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1. Introduction

Let Zps be the ring of integers modulo ps with s ≥ 1 and p prime, and Zn
ps be the set 

of n-tuples over Zps . In this paper, the elements of Zn
ps are also called vectors over Zps

of length n. A code over Zp of length n is a nonempty subset of Zn
p , and it is linear if it 

is a subspace of Zn
p . A nonempty subset of Zn

ps is a Zps-additive code if it is a subgroup 
of Zn

ps . Note that, when p = 2 and s = 1, a Zps-additive code is a binary linear code 
and, when p = 2 and s = 2, it is a quaternary linear code or a linear code over Z4.

Let Sn be the symmetric group of permutations on the set {1, . . . , n}. Two codes 
over Zp of length n, C1 and C2, are said to be permutation equivalent if there is a 
permutation of coordinates π ∈ Sn such that C2 = {π(c) : c ∈ C1}. Two Zps-additive 
codes of length n, C1 and C2, are said to be permutation equivalent if they differ only by 
a permutation of coordinates, that is, if there is a permutation of coordinates π ∈ Sn

such that C2 = {π(c) : c ∈ C1}.
The Hamming weight of a vector u ∈ Zn

p , denoted by wtH(u), is the number of nonzero 
coordinates of u. The Hamming distance of two vectors u, v ∈ Zn

p , denoted by dH(u, v), 
is the number of coordinates in which they differ. Note that dH(u, v) = wtH(v − u). 
The minimum distance of a code C over Zp is d(C) = min{dH(u, v) : u, v ∈ C, u �= v}. 
For elements of Zps , we consider the following metric, defined in [12], and also used in 
[19,31]:

wt∗(x) =

⎧⎪⎪⎨
⎪⎪⎩

0 if x = 0,
ps−1 if x ∈ ps−1Zps\{0},
(p− 1)ps−2 otherwise.

(1)

The weight of a vector u = (u1, u2, . . . , un) ∈ Zn
ps is wt∗(u) =

∑n
j=1 wt∗(uj) ∈ Zps ; and 

the distance between two vectors u, v ∈ Zn
ps is d∗(u, v) = wt∗(u − v). The minimum 

distance of a code C over Zps is d∗(C) = min{d∗(u, v) : u, v ∈ C, u �= v}.
In [20,27], a Gray map from Z4 to Z2

2 is defined as φ(0) = (0, 0), φ(1) = (0, 1), 
φ(2) = (1, 1) and φ(3) = (1, 0). There exist different generalizations of this Gray map, 
which go from Z2s to Z2s−1

2 [10,13,23]. The one given by Krotov in [23] is defined in 
terms of the codewords of a Hadamard code, and the one given by Carlet in [10] is a 
particular case of Krotov’s one satisfying 

∑
λiφs(2i) = φs(

∑
λi2i) [15]. In this paper, 

we consider a generalization of Carlet’s Gray map, denoted by φs and defined as follows:

φs(u) = (us−1, . . . , us−1) + (u0, . . . , us−2)Ys−1, (2)

where u ∈ Zps , [u0, u1, . . . , us−1]p is the p-ary expansion of u, that is u =
∑s−1

i=0 piui

(ui ∈ Zp), and Ys−1 is a matrix of size (s − 1) × ps−1 whose columns are the elements 
of Zs−1

p . Note that the rows of Ys−1 form a basis of a first order Reed-Muller code after 
adding the all-one row. This Gray map φs is an isometric embedding from (Zps , d∗)
into (Zps−1

p , dH) [19,31]. If s = 1, then φs is the identity map. In order to simplify the 
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notation, we write φ instead of φs, when s is clear from the context. Then, we define 
Φ : Zn

ps → Znps−1

p as the component-wise extension of φ.
Let C be a Zps-additive code of length n. We say that its Gray map image, C = Φ(C), 

is a Zps-linear code of length ps−1n. Since C is a subgroup of Zn
ps , it is isomorphic to an 

abelian structure Zt1
ps ×Zt2

ps−1 × · · · ×Zts
p , and we say that C, or equivalently C = Φ(C), 

is of type (n; t1, . . . , ts). Note that |C| = pst1p(s−1)t2 · · · pts . Unlike linear codes over finite 
fields, linear codes over rings do not have a basis, but there exists a generator matrix for 
these codes having minimum number of rows, that is, t1 + · · · + ts rows.

A generalized Hadamard (GH) matrix H(p, λ) = (hij) of order N = pλ over Zp is a 
pλ × pλ matrix with entries in Zp with the property that, for every i, j, 1 ≤ i < j ≤ pλ, 
each of the multisets {hik − hjk : 1 ≤ k ≤ pλ} contains every element of Zp exactly λ
times [22]. Two GH matrices H1 and H2 of order N are said to be equivalent if one can 
be obtained from the other by a permutation of the rows and columns and adding the 
same element of Zp to all the coordinates in a row or in a column. We can always change 
the first row and column of a GH matrix into zeros, obtaining an equivalent GH matrix 
which is called normalized. From a GH matrix H, the generalized Hadamard (GH) code
is CH =

⋃
α∈Zp

(FH +α1), where FH +α1 = {h+α1 : h ∈ FH}, FH is the code consisting 
of the rows of H, and 1 denotes the all-one vector [14]. Note that CH is not necessarily 
linear as a code over Zp.

A Zps-additive code C such that Φ(C) is a GH code is called a Zps-additive GH code
and Φ(C) is called a Zps-linear GH code. Note that a GH code over Zp of length N
has pN codewords and minimum distance (p − 1)N/p. The Z4-linear Hadamard codes 
of length 2t have been studied and classified in [24,29], and their automorphism groups 
have been characterized in [25,28]. For s > 2, Z2s -linear Hadamard codes where first 
introduced in [23]. A full classification of Z8-linear Hadamard codes is provided in [16]. 
For s > 3, a partial classification and bounds on the number of nonequivalent Z2s-linear 
Hadamard codes of length 2t can be found in [15]. More generally, for any s ≥ 2 and p
prime, Zps-linear GH codes are studied and partially classified in [5,6]. Moreover, it is 
proved that, for p ≥ 3, the Zps-linear GH codes of type (n; 1, 0, . . . , 0, ts) are the only ones 
which are linear [5]. For p = 2, they are only linear when their type is (n; 1, 0, . . . , 0, ts)
or (n; 1, 0, . . . , 0, 1, ts) [15].

Let C be a code over Zp of length n with pk codewords. For a vector u ∈ Zn
p and a 

set I ⊆ {1, . . . , n}, we denote the projection of u to the coordinates of I by u|I . We say 
that C is a systematic code if there is a set I ⊆ {1, . . . , n} of k coordinate positions such 
that |CI | = pk, where CI = {u|I : u ∈ C}. The set I is called an information set for C
and {1, . . . , n}\I a redundancy set.

Permutation decoding is a technique, introduced by Prange [30] and developed by 
MacWilliams [26] for linear codes, that involves finding a subset of the permutation au-
tomorphism group of a code in order to assist in decoding. In [4], a new permutation 
decoding method for Z4-linear codes (not necessarily linear), based on having a sys-
tematic encoding for these codes, was introduced. Actually, it is also proved that this 
method can be used for any nonlinear binary code, as long as it has a systematic en-
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coding. This can be generalized easily to systematic nonlinear codes over Zp [32]. Then, 
since any Zps-linear code is systematic, as shown in [32] by giving a systematic encoding, 
the permutation decoding method can also be used for these codes.

The idea behind the permutation decoding technique is to move all errors in a received 
vector out of the information positions by using a permutation that preserves the code. 
Let C be a t-error-correcting code over Zp and denote by PAut(C) its permutation 
automorphism group. Then, it is necessary to find a subset S ⊆ PAut(C), with respect 
to an information set for C, such that every r-set of coordinate positions is moved out 
of the information coordinates by at least one element in S, where 1 ≤ r ≤ t. The set S
is called an r-PD-set and, if r = t, it is called a PD-set.

The efficiency of the permutation decoding method depends on the size of the r-PD-
set S ⊆ PAut(C), since it needs to find the suitable permutation in S, for each received 
vector. In general, determining the structure of PAut(C) is very complex, making the 
search for r-PD-sets or PD-sets a difficult task. However, there are results that show how 
to find r-PD-sets of small size for certain families of codes [2,3,11,18]. More specifically, 
in [2], it is shown how to find r-PD-sets of size r + 1 for binary linear Hadamard codes 
and (nonlinear) Z4-linear Hadamard codes. A similar result for Hadamard codes over 
the field F4 is presented in [11]. In this paper, we generalize these results to Zps-linear 
GH codes with s ≥ 2 and p prime.

The paper is organized as follows. In Section 2, we recall the recursive construction of 
Zps-additive GH codes. In Section 3, we study the permutation automorphism group for 
these codes and show that it is isomorphic to a group formed by matrices of the general 
linear group over Zps . In Section 4, we give an information set for the corresponding Zps-
linear GH codes and establish a criterion to find r-PD-sets of size r + 1. In Sections 5
and 6, explicit and recursive constructions of r-PD-sets of this size, up to a given upper 
bound, are described. In Section 7, we present some computational results on a random 
search of these sets for the codes where the upper bound is not reached. Finally, in 
Section 8, some conclusions and further research on this topic are included.

2. Construction of Zps-additive GH codes

Generator matrices having minimum number of rows for Z4-additive Hadamard codes, 
as well as a recursive construction of these matrices, are given in [24]. In [23], Z2s -additive 
Hadamard codes with s > 2 are introduced and generator matrices with minimum num-
ber of rows are also given. A recursive construction for these matrices is presented in 
[15]. More recently, Zps-additive GH codes are considered in [5] generalizing these results 
to any p ≥ 3 prime. In this section, we recall the construction of Zps-additive GH codes 
with s ≥ 2 and p prime.

Let t1, t2,. . . ,ts be nonnegative integers with t1 ≥ 1. Consider the matrix Gt1,...,ts

whose columns are exactly all the vectors of the form zT , z ∈ {1} × Zt1−1
ps × (pZps)t2 ×

· · · ×
(
ps−1Zps

)ts .
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Example 2.1. For p = 3 and s = 3, we have the following matrices over Z27:

G1,0,1 =
(

1 1 1
0 9 18

)
, G1,1,0 =

(
1 1 1 1 1 1 1 1 1
0 3 6 9 12 15 18 21 24

)
,

G2,0,0 =
(

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26

)
,

G1,1,1 =

⎛
⎜⎝1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

0 3 6 9 12 15 18 21 24 0 3 6 9 12 15 18 21 24 0 3 6 9 12 15 18 21 24
0 0 0 0 0 0 0 0 0 9 9 9 9 9 9 9 9 9 18 18 18 18 18 18 18 18 18

⎞
⎟⎠ ,

G2,0,1 =

⎛
⎜⎝1 1 1 · · · 1 1 1 1 · · · 1 1 1 1 · · · 1

0 1 2 · · · 26 0 1 2 · · · 26 0 1 2 · · · 26
0 0 0 · · · 0 9 9 9 · · · 9 18 18 18 · · · 18

⎞
⎟⎠ .

Let 0, 1, 2, . . . , ps − 1 be the vectors having the same element 0, 1, 2, . . . , ps − 1 from 
Zps in all its coordinates, respectively. The order of a vector u over Zps , denoted by 
ord(u), is the smallest positive integer m such that mu = 0.

