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Abstract

This paper is part of a series of works whose ultimate goal is the complete classification
of phase portraits of quadratic differential systems in the plane modulo limit cycles.
It is estimated that the total number may be around 2000, so the work to find them
all must be split in different papers in a systematic way so to assure the completeness
of the study and also the non intersection among them. In this paper we classify the
family of phase portraits possessing one finite saddle-node and a separatrix connection
and determine that there are a minimum of 77 topologically different phase portraits
plus at most 16 other phase portraits which we conjecture to be impossible. Along
this paper we also deploy a mistake in the book (Artés et al. in Structurally unstable
quadratic vector fields of codimension one, Birkhauser/Springer, Cham, 2018) linked
to a mistake in Reyn and Huang (Separatrix configuration of quadratic systems with
finite multiplicity three and a M ?71 type of critical point at infinity. Report Technische
Universiteit Delft, pp 95-115, 1995).

Keywords Quadratic differential systems - Structural stability - Codimension two -
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1 Introduction

In this paper we study the simplest non-linear polynomial differential equations, the
planar quadratic differential systems. A polynomial differential system on the plane is
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a system of the form

dx dy 1

7 — Py, o =aqy), ()]
where p, g € R[x, y], i.e. p, g are polynomials in the variables x and y over R. We
call degree of a system (1) the integer n = max(deg(p), deg(g)). In particular we call
quadratic a differential system (1) with degree n = 2.

This paper is part of a series of papers already published (and some more that will
come) whose ultimate goal is the total classification of phase portraits of quadratic
systems, done for several members of a group of researchers. So some parts of the
introduction and the techniques used may be common with them.

The linear differential equations were completely solved by Laplace in 1812 for
every dimension, not just planar. After the resolution of linear differential systems, it
seemed natural to address the classification of quadratic differential systems. However,
it was found that the problem would not have an easy and fast solution. Unlike the
linear systems that can be solved analytically, quadratic systems (not even, therefore,
those of higher degree) do not generically admit a solution of that kind, at least, with
a finite number of terms.

Therefore, for the resolution of non-linear differential systems, another strategy
was chosen and it allowed the creation of a new area of knowledge in Mathematics:
the Qualitative Theory of Differential Equations [37]. The idea is quite simple: since
we are not able to give a concrete mathematical expression to the solution of a system
of differential equations, this theory intends to express by means of a complete and
precise drawing, the behavior of any particle located in a vector field governed by such
a differential equation, i.e. its phase portrait.

Even with all the reductions made to the problem until now, there are still difficulties.
The most expressive difficulty is that the phase portraits of differential systems may
have invariant sets that are not punctual, as the limit cycles. A linear system cannot
generate limit cycles; at most they can present a completely circular phase portrait
where all the orbits are periodic. But a differential system in the plane, polynomial or
not, and starting with the quadratic ones, may present several of these limit cycles. It is
trivial to verify that there can be an infinite number of these cycles in non-polynomial
problems, but the intuition seems to indicate that a polynomial system should not have
an infinite number of limit cycles in a similar way that it cannot have an infinite number
of isolated singular points. And because the number of singular points is linked to the
degree of the polynomial system, it also seems logical to think that the number of limit
cycles could also have a similar link, either directly as the number of singular points,
or even in an indirect way from the number of the parameters of such systems. In fact,
it is already proved that quadratic systems have a finite number of limit cycles [21]
and there are two independent proofs that any given polynomial system has a finite
number of limit cycles [28, 33]. However, it is worth mentioning that none of both has
been yet fully understood by the mathematical community.

In 1900, David Hilbert [30, 31] proposed a set of 23 problems to be solved in the
20th century, and among them his well-known 16th problem asks for the maximum
number of limit cycles H (n) a polynomial differential system in the plane with degree
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n may have. More than one hundred years after, we do not yet have an uniform upper
bound for this generic problem, only for specific families of such a system.

Therefore, the complete classification of quadratic systems is a very difficult task at
the moment and it depends enormously of the culmination of Hilbert’s 16th problem,
even at least partially for H (2). At this moment we simply know that H(2) > 4 but no
example with 5 limit cycles has been found. The first example with 4 limit cycles was
found by Shi Song Ling in [45]. In fact, only three phase portraits have been found
up to now with such number of limit cycles and all three derive directly from phase
portraits with a weak focus of third order which have a limit cycle along a strong
focus [3].

Even so, a lot of problems have been appearing related to quadratic systems and
for which it has been possible to give an answer. In fact, there are more than one
thousand articles published directly related to quadratic systems. John Reyn, from
Delft University (Netherlands), was committed in preparing a bibliography that was
published several times until his retirement [38]. It is worth mentioning that in the
last three decades many other articles related to quadratic systems have appeared,
what figures that the mentioned amount of one thousand papers in that bibliography
has already been widely exceeded. It is worth mentioning that he estimated the total
number of different phase portraits (modulo limit cycles) to be around 2000.

In those more than one thousand papers mentioned, many families have been stud-
ied, partially or completely, but the collection of all the works is not helpful to provide
a complete classification since there are many intersections among the papers (same
phase portrait may belong to several families), or even worse, there may be phase
portraits that have never appeared in any of them.

So, we need to obtain a systematic procedure which studies independent families
producing always different phase portraits with the assurance that after a finite number
of families, all of them will have appeared. With this goal in mind, Reyn tried to study
families according to the number of finite singularities that have escaped to infinity.
He was successful in the cases with two or more singularities escaping to infinity [39,
40, 44]. In the case when just one singularity has escaped to infinity, they published
[43] with the case when one of the infinite singularities is nilpotent or degenerate,
but their work where this singularity is just semi-elemental remained just as a report
[42] since several mistakes were detected. Some missed phase portraits were already
reported in [6] and here we will report an impossible phase portrait which induced a
mistake in [6]. Finally Reyn in his book [41] recognized the impossibility to deal with
the case where no finite singularity escapes to infinity using his tools.

Given the difficulty of solving the 16th Hilbert’s problem, if we want to obtain a
global classification of quadratic systems before this problem is solved, this will have to
be done modulo limit cycles. We propose to carry out a systematic global classification
and, for this, we cannot be attained only to the study of families of systems that do not
give more than extremely local visions of the global parameter space. Even applying
to our quadratic system a linear change of coordinates plus a translation and a time
rescaling, which supposes a reduction from the initial 12 parameters to a limited set
of systems with 5 parameters, R is still a very large space. And moreover, there is not
just a single family with 5 parameters that contains all quadratic systems. One needs
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several such families. The study of families has been very useful to provide examples,
but not for the systematic classification.

The other systematic way to try to obtain the complete classification of phase por-
traits of quadratic systems was started with the study of the structurally stable quadratic
systems, modulo limit cycles. That is, the goal was to determine how many and which
phase portraits of a quadratic system cannot be modified by small perturbations in
their coefficients. To obtain a structurally stable system modulo limit cycles we need
very few conditions: we do not allow the existence of multiple singular points and the
existence of connections of separatrices. Centers, weak foci and semi-stable cycles are
submerged in the quotient modulo limit cycles. This systematic analysis [2] showed
that the structurally stable quadratic systems modulo limit cycles produce a total of
44 topologically distinct phase portraits.

The natural problem to be studied after was the structurally unstable quadratic
differential systems of codimension one. This study [6] was done in approximately
20 years and finally we obtained at least 204 (and at most 211) topologically phase
portraits of codimension one modulo limit cycles.

The pattern of work in these two papers (and the ones continuing after) is quite
similar. First we need to produce by combination of singularities and separatrices, all
potential (see definition below) phase portraits of a given codimension and after one
must either find a concrete example of every phase portrait, or produce a proof which
shows its impossibility.

Definition 1 By a potential phase portrait we understand a phase portrait which is
compatible with the number and type of singularities with what can be obtained in a
fixed class of systems.

So, a potential phase portrait may still be not realizable by other deeper reasons.

In several previous papers these phase portraits were called simply as “possible”
but the interpretation of this word could make people uncomfortable when something
called “possible” finally becomes impossible or non-realizable. So, we have decided
for a different word. The candidates of phase portraits that we first obtain have the
potential of being finally realizable, but maybe they are not at the end.

The types of proofs that work to show impossibilities of phase portraits use to
deal with the number of contact points that the flow can have with a straight line.
Some newer proofs deal with geometric concepts like the position and tangencies of
orbits and characteristic directions. Also, the non realizable phase portraits of a certain
codimension become a key tool to prove the impossibility of related phase portraits
of lower and higher codimension.

The way to obtain examples of the phase portraits comes mainly from already stud-
ied families of the same or higher codimensions. If they are of the same codimension,
they must directly appear in those studies. In case of using higher codimension exam-
ples, then by perturbing one or more of the unstable elements of that phase portrait, one
obtains the desired phase portrait. In this way the study of structurally stable quadratic
systems is complete, that is, from 72 initially potential phase portraits, we obtained
examples of 44 and proved the impossibility of the remaining 28. And up to now, no
result has contradicted this statement.
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In 1998, just after ending [2] and starting the production of topologically potential
phase portraits of codimension one, the number, and particularly the size of the already
studied families, was not large. But new techniques created by the school of Sibirskii
[9, Chapter 5] about invariant polynomials, allowed a growth in the dimension of the
bifurcation diagrams that could be studied, and it became a gorgeous source of phase
portraits which helped to complete [6].

Anyway, in [6] the work could not be completely ended since after studying more
than 500 potential different phase portraits, finding examples for 204 of them, and
impossibilities of more than 300, there remained seven phase portraits for which we
were unable to provide neither an example nor a proof of impossibility. And all seven
cases are related with the existence of a graphic and the behavior of the focus inside.
The tools of contact points are useless in these cases. The proofs of impossibilities
might be related to the impossibility of certain phase portraits with limit cycles. The
fact that we were not able to prove such impossibility, together with the fact that we
have not found such phase phase portraits in none of the papers previously published,
made us conjecture their impossibility.

This fact will produce a cascade effect in higher codimensions since conjectured
impossibility of some codimension one phase portraits will extend into some more
codimension two phase portraits, plus some new ones which will appear.

The next step is now the study of codimension two phase portraits and this was
already initiated in [14, 15]. In the first paper, the scheme of work for codimension two
was introduced. Since the number of cases in codimension two will exceed by large
those of codimension one, it was proposed to split it in several classes and [15] already
studied the first of them, concretely the phase portraits containing exactly two finite
saddle-nodes, or one cusp as the only unstable elements. In [14] we find a continuation
of the work where phase portraits having exactly one finite and one infinite saddle-node
(this includes two classes) as the only unstable elements, are studied.

In what follows, we recall some definitions and notation used in those papers, and
then we explain all the cases of structurally unstable quadratic systems of codimension
two, one by one, and present the completion of the fourth class.

Let X be a vector field. A point p € R? such that X (p) = 0 (respectively X (p) # 0)
is called a singular point (respectively regular point) of the vector field X.

Let P, (R2) be the set of all polynomial vector fields on RR? of the form X (x, y) =
(P(x,y), Q(x,y)), with P and Q polynomials in the variables x and y of degree at
most n (with n € N). In this set we consider the coefficient topology by identifying
each vector field X € P, (R?) with a point of R+ ®+2) (see more details in [6]).

For X € P,(R?), we consider the Poincaré compactified vector field p(X) corre-
sponding to X as the vector field induced on S? as described in [1, 6, 26, 29, 46]).
Concerning this, a singular point ¢ of X € P, (R?) is called infinite (respectively finite)
if it is a singular point of p(X) in S! (respectively in S?\S!).

Now, we present the local classification of the singular points of p(X). Let g be a
singular point of p(X).

The classical definitions are:

e ¢ is non-degenerate if det (Dp(X)(q)) # 0, i.e. the determinant of the linear part
of p(X) at the singular point g is nonzero;
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e g is hyperbolic if the two eigenvalues of Dp(X)(g) have real part different from
0;
e ¢ is semi-hyperbolic if exactly one eigenvalue of Dp(X)(q) is equal to 0.

However, we will also use new notation introduced in [9] directly related to the
Jacobian matrix of the singularity. We have:

e ¢ is elemental if both of its eigenvalues are non-zero;

q is semi-elemental if exactly one of its eigenvalues equals to zero;

q is nilpotent if both of its eigenvalues are zero, but its Jacobian matrix at this point

is non-identically zero;

e ¢ is intricate if its Jacobian matrix is identically zero;

q is an elemental saddle if det (Dp(X)(q)) < 0, i.e. the product of the eigenvalues

of Dp(X)(q) is negative;

e ¢ is an elemental anti-saddle if det (Dp(X)(q)) > 0 and the neighborhood of ¢
is not formed by periodic orbits (in which case we would call it a center), i.e., it is
either a node or a focus.

Nodes and foci can be algebraically distinguished by means of the sign of the dis-
criminant of the Jacobian matrix, but from the topological point of view, this distinction
is useless.

The intricate singularities are usually called in the literature linearly zero. We use
here the term intricate to summarize in a single word the rather complicated behavior
of phase curves around such a singularity. We prefer to avoid the use of the word
“degenerate”. The word “degenerate” has been so widely used for so many different
things that the reader may misinterpret its meaning easily. In [9] the word “degenerate”
is used only to indicate systems with an infinite number of finite singularities (even
if they are complex). We have seen in some papers an elementary node with iden-
tical eigenvalues being called “degenerate”, or a weak focus, and also any multiple
singularity.

Remark 1 Saddles have always (topological) index —1 and anti-saddles have index
+1 (see [26, 32] for the definition of index of a singular point).

We encourage the reader to recall the definition of characteristic directions and
finite sectorial decomposition of vector fields p(X) € P,(S?) (or X € P,(R?)) (for
instance, see [26]).

Let p(X) € P,(S?) (respectively X € P,(IR?)). A separatrix of p(X) (respectively
X) is an orbit which is either a singular point (respectively a finite singular point),
or a limit cycle, or a trajectory which lies in the boundary of a hyperbolic sector
at a singular point (respectively a finite singular point). Neumann [35] proved that
the set formed by all separatrices of p(X), denoted by S(p(X)), is closed. The open
connected components of S? \S(p(X)) are called canonical regions of p(X). We define
a separatrix configuration as the union of S(p(X)) plus one representative solution
chosen from each canonical region. Two separatrix configurations S1 and S> of vector
fields of P, (S?) (respectively P, (R?)) are said to be topologically equivalent if there
is an orientation-preserving homeomorphism of S? (respectively R?) which maps the
trajectories of S; onto the trajectories of S>. However, in order to reduce the number
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of different phase portraits to half, normally the condition of orientation-preserving is
skipped.

Definition 2 We define skeleton of separatrices as the union of S(p(X)) without the
representative solution of each canonical region.

Some canonical regions accept only one representative orbit but other regions whose
border is a graphic (see definition below) accept two different representatives and thus,
a skeleton of separatrices can still produce different separatrix configurations.

We call a heteroclinic orbit a separatrix which starts and ends on different points
(being a separatrix of both) and a homoclinic orbit as a separatrix which starts and ends
at the same point. A loop is formed by a homoclinic orbit and its associated singular
point. These orbits are also called separatrix connections or saddle connections.

A (non-degenerate) graphic as defined in [27] is formed by a finite sequence of
singular points rq, r2, ..., r, (with possible repetitions) and non-trivial connecting
orbits y; fori = 1, ..., n such that y; has r; as a-limit set and ;| as w-limit set
fori < n and y, has r;, as a¢-limit set and r1 as w-limit set. Also normal orientations
n; of the non-trivial orbits must be coherent in the sense that if y; | has left-hand
orientation then so does y;. A polycycle is a graphic which has a Poincaré return map.

A degenerate graphic is formed by a finite sequence of singular points r1, 2, ...,
(with possible repetitions) and non-trivial connecting orbits and/or segments of curves
of singular points y; for i = 1, ..., n such that y; has r; as «-limit set and r; ;1 as
w-limit set for i < n and y,, has r, as «-limit set and r; as w-limit set. Also normal
orientations 7 ; of the non-trivial orbits must be coherent in the sense that if ;| has
left-hand orientation then so does y;. For more details, see [27].

A vector field p(X) € P,(S?) is said to be structurally stable with respect to
perturbations in P, (S?) if there exists a neighborhood V of p(X) in P, (S?) such that
p(Y) € V implies that p(X) and p(Y) are topologically equivalent; that is, there exists
a homeomorphism of S?, which preserves S', carrying orbits of the flow induced by
p(X) onto orbits of the flow induced by p(Y), preserving sense but not necessarily
parameterization.

Since in this paper we are interested in the classification of the structurally unstable
quadratic vector fields of codimension two, we recall the concept of quadratic vector
fields of lower codimension in structurally stability.

Recalling the works of Peixoto [36], restricted to the set of the quadratic vector
fields, we have the following result:

Theorem 1 Consider p(X) € P,(S?) (or X € P,(R?)). This system is structurally
stable if and only if

(i) the finite and infinite singular points are hyperbolic;
(1) the limit cycles are hyperbolic;
(iii) there are no saddle connections.

Moreover, the structurally stable systems form an open and dense subset of P, (S*) (or
P,(R%)).

