, the separatrix con-

nection may persist and we get the phase portrait U1
D,22 (or its stable bifurcations

S
2
9,2 or S

2
9,3 with limit cycle). By breaking just the connection one can produce phase

portraits U1
A,30 with limit cycle or U1

A,44.

Phase portraitU1
D,53 may produce by evolution phase portraitU2

AD,59 (see Fig. 53).

After bifurcation of U2
AD,59 by disappearance of the saddle-node, the separatrix con-

nection may persist and we get the phase portrait U1
D,22 (or its stable bifurcations

S
2
9,2 or S

2
9,3 with limit cycle). By breaking just the connection one can produce phase

portraits U1
A,46 with limit cycle or U1

A,34.

Phase portraitU1
D,54 has the same skeleton asU1

D,53 and thus has a similar evolution.

It may produce by evolution phase portrait U2
AD,60 (see Fig. 54). After bifurcation of

U
2
AD,60 by disappearance of the saddle-node, the separatrix connection may persist

and we get the phase portrait U1
D,23 (or its stable bifurcations S

2
9,3 or S

2
9,2 with limit
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Fig. 52 Unstable phase portrait U2
AD,58

Fig. 53 Unstable phase portrait U2
AD,59

cycle). By breaking just the connection one can produce phase portraits U1
A,34 with

limit cycle or U1
A,46.

Phase portraitU1
D,55 may produce by evolution phase portraitsU2

AD,61 andU
2
AD,62

(see Fig. 55). After bifurcation of U2
AD,61 by disappearance of the saddle-node, the

separatrix connection may persist and we get the phase portrait U1
D,26 (or its stable

bifurcations S
2
9,3 or S29,2). By breaking just the connection one can produce phase

portraits U1
A,34 or U

1
A,26.
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Fig. 54 Unstable phase portrait U2
AD,60

After bifurcation of U2
AD,62 by disappearance of the saddle-node, the separatrix

connection may persist and we get the phase portrait U1
D,24 (or its stable bifurcation

S
2
9,1 twice by symmetry). By breaking just the connection one can produce phase

portraits U1
A,35 or U

1
A,25.

Phase portraitU1
D,56 may produce by evolution phase portraitsU2

AD,63 andU
2
AD,64

(see Fig. 56). After bifurcation of U2
AD,63 by disappearance of the saddle-node, the

separatrix connection does not persist and we get the phase portrait S29,2. By breaking

just the connection one can produce phase portraits U1
A,44 or U

1
A,40.

After bifurcation of U2
AD,64 by disappearance of the saddle-node, the separatrix

connection may persist and we get the phase portrait U1
D,25 (or its stable bifurcation

S
2
9,1 or S

2
9,2). By breaking just the connection one can produce phase portraits U1

A,44

or U1
A,41.

Phase portraitU1
D,57 may produce by evolution phase portraitsU2

AD,65 andU
2
AD,66

(see Fig. 57). After bifurcation of U2
AD,65 by disappearance of the saddle-node, the

separatrix connection may persist and we get the phase portrait U1
D,26 (or its stable

bifurcation S
2
9,3 or S29,2). By breaking just the connection one can produce phase

portraits U1
A,46 or U

1
A,40.

After bifurcation of U2
AD,66 by disappearance of the saddle-node, the separatrix

connection may persist and we get the phase portrait U1
D,24 (or its stable bifurcation

S
2
9,1 twice by symmetry). By breaking just the connection one can produce phase

portraits U1
A,41 or U

1
A,45.

Phase portraitU1
D,58 may produce by evolution phase portraitsU2

AD,67 andU
2
AD,68

(see Fig. 58). After bifurcation of U2
AD,67 by disappearance of the saddle-node, the
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Fig. 55 Unstable phase portraits U2
AD,61 and U2

AD,62

separatrix connection does not persist and we get the phase portrait S29,1. By breaking

just the connection one can produce phase portraits U1
A,41 or U

1
A,54.

After bifurcation of U2
AD,68 by disappearance of the saddle-node, the separatrix

connection may persist and we get the phase portrait U1
D,25 (or its stable bifurcations

S
2
9,1 and S

2
9,2). By breaking just the connection one can produce phase portraits U

1
A,40

or U1
A,54.

Phase portrait U1
D,59 has the trickiest evolution of all the cases in this study, as it

usually happens with those portraits which can bifurcate into S
2
10,13. Now we have

two finite anti-saddles which may coalesce with two different finite saddles giving up
to 4 possibilities.

Phase portrait U1
D,59 may produce by evolution phase portraits U2

AD,69, U
2
AD,70

and U
2
AD,71 (see Fig. 59). It could also produce U2,I

AD,69 but this phase portrait is not
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Fig. 56 Unstable phase portraits U2
AD,63 and U2

AD,64

realizable since it bifurcates into U1,I
A,49 which even though was shown as realizable in

[6], it was finally proved impossible in [15].
After bifurcation of U2

AD,69 by disappearance of the saddle-node, the separatrix

connection does not persist and we get the phase portrait S29,3. By breaking just the

connection one can produce phase portraits U1
A,50 or U

1
A,51.

After bifurcation of U2
AD,70 by disappearance of the saddle-node, the separatrix

connection may persist and we get the phase portrait U1
D,25 (or its stable bifurcations

S
2
9,1 and S

2
9,2). By breaking just the connection one can produce phase portraits U

1
A,47

or U1
A,53.

After bifurcation of U2
AD,71 by disappearance of the saddle-node, the separatrix

connection may persist and we get again the phase portrait U1
D,25 (or its stable bifur-

cations S29,1 and S
2
9,2). By breaking just the connection one can produce phase portraits

U
1
A,48 or U

1
A,52.

The picture of phase portrait U1
D,60 in [6] is topologically right, but not geomet-

rically. The separatrix connection must be part of an invariant straight line as by
Corollary 3.6 of [6]. We draw it geometrically right in Fig. 60.
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Fig. 57 Unstable phase portraits U2
AD,65 and U2

AD,66

Phase portrait U1
D,60 may produce by evolution phase portraits U2

AD,72, U
2
AD,73

and U
2
AD,74 (see Fig. 60). It could also produce U2,I

AD,74 but this phase portrait is not

realizable since it bifurcates into U1
I ,19 (see [6, 15]).