Any matrix Gt1,...,ts can also be obtained by applying the following recursive con-
struction. We start with G1,0,...,0 = (1). Then, if we have a matrix G = Gt1,...,ts , for any 
i ∈ {1, . . . , s}, we may construct the matrix

Gi =
(

G G · · · G
0 · pi−1 1 · pi−1 · · · (ps−i+1 − 1) · pi−1

)
. (3)

Finally, permuting the rows of Gi, we obtain a matrix Gt′1,...,t
′
s , where t′j = tj for j �= i

and t′i = ti + 1. Note that any permutation of columns of Gi gives also a matrix Gt′1,...,t
′
s .

Example 2.2. From the matrix G1,0,0 = (1), we obtain the matrix G2,0,0; and from G2,0,0

we can construct G2,0,1, where G2,0,0 and G2,0,1 are the matrices given in Example 2.1. 
Note that we can also generate another matrix G2,0,1 as follows: from G1,0,0 = (1) we 
obtain the matrix G1,0,1 given in Example 2.1, and from G1,0,1 we can construct the 
matrix

G1 =

⎛
⎜⎝1 1 1 1 1 1 1 1 1 · · · 1 1 1 1 1 1

0 9 18 0 9 18 0 9 18 · · · 0 9 18 0 9 18
0 0 0 1 1 1 2 2 2 · · · 25 25 25 26 26 26

⎞
⎟⎠ .

Then, after permuting the rows of G1, we have the matrix

G2,0,1 =

⎛
⎜⎝1 1 1 1 1 1 1 1 1 · · · 1 1 1 1 1 1

0 0 0 1 1 1 2 2 2 · · · 25 25 25 26 26 26
0 9 18 0 9 18 0 9 18 · · · 0 9 18 0 9 18

⎞
⎟⎠ ,
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which is different to the matrix G2,0,1 given in Example 2.1. Note that these two matrices 
G2,0,1 generate permutation equivalent codes.

In this paper, we assume that the matrices Gt1,...,ts are constructed recursively starting 
from G1,0,...,0 in the following way. First, we obtain Gt1,0,...,0 by adding t1 − 1 rows of 
order ps; then Gt1,t2,0,...,0 is generated by adding t2 rows of order ps−1; and so on, until 
Gt1,...,ts is reached by adding ts rows of order p.

We denote by Ht1,...,ts the Zps-additive code of type (n; t1, . . . , ts) generated by 
Gt1,...,ts , where t1, . . . , ts are nonnegative integers with t1 ≥ 1. Note that n = pt−s+1, 
where t = (

∑s
i=1(s− i + 1) · ti) − 1. Let Ht1,...,ts = Φ(Ht1,...,ts) denote the correspond-

ing Zps-linear code, which is a GH code of length pt [5]. Thus, we say that Ht1,...,ts is a 
Zps-additive GH code, and Ht1,...,ts a Zps-linear GH code.

3. Permutation automorphism group of Zps-additive GH codes

The structure of the permutation automorphism group of Z4-additive Hadamard 
codes is described in [25,28]. In this section, we describe the structure of the permu-
tation automorphism group of the Zps-additive GH code Ht1,...,ts , that is, the structure 
of PAut(Ht1,...,ts). In particular, an isomorphism between PAut(Ht1,...,ts) and a cer-
tain group of matrices of the general linear group over Zps is found, and the order of 
PAut(Ht1,...,ts) is computed.

Let GL(κ, Zps) denote the general linear group of degree κ over Zps and let L be the 
set consisting of all matrices over Zps of the following form:

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 a1 pa2 p2a3 · · · ps−2as−1 ps−1as
0 A1,1 pA1,2 p2A1,3 · · · ps−2A1,s−1 ps−1A1,s
0 A2,1 A2,2 pA2,3 · · · ps−3A2,s−1 ps−2A2,s
0 A3,1 A3,2 A3,3 · · · ps−4A3,s−1 ps−3A3,s
...

...
...

...
. . .

...
...

0 As−1,1 As−1,2 As−1,3 · · · As−1,s−1 pAs−1,s
0 As,1 As,2 As,3 · · · As,s−1 As,s

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (4)

where A1,1 ∈ GL(t1−1, Zps), Ai,i ∈ GL(ti, Zps) for i ∈ {2, . . . , s}, Ai,j are matrices over 
Zps , for i �= j, a1 ∈ Zt1−1

ps and aj ∈ Z
tj
ps , for j ∈ {2, . . . , s}.

Lemma 3.1. The set L is a subgroup of GL(t1 + · · · + ts, Zps).

Proof. We first need to check that L ⊆ GL(t1 + · · · + ts, Zps), i.e., that det(M) ∈
Zps\pZps for all M ∈ L. Note that if M′ ∈ GL(κ, Zps), then M = M′+pR ∈ GL(κ, Zps)
for any R. Thus, since det(M′) ∈ Zps\pZps , we have that det(M) ∈ Zps\pZps , where
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M′ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 a1 0 0 · · · 0 0
0 A1,1 0 0 · · · 0 0
0 A2,1 A2,2 0 · · · 0 0
0 A3,1 A3,2 A3,3 · · · 0 0
...

...
...

...
. . .

...
...

0 As−1,1 As−1,2 As−1,3 · · · As−1,s−1 0
0 As,1 As,2 As,3 · · · As,s−1 As,s

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Finally, we prove that L is a subgroup. Let us denote by Mi,j, for i, j ∈ {1, . . . , s +1}, 
the submatrix in the ith row and jth column of the block matrix M ∈ L as given in (4). 
Note that M1,j is a multiple of pj−2 for j ∈ {2, . . . , s + 1}, and Mi,j is a multiple of 
pj−i for i, j ∈ {2, . . . , s + 1} and j > i. Then, consider the submatrix Qi,j of Q = MN , 
for M, N ∈ L. Clearly, Q1,1 = 1 and Qi,1 = 0 for i ∈ {2, . . . , s + 1}. For the first row, 
we have Q1,j =

∑s+1
k=1 M1,kNk,j for j ∈ {2, . . . , s + 1}. Note that M1,1N1,j = N1,j is a 

multiple of pj−2, M1,kNk,j is a multiple of pk−2pj−k = pj−2 for k ∈ {2, . . . , j}, and a 
multiple of pk−2 for k ∈ {j + 1, . . . , s + 1}. Therefore, Qi,j is a multiple of pj−2. For the 
rest of the rows, Qi,j =

∑s+1
k=2 Mi,kNk,j for i, j ∈ {2, . . . , s + 1} and j > i. Note that 

Mi,kNk,j is a multiple of pj−k for k ∈ {2, . . . , i − 1}, a multiple of pk−ipj−k = pj−i for 
k ∈ {i, . . . , j}, and a multiple of pk−i for k ∈ {j + 1, . . . , s + 1}. Therefore, Qi,j is also a 
multiple of pj−i. Finally, the block submatrices in the diagonal are Qi,i =

∑s+1
k=2 Mi,kNk,i

for i ∈ {2, . . . , s + 1}. Note that Mi,iNi,i ∈ GL(ti, Zps) and Mi,kNk,i is a multiple of 
pi−k for k < i and a multiple of pk−i for k > i, hence Qi,i ∈ GL(ti, Zps). �

Let ζi be the map from Zps to Zps defined as ζi(a) = a mod pi, i ∈ {1, . . . , s − 1}. 
This map can be extended to matrices over Zps by applying ζi to each one of their 
entries. Let π be the map from L to L defined as

π(M) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 a1 pa2 · · · ps−2as−1 ps−1as
0 A1,1 pA1,2 · · · ps−2A1,s−1 ps−1A1,s
0 ζs−1(A2,1) ζs−1(A2,2) · · · ζs−1(ps−3A2,s−1) ζs−1(ps−2A2,s)
...

...
...

. . .
...

...
0 ζ2(As−1,1) ζ2(As−1,2) · · · ζ2(As−1,s−1) ζ2(pAs−1,s)
0 ζ1(As,1) ζ1(As,2) · · · ζ1(As,s−1) ζ1(As,s)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (5)

for any matrix M ∈ L as given in (4). Let π(L) = {π(M) : M ∈ L} ⊆ GL(t1 + · · · +
ts, Zps). By Lemma 3.1, it is clear that π(L) is a group with the operation ∗ defined as 
M ∗N = π(MN ) for all M, N ∈ π(L). Note that the group operation ∗ is well defined, 
since π(L) ⊆ L. By a generalization of the proof of Theorem 2 in [25], one can show the 
following theorem.

Theorem 3.1. Let Ht1,...,ts be the Zps-additive GH code of type (n; t1, . . . , ts). Then, 
PAut(Ht1,...,ts) is isomorphic to π(L).
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Proof. Let R be the set Zt1−1
ps × Zt2

ps−1 × · · · × Zts
p and denote by B the set of all affine 

functions from R to Zps . We can see these Zps-valued affine functions as words of length 
n = ps(t1−1)+(s−1)t2+···+ts over Zps by considering the image of all elements in the 
domain. Let us define B = {x : R −→ Zps−1

p | x(·) = φ(f(·)) for some f ∈ B}. That 
is, the image of the words in B by the generalized Gray map Φ. By a straightforward 
generalization of Lemma 1 in [25], we know that B is a Zps -linear GH code of type 
(n; t1, t2, . . . , ts). This means that Ht1,...,ts = B and Ht1,...,ts = B, and we can see the 
elements of Ht1,...,ts as affine functions.

Note that an affine function f ∈ B can be seen as a word wf of length n over Zps , 
with the elements of R playing the role of coordinate positions. A permutation σ ∈ Sn

acting on wf , by permuting its coordinates, gives a word σ(wf ) which corresponds to 
the function f ◦ σ−1 by considering f(σ−1(v)) for any v ∈ R. Therefore, a permutation 
σ is said to be in PAut(B) if and only if f ◦ σ−1 is an affine function for any f ∈ B. 
Naturally, PAut(B) = PAut(Ht1,...,ts).

Now, we use an adaptation of Theorem 2 in [25] to prove that PAut(Ht1,...,ts), or 
equivalently PAut(B), consists of all affine permutations of R. First, we have that any 
affine permutation belongs to PAut(B) since the composition of an affine permutation 
and an affine function is also an affine function. Next, we see that any permutation 
σ ∈ PAut(B) is affine. Let

σ
(1)
1 , . . . , σ

(1)
t1−1 : R −→ Zps ,

σ
(2)
1 , . . . , σ

(2)
t2 : R −→ Zps−1 ,

...

σ
(s)
1 , . . . , σ

(s)
ts : R −→ Zp,

be the components of σ−1. That is,

σ−1(v) = (σ(1)
1 (v), . . . , σ(1)

t1−1(v), σ
(2)
1 (v), . . . , σ(2)

t2 (v), . . . , σ(s)
1 (v), . . . , σ(s)

ts (v))

for any v ∈ R. Consider the following functions defined from R to Zps :

f
(j)
i (x(1)

1 , . . . , x
(1)
t1−1,x

(2)
1 , . . . , x

(2)
t2 , . . . , x

(s)
1 , . . . , x

(s)
ts ) = pj−1x

(j)
i ,{

for i ∈ {1, . . . , t1 − 1} if j = 1,
for i ∈ {1, . . . , tj} if j ∈ {2, . . . , s}.