The studies done up to now on structurally stable systems and codimension one
systems are modulo limit cycles, so it is sufficient to consider only conditions (i) and
(iii) of Theorem 1. We refer to these conditions as stable objects.
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According to [2] there are 44 topologically distinct structurally stable quadratic
vector fields. Concerning the codimension one quadratic vector fields, we allow the
break of only one stable object. In other words, a quadratic vector field X is structurally
unstable of codimension one if and only if

(D) Tt has one and only one structurally unstable object of codimension one, i.e. one
of the following types:

(I.1) asaddle-node ¢ of multiplicity two with oo = (3P /dx +3Q/0y)4 # 0;

(1.2) a separatrix from one saddle point to another;

(1.3) a separatrix forming a loop for a saddle point with pg # 0 evaluated at the
saddle;

(I.4) Tt has one unstructurally unstable limit cycle of multiplicity 2, that is, which
under perturbation may produce at most two hyperbolic limit cycles;

(I.5) It has a weak focus of order 1.

(II) If the vector field has a saddle-node, none of its separatrices may go to a saddle
point and no two separatrices of the saddle-node are continuation one of the other.

For the structurally unstable phase portraits of codimension one modulo limit cycles,
we may tear apart the points (I1.4) and (I.5). Also the point (I.3) requires no dedication:
a phase portrait having a separatrix forming a loop for a saddle point with pg = 0
evaluated at the saddle as its only stability is in fact a codimension two phase portrait
which modulo limit cycles is topologically equivalent to another of codimension one.
In what follows, instead of talking about codimension one modulo limit cycles, we
will simply say codimension one*.

As described in [6, Chapter 5], the codimension one™ quadratic vector fields can be
allocated in four classes, according to the coincidences that may occur with singular
points or separatrices of structurally stable quadratic vector fields X.

(A) When a finite saddle and a finite node of X coalesce and disappear.

(B) When an infinite saddle and an infinite node of X coalesce and disappear.

(C) When a finite saddle (respectively node) and an infinite node (respectively saddle)
of X coalesce and then they exchange positions.

(D) When we have a saddle-to-saddle connection. This class is split into five sub-
classes according to the type of the connection: (a) finite-finite (heteroclinic
orbit), (b) loop (homoclinic orbit), (¢) finite-infinite, (d) infinite-infinite between
symmetric points and (e) infinite-infinite between adjacent points.

Recalling the main result in [6], the phase portraits in all these four classes sum
up 211 topological distinct ones, where 204 of these total are proved to be realizable
and the remaining 7 are conjectured to be impossible. However, when we started the
study of codimension two phase portraits, we needed to rely on the codimension one*
realizable ones and also on the non realizable ones. And some tricky situations lead
us to discover some mistakes in [6] which make that the number of realizable phase
portraits has been reduced to 202 (maintaining the 7 conjectured impossible). One
mistake was found in [15] and another in this paper. In [15] it was proven that phase
portrait from [6] named as U}A’ 49 18 not realizable and must be renamed as Uk,149' And

here we will prove that U}, ¢, is also not realizable and must be renamed as [U]D’l62
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The current step is to classify, modulo limit cycles, the codimension two quadratic
vector fields.

Up to now, we have mentioned many times the word “codimension” and this is a
clear concept in geometry. However, in this classification we want to obtain topolog-
ically distinct phase portraits, and we want to group them according to their level of
genericity. So, what was clear for structurally stable phase portraits and for codimen-
sion one* phase portraits may become a little weird if we continue in this same way. We
do not want to classify phase portraits in a simple euclidean space, but on the moduli
space of phase portraits under the topological equivalence and the modulo limit cycles
condition. Thus, some phase portraits which are geometrically different and which
have different geometrical codimension may be topologically equivalent, and it must
be given a unique topological codimension in this moduli space. The works done up
to now in quadratic systems of topological codimension zero, one and two have had
no problem to determine what conditions were required, but starting at codimension
three and higher, the conditions may become less clear. In paper [10] the authors make
a complete description of the concept of codimension related to polynomial systems
and specially to quadratic systems and give a global definition of codimension which
here is adapted to phase portraits:

Definition 3 We say that a phase portrait of a quadratic vector field is structurally
stable (has topological codimension zero) if any sufficiently small perturbation in the
parameter space leaves the phase portrait topologically equivalent the previous one.

Definition 4 We say that a phase portrait of a quadratic vector field is structurally
unstable of topological codimension k € N if any sufficiently small perturbation in
the parameter space either leaves the phase portrait topologically equivalent to the
previous one or it moves it to a lower codimension one, and there exists at least one
such as perturbation which perturbs the phase portrait into one of codimension k — 1,
or there exists at least one couple of chained perturbations which perturbs the phase
portrait into one of codimension k — 2.

Remark2 1. When applying these definitions, modulo limit cycles, to phase portraits
with centers, it would say that some phase portraits with centers would be of
codimension as low as two, while geometrically they occupy a much smaller region
in R'2. So, the best way to avoid inconsistencies in the definitions is to tear apart
the phase portraits with centers, that we know they are in number 31 [47], and just
work with systems without centers.

2. The last part of the definition mentioning the possibility of a chain of two pertur-
bations, refers to some special cases of high codimension which are explained in
[10] but has no effect in codimension two.

3. Starting in cubic systems, the definition of topologically equivalence, modulo limit
cycles, becomes more complicated since we can have limit cycles having only one
singularity in its interior or more than one. There is even a proof of existence of up
to 13 limit cycles which are nested in a tricky way with one limit cycle surrounding
all nine singularities of a cubic system [22]. So we cannot collapse the limit cycle
because its interior is also relevant for the phase portrait.

4. Moreover, our definition of codimension also needs more precision starting with
cubic systems due to new phenomena that may happen there.
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Table 1 Classes of structurally unstable quadratic vector fields of codimension two* considered from
combinations of the classes of codimension one*: (A), (B), (C) and (D) (which in turn is split into a, b, c,
d and e)

(A) B) © D)
(A) (AA) - - _
B) (AB) (BB) - _
© (AC) (BC) (CO) -
(D) (AD) (5 cases) (BD) (5 cases) (CD) (5 cases) See Table 2

Table 2 Sub-classes of

b d

structurally unstable quadratic ! ¢ ¢
vector fields of codimension a (aa)
two™ in the class (DD) (see
Table 1) b (ab) (bb)

c (ac) (bc) (cc)

d (ad) (bd) (cd) (dd)

e (ae) (be) (ce) (de) (ee)

5. As we have already been doing along this introduction, when we talk about “codi-
mension”, we will refer to the topological codimension as defined in Definitions 3
and 4.

Then, according to this definition concerning codimension two, and the previously
known results of codimension one*, we have the result:

Theorem 2 A polynomial vector fieldin P>(R?) is structurally unstable of codimension
two modulo limit cycles if and only if all its objects are stable except for the break
of exactly two stable objects. In other words, we allow the presence of two unstable
objects of codimension one or one of codimension two.

Combining the classes of codimension one* quadratic vector fields one to each other,
we obtain 10 new classes, where one of them is split into 15 sub-classes, according to
Tables 1 and 2.

Analogously, instead of talking about codimension two modulo limit cycles, we
will simply say codimension two*.

Geometrically, the codimension two* classes can be described as follows. Let X be
a codimension one* quadratic vector field. We have the following classes:

(AA) When X already has a finite saddle-node and either a finite saddle (respectively
a finite node) of X coalesces with the finite saddle-node, giving birth to a semi-
elemental triple saddle: 53y (respectively a triple node: 7(3)), or when both
separatrices of the saddle-node limiting its parabolic sector coalesce, giving
birth to a cusp of multiplicity two: ¢p(,), or when another finite saddle-node
is formed, having then two finite saddle-nodes: sn(2) 451 (2). Since the phase
portraits with 53y and with 723y would be topologically equivalent to structurally
stable phase portraits and we are mainly interested in new phase portraits, we
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will skip them in this classification. Anyway, we may find them in the papers
[16] and [19].

(AB) When X already has a finite saddle-node and an infinite saddle and an infinite
node of X coalesce: 577(2) +(J)SN.

(AC) When X already has a finite saddle-node and a finite saddle (respectively a
finite node) and an infinite node (respectively an infinite saddle) of X coalesce:
s)+(j)SN.

(AD) When X has already a finite saddle-node and a separatrix connection is formed,
considering all five types of class (D).

(BB) When an infinite saddle (respectively an infinite node) of X coalesces with

an existing infinite saddle-node (5) SN of X, leading to a triple saddle: (J)S

(respectively a triple node: (g)N ). This case is irrelevant to the production of
new phase portraits since all the possible phase portraits that may produce are
topologically equivalent to an structurally stable one.

(BC) When a finite anti-saddle (respectively finite saddle) of X coalesces with an

existing infinite saddle-node (g)SN of X, leading to a nilpotent elliptic-saddle

-~

(3)E — H (respectively nilpotent saddle (})H H H — H). Or it may also happen
that a finite saddle (respectively a finite node) coalesces with an elemental
infinite node (respectively an infinite saddle) in a phase portrait having already an

(g)SN, having then in total ({)SN + (g)SN.

(BD) When we have an infinite saddle-node ((2)) SN plus a separatrix connection,
considering all five types of class (D).
(CC) This case has two possibilities:

(i) afinite saddle (respectively finite node) of X coalesces with an existing infinite

saddle-node (})SN, leading to a semi-elemental triple saddle (7)S (respectively

a semi-elemental triple node (?)N ),
(ii) a finite saddle (respectively finite node) and an infinite node (respectively an

infinite saddle) of X coalesce plus another existing infinite saddle-node( i)S N,

leading to two infinite saddle-nodes (})S N +(})S N.

The first case is irrelevant to the production of new phase portraits since all
the possible phase portraits that may produce are topologically equivalent to a
structurally stable one.

One could think also in the possibility of two finite singularities coalescing
with an infinite node (respectively saddle) leading to a nilpotent or intricate
singularity. However, it is proved in [9] that such a possibility cannot involve a
unique infinite singularity, but at least two, and then the codimension is higher.
If several finite singularities coalesce with a single infinite singularity, they all
do along the same affine direction and we just get semi-elemental singularities.
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(CD) When we have an infinite saddle—node(})SN plus a saddle to saddle connection,
considering all five types of class (D).
(DD) When we have two saddle to saddle connections, which are grouped as follows:

(aa) two finite-finite heteroclinic connections;

(ab) a finite-finite heteroclinic connection and a loop;

(ac) a finite-finite heteroclinic connection and a finite-infinite connection;

(ad) a finite-finite heteroclinic connection and an infinite-infinite connection
between symmetric points;

(ae) a finite-finite heteroclinic connection and an infinite-infinite connection
between adjacent points;

(bb) two loops;

(bc) aloop and a finite-infinite connection;

(bd) aloop and an infinite-infinite connection between symmetric points;

(be) aloop and an infinite-infinite connection between adjacent points;

(cc) two finite-infinite connections;

(cd) a finite-infinite connection and an infinite-infinite connection between sym-
metric points;

(ce) afinite-infinite connection and an infinite-infinite connection between adjacent
points;

(dd) two infinite-infinite connections between symmetric points;

(de) aninfinite-infinite connection between symmetric points and an infinite-infinite
connection between adjacent points;

(ee) two infinite-infinite connections between adjacent points.

Some of these cases have been proved to be empty in an on course paper [11].

The class (AA) with a cusp or two finite saddle-nodes has already been studied in
[15] and the classes (AB) and (AC) with a finite saddle-node and both types of infinite
saddle-nodes have also been completed in [14].

The main goal of this paper is to present the global phase portraits of the vector
fields X € P»(R?) belonging to the class (AD) and make sure that they are realizable.

Let 2(2) denote the set of all planar structurally stable vector fields and ZI-Z(S)
denote the set of all structurally unstable vector fields X € P, (R?) of codimension i,
modulo limit cycles belonging to the set S, where S is a set of vector fields with the
same type of instability. For instance, X € Z%(A D) denote the set of all structurally
unstable vector fields X € P»(R?) of codimension two* belonging to the class (AD).

With all of these we can formulate the next theorem.

Theorem3 If X € Z%(AD) then there are at least 77 topologically different phase
portraits (given in Figs. 1, 2, 3) modulo orientation and modulo limit cycles and at
most 93.

In several papers where the phase portraits of a family of quadratic systems were
classified starting from a given normal form [7, 12, 13] and which split the parameter
region in several hundreds of sets, a classification technique using topological invari-
ants was needed in order to detect topologically equivalent phase portraits which may
occur in different parts. Even though this same technique could be used here, we
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consider it is not necessary since the phase portraits (class (D)) from which we start
producing the potential phase portraits of class (AD) are already different, and thus, we
cannot obtain the same phase portrait from two different sources. We can only obtain
two equivalent phase portraits by colliding two different antisaddles with a saddle
starting from the same phase portrait of class (D), and these cases are easily detected
along the proof of this theorem and the repetitions are conveniently teared appart. For
example in Fig. 14 we will see how phase portrait U1D’3 which has two antisaddles

which may coalesce with the saddle, produce only one phase portrait Ui p.3- Other
similar cases appear.

In [6] we already detected seven potential phase portraits of codimension one*
in class (D) for which we were not able to find an example, neither to produce a
proof of impossibility. All these cases were related with the existence of graphics for
which (once fixed every other direction of the flow) the stability or instability of the
focus inside the graphic could mean the difference between having an example or
not. For several reasons developed in [6], these phase portraits were conjectured to
be impossible. From these seven phase portraits, one can develop easily eleven more
phase portraits of class (AD). However, if the conjecture is true, these phase portraits
will be also impossible. On the contrary, if we had found an example of one of these
eleven phase portraits in class (AD), we could easily bifurcate the corresponding
phase portrait of codimension one*. But this has not happened as it was expected by
the conjecture. Moreover, when developing all the topological possibilities of phase
portraits in class (AD), we meet again with the same problem we had in [6] and we
detect some skeletons of separatrices for which there are two potential phase portraits,
and we are only able to find example of one of them. That is, from a certain realizable
codimension one* phase portrait of class (D) having a graphic one can produce the
coalescence of a finite saddle and a finite node. If the focus inside the graphic has a
certain stability (relative to other stabilities in the phase portrait) we are able to find
an example, but it seems that such coalescence is not possible in the opposite case.
This phenomena produces that the number of conjectured impossible cases increases
from codimension one* to codimension two*. Some more cases will be added when
the classes (BD), (CD) and (DD) are completed. And this will even increase higher
when codimension three is studied.

Conjecture 1 The 11 phase portraits of codimension two* that can be developed from
the codimension one* portraits (by coalescing a finite saddle and a finite anti-saddle)
shown in Fig. 4, plus the 5 codimension two* phase portraits shown in Fig. 5 are non
realizable.

Note that the five phase portraits shown in Fig.5 are very similar to other five
realizable cases. The only difference is the stability of the focus inside the graphic.
Consequently, we have named them with a number related with the realizable case.

During the study of this class we have found of a second mistake in [6]. In that book
we claimed to have at least 204 different realizable phase portraits (and 211 at most).
In [15] we already proved that U}L" 49 Was impossible (and renamed it to IUL”I@). Now,
we have found another impossibility which comes from next proposition:
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Fig. 1 Structurally unstable quadratic phase portraits of codimension two™ of class (AD)

Proposition 1 Phase portrait UlD 2 from [6] is impossible (and must be renamed to
UB,Iﬁz ). Thus, the realizable cases of structurally unstable phase portraits of quadratic
systems of codimension one* is at least 202 and at most 209.

The mistake we did in [6] regarding this phase portrait was due because we trusted
the report [42] and derived an example of realization of U}),62 from phase portrait
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Fig.2 (Cont.) Structurally unstable quadratic phase portraits of codimension two™ of class (AD)

anl8 in [42]. However, now that we have tried to derive codimension two* phase
portraits from Ub,ez and we have checked that none seems to appear in already done
classifications which could contain them, we have rechecked the arguments given in
[42]. We concluded that they were not strong and finally worked out a proof of its
impossibility.
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Fig.3 (Cont.) Structurally unstable quadratic phase portraits of codimension two™® of class (AD)
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Fig.4 Conjectured impossible structurally unstable quadratic phase portraits of codimension one™*
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Fig.5 Conjectured impossible structurally unstable quadratic phase portraits of codimension two™ of class
(AD)

In Sect.2 we give a short description of the graphics that have been found in this
paper (or some previous papers of this research line) linking them with the classification
given in [27]. And we also explain a little about limit cycles even though they are out
of the goal of this paper. In Sect. 3 we will prove Proposition 1. In Sect.4 we make a
brief description of phase portraits of codimensions zero* and one* that are needed
in this paper. In Sect. 5, we make the list of topologically potential phase portraits of
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codimension two* in the class (AD) removing already some which can be proved to
be impossible at that same moment. In Sect. 6, we prove the realization of 77 of them,
and will justify the reasons why we conjecture the impossibility of the remaining 16.

2 Graphics and Limit Cycles

Even though the goal of this paper deals little with graphics and limit cycles, it is out
of doubt that these are two of the most important elements in Qualitative Theory.

Limit cycles are the most elusive phenomena in phase portraits. They may appear
either from bifurcation of a weak focus (Hopf-bifurcation), by bifurcation of a graphic,
by bifurcation of a multiple singularity (finite or infinite), by bifurcation of a multiple
limit cycle, by bifurcation of a period annulus, or by bifurcation of degenerate systems
(with a common factor between p and g of (1)) and only the first case can be fully
algebraically controlled. The other cases are generically non-algebraic. Examples of
these bifurcations may be found in hundreds of papers, but in [13], by a simple control
of neighbor regions, examples of all these bifurcations may be found.