After bifurcation of U2
AD,72 by disappearance of the saddle-node, the separatrix

connection does not persist and we get the phase portrait S29,1. By breaking just the

connection one can produce phase portraits U1
A,52 or U

1
A,55.

After bifurcation of U2
AD,73 by disappearance of the saddle-node, the separatrix

connection may persist and we get the phase portrait U1
D,24 or its stable bifurcation

S
2
9,1 (only one by symmetry). By breaking just the connection one can produce phase

portraits U1
A,53 or U

1
A,55.

After bifurcation of U2
AD,74 by disappearance of the saddle-node, a separatrix con-

nection may persist in two different ways and we get again the phase portraitU1
D,25 or
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Fig. 58 Unstable phase portraits U2
AD,67 and U2

AD,68

U
1
D,26 (or its stable bifurcations S

2
9,1, S

2
9,2 and S

2
9,3). By breaking just the connection

one can produce phase portraits U1
A,51 or U

1
A,55.

Phase portraitU1
D,61 may produce by evolution phase portraitsU2

AD,75 andU
2
AD,76

(see Fig. 61). After bifurcation of U2
AD,75 by disappearance of the saddle-node, the

separatrix connection does not persist and we get the phase portrait S29,3. By breaking

just the connection one can produce phase portraits U1
A,26 or U

1
A,30.

After bifurcation of U2
AD,76 by disappearance of the saddle-node, the separatrix

connection may persist and we get the phase portrait U1
D,25 or its stable bifurcations

S
2
9,1 and S

2
9,2. By breaking just the connection one can produce phase portraits U

1
A,25

or U1
A,29.

6 Proof of Theorem 3: The Realizable Phase Portraits

Now we will give examples of all realizable structurally unstable phase portraits of
codimension two∗ for quadratic systems of class (AD). In this case, there is no studied
global family with these unstabilities. In fact, there is no global form which may
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Fig. 59 Unstable phase portraits U2
AD,69, U

2
AD,70 and U2

AD,71
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Fig. 60 Unstable phase portraits U2
AD,72, U

2
AD,73 and U2

AD,74
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Fig. 61 Unstable phase portraits U2
AD,75 and U2

AD,76

encapsulate these two unstabilities since one of them is not completely algebraic.
And it is not yet done the study of the family of systems with a finite saddle-node
(this implies a study in dimension 5). So, we will need to rely on different studied
families of codimension two with two unstable objects related with singularities and
look for the cases where a separatrix connection occurs. Concretely we will take some

families having a finite saddle-node and an infinite saddle-node
(0
2

)

SN and families

which apart from the finite saddle-node have an infinite saddle-node
(1
1

)

SN . These
families are studied in two papers each, [17] and [18] for the first case and [12] and
[13] for the second. All four papers are done using similar techniques, and the notation
used to describe the phase portraits is similar. In them, the surfaces of the bifurcation
space dealing with invariant straight lines are denoted as 4S and the surfaces dealing
with non-algebraic separatrix connections are denoted as 7S. So the examples we will
extract from them will have mainly these notations. It is worth noting the importance
of these works since they show more than 115 different phase portraits having a finite
saddle-node plus a separatrix connection and one infinite saddle-node. So, by breaking
the infinite saddle-node into two singularities, or making it disappear, we have lots of
candidates of the wished class to look for examples. We have checked every example
of the four papers having a separatrix connection. So, we are sure (modulo “islands”)
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that the phase portraits of the class (AD) which have not appeared, cannot be inside
the families studied in those papers.

There are two other papers with studies of families of quadratic systems of codi-
mension two which have been checked. These are the study of quadratic systems with
a triple semi-elemental node [16] and with a triple semi-elemental saddle [19]. But
the first has just one candidate to produce elements of the class (AD) and clearly it
does not lead to any of the conjectured impossible phase portraits. The second paper
shows three candidates from which phase portraits of class (AD) could be obtained,
but only one needs to be studied carefully so to discard that it could generate any of
the conjectured impossible phase portraits. This will be done in Sect. 6.6.

A very recent paper [20] has completed the bifurcation diagram of all quadratic
systems having a finite saddle-node and a weak focus of first order. This is another
4-parameter family which has produced 192 topologically different phase portraits,
of which 30 have a separatrix connection (and no other extra unstable object). After
checking all of them, we have found a phase portrait whichwewere close to conjecture
as impossible, but has finally become realizable. We will see this in Sect. 6.5.

With all these families (from which examples of class (AD) may be obtained)
already studied, there are still some families of codimension two with a finite saddle-
node to be studied so to provide new examples with a separatrix connection which
could cover some of the conjectured impossible phase portraits. In order to obtain such
a codimension two family, we must fix some property apart from the finite saddle-
node. We can think in either a weak finite saddle, a weak infinite saddle, a finite one
direction node nd or an infinite one direction node Nd . These families are not very
interesting from the geometrical point of view, but just the possibility of finding in
them one of the conjectured impossible phase portraits of this class makes worth their
study. Of course, the most interesting family to be studied would be the codimension
one case of having just a finite saddle-node, but this is a too big family with the current
tools. Anyway we have decided to proceed with the publication of this paper leaving
the conjecture as it is, and excitedly waiting if someone can corroborate it or enlarge
the number of 77 found phase portraits.

Of course, there is also the remote possibility that a conjectured impossible case
could live in an “island” of the parameter spaces that these papers describe (but it have
never been found).

Please note that several mistypes were detected in [18] and many of them were
corrected in the Appendix A of [13]. In fact here we have found another mistype in
the main theorem of [18] where a phase portrait drawn as a focus corresponds to a
region where the anti-saddle is instead a node. This is not a big problem according to
a topological classification but may be a small nuisance since the phase portraits look
geometrically different. Anyway we have preferred to mention the name of the phase
portrait which appears in the main theorem of those papers instead of mentioning the
concrete region of the parameter space in which the focus exists so to avoid that the
reader which wants to check these results, needs also to get deeper in those papers.