Note that pj−1x
(j)
i defines the inclusion of x(j)

i ∈ Zps−j+1 in Zps . These functions are 

affine, hence f (j)
i ∈ B and, since σ ∈ PAut(B), we have that f (j)

i ◦ σ−1 ∈ B. Moreover, 
f

(j)
i (σ−1(v)) = pj−1σ

(j)
i (v), therefore σ(j)

i is affine. Since all components are affine, σ−1

and σ are also affine.
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Finally, we show that the group of affine permutations over R is isomorphic to π(L). 
Let us denote the former by S. Then, we see that S is isomorphic to π(L) via the map 
ψ, defined from π(L) to S as

ψ(π(M)) = σ(u1, u2, . . . , us) = b + u1A1 + u2pA2 + · · · + usp
s−1As,

where b = (a1, pa2, . . . , ps−1as) and

A1 = (A1,1, pA1,2, . . . , p
s−1A1,s),

A2 = (ζs−1(A2,1), ζs−1(A2,2), . . . , ζs−1(ps−2A2,s)),
...

As = (ζ1(As,1), ζ1(As,2), . . . , ζ1(As,s)).

Note that A1, pA2, . . . , ps−1As are matrices over Zps with linearly independent rows 
of order ps, ps−1, . . . , p, respectively, spanning R. This is ensured due to Aj,j , for j ∈
{1, . . . , s}, being invertible. The map ψ gives an isomorphism between π(L) and S, so 
π(L) and PAut(Ht1,...,ts) are isomorphic. �
Theorem 3.2. Let Ht1,...,ts be the Zps-additive GH code of type (n; t1, . . . , ts), where n =
ps(t1−1)+(s−1)t2+···+ts . Let t̄1 = t1 − 1 and t̄i = ti for i ∈ {2, . . . , s}. The order of its 
permutation automorphism group is

|PAut(Ht1,...,ts)| = pEN1 · · ·Ns, (6)

where Ni = |GL(t̄i, Zps−i+1)| = p(s−i)t̄2i+
t̄i(t̄i−1)

2
∏t̄i

j=1(pj − 1) and

E = st̄1 + (s− 1)t̄2 + · · · + t̄s +
s∑

i=1

s∑
j=i+1

2(s− j + 1)t̄it̄j . (7)

Proof. The order of PAut(Ht1,...,ts) can be easily computed with a counting argument 
over the matrix representation, that is, over the elements of π(L), given in (5).

The first row of a matrix M ∈ π(L) is a random tuple over Zt1−1
ps ×Zt2

ps−1 ×· · ·×Zts
p . 

There are ps(t1−1)+(s−1)t2+···+ts such tuples.
Note that ζs−i+1(pj−iAi,j), for i < j, is a matrix of size t̄i × t̄j defined over Zps , with 

entries among ps−i+1/pj−i = ps−j+1 elements in Zps . In the case i = 1, ζs represents the 
identity map from Zps to Zps . Therefore, there are p(s−j+1)t̄it̄j such matrices. Moreover, 
ζs−j+1(Aj,i), for i < j, is a matrix of size t̄j × t̄i with entries among the same number 
of elements as ζs−i+1(pj−iAi,j). Then, for each pair i, j ∈ {1, . . . , s} such that i < j, we 
have p2(s−j+1)t̄i t̄j different possibilities to choose the corresponding matrices.

All matrices in the diagonal are invertible matrices defined over Zps . Moreover, 
ζs−i+1(Ai,i) can be represented as an invertible matrix over Zps−i+1 by considering 
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{0, . . . , ps−i+1 − 1} ⊂ Zps as elements in Zps−i+1 . Therefore, ζs−i+1(Ai,i) is a matrix 
in the group GL(t̄i, Zps−i+1). In [21], the order of the general linear group over inte-
gers modulo m is given. In particular, the order of GL(κ, Zps), denoted by νκ(ps), for 
p prime and integers κ and s ≥ 2, satisfies νκ(ps) = p(s−1)κ2

νκ(p), where νκ(p) =
(pκ − 1)(pκ − p) · · · (pκ − pκ−1) is the order of the general linear group over the field Zp. 
Then, the order of GL(t̄i, Zps−i+1) is νt̄i(Zps−i+1) = p(s−i)t̄2i+

t̄i(t̄i−1)
2

∏t̄i
j=1(pj − 1).

Considering all possible choices of submatrices, the result follows. �
Remark 3.1. If we consider the case with p = 2 and s = 2, that is, Z4-additive Hadamard 
codes of type (n; t1, t2), then (7) becomes E = 2(t1 − 1) + t2 + 2(t1 − 1)t2. We also have 

N1 = |GL(t1 − 1, Z4)| = 2(t1−1)2+ (t1−1)(t1−2)
2

∏t1−1
j=1 (2j − 1) and N2 = |GL(t2, Z2)| =

2
t2(t2−1)

2
∏t2

j=1(2j − 1). Therefore,

|PAut(Ht1,t2)| = 2
3(t1−1)2

2 + 3(t1−1)
2 +2(t1−1)t2+

t22
2 + t2

2

t1−1∏
j=1

(2j − 1)
t2∏
j=1

(2j − 1).

Note that this expression coincides with the one given in [2].

Example 3.1. Consider the Z27-additive GH code H2,1,1. By Theorem 3.1, PAut(H2,1,1)
is isomorphic to the group π(L) ⊆ GL(4, Z27). The subgroup L ⊆ GL(4, Z27) is formed 
by all matrices in the form

⎛
⎜⎜⎜⎝

1 a1 3a2 9a3
0 A1,1 3A1,2 9A1,3
0 A2,1 A2,2 3A2,3
0 A3,1 A3,2 A3,3

⎞
⎟⎟⎟⎠ ,

where a1, a2, a3, Ai,j ∈ Z27, i, j ∈ {1, 2, 3} with i �= j, and A1,1, A2,2, A3,3 ∈ Z27 \
{0, 3, 6, 9, 12, 15, 18, 21, 24}. For example, consider the following two matrices M, N ∈ L:

M =

⎛
⎜⎜⎜⎝

1 1 21 9
0 2 3 18
0 14 14 0
0 9 16 22

⎞
⎟⎟⎟⎠ , N =

⎛
⎜⎜⎜⎝

1 19 18 0
0 8 24 9
0 18 20 0
0 16 4 7

⎞
⎟⎟⎟⎠ .

The function π reduces the third row modulo 9 and the fourth row modulo 3, therefore

π(M) =

⎛
⎜⎜⎜⎝

1 1 21 9
0 2 3 18
0 5 5 0
0 0 1 1

⎞
⎟⎟⎟⎠ , π(N ) =

⎛
⎜⎜⎜⎝

1 19 18 0
0 8 24 9
0 0 2 0
0 1 1 1

⎞
⎟⎟⎟⎠ .

Note that, since L is a group, π(L) is also a group with the operation ∗:
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π(M) ∗ π(N ) = π(π(M)π(N )) = π

⎛
⎜⎜⎜⎝
⎛
⎜⎜⎜⎝

1 9 12 18
0 7 18 9
0 13 22 18
0 1 3 1

⎞
⎟⎟⎟⎠
⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎝

1 9 12 18
0 7 18 9
0 4 4 0
0 1 0 1

⎞
⎟⎟⎟⎠ .

Theorem 3.2 gives the order of π(L), or equivalently of PAut(H2,1,1). Following the 
same notation as in the statement of the theorem, we have that

N1 = |GL(1,Z27)| = 18,

N2 = |GL(1,Z9)| = 6,

N3 = |GL(1,Z3)| = 2,

E = 3 + 2 + 1 + 4 + 2 + 2 = 14.

Therefore, | PAut(H2,1,1)| = 3EN1N2N3 = 317 · 23 = 1033121304.

4. r-PD-sets for Zps-linear GH codes

In this section, we give an additive information set for the Zps-additive GH code 
Ht1,...,ts , and an information set for the corresponding Zps-linear GH code Ht1,...,ts . 
Then, using the result given by Theorem 3.1, we establish a criterion in order to find 
r-PD-sets of size r + 1 for Ht1,...,ts , with r up to a given upper bound.

An ordered set I = {i1, . . . , it1+···+ts} ⊆ {1, . . . , n} of t1 + · · ·+ts coordinate positions 
is said to be an additive information set for a Zps-additive code C of type (n; t1, . . . , ts)
if |CI | = (ps)t1(ps−1)t2 · · · pts . If the elements of I are ordered in such a way that, for 
any k ∈ {1, . . . , s}, |C{i1,...,it1+···+tk

}| = (ps)t1(ps−1)t2 · · · (ps−k+1)tk , then it can be seen 
that the set Φ(I), defined as

Φ(I) =Φ(1)({i1, . . . , it1}) ∪ Φ(2)({it1+1, . . . , it1+t2})∪
· · · ∪ Φ(s)({it1+···+ts−1+1, . . . , it1+···+ts}),

where

Φ(k)(I) = ∪i∈I{ps−1(i− 1) + 1,

ps−1(i− 1) + pk−1 + 1,

ps−1(i− 1) + pk−1+1 + 1,

ps−1(i− 1) + pk−1+2 + 1,

. . . ,

ps−1(i− 1) + ps−2 + 1},

is an information set for C = Φ(C) [32]. Note that s − 2 − (k − 1) = s − k − 1, hence 
Φ(k)(I) has s − k + 1 coordinate positions for each element in I.
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Example 4.1. It is easy to see, from the matrix G1,1,1 given in Example 2.1, that the 
set I = {1, 2, 10} is an additive information set for the Z27-additive GH code H1,1,1, so 
Φ(I) = Φ(1)({1}) ∪Φ(2)({2}) ∪Φ(3)({10}) = {1, 2, 4, 10, 13, 82} is an information set for 
H1,1,1 = Φ(H1,1,1).

In general, there is no unique way to obtain an additive information set for Ht1,...,ts . 
The following result provides a recursive and simple form to obtain such a set.

Proposition 4.1. Let I be an additive information set for the Zps-additive GH code 
Ht1,...,ts of type (n; t1, . . . , ts), where n = ps(t1−1)+(s−1)t2+···+ts . Then I ∪ {n + 1} is 
an additive information set for the codes Ht1+1,t2,...,ts , Ht1,t2+1,...,ts and so on until 
Ht1,t2,...,ts+1, obtained from Ht1,t2,...,ts by applying (3).

Proof. Let Hk = Ht′1,t
′
2,...,t

′
s , k ∈ {1, . . . , s}, where t′j = tj for j �= k and t′k = tk +1. It is 

clear that an additive information set for Hk should have t1 + t2 + · · ·+ ts + 1 = |I| + 1
coordinate positions. Taking into account that Hk is constructed from Ht1,t2,...,ts by 
applying (3), we have that |(Hk)I∪{x}| = (ps)t1(ps−1)t2 · · · ptsps+1−k for all x ∈ {n +
1, . . . , 2n}. In particular, I ∪ {n + 1} is an additive information set for Hk. �

Let I be an additive information set for Ht1,...,ts of type (n; t1, . . . , ts). Let Hk =
Ht′1,t

′
2,...,t

′
s , k ∈ {1, . . . , s}, where t′j = tj for j �= k and t′k = tk + 1. Although the 

additive information set I ∪ {n + 1}, given by Proposition 4.1, is the same for all Hk, 
the information sets for the corresponding Zps-linear codes over Zp, Hk = Φ(Hk), differ 
for every k ∈ {1, . . . , s}. In particular,

I(k) = Φ(I) ∪ {ps−1n + 1, ps−1n + pk−1 + 1, pk−1n + pk + 1, . . . , ps−1n + ps−2 + 1}

is an information set for Hk.
We can label the ith coordinate position of a Zps-additive GH code Ht1,...,ts , with the 

ith column of its generator matrix Gt1,...,ts . Note that, by construction, all columns in 
Gt1,...,ts are different and there are n = ps(t1−1)+(s−1)t2+···+ts of them. Thus, any additive 
information set I for Ht1,...,ts can also be considered as a set of vectors representing the 
positions in I. Let ei be the vector with all coordinates equal to 0 except the one in the 
ith position, which is equal to 1. Then, by Proposition 4.1, we have that the set

It1,...,ts ={e1, e1 + e2, . . . , e1 + et1} ∪ {e1 + pet1+1, . . . , e1 + pet1+t2} ∪ · · · ∪

{e1 + ps−1et1+t2+···+ts−1+1, . . . , e1 + ps−1et1+t2+···+ts}

is a suitable additive information set for Ht1,...,ts . Depending on the context, It1,...,ts is 
considered as a subset of {1, . . . , n} or {1} × Zt1−1

ps × (pZps)t2 × · · · × (ps−1Zps)ts .
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Example 4.2. Let H2,0,0 be the Z27-additive GH code of length 27 with generator matrix 
G2,0,0 given in Example 2.1. The set I2,0,0 = {1, 2}, or equivalently the set of vectors 
I2,0,0 = {e1, e1 + e2}, is an additive information set for H2,0,0.