Our goal to find all the topologically different phase portraits modulo limit cycles
tears apart this big problem, but it is not an irrelevant goal. Whenever the mathematical
community finally gets the complete set of phase portraits of quadratic systems (or
whatever other family), the subset of the phase portraits modulo limit cycles will be
the base for such classification.

It is expected to obtain more than one thousand (maybe even up to 2000) different
phase portraits of quadratic systems modulo limit cycles. For quite many of them it will
be trivial to determine that they will not have limit cycles (in the case they do not have a
finite anti-saddle). And the phase portraits having an invariant straight line are known
to be bounded to just one limit cycle [23, 25]. But for all the others, it will be needed
to determine exactly how many different phase portraits can be obtained from that
skeleton by adding limit cycles. Up to now and up to our knowledge, there is just one
non trivial skeleton of phase portrait which could theoretically have limit cycles, and it
has been proved the absence of limit cycles in it. Concretely structurally stable phase
portrait S%’ | obtained in [2] was conjectured by statistical tools to be incompatible with
limit cycles in [4] and proved in [5]. For all other non-trivial skeletons of phase portraits
found up to now, there is not a single proof determining which is the maximum number
of limit cycles it may have. There are many papers related to maximum number of
limit cycles, but they are always linked to a certain normal form. Most of them simply
prove that a concrete normal form may have just one limit cycle. But this does not
imply that the skeletons of phase portraits obtained in other normal forms, may not
have more limit cycles in the whole classification.

Up to now, it is known that there are examples of phase portraits of quadratics
systems with four limit cycles distributed in two nests around two foci, three aronud
one and one around the other. And even though it is conjectured that four and this
distribution is the effective maximum, there is not yet any conclusive global proof.
The phase portraits for which there are examples with 4 limit cycles belong to just
three skeletons of phase portraits, concretely the structurally stable Sil and S%l,z from



40 Page 18 0f 88 J.C. Artés

[2], and the codimension one* U};’ 3; from [6], but this (3, 1) distribution is compatible
with many more skeletons. The proof that they may have at least 4 limit cycles was
given in several papers since they appear in classifications with a weak focus of order
3 already having a limit cycle around a strong focus [3].

But not even if the maximum bound were four (and the maximum distribution
(3, 1)), we would be close to obtain all the phase portraits of quadratic systems. Any
of the three above mentioned skeletons of phase portraits may have the topologically
different configurations (0, 0), (1, 0), (2,0), (3,0), (1, 1), (2, 1) and (3, 1). That is
7 different configurations. But even this is not a simple criteria to obtain a simple
upper bound of the total number of phase portraits. There are phase portraits like Sgl
from [2] which has up to three finite anti-saddles. One of them receives (or emits)
a single separatrix, a second anti-saddle receives (or emits) exactly two separatrices,
and a third anti-saddle receives (or emits) exactly three separatrices. So, the fact that
a limit cycle could be surrounding any of the three anti-saddles would generate a
topologically different phase portrait. And in case there were two nests of limit cycles,
and assuming that they could have up to 4 limits cycles, the number of cases would
increase up to 25 possibilities. But from these 25 possibilities, up to now only six have
been confirmed to exist. In fact, a very recent paper [48, Theorem 5.4] reduces these
25 possibilities to just 13 (assuming that 3 is the maximum of limit cycles around each
singularity) when proving that a quadratic system with 4 real finite singularities can
only have distributions (n, 0) or (1, 1).

We are collecting a large database and recording the maximum number of limit
cycles found in each one of the skeletons classified up to now.

With all this we want to remark that the topological classification of phase portraits
modulo limit cycles is important since it produces a complete set of skeletons from
which the complete set of phase portraits must be located. For each particular skeleton,
it must be studied if it contains none, one, two or up to three anti-saddles around which
limit cycles may be located (it is easy to prove that at most two of them may be foci).
If there is a complete collection of phase portraits modulo limit cycles, and an upper
bound of limit cycles is found, this will give a quite rough upper bound for the number
of different phase portraits. But the real number will need a deeper study case by case.
Nowadays it seems still quite far the moment to obtain the final complete classification,
but the classification modulo limit cycles is achievable with the current techniques and
affordable with some effort (better said, quite a lot of effort), so we think it is worth
trying for it.

Now we talk a little about graphics. Graphics are also very important because they
can become the bifurcation edge which leads to the formation of limit cycles. There
has been a lot of literature related to graphics in the past, and one of the most relevant
papers is [27] where the authors list the complete set of 121 different graphics that
may appear in quadratic systems. The graphics in this list can be of different types.
Many of them imply the connection of one (or more) couple of separatrices, finite or
infinite. Other graphics are formed simply because a separatrix arrives to the nodal
part of a saddle-node (finite or infinite) or an even more degenerated singularity in
concomitance with other properties of the phase portrait. Unfortunately, most of these
graphics cannot be detected by means of algebraic tools. In many studies of families
of systems where a complete bifurcation is given of the parameter space, after all the
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algebraic bifurcations are given, the use of continuity and coherence arguments allows
the detection of some other non-algebraic bifurcations where these graphics appear.
Our methodical study of phase portraits of quadratic systems modulo limit cycles
started with codimension zero (structurally stable) [2] and of course these phase
portraits cannot have any graphic at all. The second step was the classification of
codimension one* phase portraits, and there we could start finding some graphics, but
not too many. Concretely we could find graphic (F;) from [27]in U}, 10, U} 15, U} 57,
Uk’ 435 Ul" 505 Ul&,64’ and U]AJ()- This graphic consists simply in one finite saddle-node
which sends its center manifold (separatrix of zero eigenvalue) to the nodal part of
itself. We also have graphic (1129) from [27] in U}g’zg, U}3,30 (twice), U}a,ss» Ug’%
and U}BBS' This graphic consists on one elemental infinite saddle which sends one
of its separatrices to the nodal part of an infinite adjacent saddle-node formed by the
coalescence of two infinite singularities. There are no graphics in the class (C) of codi-
mension one* phase portraits. Finally, in class (D) we find the graphics (F ]1), (Hll)
and (/ 12) from [27]. The first one is just a loop of a finite elemental saddle, the second
one is a separatrix connection between opposite infinite elemental saddles, and the
third one is a separatrix connection between adjacent infinite elemental saddles. The
loop is present in U}, 1, Up, 6 Up, 7. U g, Up 0 Up 13- Up 19> Up 29 Up 23 Up 23
U}),?aO’ UID,31’ UID,32’
[UID’ s54- The second graphic appears in Ub’ 10 and UlD’ 11+ And the third one can be seen

1 1 1 1 1 1 1 1
Up.a6> Up a7 Up ag> Up 49- Up 50, Up 51- Up 5p- Upy 53 and

in Ub,zs’ U;),29’ me, UE,SS and Ub,39' No other graphic from these five types may
appear since all the remaining 116 imply higher codimension.

In the studies of the classes (AA) [15] and (AB) and (AC) [14], the only graphics we
see, are those which are inherited from the respective phase portraits of codimension
one* having already a graphic. In the studies of the classes (AD), (BD) and (CD) we
will start incorporating more graphics from [27] since we will see for example loops
having a saddle-node instead of a saddle. Also the class (DD) will provide graphics
with two separatrix connections. Anyway, the graphics will appear in bigger numbers
when codimension three is studied.

Concretely in (AD) we have already known graphic (F}') (loop) in U7 ;, 5, U7 10,
UiD,n’ U%w,sy U%w,ss’ Ufw,sw U%w,ss’ U%&D,SW UiD,ﬁO and U%D,W; graphic (I7)
in U,zw,as» in,%’ U124D,37’ Uzm,sg’ Uzm,y) and U%w,zto? and graphic (F) in UiD,ss‘

The new graphics we find here are (F31) (loop with a finite saddle-node) in Ui D.9
Uap.12 Uap oz Udpas Udpass Usp.ss and UG, sq; graphic (F3) (heteroclinic
orbit involving a finite saddle and a finite saddle-node having only one separatrix
connection) in Ui D.7° IUIZA D.46 and Ui D.495 graphic (H31) (heteroclinic orbit involving
a pair of infinite opposite saddles and a finite saddle-node having only one separatrix
connection) in Ui D.14> and graphic (182) (heteroclinic orbit involving two infinite

saddles and a finite saddle-node having only one separatrix connection) in U/%\ D.29>
2 2
Uip .32 and Uy p 34
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1,1

3 Impossibility of UD,62

In order to prove this, we need a couple of technical lemmas.

Lemma 1 There are no contact points of the flow of quadratic systems with straight
lines which are characteristic directions of isolated infinite singularities unless these
straight lines are invariant.

Proof Take an infinite singularity of a quadratic system. By means of a rotation we
may put it at the infinite singular point [1 : O : 0], that is, at the end of the x-axis.
Assume there is a contact point of the flow with the x-axis. By means of a translation
we can put that contact point on the affine origin.

Then the system must be

X :a+cx+dy+gx2+2hxy+ky2, @)
y =ex + fy+2mxy + ny’.

We use the notation and normal forms from [9] which are the most effective. The
coefficient of x2 in the second equation must be zero in order to fix the infinite singu-
larity, and the constant term of the second equation must be zero in order to force the
contact point of the flow with the x-axis at the origin of the affine plane.

Then the system has a singular point at the origin of the local chart U; and looks
like

w=_C2m—-gw+ez+ H.O.T.,

. (3)
z=—-gz+H.0.T.,
and the polynomial of characteristic directions is PCD(w, z) = —z(2mw + ez). In
order to have the direction of the x-axis characteristic in the affine plane, the direction
on the z-axis must be characteristic on the Uy chart, and this implies that the variable
w must be a common factor of the PC D(w, z). So we need ¢ = 0. In the case of non
intricate singularities, this is equivalent to compute the eigenvectors of the Jacobian
matrix of the system at the singularity, and we clearly see that in order to have the
vector (0, 1) as eigenvector, we need also e = 0.
And clearly, if e = 0 then y = 0 is an invariant straight line. O

If there cannot be a contact point in the straight line defined by a characteristic
direction of an infinite singular point, even less we can have a finite singularity on it,
and the flow must be transversal all along the line.

Lemma 2 Consider an elemental or semi-elemental infinite singularity of a quadratic
system having an affine characteristic direction. The orbits which are tangent to an
affine characteristic direction (which is not an invariant straight line) of such an infinite
singularity stay locally on the opposite affine semi-plane than those which are tangent
with the same line on the opposite infinite singular point.
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Proof A restricted version of this lemma was already proved in [15] in the case the
infinite singular point was a saddle. Now, with the help of Lemma 1 and the geometrical
classification of singularities done in [9], we can extend the result. We suspect that this
lemma may be true for every infinite singularity of a quadratic system (having affine
characteristic directions), even for the intricate ones. But then the proof would have to
consider many more cases, and since we only need for elemental and semi-elemental
ones, we restrict the statement to what it is.

For the proof of the lemma, we will need to work at an intermediate point between
the classical topological classification of singularities and the geometrical classifi-
cation since the way the orbits reach the singularities will be relevant. This is the
qualitative equivalence defined by Jiang and Llibre in [34].

In [9] (diagrams from 6.5 to 6.8) one can find all the configurations of infinite
singularities that a quadratic system can have according to the geometrical equivalence.
From them, it is easy to count that there are 60 geometrically different real isolated
infinite singularities, from the simplest saddle, to some intricate multiplicity seven
singularities. The possibilities for elemental and semi-elemental are 14.

If we extract from them those which are qualitatively different and which have
affine characteristic directions, one obtains the following points (using the notation

from [9]): N/, N, N*, S, (5)SN and(})SN.

It is important to notice the qualitative difference between N/ and N°°. In the first
case, all the affine orbits arrive at the singular point tangent to the affine characteristic
direction. In the second case, they arrive tangent to the infinity direction (except just
one). This is related to the biggest eigenvalue of the Jacobian matrix. In the case of N*
we have a star node. It is also important to notice that the nodal part of the saddle-node

({)S N behaves as an N/, while the nodal part (in both local charts) of a saddle-node

(g)S N behaves as a N (see Fig. 6). Even though someone may find a bit weird the
shape we have given to some nodal orbits, this is exactly the way they behave. Notice
that every regular point close enough to the infinite node must have an orbit connecting
to it, and the orbit must arrive to the infinite singularity in the required characteristic
direction. So, for example, in the case of a node N/ (see Fig. 6), a regular point close
to infinity and with y < 0 must belong to an orbit which must turn and move into the
upper half-plane so to arrive to the infinite node tangent to the x-axis. The case of the
star node N* may also seem strange since one may imagine the star node formed by
straight lines. If that were the case, then the x-axis would be an invariant straight line
but we are assuming precisely that this is not the case. There are quadratic systems
having a star node at infinity (as well as finite ones) and no invariant straight line. So,
the orbit that arrives to the star node tangent to the x-axis leaves a region in the upper
half-plane whose regular points must belong to orbits that must enter in the lower
half-plane in order to arrive to the star node.

Now, for each one of these singularities we will prove with a picture that the orbits
tangent to the characteristic direction of the infinite singularity cannot be all in the
same semi-plane. Assume the contrary and we obtain Fig. 6.

We have also assumed that the infinite singular point is the point [1 : O : 0] on local
chart U; (and their opposite in chart V), that the characteristic direction is the x-axis



40 Page220f88 J.C. Artés

NI N N*

Fig.6 Proof of Lemma 2

Fig.7 Proof of Lemma 2 (cont.)

and that the flow on that axis goes upwards. This can always be done by means of

rotations, translations, symmetries and time changes.

In each one of the cases (see Fig. 6) there is always a contradiction since it is needed
that some orbits cut the x-axis in the opposite direction. Otherwise, if the tangencies
in one of the local charts take place in the lower half-plane (see Fig.7) all cases are

compatible with the flow on the x-axis.

The next corollary follows immediately from Fig. 6.
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Fig.8 Phase portrait IUID 62

Corollary 1 A separatrix of an infinite elemental or semi-elemental singularity of a
quadratic system cannot cross the straight line defined by its characteristic direction.

Now we are able to prove Proposition 1 and state clearly that phase portrait U})’ 6
from [6] is impossible.

Proof We start by bringing here the image of this phase portrait. We have drawn it
in the left of Fig. 8, exactly as it is given in [6] and in the right we plot an equivalent
one, with a saddle at the origin of the affine plane and an infinite node at the end of
the x-axis. The third infinite singularity may be moved to [1 : 1 : 0] by means of an
affine change. This is a codimension one™ phase portrait since there is a separatrix
connection of type (c) that joins the finite saddle at the origin with the infinite saddle
at the end of the y-axis.

Now one must realize that the separatrices of the infinite saddle do not seem to
satisfy Lemma 2. But this may be due that we simply have not plotted them well. One
needs to prove that in a stronger way.

We start by plotting just the infinite singularities at N[1 : 0 : 0], S[0 : 1 : 0] and
N[1:—1:0], plus the saddle which will have the connection at the origin, plus both
axes which are not invariant, so the characteristic directions arriving to the infinite
singular points N[1 : 0 : 0] and S[O : 1 : O] are not the axes. We also assume that the
infinite saddle which will produce the separatrix connection is on the local chart V>.
All this can be done by means of affine linear changes. Assume that the characteristic
directions are situated in the most natural way as appear in Fig. 9a. Since the separatrix
from the saddle S[O : 1 : 0] on the negative y semi-plane must connect with a separatrix
of the saddle at the origin, it must be on the left of the characteristic direction. Thus,
by Lemma 2, the separatrix of the saddle S[O : 1 : 0] on the positive y semi-plane
must be on the right, and then it is impossible to arrive to the node N[1 : 0 : 0] on the
negative x semi-plane.

So, let us put the characteristic direction in the less natural way, that is, in the left
of the origin (see Fig. 9b). Now it seems that the separatrices of the infinite saddle fit
correctly. However, we still need to plot the opposite stable separatrix of the saddle
at the origin so that it comes from the infinite node N[1 : 0 : 0] on the negative x
semi-plane. Well, it seems compatible with the flow (see Fig.9c) on the positive y
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Fig. 9 Impossibility of phase portrait UZI()Z

semi-plane, but the problem stays in the negative y semi-axis. The flow there moves
to the left, and since the origin is a saddle, the only way this may happen is like we
see in Fig. 9d. This forces that the flow on the x-axis must go down when x > 0 and
upinx < 0.

We must situate the second finite saddle in the fourth quadrant because this saddle
must receive one separatrix from the infinite node in the fourth quadrant and send one
to the finite anti-saddle we have in third quadrant. But then, this saddle cannot receive
its remaining stable separatrix from N[1 : O : 0] in local chart Vj. Thus, we see that
this is incompatible with phase portrait UID’@. O

Even though two errors have been found in [6], one in class (A) and one in class
(D), which would force a renumbering of phase portraits, we have preferred to keep
the gaps unfilled in order to avoid incompatibilities between papers which would
increase confusion. Anyway, in the error for class (D) we have been lucky since it is
the last numbered case of (D) the one which has turned to be impossible. Within time,
a new complete and consistent notation will be created based on the classification of
singularities given in [11].