We will do some examples with detail, and we will add a list with the rest of phase
portraits that can be obtained in a similar way. Most of the examples are given in P4
format at the link “http://mat.uab.cat/~artes/articles/P4su2AD.zip”. Some examples
rely on phase portraits which already need the use of very small parameters (or param-

http://mat.uab.cat/{~}artes/articles/P4su2AD.zip
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eters in a very narrow interval), and so, the perturbations needed must be even smaller.
This makes that the use of the numerical program P4 becomes less conclusive, and
we simply apply the continuity criteria in the bifurcation. Regarding the numerical
examples in P4 we must point out that we have not bifurcated every single phase
portrait from the mentioned papers but there is at least one example for every phase
portrait of the main theorem. In the cases where a numerical parameter is needed for a
rotated vector field to recover a non-algebraic separatrix connection, the example we
give in the file is an approximate value for which we have checked that such parameter
modified one unit of the last digit (plus or minus) produced the bifurcation on the other
sense. For example, if we see a P4 file with an “alfa” parameter being 0.0032 it means
that either for α = 0.0033 or α = 0.0031 we obtain the other phase portrait. Assume
it is for α = 0.0033, then by continuity, there exists α∗ ∈ (0.0032, 0.0033) for which
the phase portrait with the separatrix connection occurs.

In the examples where we have an invariant straight line, it is relatively easy to
bifurcate the infinite saddle-nodewhile conserving the straight line and thus, we obtain
directly the desired phase portrait without using a rotated vector field. In cases where
the separatrix connection is not algebraic, we will not even have an exact parameter
set from which we could affirm the existence of the original phase portrait. But we
will have an interval (in a certain parameter) for which such phase portrait exists.
Then we will be able to break the saddle-node, and this for sure will also affect the
separatrix connection, but by means of a rotated vector field, we will be able to recover
the connection without affecting the rest of singular points.

6.1 Examples Obtained from [13] with an Invariant Straight Line

In [13] it is proved that any quadratic system with a finite saddle-node, another finite

singularity and an infinite
(1
1

)

SN can be moved into the normal form:

ẋ = cx + cy − cx2 + 2hxy,

ẏ = ex + ey − ex2 + 2mxy.
(4)

The origin is a sn(2) and the infinite singularity [0 : 1 : 0] is a (1
1

)

SN (requires
h �= 0). Assume now that we have a system (4) with a separatrix connection on an
invariant straight line. Now we make a perturbation as

ẋ = cx + cy − cx2 + 2hxy,

ẏ = ex + ey − ex2 + 2mxy + εy2.
(5)

The Jacobian matrix of the infinite singularity [0 : 1 : 0] has eigenvalues 2h−ε and
−ε. Whether we take ε positive or negative, we will change the sign of the determinant
of the Jacobian. That is, if we take ε such that −(2h − ε)ε < 0 (respectively > 0)
the perturbation will leave a saddle at infinity (respectively a node). If the separatrix
connection is on the horizontal or vertical axis, then it will persist. If the connection is
on an oblique straight line, then before the perturbation we make the change (x, y) →
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Fig. 62 Obtaining unstable phase portraits U2
AD,3 and U2

AD,13

(x, kx + y) (this is called a k-twist in [9]) so to locate the invariant straight line at the
horizontal position while maintaining the infinite saddle-node unmoved. Otherwise,
the perturbation would break also the separatrix connection and we would not get the
desired phase portraits.

We may start then with the first detailed example. Take system (5) with
(c, e, h,m) = (0, 10, 1, 4) and ε = 0. This system has phase portrait 4S1 from
[13] (see Fig. 62). If we perturb ε �= 0 the vertical invariant straight line (which is a
connection of separatrices) persists. If ε < 0 the point [0 : 1 : 0] is a node and a finite
saddle has appeared on the y-axis for y a large positive value. Then we obtain phase
portrait U2

AD,3. If instead of ε < 0 we take ε > 0, the vertical invariant straight line is
again a connection of separatrices which persists, the point [0 : 1 : 0] is a saddle and a
finite attractor node has appeared on the y-axis for y a large negative value. Trivially
we obtain phase portrait U2

AD,13. In Fig. 62 we show the bifurcation of 4S1 from [13]

into U
2
AD,3 and U

2
AD,13 and we also show the version of these phase portraits from

Fig. 1 with some rotation and/or symmetry to check that they are the same (there may
remain the need of a time change).

In a very similar way we may obtain

U
2
AD,30 and U

2
AD,42 from 4S2, U

2
AD,16 and U

2
AD,72 from 4S3,

U
2
AD,17 and U

2
AD,42 from 4S6, U

2
AD,30 and U

2
AD,72 from 4S8,

U
2
AD,15 and U

2
AD,73 from 4S17, U

2
AD,27 and U

2
AD,74 from 4S22,

U
2
AD,26 and U

2
AD,72 from 4S33, U

2
AD,16 and U

2
AD,50 from 4S34,

U
2
AD,17 and U

2
AD,51 from 4S37, U

2
AD,26 and U

2
AD,50 from 4S40,

U
2
AD,19 and U

2
AD,66 from 4S42, U

2
AD,19 and U

2
AD,62 from 4S50,

U
2
AD,27 and U

2
AD,61 from 4S59, U

2
AD,32 and U

2
AD,74 from 4S65

and U
2
AD,31 and U

2
AD,41 from 4S70.
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We remark that we have obtained several repeated cases and the reason is that we
have checked all possible bifurcations coming from every phase portrait in [13] with a
separatrix connection being an invariant straight line since we are not only interested
in finding all the phase portraits from Theorem 3, but also be sure that none of the
conjectured impossible phase portraits (see Conjecture 1) may be obtained from this
class. The same will happen in the next classes we will study.