By applying (3) over G2,0,0, we obtain matrices G3,0,0, G2,1,0 and G2,0,1 that gen-
erate the Z27-additive GH codes H3,0,0, H2,1,0 and H2,0,1 of length 729, 243 and 81, 
respectively. By Proposition 4.1, it follows that I2,0,0 ∪ {28} = {1, 2, 28} is an additive 
information set for H3,0,0, H2,1,0 and H2,0,1. Although this additive information set is the 
same for these three codes, it is important to note that in terms of vectors representing 
these positions, we have that

I3,0,0 = {(1, 0, 0), (1, 1, 0), (1, 0, 1)},
I2,1,0 = {(1, 0, 0), (1, 1, 0), (1, 0, 3)}, and

I2,0,1 = {(1, 0, 0), (1, 1, 0), (1, 0, 9)}.

Finally,

I(1) = Φ(I2,0,0) ∪ {244, 245, 247} = {1, 2, 4, 10, 11, 13, 244, 245, 247},
I(2) = Φ(I2,0,0) ∪ {244, 247} = {1, 2, 4, 10, 11, 13, 244, 247}, and

I(3) = Φ(I2,0,0) ∪ {244} = {1, 2, 4, 10, 11, 13, 244}

are information sets for the corresponding Z27-linear GH codes H3,0,0, H2,1,0 and H2,0,1, 
respectively.

Let C be a Zps-additive code of type (n; t1, . . . , ts), and let C = Φ(C) be the corre-
sponding Zps-linear code of length ps−1n. Let Φ : Sym(n) → Sym(ps−1n) be the map 
defined as

Φ(τ)(i) = ps−1τ

(
i + χ(i)
ps−1

)
− χ(i), (8)

where χ(i) = ps−1 − (i mod ps−1), for all τ ∈ Sym(n) and i ∈ {1, . . . , ps−1n}. Given a 
subset S ⊆ Sym(n), we define the set Φ(S) = {Φ(τ) : τ ∈ S} ⊆ Sym(ps−1n). It is easy 
to see that if S ⊆ PAut(C) ⊆ Sym(n), then Φ(S) ⊆ PAut(Φ(C)) ⊆ Sym(ps−1n).

Lemma 4.1. The map Φ : Sym(n) → Sym(ps−1n) is a group monomorphism.

Proof. We need to check that Φ(στ) = Φ(σ)Φ(τ) for all τ, σ ∈ Sym(n). Let i be a 
coordinate position in {1, . . . , ps−1n} and χ(i) = ps−1−(i mod ps−1). Note that χ(ps−1a −
χ(i)) = χ(i) for any integer a. Then

(Φ(σ)Φ(τ))(i) = Φ(σ)
(
ps−1τ

(
i + χ(i)

s−1

)
− χ(i)

)

p
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= ps−1σ

⎛
⎝ps−1τ

(
i+χ(i)
ps−1

)
− χ(i) + χ(i)

ps−1

⎞
⎠− χ(i)

= ps−1στ

(
i + χ(i)
ps−1

)
− χ(i)

= Φ(στ)(i).

Finally, it is easy to check that Φ is injective. �
By Theorem 3.1, we identify PAut(Ht1,...,ts) with the group π(L). Recall that we can 

label the ith coordinate position of Ht1,...,ts with the ith column wi of the generator 
matrix Gt1,...,ts constructed via (3), i ∈ {1, . . . , n}. Any matrix M ∈ PAut(Ht1,...,ts)
sends columns of Gt1,...,ts to other columns of Gt1,...,ts . Therefore, M can be seen as a 
permutation of coordinate positions τ ∈ Sym(n), such that for all i ∈ {1, . . . , n}

τ(i) = j ⇐⇒ wiM = wj , j ∈ {1, . . . , n}. (9)

For any M ∈ PAut(Ht1,...,ts), we define Φ(M) = Φ(τ) ∈ Sym(ps−1n) and, for any 
P ⊆ PAut(Ht1,...,ts), we consider Φ(P) = {Φ(M) : M ∈ P} ⊆ Sym(ps−1n).

Proposition 4.2. Let Ht1,...,ts be the Zps-additive GH code of type (n; t1, . . . , ts) and 
let P ⊆ PAut(Ht1,...,ts). Then, Φ(P) is an r-PD-set for Ht1,...,ts with information set 
Φ(It1,...,ts) if and only if for each r-set E of column vectors of Gt1,...,ts there is M ∈ P
such that {gM : g ∈ E} ∩ It1,...,ts = ∅.

Proof. If Φ(P) is an r-PD-set with respect to the information set Φ(It1,...,ts), then, 
for each r-set E ⊆ {1, . . . , ps−1n}, there is τ ∈ P ⊆ Sym(n) such that Φ(τ)(E) ∩
Φ(It1,...,ts) = ∅. For every r-set E ⊆ {1, . . . , n}, let Eo = {ps−1(i − 1) + 1 : i ∈ E}. We 
know that there is τ ∈ P such that Φ(τ)(Eo) ∩ Φ(It1,...,ts) = ∅. By the definition of Φ, 
we also have that τ(E) ∩ It1,...,ts = ∅, which is equivalent to the statement.

Conversely, we assume that for each r-set E ⊆ {1, . . . , n}, there is τ ∈ P ⊆ Sym(n)
such that τ(E) ∩ It1,...,ts = ∅. For every r-set E ⊆ {1, . . . , ps−1n}, let Eo ⊆ {1, . . . , n}
be an r-set such that {i : ∃k ∈ {1, . . . , ps−1} s.t. ϕk(i) ∈ E} ⊆ Eo, where ϕk(i) =
ps−1(i − 1) + k. Since there is τ ∈ P such that τ(Eo) ∩ It1,...,ts = ∅, we have that 
Φ(τ)(E) ∩ Φ(It1,...,ts) = ∅. �

A slight modification of the proof of Proposition 4.2 leads to a more general result 
that holds for any Zps-additive code, not only for the family of Zps-additive GH codes.

Proposition 4.3. Let C be a Zps-additive code, let I be an additive information set for 
C, and let S ⊆ PAut(C). Then, S satisfies that for each r-set E ⊆ {1, . . . , n} there is 
τ ∈ S such that τ(E) ∩ I = ∅ if and only if Φ(S) ⊆ PAut(C) satisfies that for each r-set 
E ⊆ {1, . . . , ps−1n} there is σ ∈ Φ(S) such that σ(E) ∩ Φ(I) = ∅.
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Definition 4.1. Let M ∈ PAut(Ht1,...,ts) and let mi be the ith row of M, i ∈ {1, . . . , t1 +
· · · + ts}. We define M∗ over Zps as the matrix where the first row is m1 and the ith 
row is m1 + mi for i ∈ {2, . . . , t1}, m1 + pmi for i ∈ {t1 + 1, . . . , t1 + t2}, m1 + p2mi for 
i ∈ {t1 + t2 + 1, . . . , t1 + t2 + t3} and so on until m1 + ps−1mi for i ∈ {t1 + · · · + ts−1 +
1, . . . , t1 + · · · + ts}.

Theorem 4.1. Let Ht1,...,ts be the Zps-additive GH code of type (n; t1, . . . , ts). Let Pr =
{Mi : 0 ≤ i ≤ r} be a set of r + 1 matrices in PAut(Ht1,...,ts). Then, Φ(Pr) is an 
r-PD-set of size r+ 1 for Ht1,...,ts with information set Φ(It1,...,ts) if and only if no two 
matrices (M−1

i )∗ and (M−1
j )∗ have a row in common, for i, j ∈ {0, . . . , r} and i �= j.

Proof. The result can be proved using Proposition 4.2 and is a generalization of a similar 
result given in [2] for Z4-linear Hadamard codes. However, we include the detailed proof 
for the convenience of the reader.

Suppose that the set Pr = {Mi : 0 ≤ i ≤ r} satisfies that no two matrices (M−1
i )∗

and (M−1
j )∗, for i, j ∈ {0, . . . , r} and i �= j, have a row in common. Assume that Φ(Pr)

is not an r-PD-set for Ht1,...,ts with information set Φ(It1,...,ts). By Proposition 4.2, it 
follows that there exists an r-set E ⊆ {1} × Zt1−1

ps × (pZps)t2 × · · · ×
(
ps−1Zps

)ts , that 
is, a set of r different column vectors of the generator matrix Gt1,...,ts , such that for 
each i ∈ {0, . . . , r}, there is a gi ∈ E so that giMi ∈ It1,...,ts . Note that there are r + 1
values for i, but only r elements in E . Therefore, gMi ∈ It1,...,ts and gMj ∈ It1,...,ts for 
some g ∈ E and i �= j. Suppose gMi = wh and gMj = wt, for wh, wt ∈ It1,...,ts . Then, 
g = whM−1

i = wtM−1
j . Taking into account the form of the vectors in the information 

set It1,...,ts , by multiplying for such inverse matrices M−1
i and M−1

j , we obtain the first 
row or a certain addition between the first row and another row of each matrix. Thus, we 
obtain that (M−1

i )∗ and (M−1
j )∗ have a row in common, contradicting our assumption. 

Let Pk ⊆ Pr of size k + 1. If this set satisfies the condition on the inverse matrices and 
we suppose that it is not a k-PD-set, we arrive to a contradiction in the same way as 
before.

Conversely, suppose that Φ(Pr) is an r-PD-set for Ht1,...,ts with information set 
Φ(It1,...,ts), but does not satisfy the condition on the inverse matrices. Thus, there are two 
matrices (M−1

i )∗ and (M−1
j )∗, with i, j ∈ {0, . . . , r}, such that they share a common row, 

say the hth row of (M−1
i )∗ and the tth row of (M−1

i )∗, with h, t ∈ {1, . . . , t1 + · · ·+ ts}. 
In other words, we can define g = eh(M−1

i )∗ = et(M−1
j )∗. Therefore, g = whM−1

i =
wtM−1

j , where wh, wt ∈ It1,...,ts . Finally, we obtain that gMi = wh and gMj = wt. 
Let L = {� : 0 ≤ � ≤ r, � �= i, j}. For each � ∈ L, choose a row g� of the matrix 
(M−1

� )∗. It is clear that g� = eh�
(M−1

� )∗ = wh�
M−1

� , so g�M� = wh�
∈ It1,...,ts . Finally, 

since some of the g� may repeat, we obtain a set E = {g� : � ∈ L} ∪ {g} of size at 
most r. Nevertheless, no matrix in Pr will map every member of E out of the additive 
information set It1,...,ts , which contradicts our assumption by Proposition 4.2. �
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Corollary 4.1. Let Pr be a set of r+ 1 matrices in PAut(Ht1,...,ts). If Φ(Pr) is an r-PD-
set of size r + 1 for Ht1,...,ts , then any ordering of elements in Φ(Pr) provides nested 
k-PD-sets for k ∈ {1, . . . , r}.