Since two errors have been already found in [6], we have wanted to convince
ourselves and the scientific community that the remaining 202 phase portraits are
realizable, we have reproduced all the examples given in the book. All of them have
been tested numerically with the program P4 [26] and even though many of them are
infinitesimal perturbations of codimension two systems, all of them can be checked
to be what they represent. We offer the complete collection of P4 files in a zip file
that is free for downloading at “http://mat.uab.cat/~artes/articles/SU2AD/P4sul.zip”.
Please, be careful since several of the examples are on the limit of what can be computed
numerically with P4. For some of them it is needed to adapt the integration parameters
in order to obtain the desired phase portrait. The arguments and techniques to modify
those parameters are explained in the last chapter of [26]. One needs to reproduce the
examples of that chapter which grow in increasing difficulty in order to understand
the use of P4. There are pairs of several examples in [6] which show exactly the same
coefficients. This is perfectly normal since we forgot to add the parameter ¢ which is
positive in one of them and negative in the other, making a saddle-node to split in a
saddle and a node, or to disappear. Anyway, the value of ¢ is not the same for every
example. In some of them, it can be relatively large so to allow a better view of the
phase portraits and in other cases it must be very small since a bigger one may imply
more bifurcations than wished. In the zipped file we offer, the values of ¢ are already
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given and they have been checked to work. Also, there are some of the examples that
show limit cycles. Since the classification was done modulo limit cycles, they are
perfectly acceptable as representatives of their class.

So, the conclusion is that structurally unstable quadratic systems of codimension
one™ can have at least 202 different phase portraits and at most 209, and this gap of
seven remains as a conjecture to be impossible. Moreover we confirm the goodness
of these 202 phase portraits, it is also true that there are some typos in [6] that need to
be corrected. We make here a list of them:

1. In equation (6.9), the coefficient of xy in the second equation must be ((2 + 2h —
n)(1 —e)—2I).

2. In page 198, Table 6.4, the example for Ulw() must be (h,[,n) = (4/10, —194
/10, —1).

3. Inpage 198,Table6.4,theexampleforU}L"67 mustbe (k, [, n) = (—99/1000, 1/10,
81/100). Moreover, it is not a bifurcation of Vi3 from [18], but of V2.

4. In page 211, Table 6.5, the example for U}a,s must be (h,l,n) = (1 + VT +

1076, n — 2h — 42/100, 7) (the same as Uy, ,, but with different sign of &).
5. Inpage 211, Table 6.5, the example for U}” must be (&, [, n) = (-5, 10, 10) (the
same as U}g’ 10 but with different sign of ¢).

6. Inpage 211, Table 6.5, the example for U}a,24 mustbe (h, [, n) = (40001/1000, 206
/100, 25).

7. In page 212, Table 6.6, the example for Uéﬁg must be (h, [, n) = (96/100, 1/10,
81/100).

8. In page 212, Table 6.6, the example for U}?,39 must be (h, 1, n) = (98/100, 1/10,
81/100).

9. In equations (6.101) and (6.102), the coefficient of y? in the second equation must
be 3321/400.

10. In equation (6.103), the coefficient of y? in the second equation must be 5229,/100.

Since the mistake (in [6]) detected in this paper came from a mistake in [42], we
have checked with special care all other examples which came also from that paper.
There was no problem at all in the examples of class (C) since the normal form was
given, the parameters were fixed and all are right. And with respect to class (D), the
paper [42] was used twice in page 239, Section 6.5.5. The first use was of phase portrait
an18 which we have proved impossible here. The second use was of phase portrait
en(09 without giving it explicitly. Anyway, en09 does really exist, and from it, we can
really obtain U})Ao' Concretely system X = 2x/5 — 3y/10 — y? — 3xy — x2/10,
y = xy + x/5 is a representative of U1D,40 and X = 2x/5 — 3y/10 — y> — 3xy,
y = xy + x/5 is a representative of en09.

4 Quadratic Vector Fields of Codimension Zero and One

In this section we summarize all the needed results from the book of Artés, Llibre and
Rezende [6]. The following result is a restriction of Theorem 1.1 of [6] to the class
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(D). We denote by Z%(D) the set of all structurally unstable vector fields X € P, (R?)
of codimension one* belonging to the class (D).

Theorem4 IfX € Z%(D), then its phase portrait on the Poincaré disc is topologically
equivalent modulo orientation and modulo limit cycles to one of the 61 phase portraits
of Figs. 10 and 11, and all of them are realizable.

Here we have already corrected the error detected in this paper and have reduced
the number of phase portraits of class (D) from 62 to 61.

In [6], quite many topologically potential phase portraits of codimension one™ were
discarded because they were not realizable. From all of them, we just need one phase
portrait which appeared in page 77 of [6] but did not receive a formal name until [14,
Figure 13].

Proposition 2 Phase portrait Uké given in Fig. 12 is not realizable.

Animportant result to study the impossibility of some phase portraits is [6, Corollary
3.29].

Corollary 2 If one of the structurally stable vector fields that bifurcates from a poten-
tial structurally unstable vector field of codimension one* is not realizable, then this
unstable system is also not realizable.

It would be nice if this theorem could be adapted to higher codimensions, but
unfortunately this is not so clear. The idea is that if a phase portrait shows several
unstabilities, one can produce potential phase portraits bifurcating from it just breaking
one of such unstabilities. For example, a codimension three phase portrait with a finite

saddle-node 57(2y and two infinite saddle-nodes (%)S N and (g)S N could be susceptible
to be bifurcated in up to six possibilities of codimension two. But maybe there are
some linked unstabilities which cannot be broken independently. One clear case is
a phase portrait with a graphic and a center inside. One can break the center, while
respecting the graphic, but not otherwise: If one breaks the graphic, the center must
also disappear. Also some very intricate singularities in some phase portraits force the
existence of invariant straight lines which are separatrix connections. We can break
the intricate singularity while respecting the invariant line, but we cannot break the
invariant line and produce new phase portraits with the same intricate singularity. This
is a result that must be considered for every particular class of systems. For the class
we are involved now (AD), we can prove it. In fact, the main problem deals with the
concept of “codimension” which may be thought from a geometrical or a topological
point of view, and which for lower codimensions up to 2 has been easy to deal with,
but that starting at codimension 3 has turned much more difficult. We are working
in the preprint [10] which deeply affords the concept of codimension in polynomial
differential systems, and particularly for quadratic systems. In the paper, it is explained
that at some level of degeneracy of the system, the codimension of the configuration
of singularities, or the codimension of the phase portrait is not a simple direct sum of
the individual codimensions of the different unstable objects it may have. The paper
also determines the topological codimension of every topological configuration of
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singuarities from [11]. These topological configurations of singularities were extracted
in [8] from the geometrical configurations given in the book [9]. The topological
codimension of every topological configuration of singularities will be the skeleton
upon which we will be able to study the phase portraits of codimension 3 and higher.
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In this sense, we must put in stand-by our own result [15, Theorem 6] until these higher
codimension systems are studied.

Theorem 5 If one of the phase portraits of codimension one* that bifurcates from a
potential codimension two* class (AD) phase portrait is not realizable, then this latter
phase portrait is also not realizable.

Proof In our case, we have a finite semi-elemental saddle-node and a separatrix
connection which is not necessarily algebraic. We can always break the separatrix
connection by means of a rotated vector field, and this respects the number of finite
singularities. It is true that a rotated vector field may turn a semi-elemental saddle-
node into a cusp, but in order to break the connection we just need an infinitesimal
perturbation, and under these conditions, the saddle-node remains unaffected.

If we want to break the saddle-node, we must simply do first a perturbation of the
system as we did in [6, Lemma 3.24] in order to make it disappear or split it into two
singularities. Of course, this perturbation may (almost surely) break also the separatrix
connection. But by means of another rotated vector field which preserves all the finite
singularities, we may recover the separatrix connection. O

This same theorem will be also be true in the case of the class (CD) with a very
similar proof. However, itis not clear in the class (BD) because after splitting an infinite

saddle-node (g)S N, the required rotated vector field needed to recover the separatrix
connection may affect the infinite singularities. One would like to think that the main
parameters needed to produce both perturbations are of different types, for example,
one being the parameters of the quadratic part of the equation and other of the linear or
constant part. Thus the effect of each parameter would be stronger for the bifurcation
for which it is required and weaker for the collateral effect it produces. Anyway, this
is something which will be considered at its proper time.

We will have a similar problem when looking for examples in Sect. 6 that can be

derived from systems having a (g)S N at infinity since we will need to perturb it and
reproduce a separatrix connection. We will do it so that all our examples will be certain,
but this is not enough to turn this fact into a general theorem as we have done for the
class (AD).

5 Proof of Theorem 3: The Topologically Potential Phase Portraits

Here we consider all 61 realizable structurally unstable quadratic vector fields of
codimension one* from class (D).

This paper leads more with the topology of the space than with a bifurcation dia-
gram. We do not work with normal forms, neither parameters. So, we think it is better
to talk on more topological terms.

Let Hy be the set of all the quadratic systems. That is Hy can be assimilated with
R!? (thus including also the linear systems and even the constant and null systems).
Or if preferred to work in a compact set, Hy can be assimilated to S'! (removing just
the null system). Since each differential system has a unique phase portrait, Hy can
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be considered to contain all the phase portraits of quadratic systems (including also
lower degree ones).
The equivalence relation modulo limit cycles is defined in Hy as follows:

Definition 5 Two systems Sy, Sy are equivalent modulo limit cycles, S| ~pc S», if
and only if by identifying the unique focus inside each eye of limit cycles with each
one of the points inside the closed region bounded by the largest one of the limit cycles
of an eye of limit cycles, the two phase portraits become topologically equivalent with
the resulting quotient topology on the plane.

So we obtain the space of all the different phase portraits modulo limit cycles of
quadratic systems as Ho = Hy / ~. The structurally stable quadratic systems occupy
a generic space in Hy while the non stable ones occupy a space of measure zero.

Let H; be the complementary space of the structurally stable systems. That is, Hj is
the space of all the non stable phase portraits. Equivalently, we can define the space of
all the different (modulo limit cycles) non stable phase portraits of quadratic systems
as H) = H, / ~.So 1:10\1:11 is exactly the space of the structurally stable ones. I:IO\I:I 1
is divided into disconnected pieces. All these pieces are open sets bordered by parts of
H. So, each piece of HO\H 1 must have a common border with at least another piece
of H()\H 1-

In a similar way, the set of the codimension one™ phase portraits occupy a generic
part of H, and the set of hi gher codimension phase portraits (modulo limit cycles) that
we may call H» is an hyper-surface of H.

Thus, the set of codimension one* phase portraits is ﬁl \ﬁz.

We will say that two structurally stable systems modulo limit cycles (equivalently
two pieces of I:IO\FI 1) are adjacent if they share a border which is a piece of H \ﬁz.
That is, we ask them to share a border of non-null measure in bét 1.

We can extend these definition to higher codimensions naturally.

It is not known the number of disconnected pieces of ﬁo\I:I 1 but we know for sure
that there are at least 44 since this is the number of topologically different structurally
stable quadratic phase portraits modulo limit cycles that exist. It could happen that
different pieces of Ho\Hl would share the same phase portrait. It is convenient to
define another equivalence relation between pieces of HO\H 1 and say that two pieces
are equivalent if they produce the same topological phase portrait. In this sense, we
may say that Hy = (ﬁo\ﬁl) / ~ has exactly 44 pieces. We may extend the same
definition to higher codimensions.

In the same way, we know that H = (1:11\1:12) / ~ has between 202 and 209 (7
conjectured impossible) pieces. In this paper we are looking for the number of pieces
of Hy = (HQ\H3) / ~ that contain a finite saddle-node and a separatrix connection.

With the list of potential phase portraits of class (AD) we have the list of all the
potential borders that we may have between some pieces of H, (those having the
required conditions of unstability), but maybe some of them are not realizable. In
order to exist, the bifurcations of the potential phase portrait must really exist.

In order to check this, we need to consider all the phase portraits of codimension
one* (of the required subfamilies), and study which are the potential borders of the
pieces in H,



Structurally Unstable Quadratic Vector Fields of... Page310f88 40

Definition 6 We will call evo~lution of a phase portrait in I:Ik (withk =0,1,...)to
the tree of phase portraits in Hy1 which border it, and complemented with the phase
portraits in Hj that can be found beyond that border by a small perturbation.

We use the term evolution because we want to avoid the use of the term “perturba-
tion”. A “perturbation” is classically a small modification in the parameter space so
to break and bifurcate some degeneracy. An “evolution” is a trip to the borders of the
region to look what can be found in their borders and what is beyond them. Notice that
we only consider the border of exactly one dimension less of the starting region. The
pieces of border of lower dimension will be considered when studying the evolution
of the phase portraits of the previous borders. In order to use a simpler language, we
will say that a phase portrait produces by evolution the corresponding tree of phase
portraits, or simply produces the corresponding tree of phase portraits. Moreover we
will describe the tree first mentioning the borders, and later the phase portraits beyond
the borders.

Remark 3 1t is important to mention that phase portraits corresponding to some low
codimension may also appear in some higher codimensions. The simple reason is that
two geometrically distinct singularities may be topologically equivalent. The simplest
cases are the triple semi-elemental nodes and saddles which topologically behave as if
they were elemental ones. Then for example, some codimension two™ phase portraits
may be topologically equivalent to structurally stable ones. In this sense, one may
have a piece of Hy which is bordered by a piece of H; and this last one has a border
in H, which is topologically equivalent to what we had in the original piece of Hy.

Remark 4 Even more curious is a situation that we will see several times in the paper.
We have a phase portrait with a finite saddle-node and a separatrix connection which
uses one (or two) separatrix of the saddle-node. Then, if the saddle-node disappears,
obviously the connection must also disappear. So, we have an object of codimension
two™ and while looking for one of their first level bifurcations which should be in
codimension one*, it is forced to be in codimension 0. We have already found several
of these cases in different bifurcation diagrams (see for example Figures 40, 41 and
42 in [7]), and the simplest explanation is that the separatrix connection simply “per-
sists” in the complex space. Anyway, the phase portrait allows other perturbations in
codimension one which confirms its codimension two by Definition 4.

In order to find all the topologically potential phase portraits belonging to the class
(AD) of codimension two™, it is necessary to consider all possible ways of coalesc-
ing two finite singular points (in a phase portrait that already contains a separatrix
connection) producing a finite saddle-node and maintaining the connection. It is not
necessary to study the already known non-realizable phase portraits of class (D). Tech-
nically it could also be possible to start from phase portraits in class (A) and check all
the possible separatrix connections than can be produced. However, this alternative
algorithm does not guarantee that we do not miss some possibilities.

So we will consider one by one all the 61 realizable phase portraits from class (D)
and determine the set of potential phase portraits of class (AD). In other studies where
the determination of impossible phase portraits needed long proofs, we were forced
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to use a temporary notation for the set of candidates. But in this case, the proofs are
much easier, and we can provide the definitive notation. Anyway, this notation cannot
be considered definitive until we provide the example which proves the realization in
Sect. 6.

After the coalescence of a finite saddle and a finite node, we will obtain a codi-
mension two™ phase portrait. We can bifurcate this phase portrait in several ways,
either producing the disappearance of the saddle-node or by breaking the separatrix
connection (and normally this last option produces two possibilities). If the separatrix
connection is related with the saddle-node, its disappearance may produce also the
disappearance of the connection and we will have a structurally stable system. But
in some tricky case, a (or even two) new separatrix connection may appear after the
disappearance of the saddle-node. Then we will obtain an unstable phase portrait of
class (D) and several related structurally stable ones. In case we break the separatrix
connection, we will always obtain phase portraits of class (A).

Phase portrait UID,I cannot produce by evolution any portrait of class (AD) since
its only anti-saddle (more concretely a focus) is already confined inside the graphic.
If that focus coalesces with the only available finite saddle, it will produce a cusp,
and the connection disappears. In this case, the border of the region is phase portrait
[UIZ4 .1 from [6]. This is not its unique border. Other borders may be phase portraits
where another saddle-node (finite or infinite) appears. This will happen in some other
cases so we will not comment any more these possibilities.

Phase portrait U} p.» may produce by evolution phase portraits U2 ap,1 and U2 AD.2
(see Fig.13). After bifurcation by disappearance of the saddle-node, the separatrix
connection is lost and we get the structurally stable phase portrait S2,1 (see Remark 4).
A perturbation breaking just the connection produces codimension one* phase portraits
U}A,S or Uix,z from TUE\D,] and phase portraits U/{M or U}q,s from U/ZL\D’Z. In Fig. 13 we
have drawn the complete bifurcation diagram.

Phase portrait U1D,3 may produce phase portrait Ui p.3 (see Fig. 14) and after bifur-

cation we get phase portraits S%,l, U}L\)Q or Uk’ 3. By symmetry, the other anti-saddle
coalescing with the saddle leads to same conclusion.

Phase portrait UID, 4 may produce phase portrait IU% D4 (see Fig. 15) and after bifur-
cation we get phase portraits Sg, 1 U}” or Uk’ ¢+ By symmetry, the other anti-saddle
coalescing with the saddle leads to same conclusion.