6.2 Examples Obtained from [13] with No Invariant Straight Line

Now we start describing some cases where the separatrix connection is not algebraic.
We start again from system (5) and we choose phase portrait 7S8 from [13]. We
can find a representative of this phase portrait in system (5) with the parameters
(c, h,m, ε, α) = (1, 1, 0, 0, 0) and e = e∗ ∈ (0.62, 0.64). For e = 0.62 the phase
portrait is V53 (without limit cycle) and for e = 0.64 the phase portrait is V52 (with
limit cycle). So, by continuity, there must exist a value e∗ in that interval for which
we obtain the loop.

Nowweperturb the system taking ε = −0.1.The infinite saddle-node at [0 : −1 : 0]
bifurcates and ejects a node into the negative y semi-plane, remaining the infinite
singularity as a saddle. Visually in program P4 the loop looks exactly the same as it
was without the perturbation, but since we were not even sure of the exact value of
e∗ for which the loop existed, we can neither be sure now that the loop exists. So we
must prove that we can recover the loop connection with a sufficiently small change
that does not affects the singular points.

So we make a rotated vector field like

ẋ = cx + cy − cx2 + 2hxy,

ẏ = ex + ey − ex2 + 2mxy + εy2 + α(cx + cy − cx2 + 2hxy).
(6)

Sometimes we may prefer to use the rotated vector field

ẋ = cx + cy − cx2 + 2hxy + α(ex + ey − ex2 + 2mxy + εy2),

ẏ = ex + ey − ex2 + 2mxy + εy2.
(7)

By using of the parameter α it is simple to confirm that there is no limit cycle
for α = 0.01 and there is limit cycle if α = −0.01. The finite singularities remain
unaffected because this is a rotated vector field, and the rotation has been small enough
so not to affect the infinite singularities. So, by continuity, there must exist a value
α∗ ∈ (−0.01, 0.01) for which the loop exists and thus we get phase portrait U2

AD,12.
In the same way, if we make first the perturbation ε = 0.1, the infinite saddle-node
at [0 : 1 : 0] bifurcates and ejects a saddle into the positive y semi-plane, and again
the separatrix connection may be recovered with the use of α obtaining phase portrait
U
2
AD,9, see Fig. 63.
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Fig. 63 Obtaining unstable phase portraits U2
AD,9 and U2

AD,12

In a very similar way we may obtain

U
2
AD,18 and U

2
AD,45 from 7S1, U

2
AD,23 and U

2
AD,56 from 7S3,

U
2
AD,29 and U

2
AD,46 from 7S4, U

2
AD,33 and U

2
AD,69 from 7S5,

U
2
AD,25 and U

2
AD,54 from 7S6, U

2
AD,34, U

2
AD,49 and U

2
AD,71 from 7S7,

U
2
AD,28 and U

2
AD,67 from 7S9, U

2
AD,35 and U

2
AD,76 from 7S11,

U
2
AD,18 and U

2
AD,67 from 7S12, U

2
AD,37 and U

2
AD,64 from 7S13,

U
2
AD,40 and U

2
AD,68 from 7S14, U

2
AD,33 and U

2
AD,75 from 7S17,

U
2
AD,28 and U

2
AD,45 from 7S18, U

2
AD,18 and U

2
AD,44 from 7S21

and U
2
AD,24 and U

2
AD,56 from 7S22.

The needed perturbation values of ε and α may be different from case to case.
Notice that 7S7 may bifurcate in 3 different ways. When a finite saddle bifurcates

from [0 : 1 : 0] we can maintain the separatrix connection of the finite saddle-node
with the infinite saddle as we had in 7S7 and obtain U

2
AD,71 or we can maintain the

connection with the separatrix of the new finite saddle and produce a new graphic. In
this case we obtain U2

AD,49, see Fig. 64. When a finite node bifurcates from [0 : 1 : 0]
we obtain phase portrait U2

AD,34.

6.3 Examples Obtained from [12]

The study of the quadratic systems with a finite saddle-node and an infinite saddle-

node of type
(1
1

)

SN was divided into two families. The family (B) that we have used
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Fig. 64 Obtaining unstable phase portraits U2
AD,34, U

2
AD,49 and U2

AD,71

Fig. 65 Unstable phase portraits 7V1, 4V1 and 4V2 from [12]

in the previous two subsections and family (A) which has the property of having two

singularities of the type
(1
1

)

SN . Then, a system in that family having a separatrix
connection (and no other unstability from those already mentioned) will offer us at
least 4 possibilities for quadratic systems in class (AD). There are 3 cases in that family
with a separatrix connection, to know: 7V1, 4V1 and 4V2 (see Fig. 65).

Notice that the family studied in [12] (B) is not 4-dimensional but 5-dimensional, so
the generic regions in it are hyper-volumes, and the bifurcations are volumes. Thus 4V1
and 4V2 correspond to a bifurcationwith a separatrix connection in an invariant straight
line and 7V1 corresponds to a casewith a separatrix connection but no invariant straight
line. However, an easy test of their possible bifurcations gives us already obtained
phase portraits. Concretely 7V1 bifurcates in U

2
AD,18, U

2
AD,28, U

2
AD,45 and U

2
AD,67.

On its own, 4V1 bifurcates in U
2
AD,16, U

2
AD,26, U

2
AD,50 and U

2
AD,72. And finally 4V2

bifurcates inU2
AD,15,U

2
AD,16,U

2
AD,17,U

2
AD,19,U

2
AD,30,U

2
AD,42 andU

2
AD,72. The first

two cases bifurcate in just 4 possibilities since the saddle parts of the infinite saddle-
nodes are not adjacent. However in 4V2 those parts are adjacent, and thus the infinite
arc which joins them plays the role of a separatrix connection and this connection may
move to the affine plane and there break in two different ways, and moreover, we may
maintain that connection and broke the original invariant line in two different ways
(see Fig. 66). Note that we have used a still unnumbered phase portrait of codimension
three as an intermediate step to describe the bifurcation.