Corollary 4.2. Let Pr be a set of r+1 matrices in PAut(Ht1,...,ts). If Φ(Pr) is an r-PD-set 
of size r + 1 for Ht1,...,ts , then r ≤ f t1,...,ts

p , where

f t1,...,ts
p =

⌊
pst1+(s−1)t2+···+ts−s − t1 − t2 − · · · − ts

t1 + t2 + · · · + ts

⌋
.

Proof. Following the condition on sets of matrices to be r-PD-sets of size r+1, given by 
Theorem 4.1, we have to obtain certain r+1 matrices with no rows in common. Since the 
rows of length t1 + · · ·+ ts must have 1 in the first coordinate, elements from Zps in the 
coordinates from 2 to t1, and elements from piZps in the coordinates from t1+· · ·+ti+1 to 
t1 + · · ·+ti+1, for i ∈ {1, . . . , s −1}, the number of possible rows is ps(t1−1)+(s−1)t2+···+ts . 
Thus, taking this fact into account and counting the number of rows of each one of these 
r + 1 matrices, we have that (r + 1)(t1 + t2 + · · · + ts) ≤ ps(t1−1)+(s−1)t2+···+ts , and the 
result follows. �

5. Explicit construction of r-PD-sets of size r + 1

In this section, by using Theorem 4.1, we create r-PD-sets of size r + 1 for different 
infinite families of Zps-linear GH codes. First, we give an explicit construction for the 
Zps-linear GH codes Ht1,0,...,0, with t1 ≥ 2 and r ≤ f t1,0,...,0

p . Then, using a similar 
idea, we give an explicit construction for the Zps-linear GH codes Hi = H1,t2,...,ts , 
where i ∈ {2, . . . , s}, tj = 0 for all j �= i, ti ≥ 1, and r ≤ f1,t2,...,ts

p . The main idea 
behind these constructions is to use a certain ordered set of vectors as rows of a set 
of matrices {N ∗

0 , . . . , N ∗
r }, such that {N−1

0 , . . . , N−1
r } is an r-PD-set. This method is a 

generalization of the one used in [2] for Z4-linear Hadamard codes, which, in turn, was 
based on a similar idea for simplex codes given in [18].

Let R = GR(ps(t1−1)) be the Galois extension of dimension t1 − 1 over Zps , which is 
isomorphic to any ring Zps [x]/(h(x)), where h(x) is a monic basic irreducible polynomial 
over Zps of degree t1 − 1. A monic basic polynomial h(x) over Zps is called irreducible
if h̄(x) is an irreducible polynomial over Zp, where h̄(x) is the polynomial obtained by 
taking the coefficients of h(x) modulo p. Moreover, if h̄(x) is primitive, then h(x) is said 
to be a monic basic primitive polynomial over Zps . If f(x) is an irreducible polynomial 
dividing xn−1 in Zp[x], then there is a unique polynomial h(x) over Zps [x] that satisfies 
h̄(x) = f(x) and that divides xn − 1 in Zps [x], which is called the Hensel lift of f(x)
to Zps . Moreover, if a polynomial of degree m is the Hensel lift of a monic primitive 
polynomial over Zp, then it always has a root of order pm − 1 [34]. Let h(x) be such a 
polynomial, with m = t1 − 1. Let α ∈ R be a root of h(x) of order � = pt1−1 − 1. Then, 
the set T = {0, 1, α, α2, . . . , α�−1} is called the Teichmüller set.
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We can always represent an element y ∈ R in the following form:

y = a1 + pa2 + p2a3 + · · · + ps−1as,

where ai ∈ T , for i ∈ {1, . . . , s}, which is called the p-adic representation of y. Consider 
T as an ordered set. Then, we consider the following ordering of the elements of R =
{y1, . . . , yps(t1−1)}: a1 + pa2 + · · ·+ ps−1as < b1 + pb2 + · · ·+ ps−1bs if aj < bj for the last 
j where aj and bj differ. We can also represent an element y ∈ R as a linear combination 
of some powers of α:

y = b0 + b1α + b2α
2 + · · · + bt1−2α

t1−2,

where bj ∈ Zps , for j ∈ {0, . . . , t1 − 2}. This is called the additive representation of y
and it can be identified with the vector (b0, b1, . . . , bt1−2) ∈ Zt1−1

ps .
Using the ordering given by the p-adic representation, we construct the set 

{N ∗
0 , . . . , N ∗

r } of matrices of size t1 × t1, where each one has the following form:

N ∗
i =

⎛
⎜⎜⎜⎜⎝

1 yt1i+1
1 yt1i+2
...

...
1 yt1(i+1)

⎞
⎟⎟⎟⎟⎠ ,

with the elements yj , for j ∈ {1, . . . , ps(t1−1)}, given as vectors of t1 − 1 components 
over Zps by using the corresponding additive representation. Note that no two matrices 
have a row in common, and there are �|R|/t1� = f t1,0,...,0

p + 1 such matrices, where 
f t1,0,...,0
p = �(pst1 − t1)/t1� by Corollary 4.2, so r ≤ f t1,0,...,0

p .
Let n∗

i,j be the jth row of the matrix N ∗
i , for any i ∈ {0, . . . , r} and j ∈ {1, . . . , t1}. 

In the context of the Zps-linear GH code Ht1,0,...,0, we define Ni as the matrix that 
has n∗

i,1 as the first row and n∗
i,j − n∗

i,1 as the jth row, for j ∈ {2, . . . , t1}. Note that 
this is consistent with Definition 4.1. Indeed, in the proof of Theorem 5.1, we see that 
N0, . . . , Nr ⊆ PAut(Ht1,0,...,0).

Lemma 5.1. Let K = Zp[x]/(f(x)), where f(x) ∈ Zp[x] is a primitive polynomial of 
degree m. Let α ∈ K be a root of f(x). Then, α − 1, α2 − 1, . . . , αm − 1 are linearly 
independent vectors over Zp.

Proof. Let f(x) = xm+am−1x
m−1+ · · ·+a1x +a0, where aj ∈ Zp for all j ∈ {0, . . . , m −

1}. Since α is a root of f(x), then αm − 1 = − 
∑m−1

j=0 ajα
j − 1. Using the additive 

representation of the elements of K, we obtain the following vectors over Zm
p : αi − 1 =

ei+1 − e1 for any i ∈ {1, . . . , m − 1}, and αm − 1 = − 
∑m−1

j=0 ajej+1 − e1. Consider the 
following m ×m matrix over Zp by taking these vectors as rows:
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(
−1 Idm−1

−a0 − 1 −a

)
,

where a = (a1, . . . , am−1) ∈ Zm−1
p . This matrix has the following determinant: 

(−1)m(
∑m−1

j=0 aj +1). Since f(x) is irreducible, then f(1) = 1 +
∑m−1

j=0 aj �= 0. Therefore, 
the determinant is non-zero and the vectors are linearly independent over Zp. �
Theorem 5.1. Let Pr = {N−1

0 , . . . , N−1
r }. Then, Φ(Pr) is an r-PD-set of size r + 1 for 

the Zps-linear GH code Ht1,0,...,0 with information set Φ(It1,0,...,0), for all t1 ≥ 2 and 
2 ≤ r ≤ f t1,0,...,0

p .

Proof. By construction, the matrices N ∗
0 , . . . , N ∗

r do not share a row in common. Thus, 
if we prove that all matrices N−1

0 , . . . , N−1
r are in PAut(Ht1,0,...,0), then Φ(Pr), where 

Pr = {N−1
0 , . . . , N−1

r }, would be an r-PD-set of size r+1 for Ht1,0,...,0, by Theorem 4.1. 
Since PAut(Ht1,0,...,0) is a group, it is enough to prove that N0, . . . , Nr are in this group. 
Note that these matrices are in the form

Ni =

⎛
⎜⎜⎜⎜⎝

1 yt1i+1
0 yt1i+2 − yt1i+1
...

...
0 yt1(i+1) − yt1i+1

⎞
⎟⎟⎟⎟⎠ , (10)

for any i ∈ {0, . . . , r}. As shown in (5), the elements in PAut(Ht1,0,...,0) have the form
(

1 a1
0 A1,1

)
, (11)

where a1 ∈ Zt1−1
ps and A1,1 ∈ GL(t1 − 1, Zps). By using the additive representation, 

yy1i+1 ∈ Zt1−1
ps , for any i ∈ {0, . . . , r}. Then, we need to prove that the vectors yt1i+2 −

yt1i+1, . . . , yt1(i+1) − yt1i+1 are linearly independent over Zps , for any i ∈ {0, . . . , r}. 
Taking into account that α� = 1 and t1 ≤ pt1−1 for t1 ≥ 2, the set of vectors {yt1i+2 −
yt1i+1, . . . , yt1(i+1) − yt1i+1} is equal to one of the following three sets:

L1 = {1, . . . , αt1−2},
L2 = {αk+1 − αk, . . . , αk+t1−1 − αk},
L3 = {αk+1 − αk, . . . , α�−1 − αk,−αk + pb, α� − αk + pb, . . . , αk+t1−2 − αk + pb},

for some k ∈ {0, . . . , � − 1} and some b ∈ R. Clearly, L1 is a set of linearly independent 
vectors over Zps .

For the second set L2, suppose that 
∑t1−1

i=1 λi(αk+i−αk) = 0 for certain λi ∈ Zps , with 
some of them being non-zero. Note that, since α is a unit in R, then 

∑
i λi(αi − 1) = 0. 

Let m be the smallest integer in {0, . . . , s −1} for which there exists an i ∈ {1, . . . , t1−1}
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such that λi ∈ pmZps and λi /∈ pm+1Zps . For example, if all λi ∈ pZps and there is a 
certain λi /∈ p2Zps , then m = 1. Therefore, we can define λi = pmλ′

i for all i, and we 
obtain pm

∑
i λ

′
i(αi−1) = 0, hence 

∑
i λ

′
i(αi−1) = ps−mλ for a certain λ ∈ R. Thus, by 

taking modulo p, we obtain 
∑

i λ̄
′
i(ᾱi− 1) = 0 over Zp, with at least one λ̄′

i �= 0. Clearly, 
ᾱ is a unit in Zp[x]/(h̄(x)). Therefore, by applying Lemma 5.1 on the vectors ᾱi − 1 for 
i ∈ {1, . . . , t1 − 1}, we obtain a contradiction.