Phase portrait Ub,s may produce phase portraits U% D.5 Ui p.e and Ui p.7 (see
Fig. 16). After bifurcation by disappearance of the saddle-node of the first two we get
phase portraits S%,] . However, in the third case, the separatrix connection may remain
and we get phase portrait U [1)’ 1 If itdoes not remain, we get phase portrait S%’l without
limit cycle, or with limit cycle. Of course, generically the connection will not survive.

If bifurcation breaks the separatrix connection we get phase portraits [U}H from all
of them in one of the possible breaks, or respectively phase portraits U}%ﬂ’ U}%,S and
[UIIA’ 10 With the other break.

For the sake of the argumentation we will describe the evolution of phase portrait
TUIDJ before Ubb.
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Phase portrait IUlD’7 may produce phase portraits Ui p.g and Ui p.o (see Fig. 17).In
the first phase portrait the separatrix connection has no relation with the saddle-node
and may remain. So, if the saddle-node disappears we get a phase portrait of class (D),
concretely UID) |- From Uf‘ p.o- if the saddle-node disappears, the loop also vanishes

and we get S%’] (with limit cycle). If we break the loop, we obtain U}‘L 4 (with limit

cycle) or U}A,S from the first, and Ulm (with limit cycle) or Ul&,lo from the second.
We want just to remark the subtle difference between Ui p.oand UIZL‘ p.7- Inthe case

of Ui D.o the separatrix connection involves only the saddle-node and if the singularity

disappears, the connection also. But in the case of IUIZ4 p.7 the separatrix connection
involved the saddle-node and a saddle, and there exists the possibility that even after
the disappearance of the saddle-node, a new separatrix connection may be formed
with separatrices of the saddle. We will also see later (see [Ui D. 47) & case in which
after the disappearance of the saddle-node, two different separatrix connections (and
3 generic possibilities) may appear.

Phase portrait IUlD’é may produce phase portraits Ui p.77 and Ui’{)’g (see Fig. 18).
The reason why we jump numeration from expected 10 to 77 is that for a long time we
have thought that Ui p.77 Would be impossible and thus was given the name Uié,&
However we have delayed the completion of this paper until the complete study of the
family of quadratic systems with a finite saddle-node and a weak focus (QSwflsn)
of first order which was on process [20]. Finally from this paper we have obtained a
clear example of Ui p.77 Proving it is realizable. Since the numeration in this paper
was already done, and a renumbering could lead to mistakes, we have preferred to call
it as UZ‘ D77
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Fig. 16 Phase portraits U%D,S’ UiD’() and UiDJ

Phase portraits U% p 77 and Ui’{) o have the same skeleton of separatrices, as the
phase portraits [U/z4 pgand [UI%l Do (respectively), but now the focus inside the loop has

opposite stability. As we will show in Sect. 6, both Ui p.g and Ui p.77 ¢an be obtained
from class (AB) and QSwflsn (respectively) but we have only been able to found
[UIZ4 p.o and Ui’gg remains not found.

Remark 5 Notice that if phase portrait Ui{g o would exist, then a perturbation of it

would produce U}‘LIO with a limit cycle. We have not found any example in all the
bibliography we have checked. If it could be proved to be impossible, then by The-
orem 5 we would obtain the impossibility of Ui’ 11)’9. The opposite is not true. The

existence of [U,lq, 10 With a limit cycle is not yet a proof of the existence Ui’ 11)’9 but it
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Fig. 19 Unstable phase portrait U% D.10

is a nice starting point from which trying to produce it. This is an argument why we
have conjectured Ui’g o to be non-realizable. Similar arguments apply to the rest of
conjectured impossible cases.

Before considering phase portrait UlD’S we must point out a small drawing typo in
this phase portrait (and the same typo in UlDyg, UID,zo’ U1D,31 , U1D,48’ Ul[),53 and U1D,54)
in [6]. In all of them the orbits inside the loop must turn in the same sense as the loop.

Phase portrait U})’g may produce phase portrait Ui p.10 (see Fig.19) and after
bifurcation we get phase portraits U})’ | (plus S%,l with or without limit cycle), U}x,s
or [Ull& ¢ (with limit cycle).

Phase portrait U})’() may produce phase portrait Ui p.11 (see Fig.20) and after
bifurcation we get phase portraits TU}I1 (plus Sg,l with or without limit cycle), Uk’ 6
or [UL’ 5 (with limit cycle).

Phase portraits Ub,lo and UID,“ may not produce phase portraits of class (AD)
since they do not have finite saddles.

Phase portrait Ub_ |, may produce phase portraits Ui p.12 and Ui’ ll)’ 12 (see Fig.21).
Even though this may seem a symmetrical situation, it is not and both resulting phase
portraits are different regardless they share the same skeleton. Moreover, we have found
an example for one of them and the other is conjectured impossible. After bifurcation
by disappearance of the saddle-node, the separatrix connection is lost and we get the
structurally stable phase portrait Sil (with limit cycle). By breaking just the loop can
produce codimension one* phase portraits U,]4,12 (with limit cycle) or Uk’ 13- We must

mention here that the phase portrait Ui’g’ |5 itis drawn in [18] as phase portrait 5.7 Lo
in Fig. 10. However there is a typo there since the focus inside the graphic must have
the opposite stability, and then in fact corresponds to [UIZ4 p.12- In order to confirm the
typo, one must look at Figs. 63 and 64 where the region 5.7 L5 (which is in fact 5.7Lg
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Fig. 21 Unstable phase portrait UiD 12 and conjectured impossible Ui’ll) 12

due to another typo) is surrounded by regions Vs3, Vs4, V37 = Vog and Vo5 = Vig7
and all them have that focus as attractor.
Phase portrait U})y 13 may produce phase portraits [Ulz4 p.13and Ui .14 (see Fig.22).

After bifurcation of Ui p.13 by disappearance of the saddle-node, the separatrix con-
nection is lost and we get the structurally stable phase portrait Si,r By breaking just
the connection one can produce codimension one* phase portraits Uit,lz or le,l 1
After bifurcation of Ui D.14 by disappearance of the saddle-node, the separatrix con-

nection may persist and we get phase portrait IUID 10 OF Sﬁ | with limit cycle on one
or other anti-saddle (which must be a focus). By breaking just the connection one can
produce codimension one* phase portrait Uk 13 (just one because of symmetry).

Phase portrait U})’l 4 may not produce phase portraits of class (AD) since it does
not have finite anti-saddles.
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Phase portrait Ub’ |5 may produce phase portraits Ui p.15and Ui .16 (see Fig.23).
After bifurcation of Ui p.15 by disappearance of the saddle-node, the separatrix con-
nection may remain and we get phase portrait IUID’ 14 (plus Sé,l just one by symmetry).
By breaking just the connection one can produce phase portraits U i\, 14 OF U}‘L 15+ After
bifurcation of Ui D.16 by disappearance of the saddle-node, the separatrix connection
is lost and we get phase portrait Sg’ |- By breaking just the connection one can produce
phase portraits U}L‘) 16 and IU}“ 4

Phase portrait U})’ 16 may produce phase portrait [Ui p.17 (see Fig.24). After bifur-
cation by disappearance of the saddle-node, the separatrix connection is lost and we
get phase portrait Sé |- By breaking just the connection one can produce phase portraits
Ul 15 and U ;.

Phase portrait U})’ 17 may produce phase portrait Ui p.1g (see Fig.25). After bifur-
cation by disappearance of the saddle-node, the separatrix connection is lost and we
get phase portrait Sé‘ |- By breaking just the connection one can produce phase portraits
Ul 17 and Uj 4.
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Phase portrait U})’ 13 may produce phase portrait Ui .19 (see Fig.26). After bifur-

cation by disappearance of the saddle-node, the separatrix connection may remain and
. 1 2 . . .

we get phase portrait Uj, 1, (plus Sg | just one by symmetry). By breaking just the

connection one can produce phase portraits Uk’ 17 and Ui\, 18-

Phase portraits U})’ 195 U}),zo’ U})ﬂ and U1D’23 may not produce phase portraits of
class (AD) for the same reason as Ub,l' And obviously U}),m neither may by lack of
finite singularities.

Phase portrait U})’z , may produce phase portrait [U%4 Dp.20 (see Fig.27). After bifur-
cation by disappearance of the saddle-node, the separatrix connection may remain and
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we get phase portrait UlD,zl (plus Sg’ | just one by symmetry). By breaking just the
connection one can produce only phase portrait Uzl4, 19 (because of symmetry).

Phase portrait U}),zs may produce phase portrait Ui p.21 (see Fig.28). After bifur-
cation by disappearance of the saddle-node, the separatrix connection vanishes and
we get phase portrait Sé’l. By breaking just the connection one can produce phase
portraits Uix,19 and U,l4,20'

Phase portrait U})’% may produce phase portrait Ui p.22 (see Fig.29). After bifur-
cation by disappearance of the saddle-node, the separatrix connection may remain and
we get phase portrait UlD,Z] (plus S%,l just one by symmetry). By breaking just the
connection one can produce phase portraits Uimo and Uim I
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Phase portraits U1D,27, UlD,zs and U})!zg may not produce phase portraits of class
(AD) since they do not have finite saddles.

Phase portrait U1D’30 may produce phase portrait [U% p .23 (see Fig.30). After bifur-
cation by disappearance of the saddle-node, the separatrix connection vanishes and
we get phase portrait Sf 1.1 (with limit cycle). By breaking just the connection one can
produce phase portraits UL,M and U}é 57 (with limit cycle).

Phase portrait U1D’31 may produce phase portrait Ui p.24 and Uié,% which we

conjecture as impossible (see Fig.31). After bifurcation of UE‘ Dp.24 Dy disappearance
of the saddle-node, the separatrix connection is lost and we get the structurally stable
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phase portrait S%l 3 (with limit cycle). By breaking just the connection one can produce
phase portraits U}L 5g (with limit cycle) or TUIILL 59-

Phase portrait U})&z may produce phase portrait U% p.2s (see Fig.32). After bifur-
cation by disappearance of the saddle-node, the separatrix connection vanishes and
we get phase portrait S%l,z (with limit cycle). By breaking just the connection one can

produce phase portraits Ui‘ 70 and Ui‘ 66 (With limit cycle).

Phase portrait U}:),33 may produce phase portraits Ui Dp.26 and Ui p.o7 (see Fig.33).
After bifurcation of Ui Dp.26 DY disappearance of the saddle-node, the separatrix con-
nection is lost and we get the structurally stable phase portrait S%l |- By breaking just
the connection one can produce phase portraits U}Q 62 OF Ui‘ 63+ After bifurcation of
Ui p.27 by disappearance of the saddle-node, the separatrix connection may remain
and we get phase portrait [UID 27 (plus S%l » and S% 1.3)- By breaking just the connection
one produces phase portraits U}A 61 OF U}L‘ 67"
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Fig.33 Unstable phase portraits Uy D.26 and Uy D27

Phase portrait Ub, 34 may produce phase portraits U% p.og and [Ui .29 (see Fig.34).
After bifurcation of Ui p.2g Dy disappearance of the saddle-node, the separatrix con-
nection is lost and we get the structurally stable phase portrait S%l .1- By breaking just
the connection one can produce phase portraits U}L"ﬁg or U{{L 63+ After bifurcation of
[UIZ4 Dp.29 DY disappearance of the saddle-node, the separatrix connection may remain
and we get phase portrait TU‘D,29 (from which S% 1.1 With limit cycle or S% 1.2 Without
may bifurcate). By breaking just the connection one produces phase portraits Ui" 67
or UIIA,6 4

Phase portrait UIDJS may produce phase portraits Ui D.30° Ui p.31 and [Ui D.32
(see Fig.35). After bifurcation of Ui p.30 by disappearance of the saddle-node, the
separatrix connection is lost and we get the structurally stable phase portrait S% 13- BY
breaking just the connection one can produce phase portraits U}wo or Ul"é |- After
bifurcation of Ui p.31 by disappearance of the saddle-node, the separatrix connection
is lost and we get phase portrait S%I,S' By breaking just the connection one produces
phase portraits U}Ml or Uk’ sg- After bifurcation of [Ui p.32 DY disappearance of the
saddle-node, the separatrix connection may persist and we get phase portrait U1D’28
(or its respective bifurcations S%]’] and S%I,Z with limit cycle if the connection does
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Fig. 34 Unstable phase portraits Ui D.28 and UE\ D.29

not persist). By breaking just the connection one produces phase portraits U}L‘ 59 OF
1
Uj.60-

Phase portrait UlD 3¢ may produce phase portraits Ui p .33 and [UIZL‘ D 34 (see Fig. 36).
After bifurcation of Ui p.33 by disappearance of the saddle-node, the separatrix con-
nection is lost and we get the structurally stable phase portrait S%l »- By breaking just
the connection one can produce phase portraits [UIIL‘ 69 OF U% 7+ After bifurcation of
[Ui Dp.34 b disappearance of the saddle-node, the separatrix connection may persist

and we get phase portrait [UID og (Or its respective bifurcations S%l ; and S%l , with
limit cycle if the connection does not persist). By breaking just the connection one
produces phase portraits UL 70 OF Ul‘ 68"

Phase portrait U 5’37 may produce phase portraits Ui p 35 and Ui D 36 (see Fig.37).
After bifurcation of any of them by disappearance of the saddle-node, the separatrix
connection may persist and we get the phase portrait IUIDJS (and also its possible

unfoldings S% 1.1 and S%l,z with limit cycle). By breaking just the connection in TUIZA D.35
one can produce phase portraits Ul\ 56 OF Uk 65 (with limit cycle). By breaking just the
connection in UE‘ .36 One produces phase portraits [Uk’ 57 OF Ui" 66 (With limit cycle).
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For the next example we need a classical result [24, Theorem 3]:

Lemma 3 Assume a phase portrait of a quadratic system with two foci (or centers).
The flow around these foci must always rotate in opposite clockwise sense. The same
happens with two graphics which are not nested.

Proof The proof of this lemma follows easily from the fact that a straight line passing
through two singular points cannot have more contact points. O

Phase portrait U1D,38 may produce phase portraits Ui p.37 and Ui p.3g- Topo-
logically, it could also produce phase portrait Ui{),% (see Fig.38) but this case is

impossible by Lemma 3. After bifurcation of U/ZL‘ p.37 by disappearance of the saddle-
node, the separatrix connection may persist and we get the phase portrait [UlD728 (and
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also its possible unfoldings S%l .1 with limit cycle and S%l 2 )- By breaking just the con-
nection in Ui p.37 one can produce phase portraits U}A,63 or U}q’ 6o (with limit cycle).
After bifurcation of IUIZ4 p.3s Dy disappearance of the saddle-node, the separatrix con-
nection may persist and we get the phase portrait U})’29 (with limit cycle and also its
possible unfoldings). By breaking just the connection in [U/ZL‘ p.38 one produces phase
portraits U}M 4 OF U}“O (with limit cycle).

Phase portrait [U})’ 39 may produce phase portraits [Ui p.39 and [Ui .40 (see Fig.39).
They are very similar but not identical, and their different bifurcations will corroborate
it. After bifurcation of any of them by disappearance of the saddle-node, the separatrix
connection persists and we get the phase portrait Ub,zt) in the first case and U1D’28 in

the second, both without limit cycle. By breaking just the connection in Uf‘ Dp.39 One
can produce phase portraits Uk,m or Ul},GS (with limit cycle). By breaking just the
connection in TU% p.40 One produces the same phase portraits, but now the limit cycle
is in U} ;.