In summary, the bifurcations from phase portraits in [12] with a separatrix connec-
tion into class (AD) do not bring any new phase portrait from those obtained from
[13].
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Fig. 66 Bifurcation of phase portraits 4V2 from [12] into class (AD)

6.4 Examples Obtained from [17, 18] with an Invariant Straight Line

In a very similar way, we are going to use papers [17] and [18] to obtain most of the
rest of phase portraits of class (AD).

In [17] it is described that any quadratic system with a finite saddle-node and an

infinite
(0
2

)

SN can bemoved into three different normal forms depending on the position
of the infinite saddle-node. Since the finite saddle-node has both eigenvectors already
fixed in this normal form, the position of the infinite saddle-node is relevant. This
paper studies the two more degenerate forms and the most generic of them is studied
in [18]. The normal form which collects all three characteristics is:

ẋ = gx2 + 2hxy + ky2,

ẏ = y + �x2 + 2mxy + ny2, with

η = −27�2k2 − 36�ghk + 18�gkn + 32�h3 − 48�h2n + 72�hkm + 24�hn2

−36�kmn − 4�n3 − 4g3k + 4g2h2 − 4g2hn + 24g2km + g2n2 − 16gh2m

+16ghmn − 48gkm2 − 4gmn2 + 16h2m2 − 16hm2n + 32km3 + 4m2n2 = 0.

(8)

The polynomial η corresponds to the conditions needed to produce the coalesence
of two infinite singularities, applied to this normal form. This, asmanymore invariants,
are presented in [9].

6.4.1 Examples Obtained from [17] (A)

Assume now that we have a system (8) and the infinite singularity [1 : 0 : 0] is a(02
)

SN .
Then � = 0 = g − 2m and m �= 0, which can be set as m = 1/2 and the system has
an horizontal invariant straight line. In order to obtain a phase portrait of class (AD)
we just need to split the infinite double point into two real infinite singularities. This
can be done with a perturbation like

ẋ = x2 + 2hxy + ky2 + εx2,

ẏ = y + xy + ny2.
(9)
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Fig. 67 Bifurcation of phase portraits V1 from [17] (B) into class (AD)

We make a detailed example of this case. Take system (9) with (h, k, n, ε) =
(1, 2,−1, 0). This system has phase portrait V1 from [17] (A). If ε �= 0 the point
[1 : 0 : 0] splits into a node and a saddle. But we want to maintain the invariant
straight line as a connection of separatrices, so we must take ε < 0 in order to fix the
saddle at [1 : 0 : 0]. Then we obtain phase portrait U2

AD,20.
In a very similar way we may obtain

U
2
AD,65 from V3, U

2
AD,74 from V6,

U
2
AD,61 from V9, U

2
AD,27 from V12,

U
2
AD,32 from V15 and U

2
AD,74 from V16.

6.4.2 Examples Obtained from [17] (B)

Assume now that we have a system (8) and the infinite singularity [0 : 1 : 0] is a
(0
2

)

SN . Then k = 0 = n − 2h and g �= 0 which can be set as g = 1 and the system
has a vertical invariant straight line. In order to obtain a phase portrait of class (AD)
we just need to split the infinite double point into two real infinite singularities This
can be done with a perturbation as

ẋ = x2 + 2hxy,

ẏ = y + �x2 + 2mxy + 2hy2 + εy2.
(10)

We make a detailed example of this case. Take system (10) with (h, �,m, ε) =
(1, 1, 0, 0). This system has phase portrait V1 from [17] (B).1 If ε �= 0 the point
[0 : 1 : 0] splits into a node and a saddle. But we want to maintain the invariant
straight line as a connection of separatrices, so we must take ε < 0 in order to fix the
saddle at [0 : 1 : 0]. Then we obtain phase portrait U2

AD,72. We add here the phase

portrait V1 from [17] (B) as well as its bifurcation into U2
AD,72, see Fig. 67.

1 In [17] the phase portraits where denoted with an extra superscript that was just a counting value of phase
portraits. Since such superscript has not been used in other papers of similar type, and does not apport any
relevant information, we have prefered to omit it here.
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In a very similar way we may obtain U
2
AD,73 from V2, U2

AD,26 from V3, U2
AD,31

from V6 and U
2
AD,30 from V7.

6.4.3 Examples Obtained from [18] with an Invariant Straight Line

The starting normal form in [18] is

ẋ = gx2 + 2hxy + (n − g − 2h)y2,

ẏ = y + �x2 + (2g + 2h − 2� − n)xy + (� + 2n − 2g − 2h)y2.
(11)

Please note that in paper [18] there appear several typos in phase portraits and
some of their labels which were lately corrected in an appendix of [13]. Thus the
phase portraits we will use here in order to produce the required phase portraits of
class (AD) are the right ones from the corrected version. This will affect also the next
subsection.

In [18] we find phase portraits with an oblique invariant straight line (which passes
through the infinite saddle-node [1 : 1 : 0]) or a different invariant line which passes
through an elemental infinite singularity. The normal form implies then that this line
is horizontal or vertical. We must study these cases separately.

Assume first that we have a system (8) with an oblique invariant straight line. This
means that the infinite saddle-node is located at the end of such a line and this also
implies � = g. The invariant straight line is y = x − 1/n. Now we first move the
invariant straight line so to pass through the origin with y → y − 1/n. After we make
a −1-twist and having � = g we obtain system

ẋ = −x + nxy,

ẏ = n − 2h − �

n2
+

(

1 − 2h

n

)

x + 2
h + � − n

n
y

+ �x2 + 2
(

h + � − n

2

)

xy + ny2,

(12)

which clearly has the vertical axis as an invariant line. Now the finite saddle-node is
at (−1/n, 1/n) and we translate it back to the origin (x, y) → (x + 1/n, y − 1/n)

and obtain:

ẋ = −y + nxy,

ẏ = y + �x2 + (2h + 2� − n)xy + ny2,
(13)

which has the vertical invariant straight line x = 1/n. Finally we apply a perturbation
which does not affect the invariant line, and breaks the infinite saddle-node:

ẋ = −y + nxy,

ẏ = y + �x2 + (2h + 2� − n)xy + ny2 + εy2.
(14)
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Fig. 68 Obtaining unstable phase portrait U2
AD,62 from 4S1 in [18]

Fig. 69 Obtaining unstable phase portraits U2
AD,31 and U2

AD,13 from 4S15 in [18]

Notice that the invariant straight line will persist whichever sign of ε we take. This
means that for every ε small enough we will always split the infinite saddle-node into
two real singularities.