For the third set L3, we follow a similar argument. Suppose that

−λt1−1(αk − pb) +
�−k−1∑
i=1

λi(αk+i − αk) +
t1−2∑
i=�−k

λi(αk+i − αk + pb) = 0

for certain λi ∈ Zps , with some of them being non-zero. With the same definition 
of m as in the previous case, we obtain −pmλ′

t1−1(αk − pb) + pm
∑�−k−1

i=1 λ′
i(αk+i −

αk) + pm
∑t1−2

i=�−k λ
′
i(αk+i − αk + pb) = 0, where λi = pmλ′

i. Thus, −λ′
t1−1(αk − pb) +∑�−k−1

i=1 λ′
i(αk+i − αk) +

∑t1−2
i=�−k λ

′
i(αk+i − αk + pb) = ps−mλ for some λ ∈ R. Taking 

modulo p, −λ̄′
t1−1ᾱ

k +
∑

i λ̄
′
i(ᾱk+i − ᾱk) = 0 over Zp, with at least one λ̄′

i �= 0. Since 
ᾱ is a unit, we obtain −λ̄′

t1−1 +
∑

i λ̄
′
i(ᾱi − 1) = 0. We obtain a contradiction since the 

vectors −1, ᾱ− 1, . . . , ᾱt1−2 − 1 are linearly independent over Zp. �
Example 5.1. Let H3,0,0 be the Z27-additive GH code of type (36; 3, 0, 0). Let R =
GR(272) be the Galois ring over Z27, isomorphic to Z27[x]/(h(x)), where h(x) = x2 +
22x +26. This polynomial can be obtained as the Hensel lift of f(x) = h̄(x) = x2 +x +2
over Z3. Note that h(x) is a monic basic primitive polynomial dividing x8 − 1 in Z27[x]. 
Let α be a root of h(x) of order 8. Then, T = {0, 1, α, α2, . . . , α7} and we can order the 
elements of R as follows:

R = {0 + 3 · 0 + 9 · 0, 1 + 3 · 0 + 9 · 0, α + 3 · 0 + 9 · 0, . . . , α7 + 3 · 0 + 9 · 0,
0 + 3 · 1 + 9 · 0, 1 + 3 · 1 + 9 · 0, α + 3 · 1 + 9 · 0, . . . , α7 + 3 · 1 + 9 · 0,
. . .

0 + 3 · α7 + 9 · α7, 1 + 3 · α7 + 9 · α7, α + 3 · α7 + 9 · α7, . . . ,

α7 + 3 · α7 + 9 · α7}
= {0, 1, α, . . . , 22 + α,

3, 4, 3 + α, . . . , 25 + α,

. . .

21 + 12α, 22 + 12α, 21 + 13α, . . . , 16 + 13α}.

By Theorem 5.1, we can find r-PD-sets of size r+1 for all 2 ≤ r ≤ f3,0,0
3 = 242, by using 

the elements of R. Indeed, we can construct up to 243 matrices taking all the elements 
of R in groups of 3 in order to reach the upper bound. Here, we just show a smaller 
example by constructing an 11-PD-set formed by 12 matrices.
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Consider the following 12 matrices, constructed by dividing the first 36 ordered ele-
ments of R in groups of 3:

N ∗
0 =

⎛
⎜⎝ 1 0 0

1 1 0
1 0 1

⎞
⎟⎠ , N ∗

1 =

⎛
⎜⎝ 1 1 5

1 5 26
1 26 0

⎞
⎟⎠ , N ∗

2 =

⎛
⎜⎝ 1 0 26

1 26 22
1 22 1

⎞
⎟⎠ ,

N ∗
3 =

⎛
⎜⎝ 1 3 0

1 4 0
1 3 1

⎞
⎟⎠ , N ∗

4 =

⎛
⎜⎝ 1 4 5

1 8 26
1 2 0

⎞
⎟⎠ , N ∗

5 =

⎛
⎜⎝ 1 3 26

1 2 22
1 25 1

⎞
⎟⎠ ,

N ∗
6 =

⎛
⎜⎝ 1 0 3

1 1 3
1 0 4

⎞
⎟⎠ , N ∗

7 =

⎛
⎜⎝ 1 1 8

1 5 2
1 26 3

⎞
⎟⎠ , N ∗

8 =

⎛
⎜⎝ 1 0 2

1 26 25
1 22 4

⎞
⎟⎠ ,

N ∗
9 =

⎛
⎜⎝ 1 3 15

1 4 15
1 3 16

⎞
⎟⎠ , N ∗

10 =

⎛
⎜⎝ 1 4 20

1 8 14
1 2 15

⎞
⎟⎠ , N ∗

11 =

⎛
⎜⎝ 1 3 14

1 2 10
1 25 16

⎞
⎟⎠ .

Note that there are no repeated rows in the whole set of matrices. Let P11 =
{N−1

0 , . . . , N−1
11 }, where

N−1
0 =

⎛
⎜⎝ 1 0 0

0 1 0
0 0 1

⎞
⎟⎠ , N−1

1 =

⎛
⎜⎝ 1 1 16

0 1 15
0 5 10

⎞
⎟⎠ , N−1

2 =

⎛
⎜⎝ 1 1 16

0 22 17
0 1 16

⎞
⎟⎠ ,

N−1
3 =

⎛
⎜⎝ 1 24 0

0 1 0
0 0 1

⎞
⎟⎠ , N−1

4 =

⎛
⎜⎝ 1 25 25

0 1 15
0 5 10

⎞
⎟⎠ , N−1

5 =

⎛
⎜⎝ 1 16 19

0 22 17
0 1 16

⎞
⎟⎠ ,

N−1
6 =

⎛
⎜⎝ 1 0 24

0 1 0
0 0 1

⎞
⎟⎠ , N−1

7 =

⎛
⎜⎝ 1 13 13

0 1 15
0 5 10

⎞
⎟⎠ , N−1

8 =

⎛
⎜⎝ 1 25 22

0 22 17
0 1 16

⎞
⎟⎠ ,

N−1
9 =

⎛
⎜⎝ 1 24 12

0 1 0
0 0 1

⎞
⎟⎠ , N−1

10 =

⎛
⎜⎝ 1 4 10

0 1 15
0 5 10

⎞
⎟⎠ , N−1

11 =

⎛
⎜⎝ 1 1 22

0 22 17
0 1 16

⎞
⎟⎠ .

The matrices of P11 can also be represented as permutations of coordinate positions as 
shown in (9). Let τi ∈ Sym(729) be the one corresponding to N−1

i , i ∈ {0, . . . , 11}. Recall 
that Φ(N−1

i ) = Φ(τi) as defined in (8). Then, by Theorem 5.1, Φ(P11) = {Φ(N−1
i ) :

i ∈ {0, . . . , 11}} ⊆ Sym(6561) is an 11-PD-set of size 12 for the Z27-linear GH code 
H3,0,0 = Φ(H3,0,0) with information set Φ(I3,0,0) = {1, 2, 4, 10, 11, 13, 244, 245, 247}, 
given in Example 4.2.
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Remark 5.1. By Corollary 4.2, f t1,0,...,0
p is the maximum number of errors that can be 

corrected using r-PD-sets of size r + 1 of the form Φ(Pr), where Pr ⊆ PAut(Ht1,0,...,0). 
However, higher values of r could be achieved by considering elements in PAut(Ht1,0,...,0)
that are not the Φ image of elements in PAut(Ht1,0,...,0).

Following a similar reasoning to the one used in Theorem 5.1, we can also obtain 
r-PD-sets of size r + 1 for the Zps -linear GH codes Hi = H1,t2,...,ts , i ∈ {2, . . . , s}, 
of type (n; 1, t2, . . . , ts), where tj = 0 for all j �= i, ti ≥ 1, and r ≤ f1,t2,...,ts

p . Let 
Ri = GR(p(s−i+1)ti) be the Galois extension of dimension ti over Zps−i+1 , isomorphic 
to Zps−i+1 [x]/(h(x)), with h(x) being a monic basic primitive polynomial of degree ti
dividing xpti−1 − 1 in Zps−i+1 [x]. Let α ∈ Ri be a root of h(x) of order � = pti − 1
and T = {0, 1, α, α2, . . . , α�−1}. The p-adic representation of an element y ∈ Ri is 
y = a1 + pa2 + p2a3 + · · · + ps−ias−i+1, where ak ∈ T for k ∈ {1, . . . , s − i + 1}. Using 
this representation, we define the ordered set {y1, . . . , yp(s−i+1)ti } with all the elements 
in Ri. Consider the set of matrices {M∗

0, . . . , M∗
r} of size (ti + 1) × (ti + 1) over Zps , 

where

M∗
j =

⎛
⎜⎜⎜⎜⎝

1 pi−1y(ti+1)j+1
1 pi−1y(ti+1)j+2
...

...
1 pi−1y(ti+1)(j+1)

⎞
⎟⎟⎟⎟⎠ ,

for j ∈ {0, . . . , r}. Note that

r ≤ f1,t2,...,ts
p = �p

(s−i+1)ti − 1 − ti
1 + ti

�

by Corollary 4.2. The elements y ∈ Ri are given as vectors over Zps−i+1 by using the 
additive representation. Then, we consider the inclusion of vectors y over Zps−i+1 to 
vectors over Zps as pi−1y.

Let (1, pi−1m∗
j,k) be the kth row of the matrix M∗

j , for any j ∈ {0, . . . , r}. In the 
context of the Zps-linear GH code Hi, we define Mj as the matrix that has (1, pi−1m∗

j,1)
as the first row and (0, m∗

j,k − m∗
j,1) as the kth row, for k ∈ {2, . . . , ti + 1}. Note that 

this is consistent with Definition 4.1. Indeed, in the proof of Corollary 5.1, we see that 
M0, . . . , Mr ⊆ PAut(Hi), where Hi is the Zps-additive code such that Φ(Hi) = Hi.

Corollary 5.1. Let Pr = {M−1
0 , . . . , M−1

r }. Then, Φ(Pr) is an r-PD-set of size r+ 1 for 
the Zps-linear GH code Hi = H1,t2,...,ts , where ti ≥ 1, i ∈ {2, . . . , s}, and tj = 0 for 
all j ∈ {2, . . . , s} such that j �= i, with information set Φ(I1,t2,...,ts), for all 2 ≤ r ≤
f1,t2,...,ts
p .

Proof. Since Zps−i+1 is isomorphic to pi−1Zps , the matrices M∗
0, . . . , M∗

r do not share 
a row in common. Then, the matrix Mj is in the form
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Mj =

⎛
⎜⎜⎜⎜⎝

1 pi−1y(ti+1)j+1
0 y(ti+1)j+2 − y(ti+1)j+1
...

...
0 y(ti+1)(j+1) − y(ti+1)j+1

⎞
⎟⎟⎟⎟⎠ , (12)

for any j ∈ {0, . . . , r}. As shown in (5), the elements in PAut(H1,0,...,0,ti,0,...,0) have the 
form

(
1 pi−1ai
0 ζs−i+1(Ai,i)

)
, (13)

where ai ∈ Zti
ps and Ai,i ∈ GL(ti, Zps). Note that ζs−i+1(Ai,i) can be seen as an element 

of GL(ti, Zps−i+1) and, in fact, it can be any element in GL(ti, Zps−i+1).
Following the same argument as in the proof of Theorem 5.1, over the Galois ring Ri =

GR(p(s−i+1)ti) instead of GR(ps(t1−1)), it can be proven that the vectors y(ti+1)j+2 −
y(ti+1)j+1, . . . , y(ti+1)(j+1) − y(ti+1)j+1 are linearly independent over Zps−i+1 . �
Example 5.2. Let H1,3,0 be the Z8-additive Hadamard code of type (26; 1, 3, 0). Let R2 =
GR(43) be the Galois ring over Z4, isomorphic to Z4[x]/(h(x)), where h(x) = x3 +2x2 +
x + 3. This polynomial can be obtained as the Hensel lift of f(x) = h̄(x) = x3 + x + 1
over Z2. Note that h(x) is a monic basic primitive polynomial dividing x7 − 1 in Z4[x]. 
Let α be a root of h(x) of order 7. Then, T = {0, 1, α, α2, . . . , α6} and we can order the 
64 elements of R2 as follows:

R2 = {0 + 2 · 0, 1 + 2 · 0, α + 2 · 0, . . . , α6 + 2 · 0,

0 + 2 · 1, 1 + 2 · 1, α + 2 · 1, . . . , α6 + 2 · 1,

. . . ,

0 + 2 · α6, 1 + 2 · α6, α + 2 · α6, . . . , α6 + 2 · α6}

= {0, 1, α, . . . , 1 + 2α + α2,

2, 3, 2 + α, . . . , 3 + 2α + α2,

. . .