Phase portrait [UlD’ 40 May produce phase portraits [UIZ4 p.41 and Ui .42 (see Fig.40).
After bifurcation of any of them by disappearance of the saddle-node, the separatrix
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connection vanishes and we get the phase portrait Sg’ |- By breaking just the connec-
tion in UE‘ Dp.41 one can produce phase portraits U}m | or U}A,ZS' By breaking just the
connection in Ui .42 one can produce phase portraits Ulmz or le,27'

Phase portrait Ub’ 41 may produce phase portraits [Ui p.43and [Ui p 44 (see Fig.41).
After bifurcation of [U% p.43 by disappearance of the saddle-node, there is the possibility
of the separatrix connection surviving and we get the phase portrait U1D,25 (or its
bifurcations in stable systems Séyl and Sg,z). In the case of [Ui .44 the separatrix
connection vanishes and we get Sg,l' By breaking just the connection in Ui D.43 One
can produce phase portraits [U}Lm] or [UIIL‘,3 4~ By breaking just the connection in [UIZL‘ D.44
one can produce phase portraits UIILL 35 OF U}q,&%'

Phase portrait Ub, 4 may produce phase portraits Ui p.4s and TUE‘ D.46- TOPO-
logically, it could also produce phase portrait Ui’ 1[), 46 (see Fig.42) but this case is

impossible since the vanishing of the saddle-node would produce phase portrait Ig j.
After bifurcation of Ui D a5 Dy disappearance of the saddle-node, the separatrix con-

nection disappears and we get the phase portrait Sg |- By breaking just the connection
one can produce phase portraits Uk 5p OF U}; 4
After bifurcation of Ui .46 DY disappearance of the saddle-node, we get a tricky

situation since two separatrices in Uz‘ D 46 arrive to the nodal part of the saddle-node,
and the separatrix connection originally produced by the center manifold may persists
in two different ways, to know U}) 53 and U}) 25 (with limit cycle). And if the connec-
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tion does not persist there are three possibilities, to know Sg,z (with limit cycle) if we
are between the two unstable possibilities, 85,3 if we are beyond UID,23 and Sg‘l (with
limit cycle) if we are beyond Ui),zs’

By breaking just the connection in Ui p 46 One produces phase portraits U}A’ 5 Or
Ul 4

Phase portrait UID’ 43 may produce phase portraits U/ZL\ D.47> U%‘ p.4g and Ui D.49
(see Fig.43). After bifurcation of Ui p.47 by disappearance of the saddle-node, the
separatrix connection disappears and we get the phase portrait S%j. By breaking just
the connection one can produce phase portraits Ul&,so or Ul" 36

After bifurcation of Ui p.4g Dy disappearance of the saddle-node, the separatrix
connection disappears and we get the phase portrait Sg,z. By breaking just the con-
nection one can produce phase portraits U}L 47 OF U}A,38'

After bifurcation of Uf‘ .49 by disappearance of the saddle-node, the separatrix
connection may persist and we get the phase portrait U}),zz (and also its possible
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unfoldings Sg 3 with limit cycle or Sggz). By breaking just the connection in [Ui D 49
one produces phase portraits UL 37 OF [U}4 438

Phase portrait UID, 44 May produce just phase portrait Ui\ p.so bY symmetry (see
Fig.44). After bifurcation of Ui‘ p.s0 Dy disappearance of the saddle-node, the sepa-
ratrix connection disappears and we get the phase portrait Sg |- By breaking just the
connection one can produce phase portraits U% 54 OT Uk s5-

Phase portrait UID’ 45 may produce phase portraits Ui p.5) and Uﬁ .52 (see Fig.45).
After bifurcation of U% p 51 by disappearance of the saddle-node, the separatrix con-
nection disappears and we get the phase portrait Sg |- By breaking just the connection
one can produce phase portraits Uk 53 OF Uk 45

After bifurcation of Ui p.5> by disappearance of the saddle-node, the separatrix
connection disappears and we get the phase portrait Sg 5. By breaking just the con-
nection one can produce phase portraits U}L‘ 5; Or Ul‘ 46°

Phase portrait U})’ 46 May produce phase portraits U%‘ p.s3 and Ui p.s4 (see Fig. 40).
After bifurcation of Ui p 53 by disappearance of the saddle-node, the separatrix con-
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nection may remain and we get the phase portrait Ub 2, (or its stable bifurcations
S‘%l or 53,3 with limit cycle). By breaking just the connection one can produce phase
portraits UL 38 OF UL 4 With limit cycle.

After bifurcation of Ui p.s4 Dy disappearance of the saddle-node, the separatrix
connection disappears and we get the phase portrait Sg 5 with limit cycle. By breaking
just the connection one can produce phase portraits Ui‘ 37 OF IU}4 »3 With limit cycle.

Phase portrait Ub 47 may produce phase portrait Ui’g 55 but we conjecture it to
be impossible (see Fig.47). Even though we have not shown previously the possible
bifurcation of conjectured impossible phase portraits, it is worth to do it in this case.
After bifurcation of Ui’ {) 55 by disappearance of the saddle-node, the separatrix con-
nection may remain and we get the phase portrait U}) 53 (or its stable bifurcations
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Sg,z with limit cycle or Sg’ 3). By breaking just the connection one can produce phase
portraits [UIIL‘ 26 OF Uk 40 With limit cycle.

The fact that all the possible bifurcations from a codimension two* phase portrait
may exist, it is not a proof that such portrait exist. However, if at least one of the possible
topological bifurcations does not exist, it is a proof of its impossibility. Maybe in this
case, it occurs that phase portrait Uk 40 Which is realizable, maybe cannot exist with
limit cycle.

Phase portrait [UID’ 4g (With the same skeleton as UID’ 47) may produce phase portrait
[UIZ4 p.5s (see Fig.48). After bifurcation of Ui p.ss Dy disappearance of the saddle-
node, the separatrix connection may remain and we get the phase portrait TUE o (or
its stable bifurcations SS 5 Or Sg 5 with limit cycle). By breaking just the connection
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one can produce phase portraits Ul\ 26 With limit cycle or UL 40- We may see that
this case is very similar with the previous one, and only changes the stability of the
focus inside the loop. And the bifurcations obtained are also very similar, with limit
cycles in different cases. But when looking for examples of U% p 55 We have been
successful while looking for Ui’ é 55 not. That is, we have been able to produce Ui‘ 2%
with limit cycle while nowhere appears Uk 40 With it. This is clearly not a proof, but
being already aware of the existences of these dual cases where one is possible, and
another is not found, we believe that our conjecture is certain.

Phase portrait IUID, 49 may produce by evolution phase portrait Ui’é’% (conjectured
impossible) and impossible phase portrait Ui’g seq (se€ Fig.49). Why Ui’ll) 564 18
impossible? Because after the disappearance of the saddle-node, we get a phase portrait
with a loop which was not even named in [6] since it bifurcates in g ;. However, we
have not a proof of the impossibility of Ui’ g 5¢- We have simply not found an example
for it, and we have done for its dual case that we will see in the next example.

After bifurcation of Ui’f)’sﬁ by disappearance of the saddle-node, the separatrix
connection does not persist and we get the phase portrait Sg |- By breaking just the
connection one can produce phase portraits U}A 43 With limit cycle or [U}L‘ »g- Maybe
U,14 43 18 not realizable with limit cycle.

Phase portrait UlD 5o has the same skeleton as IUID 49 and thus has a similar evolution.
It may produce by evolution phase portrait IU% p.s¢ and impossible phase portrait
Uié,s&; (see Fig.50). Phase portrait Uié,%b is impossible for the same reason as

Ui‘{?’% o By. the way, the names UiL,SG a.and U%é),ﬁﬁb are somehow artificial. The
conjectured impossible phase portrait which has the same skeleton of separatrices

2 N . 2,1 2,1
as Uy p 56 18 Uy s¢- Phase portraits Uy, 5¢, and Uy 5¢, share a same skeleton
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(different from the one of Ui p.56) and are proved both to be impossible. We just want
to give a name to these impossible phase portraits for if ever we need to use them in a
future paper in order to prove the impossibility of other phase portraits. And since the
name Uié,% is already needed to denote a conjectured impossible case, thus we give
them a close name. We do not want to use a number at the end of the list like 78 for if
ever a conjectured impossible phase portrait is finally found to be realizable and that
number were needed.
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After bifurcation of [Ui .5 by disappearance of the saddle-node, the separatrix
connection does not persist and we get the phase portrait Sg , with limit cycle. By
breaking just the connection one can produce phase portraits Uzl& 43 OF U}4,28 with
limit cycle.

Phase portrait UlD, 5; may produce by evolution phase portrait Ui p.s7 (see Fig.51).
After bifurcation of Ui‘ p.s7 by disappearance of the saddle-node, the separatrix con-
nection may persist and we get the phase portrait UID 2, (or its stable bifurcations
Séz or ng with limit cycle). By breaking just the connection one can produce phase
portraits U}L‘ 39 With limit cycle or IU}4 29+

Phase portrait UlD, s, may produce by evolution phase portrait Ui D.ss (see Fig.52).
After bifurcation of Ui‘ p.sg b disappearance of the saddle-node, the separatrix con-
nection may persist and we get the phase portrait UlD 5, (or its stable bifurcations
55,2 or Sgﬁ with limit cycle). By breaking just the connection one can produce phase
portraits U}L‘ 30 With limit cycle or IU}L‘ a4

Phase portrait UlD’ 53 may produce by evolution phase portrait Ui .59 (see Fig.53).
After bifurcation of Ui‘ D.s59 by disappearance of the saddle-node, the separatrix con-
nection may persist and we get the phase portrait UlD 2 (or its stable bifurcations
55,2 or Sgﬁ with limit cycle). By breaking just the connection one can produce phase
portraits U}L‘ 4¢ With limit cycle or U}i 34

Phase portrait UlD 54 has the same skeleton as UlD 53 and thus has a similar evolution.
It may produce by evolution phase portrait Ui Dp.co (see Fig.54). After bifurcation of
Ui p.6o DY disappearance of the saddle-node, the separatrix connection may persist
and we get the phase portrait U}) »3 (or its stable bifurcations Sg 5 Or Sg , with limit
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cycle). By breaking just the connection one can produce phase portraits U}m 4 With
limit cycle or UL’ 46°

Phase portrait TUID’SS may produce by evolution phase portraits UIZL‘ p.e1 and Ui D.62
(see Fig.55). After bifurcation of Uf‘ p.e1 by disappearance of the saddle-node, the
separatrix connection may persist and we get the phase portrait U})’% (or its stable
bifurcations 85’3 or Sé’z). By breaking just the connection one can produce phase

e T 1
portraits Uy 34 or Uy 5.
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After bifurcation of Uf‘ p.62 DYy disappearance of the saddle-node, the separatrix
connection may persist and we get the phase portrait U}) 54 (or its stable bifurcation
Sg | twice by symmetry). By breaking just the connection one can produce phase
portraits [Ul\ 35 OF UL‘ 25

Phase portrait U})’% may produce by evolution phase portraits Uﬁ p.63 and Ui D.64
(see Fig.56). After bifurcation of Ui D 63 Dy disappearance of the saddle-node, the
separatrix connection does not persist and we get the phase portrait Sg ,. By breaking
just the connection one can produce phase portraits TUIIA’ 44 OT Uh’ 40°

After bifurcation of U%‘ p.ea by disappearance of the saddle-node, the separatrix
connection may persist and we get the phase portrait UlD »5 (or its stable bifurcation
Sgy | or Sgyz). By breaking just the connection one can produce phase portraits Ul" m
or Ui‘ a1

Phase portrait U})’ﬂ may produce by evolution phase portraits [UIZL‘ D.6s and Ui D.66
(see Fig.57). After bifurcation of Ui D 65 Dy disappearance of the saddle-node, the
separatrix connection may persist and we get the phase portrait IU}) 2 (or its stable
bifurcation Sg 3 Or Sg »). By breaking just the connection one can produce phase
portraits U}L‘ 46 OF Uk 40-

After bifurcation of Uf‘ D66 DY disappearance of the saddle-node, the separatrix
connection may persist and we get the phase portrait IUID 54 (or its stable bifurcation
Sg | twice by symmetry). By breaking just the connection one can produce phase
portraits U}L‘ 41 OF U}A 45-

Phase portrait [UID sg may produce by evolution phase portraits Ui D67 and Ui D68
(see Fig.58). After bifurcation of Ui p.67 Dy disappearance of the saddle-node, the
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Fig. 55 Unstable phase portraits UAD,61 and UAD,62

separatrix connection does not persist and we get the phase portrait Sg |- By breaking
just the connection one can produce phase portraits Ui‘ 41 OF Uk 54-

After bifurcation of Ui Dp.eg DY disappearance of the saddle-node, the separatrix
connection may persist and we get the phase portrait UlD 55 (or its stable bifurcations
Sg,l and Sgyz). By breaking just the connection one can produce phase portraits Ul&, 40

1
or Uy s4-
Phase portrait U}) 59 has the trickiest evolution of all the cases in this study, as it

usually happens with those portraits which can bifurcate into S%O 13- Now we have
two finite anti-saddles which may coalesce with two different finite saddles giving up
to 4 possibilities.

Phase portrait UID’SQ may produce by evolution phase portraits Ui D.69° UIZL‘ D.70

and [Ui p.71 (see Fig.59). It could also produce Ui’ 11)’69 but this phase portrait is not
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Fig.56 Unstable phase portraits Ui D.63 and TU%‘ D.64

realizable since it bifurcates into ngg which even though was shown as realizable in
[6], it was finally proved impossible in [15].
After bifurcation of U% Dp.go DY disappearance of the saddle-node, the separatrix

connection does not persist and we get the phase portrait Sg 3. By breaking just the
connection one can produce phase portraits Ub 50 OF Uk 51

After bifurcation of U% p.70 by disappearance of the saddle-node, the separatrix
connection may persist and we get the phase portrait UlD 55 (or its stable bifurcations
55,1 and Sg,z)- By breaking just the connection one can produce phase portraits IU}L 47

1

or Uy s

After bifurcation of U% p.71 by disappearance of the saddle-node, the separatrix
connection may persist and we get again the phase portrait IUID »5 (Or its stable bifur-
cations Sg_l and Sg ,). By breaking just the connection one can produce phase portraits

1 11 ’
Uyagor Uy 5o

The picture of phase portrait IU‘D o in [6] is topologically right, but not geomet-
rically. The separatrix connection must be part of an invariant straight line as by
Corollary 3.6 of [6]. We draw it geometrically right in Fig. 60.
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Fig.57 Unstable phase portraits UiD,65 and U%D,GG

Phase portrait Ub 6o May produce by evolution phase portraits Ui D 72 Ui D73
and Ui p.74 (see Fig.60). It could also produce Uié,ﬂ but this phase portrait is not
realizable since it bifurcates into [U} 19 (see [6, 15]).

After bifurcation of Ui p.72 by disappearance of the saddle-node, the separatrix
connection does not persist and we get the phase portrait Sg |- By breaking just the
connection one can produce phase portraits U}Q 59 OF U}A 55

After bifurcation of U%‘ p.73 by disappearance of the saddle-node, the separatrix
connection may persist and we get the phase portrait U}) 54 Or its stable bifurcation
Sé,l (only one by symmetry). By breaking just the connection one can produce phase
portraits U}L‘ 53 OF Uk s5-

After bifurcation of Ui p.74 by disappearance of the saddle-node, a separatrix con-
nection may persist in two different ways and we get again the phase portrait [U}) 25 OF
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Fig. 58 Unstable phase portraits [Ui D.67 and Ui D.68

TUID’% (or its stable bifurcations 55,1’ Sg,z and Sgﬁ). By breaking just the connection
one can produce phase portraits U 5, or U} ss.

Phase portrait TUID’G] may produce by evolution phase portraits U% p.75 and TUE‘ D.76
(see Fig.61). After bifurcation of IU% p.75 by disappearance of the saddle-node, the
separatrix connection does not persist and we get the phase portrait Sgg 3. By breaking
just the connection one can produce phase portraits U}A’% or Uimo.

After bifurcation of Ui p.76 DY disappearance of the saddle-node, the separatrix
connection may persist and we get the phase portrait IUID725 or its stable bifurcations
Sg,l and Sg’z. By breaking just the connection one can produce phase portraits Ul\,zs
or [Uzlmg.

6 Proof of Theorem 3: The Realizable Phase Portraits
Now we will give examples of all realizable structurally unstable phase portraits of

codimension two™ for quadratic systems of class (AD). In this case, there is no studied
global family with these unstabilities. In fact, there is no global form which may
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encapsulate these two unstabilities since one of them is not completely algebraic.
And it is not yet done the study of the family of systems with a finite saddle-node
(this implies a study in dimension 5). So, we will need to rely on different studied
families of codimension two with two unstable objects related with singularities and
look for the cases where a separatrix connection occurs. Concretely we will take some

families having a finite saddle-node and an infinite saddle-node (g)SN and families

which apart from the finite saddle-node have an infinite saddle-node (})SN . These
families are studied in two papers each, [17] and [18] for the first case and [12] and
[13] for the second. All four papers are done using similar techniques, and the notation
used to describe the phase portraits is similar. In them, the surfaces of the bifurcation
space dealing with invariant straight lines are denoted as 45 and the surfaces dealing
with non-algebraic separatrix connections are denoted as 7. So the examples we will
extract from them will have mainly these notations. It is worth noting the importance
of these works since they show more than 115 different phase portraits having a finite
saddle-node plus a separatrix connection and one infinite saddle-node. So, by breaking
the infinite saddle-node into two singularities, or making it disappear, we have lots of
candidates of the wished class to look for examples. We have checked every example
of the four papers having a separatrix connection. So, we are sure (modulo “islands™)
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that the phase portraits of the class (AD) which have not appeared, cannot be inside
the families studied in those papers.

There are two other papers with studies of families of quadratic systems of codi-
mension two which have been checked. These are the study of quadratic systems with
a triple semi-elemental node [16] and with a triple semi-elemental saddle [19]. But
the first has just one candidate to produce elements of the class (AD) and clearly it
does not lead to any of the conjectured impossible phase portraits. The second paper
shows three candidates from which phase portraits of class (AD) could be obtained,
but only one needs to be studied carefully so to discard that it could generate any of
the conjectured impossible phase portraits. This will be done in Sect. 6.6.

A very recent paper [20] has completed the bifurcation diagram of all quadratic
systems having a finite saddle-node and a weak focus of first order. This is another
4-parameter family which has produced 192 topologically different phase portraits,
of which 30 have a separatrix connection (and no other extra unstable object). After
checking all of them, we have found a phase portrait which we were close to conjecture
as impossible, but has finally become realizable. We will see this in Sect. 6.5.

With all these families (from which examples of class (AD) may be obtained)
already studied, there are still some families of codimension two with a finite saddle-
node to be studied so to provide new examples with a separatrix connection which
could cover some of the conjectured impossible phase portraits. In order to obtain such
a codimension two family, we must fix some property apart from the finite saddle-
node. We can think in either a weak finite saddle, a weak infinite saddle, a finite one
direction node n¢ or an infinite one direction node N¢. These families are not very
interesting from the geometrical point of view, but just the possibility of finding in
them one of the conjectured impossible phase portraits of this class makes worth their
study. Of course, the most interesting family to be studied would be the codimension
one case of having just a finite saddle-node, but this is a too big family with the current
tools. Anyway we have decided to proceed with the publication of this paper leaving
the conjecture as it is, and excitedly waiting if someone can corroborate it or enlarge
the number of 77 found phase portraits.