We make a detailed example of this case. Take system (14) with (g, h, �, n, ε) =
(1,−3, 1, 3, 0). This system has phase portrait 4S1 from [18]. If ε �= 0 the point
[0 : 1 : 0] splits into a node and a saddle. Then we obtain phase portrait U2

AD,62 (see
Fig. 68).

In a very similar way we may obtain U
2
AD,22 from 4S3, U2

AD,73 from 4S6, U2
AD,73

from 4S8, U2
AD,22 from 4S20 and U

2
AD,66 from 4S31.

Assume now that we have a system (11) and a vertical invariant straight line. This
implies h = (n − g)/2. Then a simple perturbation as

ẋ = gx2 + (n − g)xy,

ẏ = y + �x2 + (g − 2�)xy + (� + n − g)y2 + εy2,
(15)

will keep the invariant straight line x = 0 and will break the saddle-node at [1 : 1 : 0]
in real or complex singularities.

We make a detailed example of this case. Take system (15) with (g, h, �, ε) =
(1, 2,−2, 0). This system has phase portrait 4S15 from [18]. If ε > 0 the point [1 :
1 : 0] splits into a node and a saddle and we obtain phase portraitU2

AD,31. If ε < 0 the

point [1 : 1 : 0] splits into complex singularities and we obtain phase portrait U2
AD,13

(see Fig. 69).
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Fig. 70 Obtaining unstable phase portraits U2
AD,32 and U2

AD,14 from 4S13 in [18]

In a very similar way we may obtain

U
2
AD,3 and U

2
AD,41 from 4S16, U

2
AD,4 and U

2
AD,52 from 4S29,

U
2
AD,4 and U

2
AD,51 from 4S32, U

2
AD,4 and U

2
AD,50 from 4S33,

U
2
AD,13 and U

2
AD,26 from 4S36, U

2
AD,3 and U

2
AD,42 from 4S42

and U
2
AD,13 and U

2
AD,30 from 4S44.

By the way, we have skipped 4S9 from [18] since it should not be there because
it has no separatrix connection and it is topologically equivalent to its neighbors V44
and V45.

Finally assume that we have a system (11) and an horizontal invariant straight line.
This implies � = 0. Then a simple perturbation as

ẋ = gx2 + 2hxy + (n − g − 2h)y2,

ẏ = y + (2g + 2h − n)xy + (2n − 2g − 2h)y2 + εy2,
(16)

will keep the invariant straight line y = 0 and will break the saddle-node at [1 : 1 : 0]
in real or complex singularities.

We make a detailed example of this case. Take system (16) with (g, h, n, ε) =
(1, 3, 5, 0). This system has phase portrait 4S13 from [18]. If ε < 0 the point [1 : 1 : 0]
splits into a node and a saddle and we obtain phase portrait U2

AD,32. If ε > 0 the point

[1 : 1 : 0] splits into complex singularities and we obtain phase portrait U2
AD,14 (see

Fig. 70).
In a very similar way we may obtain U

2
AD,14 (with limit cycle) and U

2
AD,27 from

4S51.

6.4.4 Examples Obtained from [17, 18] with No Invariant Straight Line

As well as with the papers [12] and [13] now we must focus our attention in the cases
from [17] and [18] where we have a separatrix connection which is not an invariant
straight line. Namely, we have just one case in [17] (A) which is 7S1, none in [17] (B)
and 48 in [18] (all those named 7Sx ). We can tear apart those having a limit cycle for
reasons already explained.
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In all these systems we will need the starting normal form, plus a perturbation
to break the infinite saddle-node, plus a rotated vector field to recover the separatrix
connection. These cases will be trickier than those from papers [12] and [13], because

now we have to split a
(0
2

)

SN instead of a
(1
1

)

SN . Now after the perturbation we will
have two close infinite singularities, and the rotated vector field needed to recover the
separatrix connection will affect those infinite singularities and it could make them
coalesce again and disappear.

We start with normal form (8) as we did in a previous case. The infinite singularity

[1 : 0 : 0] is a(02
)

SN . Then � = 0 = g − 2m and m �= 0, which can be set as m = 1/2
and the system has an horizontal invariant straight line. Since we want to start from
phase portrait 7S1 we can take (h, k, n) = (1, 4/5, n∗) with n∗ ∈ (0.49, 0.50). This
phase portrait has two separatrix connections, the invariant straight line y = 0 as all
the family has, plus a loop. So we can obtain a system of class (AD) in four different
forms. We may keep the horizontal straight line, break the loop in two different ways,
and split the infinite saddle-node into two real singularities, but all this is equivalent
to make the bifurcations from cases V3 and V9 from [17] (A) that we have already
described. So, what we need to do is breaking the straight line and keeping the loop.
This can be done with a perturbation as

ẋ = x2 + 2hxy + ky2,

ẏ = y + xy + ny2 + εxy + α(x2 + 2hxy + ky2).
(17)

Take system (17) with (h, k, n, ε, α) = (1, 4/5, n∗, 0, 0) and n∗ being some value
in the interval (0.49, 0.50). We have the invariant straight line, the infinite saddle-node
and the loop, leading to phase portrait 7S1 (see Fig. 71).