2 + 2α2, 3 + 2α2, 2 + α + 2α2, . . . , 3 + 2α + 3α2}.

By Corollary 5.1, we can find r-PD-sets of size r+1 for all 2 ≤ r ≤ f1,3,0
2 = 15, by using 

the elements of R2. Indeed, we can construct up to 16 matrices taking all the elements 
of R2, multiplied by 2, in groups of 4 in order to reach the upper bound. Here, we just 
show a smaller example by constructing an 8-PD-set formed by 9 matrices.

Consider the following 9 matrices over Z8, constructed by taking the first 36 ordered 
elements of R2 in groups of 4 and multiplying them by 2 as elements of Z3

8:
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M∗
0 =

⎛
⎜⎜⎜⎝

1 0 0 0
1 2 0 0
1 0 2 0
1 0 0 2

⎞
⎟⎟⎟⎠ , M∗

1 =

⎛
⎜⎜⎜⎝

1 2 6 4
1 4 6 6
1 6 6 2
1 2 4 2

⎞
⎟⎟⎟⎠ , M∗

2 =

⎛
⎜⎜⎜⎝

1 4 0 0
1 6 0 0
1 4 2 0
1 4 0 2

⎞
⎟⎟⎟⎠ ,

M∗
3 =

⎛
⎜⎜⎜⎝

1 6 6 4
1 0 6 6
1 2 6 2
1 6 4 2

⎞
⎟⎟⎟⎠ , M∗

4 =

⎛
⎜⎜⎜⎝

1 0 4 0
1 2 4 0
1 0 6 0
1 0 4 2

⎞
⎟⎟⎟⎠ , M∗

5 =

⎛
⎜⎜⎜⎝

1 2 2 4
1 4 2 6
1 6 2 2
1 2 0 2

⎞
⎟⎟⎟⎠ ,

M∗
6 =

⎛
⎜⎜⎜⎝

1 0 0 4
1 2 0 4
1 0 2 4
1 0 0 6

⎞
⎟⎟⎟⎠ , M∗

7 =

⎛
⎜⎜⎜⎝

1 2 6 0
1 4 6 2
1 6 6 6
1 2 4 6

⎞
⎟⎟⎟⎠ , M∗

8 =

⎛
⎜⎜⎜⎝

1 4 4 0
1 6 4 0
1 4 6 0
1 4 4 2

⎞
⎟⎟⎟⎠ .

Note that there are no repeated rows in the whole set of matrices. Let P8 =
{M−1

0 , . . . , M−1
8 }, where

M−1
0 =

⎛
⎜⎜⎜⎝

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎞
⎟⎟⎟⎠ , M−1

1 =

⎛
⎜⎜⎜⎝

1 6 4 6
0 3 3 0
0 2 3 3
0 2 1 0

⎞
⎟⎟⎟⎠ , M−1

2 =

⎛
⎜⎜⎜⎝

1 4 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎞
⎟⎟⎟⎠ ,

M−1
3 =

⎛
⎜⎜⎜⎝

1 2 0 6
0 3 3 0
0 2 3 3
0 2 1 0

⎞
⎟⎟⎟⎠ , M−1

4 =

⎛
⎜⎜⎜⎝

1 0 4 0
0 1 0 0
0 0 1 0
0 0 0 1

⎞
⎟⎟⎟⎠ , M−1

5 =

⎛
⎜⎜⎜⎝

1 6 0 2
0 3 3 0
0 2 3 3
0 2 1 0

⎞
⎟⎟⎟⎠ ,

M−1
6 =

⎛
⎜⎜⎜⎝

1 0 0 4
0 1 0 0
0 0 1 0
0 0 0 1

⎞
⎟⎟⎟⎠ , M−1

7 =

⎛
⎜⎜⎜⎝

1 6 0 6
0 3 3 0
0 2 3 3
0 2 1 0

⎞
⎟⎟⎟⎠ , M−1

8 =

⎛
⎜⎜⎜⎝

1 4 4 0
0 1 0 0
0 0 1 0
0 0 0 1

⎞
⎟⎟⎟⎠ .

The matrices of P8 can also be represented as permutations of coordinate positions as 
shown in (9). Let τi ∈ Sym(64) be the one corresponding to M−1

i , i ∈ {0, . . . , 8}. For 
example, matrix M−1

1 is equivalent to the permutation

τ1 = (1, 60, 19, 56, 37, 46)(2, 55, 42, 23, 34, 63)(3, 50, 49, 54, 47, 16)

(4, 61, 12, 21, 44, 29)(5, 38, 41, 28, 27, 32)(6, 33, 52, 59, 24, 45)

(7, 48, 11, 26, 17, 62)(8, 43, 18, 57, 30, 15)(9, 20, 51, 64, 13, 14)

(10, 31)(22, 39, 40, 35, 58, 25)(36, 53).

Recall that Φ(M−1
j ) = Φ(τj) as defined in (8). Then, by Corollary 5.1, Φ(P8) =

{Φ(M−1
j ) : j ∈ {0, . . . , 8}} ⊆ Sym(256) is an 8-PD-set of size 9 for the Z8-linear 

Hadamard code H1,3,0 = Φ(H1,3,0) with information set Φ(I1,3,0) = {1, 2, 3, 5, 7, 17,
19, 65, 67}.
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6. Recursive constructions of r-PD-sets

In this section, given an r-PD-set of size � for a Zps-linear GH code Ht1,...,ts , we show 
that one can easily obtain an r-PD-set of size � for the Zps-linear GH code Ht1+i1,...,ts+is , 
for all i1, . . . , is ≥ 0. In particular, this is useful to obtain r-PD-sets for any code Ht1,...,ts , 
including those of type different to (n; t1, 0, . . . , 0) and (n; 1, 0, . . . , 0, ti, 0, . . . , 0), i ∈
{2, . . . , s}, which have been already considered in Section 5.

We present two different constructions that produce a similar result. One uses the 
matrix representation of the elements in PAut(Ht1,...,ts) and the other one uses the 
permutation representation. These constructions are a generalization of the ones given 
in [2] for Z4-linear Hadamard codes.

6.1. Matrix representation

In this first construction, we consider the elements of PAut(Ht1,...,ts) as matrices in 
the subgroup π(L) of GL(t1 + · · · + ts, Zps), described in Section 3. Consider a matrix 
M ∈ PAut(Ht1,...,ts) in the form given in (5) and s positive integers κ1, . . . , κs. Then, 
we define the matrix M(κ1, . . . , κs) as

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 a′1 pa′2 · · · ps−2a′s−1 ps−1a′s
0 A′

1,1 pA′
1,2 · · · ps−2A′

1,s−1 ps−1A′
1,s

0 ζs−1(A′
2,1) ζs−1(A′

2,2) · · · ζs−1(ps−3A′
2,s−1) ζs−1(ps−2A′

2,s)
...

...
...

. . .
...

...
0 ζ2(A′

s−1,1) ζ2(A′
s−1,2) · · · ζ2(A′

s−1,s−1) ζ2(pA′
s−1,s)

0 ζ1(A′
s,1) ζ1(A′

s,2) · · · ζ1(A′
s,s−1) ζ1(A′

s,s)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

where a′1 = (a1, 0) ∈ Zt1−1+κ1
ps , a′j = (aj , 0) ∈ Z

tj+κj

ps for j ∈ {2, . . . , s}, A′
1,1 =(

A1,1 0
0 Idκ1

)
∈ GL(t1 − 1 + κ1), A′

i,i =
(
Ai,i 0
0 Idκi

)
∈ GL(ti + κi, Zps) for 

i ∈ {2, . . . , s}, and A′
i,j =

(
Ai,j 0

)
, A′

j,i =
(
Aj,i

0

)
are matrices over Zps for 

i, j ∈ {1, . . . , s} with i < j, respectively. Note that M(κ1, . . . , κs) ∈ GL(t1 + · · · +
ts + κ1 + · · · + κs, Zps).

Proposition 6.1. Let Pr = {M0, . . . , Mr} ⊆ PAut(Ht1,...,ts) such that Φ(Pr) is an 
r-PD-set of size r + 1 for Ht1,...,ts with information set Φ(It1,...,ts). Then, Qr =
{(M−1

i (κ1, . . . , κs))−1 : i ∈ {0, . . . , r}} ⊆ PAut(Ht1+κ1,...,ts+κs) and Φ(Qr) is an r-PD-
set of size r + 1 for Ht1+κ1,...,ts+κs with information set Φ(It1+κ1,...,ts+κs

), for any 
κ1, . . . , κs ≥ 0.

Proof. Since M−1
i ∈ PAut(Ht1,...,ts), M−1

i (κ1, . . . , κs) ∈ PAut(Ht1+κ1,...,ts+κs), so Qr ⊆
PAut(Ht1+κ1,...,ts+κs). Moreover, if Φ(Pr) is an r-PD-set for Ht1,...,ts , by Theorem 4.1, 
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the matrices (M−1
i )∗ for i ∈ {0, . . . , r} share no row in common. Clearly, the extended 

matrices (M−1
i (κ1, . . . , κs))∗ do not share any row either. �

6.2. Permutation representation

In the second construction, the elements of PAut(Ht1,...,ts) are considered as permu-
tations in Sym(n), where n = ps(t1−1)+(s−1)t2+···+ts . Let σ ∈ Sym(n) and let q be a 
positive integer, then we define qσ ∈ Sym(qn) as the permutation that acts as σ in each 
of the following sets of coordinate positions: {1, . . . , n}, {n +1, . . . , 2n}, {2n +1, . . . , 3n}, 
. . . , {(q − 1)n + 1, . . . , qn}.

Proposition 6.2. Let S be an r-PD-set of size � for Ht1,...,ts of length n with information 
set I. Then, pS = {pσ : σ ∈ S} is an r-PD-set of size � for Ht1,...,ts−1,ts+1, with respect 
to any information set I ′ = I ∪ {j + n} with j ∈ I.

Proof. Let H = Ht1,...,ts , H = Φ(H), H(s) = Ht1,...,ts−1,ts+1 and H(s) = Φ(H(s)). Using 
the recursive construction given in (3), we obtain

H(s) = {Φ((h, h, h, . . . , h) + λ(0,ps−1, 2ps−1, . . . , (p− 1)ps−1)) : h ∈ H, λ ∈ Zp}
= {(Φ(h),Φ(h + λps−1),Φ(h + λ2ps−1), . . . ,Φ(h + λ(p− 1)ps−1)) :

h ∈ H, λ ∈ Zp},

where 0 and ps−1 are the vectors with 0 and ps−1 in all components, respectively. We 
have that Φ(h + λμps−1) = Φ(h) + λμΦ(ps−1) = Φ(h) + λμ1 for any λ, μ ∈ Zp [5]. 
Therefore,

H(s) = {(h′, h′ + λ1, h′ + λ2, . . . , h′ + λ(p − 1)) : h′ ∈ H,λ ∈ Zp}.