Of course, there is also the remote possibility that a conjectured impossible case
could live in an “island” of the parameter spaces that these papers describe (but it have
never been found).

Please note that several mistypes were detected in [18] and many of them were
corrected in the Appendix A of [13]. In fact here we have found another mistype in
the main theorem of [18] where a phase portrait drawn as a focus corresponds to a
region where the anti-saddle is instead a node. This is not a big problem according to
a topological classification but may be a small nuisance since the phase portraits look
geometrically different. Anyway we have preferred to mention the name of the phase
portrait which appears in the main theorem of those papers instead of mentioning the
concrete region of the parameter space in which the focus exists so to avoid that the
reader which wants to check these results, needs also to get deeper in those papers.

We will do some examples with detail, and we will add a list with the rest of phase
portraits that can be obtained in a similar way. Most of the examples are given in P4
format at the link “http://mat.uab.cat/~artes/articles/P4su2AD.zip”. Some examples
rely on phase portraits which already need the use of very small parameters (or param-
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eters in a very narrow interval), and so, the perturbations needed must be even smaller.
This makes that the use of the numerical program P4 becomes less conclusive, and
we simply apply the continuity criteria in the bifurcation. Regarding the numerical
examples in P4 we must point out that we have not bifurcated every single phase
portrait from the mentioned papers but there is at least one example for every phase
portrait of the main theorem. In the cases where a numerical parameter is needed for a
rotated vector field to recover a non-algebraic separatrix connection, the example we
give in the file is an approximate value for which we have checked that such parameter
modified one unit of the last digit (plus or minus) produced the bifurcation on the other
sense. For example, if we see a P4 file with an “alfa” parameter being 0.0032 it means
that either for « = 0.0033 or « = 0.0031 we obtain the other phase portrait. Assume
it is for @« = 0.0033, then by continuity, there exists a* € (0.0032, 0.0033) for which
the phase portrait with the separatrix connection occurs.

In the examples where we have an invariant straight line, it is relatively easy to
bifurcate the infinite saddle-node while conserving the straight line and thus, we obtain
directly the desired phase portrait without using a rotated vector field. In cases where
the separatrix connection is not algebraic, we will not even have an exact parameter
set from which we could affirm the existence of the original phase portrait. But we
will have an interval (in a certain parameter) for which such phase portrait exists.
Then we will be able to break the saddle-node, and this for sure will also affect the
separatrix connection, but by means of a rotated vector field, we will be able to recover
the connection without affecting the rest of singular points.

6.1 Examples Obtained from [13] with an Invariant Straight Line

In [13] it is proved that any quadratic system with a finite saddle-node, another finite

singularity and an infinite (})SN can be moved into the normal form:

X=cx+cy— ex? + 2hxy, @
y = ex + ey — ex> + 2mxy.

The origin is a sn(2) and the infinite singularity [0 : 1 : O] is a (})SN (requires
h # 0). Assume now that we have a system (4) with a separatrix connection on an
invariant straight line. Now we make a perturbation as

X =cx 4 cy —ex? + 2hxy, )
y=ex+ey— ex + 2mxy + syz.

The Jacobian matrix of the infinite singularity [0 : 1 : O] has eigenvalues 2/ — ¢ and
—e&. Whether we take ¢ positive or negative, we will change the sign of the determinant
of the Jacobian. That is, if we take ¢ such that —(2h — €)e < 0 (respectively > 0)
the perturbation will leave a saddle at infinity (respectively a node). If the separatrix
connection is on the horizontal or vertical axis, then it will persist. If the connection is
on an oblique straight line, then before the perturbation we make the change (x, y) —
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Fig.62 Obtaining unstable phase portraits U% D3 and lUlz4 D.13

(x, kx + y) (this is called a k-twist in [9]) so to locate the invariant straight line at the
horizontal position while maintaining the infinite saddle-node unmoved. Otherwise,
the perturbation would break also the separatrix connection and we would not get the
desired phase portraits.

We may start then with the first detailed example. Take system (5) with
(c,e,h,m) = (0,10,1,4) and ¢ = 0. This system has phase portrait 45| from
[13] (see Fig.62). If we perturb ¢ # O the vertical invariant straight line (which is a
connection of separatrices) persists. If ¢ < 0 the point [0 : 1 : 0] is a node and a finite
saddle has appeared on the y-axis for y a large positive value. Then we obtain phase
portrait Ui p.3- If instead of ¢ < O we take & > 0, the vertical invariant straight line is
again a connection of separatrices which persists, the point [0 : 1 : 0] is a saddle and a
finite attractor node has appeared on the y-axis for y a large negative value. Trivially
we obtain phase portrait UZ‘ p.13- In Fig. 62 we show the bifurcation of 4S; from [13]
into U% p.3 and Ui p.13 and we also show the version of these phase portraits from
Fig. 1 with some rotation and/or symmetry to check that they are the same (there may
remain the need of a time change).

In a very similar way we may obtain

2 2 2 2

Ui p,30 and Uy p 4 from 455, Ui p.16 and Uy p 7, from 453,
2 2 2 2

Uap,17 and Uy p 45 from 4Ss, Ui p 30 and Uy p 7, from 48,
2 2 2 2

Uap.1s and Uy p 3 from 4817, Uy p o7 and Uy p 74 from 48527,

Uzzw’zé and Ufwﬂ from 4833, Ulzw’lé and U? , 5, from 4834,

UIZAD’ 17 and UiD,Sl from 4537, UiD’% and U%A.D,so from 4849,
U%D’ 19 and U%w,ee from 4542, UiD’lg and UZ\D,& from 4S5,
UiDm and U%ﬁD,61 from 4859, U,zw,32 and U124D,74 from 4845

and UiD,m and IU%DA] from 4.57.
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We remark that we have obtained several repeated cases and the reason is that we
have checked all possible bifurcations coming from every phase portrait in [13] with a
separatrix connection being an invariant straight line since we are not only interested
in finding all the phase portraits from Theorem 3, but also be sure that none of the
conjectured impossible phase portraits (see Conjecture 1) may be obtained from this
class. The same will happen in the next classes we will study.

6.2 Examples Obtained from [13] with No Invariant Straight Line

Now we start describing some cases where the separatrix connection is not algebraic.
We start again from system (5) and we choose phase portrait 7Sg from [13]. We
can find a representative of this phase portrait in system (5) with the parameters
(c,h,m,e,a) = (1,1,0,0,0) and e = ¢* € (0.62, 0.64). For ¢ = 0.62 the phase
portrait is Vs3 (without limit cycle) and for e = 0.64 the phase portrait is Vs, (with
limit cycle). So, by continuity, there must exist a value ¢* in that interval for which
we obtain the loop.

Now we perturb the system taking ¢ = —0.1. The infinite saddle-node at[0 : —1 : 0]
bifurcates and ejects a node into the negative y semi-plane, remaining the infinite
singularity as a saddle. Visually in program P4 the loop looks exactly the same as it
was without the perturbation, but since we were not even sure of the exact value of
e* for which the loop existed, we can neither be sure now that the loop exists. So we
must prove that we can recover the loop connection with a sufficiently small change
that does not affects the singular points.

So we make a rotated vector field like

X =cx 4 cy — ex? + 2hxy,

. 2 2 2 (6)

y=ex+ey—ex”+2mxy+ey +a(cx +cy —cx” + 2hxy).
Sometimes we may prefer to use the rotated vector field

J'c:cx+cy—cx2+2hxy+oz(ex+ey—ex2+2mxy+ey2), o

y=ex+ey —ex2+2mxy+8y2.

By using of the parameter « it is simple to confirm that there is no limit cycle
for « = 0.01 and there is limit cycle if « = —0.01. The finite singularities remain
unaffected because this is a rotated vector field, and the rotation has been small enough
so not to affect the infinite singularities. So, by continuity, there must exist a value
a* € (—0.01,0.01) for which the loop exists and thus we get phase portrait U%&D,lz-
In the same way, if we make first the perturbation ¢ = 0.1, the infinite saddle-node
at [0 : 1 : 0] bifurcates and ejects a saddle into the positive y semi-plane, and again
the separatrix connection may be recovered with the use of « obtaining phase portrait
U?AD,9’ see Fig.63.
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Fig.63 Obtaining unstable phase portraits Ui p.o and [UIZLx D.12
In a very similar way we may obtain
2 2 2 2
U4 p.1s and Uy f 45 from 787, U4 p.oz and Uy f 5 from 783,
Ui p 29 and U3 py 46 from 7Sy, U2 p 33 and U? p o from 7S5,
U p o5 and U, 5, from 75, UAp.34- U p 49 and U7 p, 5, from 757,
U2 ) og and U7, ¢ from 7o, U3 ) 35 and U? 5, 76 from 75815,
Ul p.1g and U, o7 from 785, U3 37 and U% 5 ¢, from 75813,
UZ p.4o and U, g5 from 784, U3 33 and U% 55 from 757,
U,24D 2g and UiD 45 from 783, UiD 13 and UZ\D 44 from 7871

2 2
and Uy 54 and U}y j, 56 from 7.825.

The needed perturbation values of ¢ and & may be different from case to case.

Notice that 757 may bifurcate in 3 different ways. When a finite saddle bifurcates
from [0 : 1 : 0] we can maintain the separatrix connection of the finite saddle-node
with the infinite saddle as we had in 757 and obtain Ui p.71 OF We can maintain the
connection with the separatrix of the new finite saddle and produce a new graphic. In
this case we obtain Ui D.49> S€€ Fig. 64. When a finite node bifurcates from [0 : 1 : 0]

we obtain phase portrait Ui D.34-

6.3 Examples Obtained from [12]

The study of the quadratic systems with a finite saddle-node and an infinite saddle-

node of type ( i)S N was divided into two families. The family (B) that we have used
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Fig. 65 Unstable phase portraits 7V, 4Vy and 4V, from [12]

in the previous two subsections and family (A) which has the property of having two

singularities of the type (})SN. Then, a system in that family having a separatrix
connection (and no other unstability from those already mentioned) will offer us at
least 4 possibilities for quadratic systems in class (AD). There are 3 cases in that family
with a separatrix connection, to know: 7V, 4V| and 4V, (see Fig. 65).

Notice that the family studied in [12] (B) is not 4-dimensional but 5-dimensional, so
the generic regions in it are hyper-volumes, and the bifurcations are volumes. Thus 4V}
and 4V, correspond to a bifurcation with a separatrix connection in an invariant straight
line and 7V corresponds to a case with a separatrix connection but no invariant straight
line. However, an easy test of their possible bifurcations gives us already obtained
phase portraits. Concretely 7V bifurcates in Uz‘ D.18> Ui D.28> U% Dp.45 and Ui D.67-
On its own, 4V bifurcates in U,zw,m’ U,ZAD,26’ U%w,so and UiD’n. And finally 4V,
bifurcates in ]U,ZAD,IS’ UiD’ 165 Ulqu’”, UiD’w, UE&DSO’ U?ADAZ and UE&D,U' The first
two cases bifurcate in just 4 possibilities since the saddle parts of the infinite saddle-
nodes are not adjacent. However in 4V, those parts are adjacent, and thus the infinite
arc which joins them plays the role of a separatrix connection and this connection may
move to the affine plane and there break in two different ways, and moreover, we may
maintain that connection and broke the original invariant line in two different ways
(see Fig. 60). Note that we have used a still unnumbered phase portrait of codimension
three as an intermediate step to describe the bifurcation.

In summary, the bifurcations from phase portraits in [12] with a separatrix connec-
tion into class (AD) do not bring any new phase portrait from those obtained from
[13].
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6.4 Examples Obtained from [17, 18] with an Invariant Straight Line

In a very similar way, we are going to use papers [17] and [18] to obtain most of the
rest of phase portraits of class (AD).
In [17] it is described that any quadratic system with a finite saddle-node and an

infinite (g)S N can be moved into three different normal forms depending on the position
of the infinite saddle-node. Since the finite saddle-node has both eigenvectors already
fixed in this normal form, the position of the infinite saddle-node is relevant. This
paper studies the two more degenerate forms and the most generic of them is studied
in [18]. The normal form which collects all three characteristics is:

X = gx2 + 2hxy + kyz,
y=y+ x? + 2mxy + ny2, with
= —270%k> — 360ghk + 18€gkn + 320h> — 48¢h>n + T2Chkm + 24Lhn>
—36Lkmn — 4en> — 4¢3k + 4g%h% — 4g%hn + 24g%km + g°n® — 16gh°m
+16ghmn — 48gkm? — d4gmn? + 16h%2m?* — 16hm>n + 32km> + 4m*n? = 0.
(8)

The polynomial n corresponds to the conditions needed to produce the coalesence
of two infinite singularities, applied to this normal form. This, as many more invariants,
are presented in [9].

6.4.1 Examples Obtained from [17] (A)

Assume now that we have a system (8) and the infinite singularity [1 : 0 : 0] is a(g)S N.
Then £ = 0 = g — 2m and m # 0, which can be set as m = 1/2 and the system has
an horizontal invariant straight line. In order to obtain a phase portrait of class (AD)
we just need to split the infinite double point into two real infinite singularities. This
can be done with a perturbation like

% = x? 4 2hxy + ky? + ex?, ©
y=y+xy+ nyz.



40 Page 76 of 88 J.C. Artés

2
Vi Uap 72

Fig. 67 Bifurcation of phase portraits V| from [17] (B) into class (AD)

We make a detailed example of this case. Take system (9) with (h,k,n,e) =
(1,2, —1,0). This system has phase portrait V| from [17] (A). If ¢ # 0 the point
[1 : 0 : O] splits into a node and a saddle. But we want to maintain the invariant
straight line as a connection of separatrices, so we must take & < 0 in order to fix the
saddle at [1 : 0 : 0]. Then we obtain phase portrait Ui D.20"

In a very similar way we may obtain

UiDbS from V3, U,240,74 from Vg,
2 2
UAD,61 frOIn VQ, UAD,27 frOIn V127

U%umz from Vi5 and U%D’M from V.

6.4.2 Examples Obtained from [17] (B)

Assume now that we have a system (8) and the infinite singularity [0 : 1 : O] is a

(5)SN. Then k = 0 = n — 2h and g # 0 which can be set as g = 1 and the system
has a vertical invariant straight line. In order to obtain a phase portrait of class (AD)
we just need to split the infinite double point into two real infinite singularities This
can be done with a perturbation as

¥ =x2+ 2hxy,

. 2 2 2 (10)
y=y+4+L€x°+2mxy+ 2hy° + ey-.

We make a detailed example of this case. Take system (10) with (h, £, m, &) =
(1,1,0,0). This system has phase portrait V| from [17] (B).1 If ¢ # 0 the point
[0 : 1 : O] splits into a node and a saddle. But we want to maintain the invariant
straight line as a connection of separatrices, so we must take & < 0 in order to fix the
saddle at [0 : 1 : O]. Then we obtain phase portrait U% p.72- We add here the phase

portrait V; from [17] (B) as well as its bifurcation into UE‘ D.72> S€€ Fig.67.

L In[17] the phase portraits where denoted with an extra superscript that was just a counting value of phase
portraits. Since such superscript has not been used in other papers of similar type, and does not apport any
relevant information, we have prefered to omit it here.
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In a very similar way we may obtain Uy j, ;5 from Va, Uy j, 56 from V3, Uy 54

from Vg and Ui D.30 from V7.

6.4.3 Examples Obtained from [18] with an Invariant Straight Line

The starting normal form in [18] is

% = gx> 4+ 2hxy + (n — g — 2h)y*,

y=y+x*+ (2g+2h —20 —n)xy + (£ +2n — 2g — 2h)y>. (an

Please note that in paper [18] there appear several typos in phase portraits and
some of their labels which were lately corrected in an appendix of [13]. Thus the
phase portraits we will use here in order to produce the required phase portraits of
class (AD) are the right ones from the corrected version. This will affect also the next
subsection.

In [18] we find phase portraits with an oblique invariant straight line (which passes
through the infinite saddle-node [1 : 1 : 0]) or a different invariant line which passes
through an elemental infinite singularity. The normal form implies then that this line
is horizontal or vertical. We must study these cases separately.

Assume first that we have a system (8) with an oblique invariant straight line. This
means that the infinite saddle-node is located at the end of such a line and this also
implies £ = g. The invariant straight line is y = x — 1/n. Now we first move the
invariant straight line so to pass through the origin with y — y — 1/n. After we make
a —1-twist and having £ = g we obtain system

X = —x +nxy,
,_n—2h—£+ ! 2h +2h+ﬁ—n
r= n? n )t n Y 12)

+Zx2+2<h+€—g)xy+ny2,

which clearly has the vertical axis as an invariant line. Now the finite saddle-node is
at (—1/n, 1/n) and we translate it back to the origin (x,y) — (x + 1/n,y — 1/n)
and obtain:

X =—y+nxy,

13)
y =y +x*+ Qh +20 — n)xy + ny?, (

which has the vertical invariant straight line x = 1/n. Finally we apply a perturbation
which does not affect the invariant line, and breaks the infinite saddle-node:

X =—y+nxy,

(14
y =y + x4+ 2h + 20 — n)xy + ny* + ey>.
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@1 @DBQ

Fig.68 Obtaining unstable phase portrait Ui D.62 from 457 in [18]

% 48515 % U?4D,31 U124D,13

Fig. 69 Obtaining unstable phase portraits UiD 3; and ]U124D 13 from 4515 in [18]

Notice that the invariant straight line will persist whichever sign of ¢ we take. This
means that for every ¢ small enough we will always split the infinite saddle-node into
two real singularities.