Take system (17) with (h, k, n, ε, α) = (1, 4/5, n∗,−0.05, 0). We still have the
invariant straight line, but the loop is clearly broken and the infinite saddle-node splits
into two singularities. So, we have phase portrait U2

AD,61 with limit cycle.
Now take system (17) with (h, k, n, ε, α) = (1, 4/5, n∗,−0.05, α∗) and α∗ being

some value in the interval (0, 0.01). We have broken the horizontal invariant straight
line, the infinite singularities remain isolated, and we have recovered the loop so to
obtainU2

AD,55. If we take (h, k, n, ε, α) = (1, 4/5, n∗, 0.4, 0)wehave split the infinite
singularity into two simple singularities, but we still maintain the horizontal invariant
straight line. And the loop is clearly broken. We have phase portrait U2

AD,65.
We now need to make a rotation with α < 0 in order to recover the separatrix

connection and we check that there must be a value α∗ ∈ (−0.02,−0.01) which
produces the connection. But α < 0 also helps us in breaking the invariant straight
line exactly in the way we need and it is small enough so that the infinite singular
points are still split. For α < −0.03 we see that they have coalesced. So, we have
obtained phase portrait U2

AD,60 (see Fig. 71).
Now we study the examples that can be obtained from [18].
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Fig. 71 Obtaining unstable phase portraits U2
AD,61, U

2
AD,65, U

2
AD,55 and U2

AD,60 from 7S1 in [17] (A)

We start with normal form (8) as we did in a previous case. The infinite singularity

[1 : 1 : 0] is a(02
)

SN . In [18] it is proved that such system can be written as

ẋ = gx2 + 2hxy + (n − g − 2h)y2,

ẏ = y + �x2 + (2g + 2h − 2� − n)xy + (� + 2n − 2g − 2h)y2.
(18)

For this group of phase portraits, we are going to use a different idea so to obtain the
desired phase portrait. For these examples, using a perturbation to break the infinite
saddle-node plus a rotated vector field to recover the separatrix connection has been
proved to be very hard, at least in several cases. But we can convert a difficulty
into a tool to obtain what we need even in an easier way. As we know, we do not
have the exact parameter for which a phase portrait has a non-algebraic separatrix
connection. At most we know that, for a parameter being in some interval, we are
crossing the bifurcation where the separatrix connection exists. Then we know that
the perturbation to modify the infinite saddle-node will affect other orbits and it would
break the separatrix connection. Even though this perturbation is not a rotated vector
field, for a very small perturbation enough to break the saddle-node, the separatrix
connection will move the separatrices to one or another side. So, we just need to use
a starting system where we are very close to the separatrix connection and we are in
the side so that the perturbation needed to break the infinite saddle-node will move
the separatrices in the required direction. For a very small perturbation, it will not be
even enough to move the separatrices to the other side, but then making a little bigger
perturbation we will get the separatrix connection. In fact, we will just see that we
are at the other side of the separatrix connection, and in this way we will have proved
the existence of the required phase portrait. To tell the truth, this “perturbation” is
not really a perturbation since it needs to be large enough to produce the separatrix
connection. Thus, this perturbation could cross another bifurcation of the system. But
since the starting system may be as close as needed to the point of the separatrix
connection, then the perturbation we do is a good one.
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Let us see all this with an example. We start with the system:

ẋ = gx2 + 2hxy + (n − g − 2h)y2,

ẏ = y + �x2 + (2g + 2h − 2� − n)xy + (� + 2n − 2g − 2h)y2 + εx x
2.

(19)

Take system (19) with (g, n, h, �, εx ) = (1, 2,−2.46, �∗, 0) and �∗ being some
value in the interval (1.70, 1.71). For � = 1.70, we have phase portrait V7 from [18],
and for � = 1.71, we have phase portrait V17 (it has a limit cycle). So, for a value
between them we must have phase portrait 7S2. Since we do not know the value of
�∗, the computations in P4 must be done with a value of � which will put us either
in V7 or V17. Let us try to produce first U2

AD,57. For that we will need a positive εx .
For the way that a positive εx will affect the separatrices forming the connection, we
decide to start on V7, that is, we take � = 1.70. Then we see in P4 that any small
positive εx will split the infinite saddle-node into an infinite saddle and an infinite
node. For example εx = 0.001 does it. But this perturbation is not enough to obtain
the separatrix connection, and we even see that for εx = 0.008 we still have it not. But
for εx = 0.009 we have already crossed it and there is a limit cycle. So, for a value
ε∗
x ∈ (0.008, 0.009) the system (g, n, h, �, εx ) = (1, 2,−2.46, 1.7, ε∗

x )we have phase
portrait U2

AD,57. Notice that if for a value εx ∈ (0.008, 0.009) we could see any other
bifurcation affected, we could have always started with a smaller interval for �, that is,
we could have started much closer to the phase portrait 7S2, and then, consequently,
the interval for εx would also be smaller.

Now we look for phase portrait U2
AD,10. Now we start at the other side of the

bifurcation, that is on � = 1.71 (so we have in fact phase portrait V17 having a limit
cycle). Now any perturbation with negative εx will convert the infinite saddle-node
into complex singularities. We detect that for εx = −0.001 we got this, but the
relative position of the separatrices intended to form the loop have already changed
positions, thus, we have moved beyond we wanted to arrive. And this also happens
for εx = −0.0001. But it does not for εx = −0.00001. Now we see that the two
interesting separatrices are still in the same relative position as they were in V17, that
is, the limit cycle still persists. But then, playing a bit with εx we see that there is
a change in the relative position of separatrices while moving from εx = −0.00007
to εx = −0.00008. In conclusion, for some ε∗

x ∈ (−0.00008,−0.00007) we obtain
phase portrait U2

AD,10 (see Fig. 72). In a very similar way we may obtain

U
2
AD,35 from 7S1, U

2
AD,76 from 7S3,

U
2
AD,2 and U

2
AD,44 from 7S4, U

2
AD,21 from 7S6,

U
2
AD,8 and U

2
AD,53 from 7S7, U

2
AD,6 and U

2
AD,48 from 7S8,

U
2
AD,70 from 7S9, U

2
AD,8 and U

2
AD,53 from 7S10,

U
2
AD,6 and U

2
AD,48 from 7S15, U

2
AD,70 from 7S16,

U
2
AD,12 and U

2
AD,24 from 7S17, U

2
AD,10 and U

2
AD,59 from 7S22,

U
2
AD,1 and U

2
AD,43 from 7S23, U

2
AD,21 from 7S26,
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U
2
AD,11 and U

2
AD,60 from 7S29, U

2
AD,12 and U

2
AD,24 from 7S31,

U
2
AD,9 and U

2
AD,56 from 7S32, U

2
AD,7 and U

2
AD,46 from 7S33,

U
2
AD,67 from 7S37, U

2
AD,68 from 7S38,

U
2
AD,11 and U

2
AD,55 from 7S41, U

2
AD,40 from 7S42,

U
2
AD,64 from 7S44, U

2
AD,63 from 7S45,

U
2
AD,11 and U

2
AD,58 from 7S52, U

2
AD,75 from 7S55,

U
2
AD,37 from 7S57, U

2
AD,28 from 7S58,

U
2
AD,33 from 7S60, U

2
AD,69 from 7S61,

U
2
AD,5 and U

2
AD,47 from 7S62, U

2
AD,69 from 7S63,

U
2
AD,5 and U

2
AD,47 from 7S64, U

2
AD,5 and U

2
AD,45 from 7S65,

U
2
AD,39 from 7S67, U

2
AD,71 from 7S68,

U
2
AD,71 from 7S69, U

2
AD,7 and U

2
AD,49 from 7S70,

U
2
AD,7 and U

2
AD,49 from 7S71, U

2
AD,34 from 7S72,

U
2
AD,29 from 7S75, U

2
AD,38 from 7S76,

U
2
AD,9 and U

2
AD,54 from 7S77, U

2
AD,9 and U

2
AD,54 from 7S78,

U
2
AD,12 and U

2
AD,25 from 7S79, U

2
AD,12 and U

2
AD,23 from S82

and U
2
AD,36 from 7S85.

Several of the previous cases bifurcate in only one phase portrait of class (AD)
since their separatrix connection needs the infinite saddle-node. When this singularity
disappears, so does the connection.

There is another mistype in [18]: the focus inside the graphic of phase portrait
7S57 must be attractor since it is the bifurcation between V137 and V138. This is an
interesting mistake to point out, since its bifurcation (in the wrong mode) would have
produced conjectured impossible phase portrait (U1,l

D,38 here) while in fact it produces

U
1
D,38 which was already presented in the statement and proved its existence.

Fig. 72 Obtaining unstable phase portraits U2
AD,57 and U2

AD,10 from 7S2 in [18]
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Fig. 73 Correcting a mistype of 7S61 in [18]

And another mistype in [18]: The phase portrait 7S61 has two arrows at infinity
wrong. The right version is shown in Fig. 73 accompanied by two generic phase por-
traits which are its neighbors. The corrected arrows are indicated in red color. It is
from this corrected version that U2

AD,69 may bifurcate. The merit of finding this type
is not mine but of a very good referee I have had.

In summary, we have looked for examples in four big families of already studied
systems from which phase portraits of class (AD) may bifurcate. We have obtained
examples which confirm the existence of the phase portraits mentioned in Theorem 3,
most of them from different sources, and we have not found a single example of those
conjectured impossible (see Figs. 4 and 5). Only phase portraitU2

AD,77 is still missing.
As already mentioned, another big family which is the quadratic systems with a weak
focus and a finite saddle-node [20] has recently been studied, andU2

AD,77 has appeared
in it.

6.5 ExampleU2
AD,77 from [20]

In paper [20] where quadratic systems with a finite semi-elemental saddle-node and a
weak focus are studied, we found phase portrait 7S13 which is directly ourU2

AD,77. For
quite a long time we had thought that this system would be in the set of conjectured
impossible phase portraits with the name of U2,I

AD,8 but we decided to delay a bit the
ending of this paper for if some new example could appear there, as it has happened.
While looking for examples of class (AD) inside codimension two∗ families which
have one finite saddle-node plus another geometrical property which helps to reduce
the number of parameters, we are just studying hyper-surfaces of the codimension one
family of quadratic systemswith a finite saddle-node. So there is always the possibility
that some of the conjectured impossible phase portraits may exist without intersection
far from the hyper-surfaces studied.

6.6 Example 7S1 from [19]

Even though we are not going to find any new phase portrait here, this is a case
which is worth studying. In paper [19] where quadratic systems with a finite triple
semi-elemental saddle are studied, we found phase portrait 7S1. All the generic phase
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Fig. 74 Phase portrait 7S1 from [19] and a second view of it

Fig. 75 Perturbations of 7S1 into class (AD)

portraits in this family are topologically equivalent to structurally stable quadratic
systems due to the fact that the semi-elemental saddle behaves like an elemental one.
And thus, the phase portrait 7S1 is topologically equivalent toU1

D,1 from [6]. However,
there is an important fact regarding 7S1 which was not relevant in [19] but which is
critical now. The triple finite saddle has one eigenvalue zero and another different from
zero. The focus inside the graphic is stable. So, when dealing with perturbations it is
very important to know if the non-null eigenvalue is positive or negative. By a simple
check of the bifurcation diagram in [19], we conclude that it is positive (see Fig. 74a in
which we have drawn with a thinner arrow the separatrices with zero eigenvalue). We
make a vertical symmetry (b) and a time change (c) so to compare it easily with the
skeletons of separatrices of the phase portraits U2

AD,8 and U
2
AD,9 from Fig. 1 in order

to see which of the phase portraits U2
AD,8, U

2
AD,9, U

2
AD,77 or U

2,I
AD,9 may be obtained.

Now we can perturb 7S1 in two different ways while maintaining the loop and
splitting a saddle-node, that is, we can split a saddle-node and let the remaining saddle
form the loop, or vice versa. But what we obtain is just already known phase portraits
U
2
AD,8 and U

2
AD,9 (see Fig. 75). Notice if the case of 7S1 had been the opposite (with

negative eigenvalue, or the focus being unstable) we would have obtained instead the
phase portraits U2

AD,77 and the conjectured impossible U2,I
AD,9. Far from being a proof

of the impossibility of U2,I
AD,9, this reinforces our feeling that the conjecture is true.
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