We make a detailed example of this case. Take system (14) with (g, i, €, n, &) =
(1, =3, 1, 3,0). This system has phase portrait 45| from [18]. If ¢ # 0 the point
[0 : 1: 0] splits into a node and a saddle. Then we obtain phase portrait Ui D62 (see
Fig.68).

In a very similar way we may obtain Ui p.2p from 453, Ui p.73 from 45, [U% D.73
from 4S8y, U%Dzz from 4559 and U%D“ from 453;.

Assume now that we have a system (11) and a vertical invariant straight line. This
implies & = (n — g)/2. Then a simple perturbation as

X =gx? 4 (n— g)xy,

v 2 2 2 (15)

y=y+L€x +(g—-20xy+ L +n—g)y +ey,
will keep the invariant straight line x = 0 and will break the saddle-node at [1 : 1 : 0]
in real or complex singularities.

We make a detailed example of this case. Take system (15) with (g, h, £, ¢) =
(1,2, —2,0). This system has phase portrait 4515 from [18]. If ¢ > 0 the point [1 :
1 : 0] splits into a node and a saddle and we obtain phase portrait Ui pa1-Ife <Othe
point [1 : 1 : O] splits into complex singularities and we obtain phase portrait Ui D.13
(see Fig.69).
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2 2
4513 Uiap a2 Uiap 14

Fig. 70 Obtaining unstable phase portraits Ui p.3p and Ui D14 from 483 in [18]

In a very similar way we may obtain

2 2 2 2

Uap 3 and Uy p 4, from 4S5, UiAp.4 and Uy p 5, from 4559,
2 2 2 2

Ui p.4 and Uy p 5, from 453, Uip.4 and Uy p 5o from 4833,
2 2 2 2

Ui p.13 and Uy p o6 from 4536, Ui p.3 and Uy p 4, from 4S54,

and U7, |5 and U? j, 5, from 4S44.

By the way, we have skipped 4S9 from [18] since it should not be there because
it has no separatrix connection and it is topologically equivalent to its neighbors Va4
and V45.

Finally assume that we have a system (11) and an horizontal invariant straight line.
This implies £ = 0. Then a simple perturbation as

% = gx>+2hxy + (n — g — 2h)y>,

. 5 5 (16)

y=y+Qg+2h—n)xy+ 2n—2g —2h)y" +¢ey~,
will keep the invariant straight line y = 0 and will break the saddle-node at [1 : 1 : 0]
in real or complex singularities.

We make a detailed example of this case. Take system (16) with (g, h, n, &) =
(1,3,5,0). This system has phase portrait 453 from [18]. If ¢ < O the point[1 : 1 : 0]
splits into a node and a saddle and we obtain phase portrait U% p.32- If & > 0 the point
[1 :1: 0] splits into complex singularities and we obtain phase portrait UIZA Dp.14 (see
Fig.70).

In a very similar way we may obtain Ui p.14 (With limit cycle) and Ui p.27 from
48s5.

6.4.4 Examples Obtained from [17, 18] with No Invariant Straight Line

As well as with the papers [12] and [13] now we must focus our attention in the cases
from [17] and [18] where we have a separatrix connection which is not an invariant
straight line. Namely, we have just one case in [17] (A) which is 751, none in [17] (B)
and 48 in [18] (all those named 7S, ). We can tear apart those having a limit cycle for
reasons already explained.
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In all these systems we will need the starting normal form, plus a perturbation
to break the infinite saddle-node, plus a rotated vector field to recover the separatrix
connection. These cases will be trickier thag those from papers [12] and [13], because

now we have to split a (5)SN instead of a(})SN. Now after the perturbation we will
have two close infinite singularities, and the rotated vector field needed to recover the
separatrix connection will affect those infinite singularities and it could make them
coalesce again and disappear.

We start with normal form (8) as we did in a previous case. The infinite singularity

[1:0:0]isa(J)SN. Then ¢ = 0 = g — 2m and m # 0, which can be setas m = 1/2
and the system has an horizontal invariant straight line. Since we want to start from
phase portrait 78] we can take (h, k, n) = (1,4/5, n*) with n* € (0.49, 0.50). This
phase portrait has two separatrix connections, the invariant straight line y = 0 as all
the family has, plus a loop. So we can obtain a system of class (AD) in four different
forms. We may keep the horizontal straight line, break the loop in two different ways,
and split the infinite saddle-node into two real singularities, but all this is equivalent
to make the bifurcations from cases V3 and Vo from [17] (A) that we have already
described. So, what we need to do is breaking the straight line and keeping the loop.
This can be done with a perturbation as

x=x>+ 2hxy + kyz,

. 2 2 2 a7
y=y4+xy+ny +exy+alx®+2hxy+ ky).

Take system (17) with (&, k, n, e, ®) = (1,4/5,n*, 0, 0) and n* being some value
in the interval (0.49, 0.50). We have the invariant straight line, the infinite saddle-node
and the loop, leading to phase portrait 757 (see Fig.71).

Take system (17) with (h, k,n, e, ) = (1,4/5,n*, —0.05, 0). We still have the
invariant straight line, but the loop is clearly broken and the infinite saddle-node splits
into two singularities. So, we have phase portrait TU% p.61 With limit cycle.

Now take system (17) with (4, k, n, e, @) = (1,4/5,n*, —0.05, «*) and o™ being
some value in the interval (0, 0.01). We have broken the horizontal invariant straight
line, the infinite singularities remain isolated, and we have recovered the loop so to
obtain U%D,SS' If we take (1, k, n, &, @) = (1,4/5, n*, 0.4, 0) we have split the infinite
singularity into two simple singularities, but we still maintain the horizontal invariant
straight line. And the loop is clearly broken. We have phase portrait Ui D.65°

We now need to make a rotation with ¢ < 0 in order to recover the separatrix
connection and we check that there must be a value «* € (—0.02, —0.01) which
produces the connection. But @ < 0 also helps us in breaking the invariant straight
line exactly in the way we need and it is small enough so that the infinite singular
points are still split. For ¢ < —0.03 we see that they have coalesced. So, we have
obtained phase portrait [UIZL‘ .o (see Fig. 71).

Now we study the examples that can be obtained from [18].
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2 2
Ulp.61 Uap .55

2 2
Uip.es Uiap.60

Fig.71 Obtaining unstable phase portraits TU%D’& s UE‘;D,ﬁS’ UE&D.SS and M?&D,GO from 787 in [17] (A)

We start with normal form (8) as we did in a previous case. The infinite singularity

[1:1:0]is a(g)S N.1In [18] it is proved that such system can be written as

X = gx> +2hxy + (n — g — 2h)y?,

(18)
y=y+4x? 4+ (2g+2h — 20 —n)xy + (£ +2n — 2g — 2h)y>.

For this group of phase portraits, we are going to use a different idea so to obtain the
desired phase portrait. For these examples, using a perturbation to break the infinite
saddle-node plus a rotated vector field to recover the separatrix connection has been
proved to be very hard, at least in several cases. But we can convert a difficulty
into a tool to obtain what we need even in an easier way. As we know, we do not
have the exact parameter for which a phase portrait has a non-algebraic separatrix
connection. At most we know that, for a parameter being in some interval, we are
crossing the bifurcation where the separatrix connection exists. Then we know that
the perturbation to modify the infinite saddle-node will affect other orbits and it would
break the separatrix connection. Even though this perturbation is not a rotated vector
field, for a very small perturbation enough to break the saddle-node, the separatrix
connection will move the separatrices to one or another side. So, we just need to use
a starting system where we are very close to the separatrix connection and we are in
the side so that the perturbation needed to break the infinite saddle-node will move
the separatrices in the required direction. For a very small perturbation, it will not be
even enough to move the separatrices to the other side, but then making a little bigger
perturbation we will get the separatrix connection. In fact, we will just see that we
are at the other side of the separatrix connection, and in this way we will have proved
the existence of the required phase portrait. To tell the truth, this “perturbation” is
not really a perturbation since it needs to be large enough to produce the separatrix
connection. Thus, this perturbation could cross another bifurcation of the system. But
since the starting system may be as close as needed to the point of the separatrix
connection, then the perturbation we do is a good one.
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Let us see all this with an example. We start with the system:
. 2 2
X =gx“+2hxy+ (n—g—2h)y",
8 y 8 y (19)

¥ =y+x* 4+ (28 +2h — 20 —n)xy + (L +2n — 28 — 2h)y* + £.x>

Take system (19) with (g, n, h, £, &,) = (1,2, —2.46, £*,0) and £* being some
value in the interval (1.70, 1.71). For £ = 1.70, we have phase portrait V7 from [18],
and for £ = 1.71, we have phase portrait V17 (it has a limit cycle). So, for a value
between them we must have phase portrait 75,. Since we do not know the value of
£*, the computations in P4 must be done with a value of £ which will put us either
in V7 or Vi7. Let us try to produce first U2 AD.5T" For that we will need a positive &y.
For the way that a positive ¢, will affect the separatrlces forming the connection, we
decide to start on V7, that is, we take ¢ = 1.70. Then we see in P4 that any small
positive &, will split the infinite saddle-node into an infinite saddle and an infinite
node. For example ¢, = 0.001 does it. But this perturbation is not enough to obtain
the separatrix connection, and we even see that for &, = 0.008 we still have it not. But
for e, = 0.009 we have already crossed it and there is a limit cycle. So, for a value
er € (0.008, 0.009) the system (g, n, h, £, ex) = (1,2, —2.46, 1.7, &}) we have phase
portrait U2 ap.s7- Notice that if for a value &, € (0.008, 0.009) we could see any other
bifurcation affected, we could have always started with a smaller interval for ¢, that is,
we could have started much closer to the phase portrait 7.5,, and then, consequently,
the interval for ¢, would also be smaller.

Now we look for phase portrait Ui p.10- Now we start at the other side of the
bifurcation, that is on £ = 1.71 (so we have in fact phase portrait V7 having a limit
cycle). Now any perturbation with negative ¢, will convert the infinite saddle-node
into complex singularities. We detect that for ¢, = —0.001 we got this, but the
relative position of the separatrices intended to form the loop have already changed
positions, thus, we have moved beyond we wanted to arrive. And this also happens
for e, = —0.0001. But it does not for ¢, = —0.00001. Now we see that the two
interesting separatrices are still in the same relative position as they were in V7, that
is, the limit cycle still persists. But then, playing a bit with ¢, we see that there is
a change in the relative position of separatrices while moving from ¢, = —0.00007
to & = —0.00008. In conclusion, for some ¢} € (—0.00008, —0.00007) we obtain
phase portrait Uf‘ p.10 (see Fig.72). In a very similar way we may obtain

UiDJS from 7S,
Uiqu and U%D’M from 7S84,
U%D,g and U,zw,ss from 757,

Uzmjo from 7.8,
Uz\D,ﬁ and U%\DAS from 7S5,

UiD,lZ and UiD’M from 7577,

UE‘D , and UiD 43 from 7873,

UiD)% from 753,

UiDm from 7S¢,

UiD’é and U%w,48 from 783,
UiD’g and U%\D,SS from 7810,
UiDJO from 7S¢,

U?AD,]O and Ufwjg from 757,

UiD’ZI from 7556,
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and

U%w,n and UiD,ﬁO from 7559,
U?wy and UiD’% from 7S3,,
UiD767 from 7837,
IU%D‘” and U124D’55 from 7841,
UiD’M from 7S44,
IU%‘D’“ and UiDQSS from 7855,
U%w,37 from 7857,
Uzqu,B from 7 Sg0,
UiDj and U%D’M from 7Sg2,
UiD’S and U%D’M from 7Se4,
U%ng from 7Sg7,
Uzzw,n from 7S¢9,
I[mey7 and U%AD,49 from 7571,
U%;D,29 from 7575,
U?wy and UiD,54 from 7577,
U2AD,12 and UiD,zs from 7579,

U,zw,36 from 7Sgs.

Uzu),lz and U%w,zzt from 7531,
U p 7 and U% p, 46 from 7533,
[Uzzwﬁg from 7833,
U%\D,zlo from 784,
U%D,@ from 7845,
U%DJS from 7Sss,
U124D’28 from 7Ssg,
UiD’ég from 7Se1,
UiD)@ from 7Se3,
IUExl),s and Ufw,45 from 7Ses,
UiD)ﬂ from 7Seg,
UIZADJ and U%;D,49 from 757,
UiD’M from 7572,
UE\D’% from 757,
Uiu)p and U%w,s:t from 757s,

U3 p.12 and U} p 3 from Sga

Several of the previous cases bifurcate in only one phase portrait of class (AD)
since their separatrix connection needs the infinite saddle-node. When this singularity

disappears,

so does the connection.

There is another mistype in [18]: the focus inside the graphic of phase portrait
7857 must be attractor since it is the bifurcation between Vi37 and Vj3g. This is an
interesting mistake to point out, since its bifurcation (in the wrong mode) would have
produced conjectured impossible phase portrait (Uggg here) while in fact it produces

TUID 33 Which was already presented in the statement and proved its existence.

7S

2 2
Up 57 UAD,IO

Fig.72 Obtaining unstable phase portraits U%&D,57 and IU%D! 10 from 755 in [18]
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Vias 7S61 Viao

Fig.73 Correcting a mistype of 7S¢ in [18]

And another mistype in [18]: The phase portrait 7S¢ has two arrows at infinity
wrong. The right version is shown in Fig. 73 accompanied by two generic phase por-
traits which are its neighbors. The corrected arrows are indicated in red color. It is
from this corrected version that Ui Dp.go May bifurcate. The merit of finding this type
is not mine but of a very good referee I have had.

In summary, we have looked for examples in four big families of already studied
systems from which phase portraits of class (AD) may bifurcate. We have obtained
examples which confirm the existence of the phase portraits mentioned in Theorem 3,
most of them from different sources, and we have not found a single example of those
conjectured impossible (see Figs.4 and 5). Only phase portrait U% p.77 1s still missing.
As already mentioned, another big family which is the quadratic systems with a weak
focus and a finite saddle-node [20] has recently been studied, and Ui p.77 has appeared
in it.

6.5 Example U3 . from [20]

In paper [20] where quadratic systems with a finite semi-elemental saddle-node and a
weak focus are studied, we found phase portrait 7513 which is directly our Ui p.77- For
quite a long time we had thought that this system would be in the set of conjectured
impossible phase portraits with the name of Ui’ 117’8 but we decided to delay a bit the
ending of this paper for if some new example could appear there, as it has happened.
While looking for examples of class (AD) inside codimension two* families which
have one finite saddle-node plus another geometrical property which helps to reduce
the number of parameters, we are just studying hyper-surfaces of the codimension one
family of quadratic systems with a finite saddle-node. So there is always the possibility
that some of the conjectured impossible phase portraits may exist without intersection
far from the hyper-surfaces studied.

6.6 Example 75, from [19]

Even though we are not going to find any new phase portrait here, this is a case
which is worth studying. In paper [19] where quadratic systems with a finite triple
semi-elemental saddle are studied, we found phase portrait 757. All the generic phase
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751(&) 751(]:)) 751(0)

Fig. 74 Phase portrait 757 from [19] and a second view of it

751 U?qp,g U?LXD,Q

Fig. 75 Perturbations of 757 into class (AD)

portraits in this family are topologically equivalent to structurally stable quadratic
systems due to the fact that the semi-elemental saddle behaves like an elemental one.
And thus, the phase portrait 757 is topologically equivalent to U }3’ | from [6]. However,
there is an important fact regarding 757 which was not relevant in [19] but which is
critical now. The triple finite saddle has one eigenvalue zero and another different from
zero. The focus inside the graphic is stable. So, when dealing with perturbations it is
very important to know if the non-null eigenvalue is positive or negative. By a simple
check of the bifurcation diagram in [19], we conclude that it is positive (see Fig. 74a in
which we have drawn with a thinner arrow the separatrices with zero eigenvalue). We
make a vertical symmetry (b) and a time change (c) so to compare it easily with the
skeletons of separatrices of the phase portraits Ui p.g and UIZL‘ p.o from Fig. 1 in order

to see which of the phase portraits Ui D.8 IUIZL‘ D.9° U% p.77 OF UE\’LI)& may be obtained.

Now we can perturb 7S in two different ways while maintaining the loop and
splitting a saddle-node, that is, we can split a saddle-node and let the remaining saddle
form the loop, or vice versa. But what we obtain is just already known phase portraits
[U% p.g and Ui p.o (see Fig.75). Notice if the case of 75 had been the opposite (with
negative eigenvalue, or the focus being unstable) we would have obtained instead the
phase portraits Ui p.77 and the conjectured impossible Ui’g,q Far from being a proof

of the impossibility of Ui’g o- this reinforces our feeling that the conjecture is true.
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