If σ ∈ PAut(H), then σ(x) = y ∈ H for any x ∈ H. Consider an element x = (x, x +
λ1, . . . , x + λ(p − 1)) ∈ H(s). Then,

(pσ)(x, x + λ1, . . . , x + λ(p − 1)) = (σ(x), σ(x) + σ(λ1), . . . , σ(x) + σ(λ(p − 1)))

= (y, y + λ1, . . . , y + λ(p − 1)) ∈ H(s),

which means that pσ ∈ PAut(H(s)).
Let I ⊆ {1, . . . , n} be an information set for H. Define I ′ = I ∪{j +n}, for any j ∈ I. 

We have that x|I′ = (x|I , xj +λ), for any x = (x, x +λ1, . . . , x +λ(p − 1)) ∈ H(s), where 
x ∈ H and λ ∈ Zp. Since there are pst1+(s−1)t2+···+ts different possible values of x|I and 
p possible values of λ, we obtain pst1+(s−1)t2+···+2ts−1+ts+1 different elements x|I′ , which 
means that I ′ is an information set for H(s).

Consider an error vector e = (e1, . . . , ep) ∈ Zpn
p of weight wtH(e) ≤ r, where ek =

(ek1 , . . . , ekn) ∈ Zn
p for k ∈ {1, . . . , p}. In order for pS to be an r-PD-set for H(s) with 
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respect to I ′, there must be an element pσ ∈ pS such that wtH((pσ)(e)|I′) = 0. Note that 
pσ(e) = (σ(e1), . . . , σ(ep)). Consider the vector ê = (ê1, . . . , ̂en) ∈ Zn

p such that êi = 1
if e1

i > 0 or e2
i > 0, and êi = 0 otherwise, i ∈ {1, . . . , n}. Since wtH(ê) ≤ r, there exists 

σ ∈ S such that wtH(σ(ê)|I) = 0. Therefore, wtH(σ(e1)|I) = 0 and wtH(σ(e2)|I) = 0, 
hence wtH((pσ(e))|I∪{j+n:j∈I}) = 0. Since I ′ ⊆ I ∪ {j + n : j ∈ I}, we obtain that pS is 
an r-PD-set for H(s) with information set I ′. �

Note that Proposition 6.2 uses directly permutations from PAut(Ht1,...,ts), without as-
suming that they come from elements in PAut(Ht1,...,ts). This means that one can also use 
r-PD-sets for an r that may exceed the upper bound given by Corollary 4.2. This is not 
the case in the following proposition, since if S is an r-PD-set for Ht1,...,ts , then it is not al-
ways true that ps−i+1S is an r-PD-set for H(i) for i ∈ {1, . . . , s −1}, where H(i) = Φ(H(i))
and H(i) = Ht1,...,ti−1,ti+1,ti+1,...,ts . This is because if σ ∈ PAut(Ht1,...,ts), it is generally 
not true that ps−i+1σ ∈ PAut(H(i)). Instead, we have to assume that the r-PD-sets 
come from sets in PAut(Ht1,...,ts) and extend each permutation σ ∈ PAut(Ht1,...,ts) as 
ps−i+1σ ∈ PAut(H(i)) before applying the map Φ to obtain permutations in PAut(H(i)).

Proposition 6.3. Let S ⊆ PAut(Ht1,...,ts) such that Φ(S) is an r-PD-set of size � for 
Ht1,...,ts with information set I = Φ(I), where I is an additive information set for 
Ht1,...,ts . Then, for any i ∈ {1, . . . , s}, Φ(ps−i+1S) is an r-PD-set of size � for Ht′1,...,t

′
s , 

with t′i = ti + 1 and t′j = tj for any j �= i, with respect to any information set I ′ =
Φ(I ∪ {j + n}) with j ∈ I, where n is the length of Ht1,...,ts .

Proof. We follow a similar argument to the one given in Proposition 6.2, with the differ-
ence that S is a subset of PAut(Ht1,...,ts) and not of PAut(Ht1,...,ts). Let H = Ht1,...,ts , 
H = Φ(H), H(i) = Ht′1,...,t

′
s and H(i) = Φ(H(i)). Taking into account that H(i) is con-

structed using (3),

H(i) = {(Φ(h),Φ(h + λpi−1),Φ(h + λ2pi−1), . . . ,Φ(h + λ(ps−i+1 − 1)pi−1))

: h ∈ H, λ ∈ Zps−i+1}.

If τ ∈ PAut(H), then

(ps−i+1τ)(h) = (σ(h), σ(h) + σ(λpi−1), . . . , σ(x) + σ(λ(ps−i+1 − 1)pi−1))

= (σ(h), σ(h) + λpi−1, . . . , σ(h) + λ(ps−i+1 − 1)pi−1) ∈ H(i),

for any h = (h, h +λpi−1, . . . , h +λ(ps−i+1−1)pi−1) ∈ H(i), with h ∈ H and λ ∈ Zps−i+1 . 
Therefore, (ps−i+1τ) ∈ PAut(H(i)) and Φ(ps−i+1τ) ∈ PAut(H(i)).

By Proposition 4.1, the set I ∪ {n + 1} is an additive information set for H(i). In 
fact, in the proof we also show that any set I ∪ {x}, for x ∈ {n + 1, . . . , 2n} is also an 
information set. In particular I ′ = I ∪ {j + n}, for any j ∈ I, is an information set 
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for H(i) and I ′ = Φ(I ′) is an information set for H(i). Note that I ′ has s − i + 1 more 
coordinates than I.

Finally, consider an error vector e = (e1, . . . , ep
s−i+1) of weight wtH(e) ≤ r, where 

ek = (ek1 , . . . , ekn) ∈ Zn
p for k ∈ {1, . . . , ps−i+1}. Define the vector ê = (ê1, . . . , ̂en) ∈ Zn

p

that satisfies êm = 1 if e1
m �= 0 or e2

m �= 0, and êm = 0 otherwise, m ∈ {1, . . . , n}. Since 
wtH(ê) ≤ r, there exists τ ∈ S such that wtH(Φ(τ)(ê)|I) = 0. Thus, wtH(Φ(τ)(e1)|I) =
0 and wtH(Φ(τ)(e2)|I) = 0. Note that Φ(ps−i+1τ)(e) = (Φ(τ)(e1), . . . , Φ(τ)(eps−i+1)). 
Therefore,

wtH(Φ(ps−i+1τ)(e)|I∪{j+ps−1n:j∈I}) = wtH(Φ(τ)(e1)|I) + wtH(Φ(τ)(e2)|I) = 0.

Since I ′ ⊆ I ∪ {j + ps−1n : j ∈ I}, this implies that Φ(ps−i+1S) is an r-PD-set for H(i)

with information set I ′. �
Remark 6.1. By the definition of ps−i+1τ and Φ, we have that Φ(ps−i+1τ) = ps−i+1Φ(τ), 
for any τ ∈ PAut(Ht1,...,ts) and i ∈ {1, . . . , s}. By the proof of Proposition 6.3, ps−i+1τ ∈
PAut(H(i)), so ps−i+1Φ(τ) ∈ PAut(H(i)), where H(i), H(i) are defined as in this proof.

Example 6.1. Consider the Z27-linear GH code H3,0,0 as in Example 5.1. We have that 
Φ(P11) is an 11-PD-set of size 12, where P11 can be identified by the set of permutations 
{id, τ1, . . . , τ11} ⊆ Sym(729). Then, by Proposition 6.2 or Proposition 6.3, we know that 
the following subset of Sym(19683):

{3Φ(id), 3Φ(τ1), . . . , 3Φ(τ11)}

is an 11-PD-set for the Z27-linear GH code H3,0,1, with information set Φ(I3,0,1) =
Φ(I3,0,0) ∪ Φ(3)({730}) = {1, 2, 4, 10, 11, 13, 244, 245, 247, 6562}. Similarly, by Proposi-
tion 6.3 and Remark 6.1, we know that the following subset of Sym(59049):

{9Φ(id), 9Φ(τ1), . . . , 9Φ(τ11)}

is an 11-PD-set for the Z27-linear GH code H3,1,0, with information set Φ(I3,1,0) =
Φ(I3,0,0) ∪ Φ(2)({730}) = {1, 2, 4, 10, 11, 13, 244, 245, 247, 6562, 6565}. In general, we can 
construct r-PD-sets for H3,0,1 and H3,1,0 for any r ≤ f3,0,0

3 = 242.
We could also use Proposition 6.3 in order to obtain an 11-PD-set for the Z27-linear 

GH code H4,0,0, or in general an r-PD-set for any r ≤ f3,0,0
3 = 242. However, in this 

case, we can construct an r-PD-set directly, from the explicit construction presented in 
Section 5, for any r ≤ f4,0,0

3 = 4919.

Corollary 6.1. Let S ⊆ PAut(Ht1,...,ts) such that Φ(S) is an r-PD-set of size � for 
Ht1,...,ts with information set I. Then, Φ(psi1+(s−1)i2+···+isS) is an r-PD-set of size �
for Ht1+i1,t2+i2,...,ts+is , with the information set obtained by applying recursively Propo-
sition 4.1, for any i1, i2, . . . , is ≥ 0.
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Corollary 6.2. If Pr = {N−1
0 , . . . , N−1

r }, as defined in Section 5 for the Zps-linear GH 
code Ht1,0,...,0, then Φ(p(s−1)t2+···+tsPr) is an r-PD-set of size r + 1 for the Zps-linear 
GH code Ht1,...,ts , for all t2, . . . , ts ≥ 0, t1 ≥ 2 and 2 ≤ r ≤ f t1,0,...,0

p . Similarly, if Pr =
{M−1

0 , . . . , M−1
r }, as defined in Section 5 for the Zps-linear GH code H1,0,...,0,ti,0,...,0. 

Then, Φ(paPr), where a = s(t1 − 1) + · · · + (s − i + 2)ti−1 + (s − i)ti+1 + · · · + ts, is an 
r-PD-set of size r+1 for the Zps-linear GH code Ht1,...,ts , for all t2, . . . , ts ≥ 0, t1, ti ≥ 1
and 2 ≤ r ≤ f1,0,...,0,ti,0,...,0

p .

Depending on the type of the Zps-linear GH code, the largest r allowed by Corol-
lary 6.2 may be either f t1,0,...,0

p or one of f1,0,...,0,ti,0,...,0
p , for i ∈ {2, . . . , s}. Let us define

f̃ t1,...,ts
p = max{f t1,0,...,0

p , f1,t2,0,...,0
p , . . . , f1,0,...,0,ts

p } ≤ f t1,...,ts
p .

If f̃ t1,...,ts
p = f t1,0,...,0

p , we achieve the largest r by using the explicit construction 
to obtain Pr for Ht1,0...,0 and then extending the r-PD-set as Φ(p(s−1)t2+···+tsPr). 
However, if f̃ t1,...,ts

p = f1,0,...,0,ti,0,...,0
p , we achieve the largest r by using the ex-

plicit construction to obtain Pr for H1,0,...,0,ti,0,...,0 and then extending the PD-set as 
Φ(ps(t1−1)+···+(s−i+2)ti−1+(s−i)ti+1+···+tsPr).

Example 6.2. Consider the Z8-linear Hadamard codes H3,3,7, H3,4,7 and H3,3,8. By 
Corollary 4.2, we have f3,0,0

2 = 20, f1,3,0
2 = 15, f1,0,7

2 = 15, f1,4,0
2 = 50, f1,0,8

2 = 27. 
Therefore, for example,

• for H3,3,7, since f̃3,3,7
2 = max{f3,0,0

2 , f1,3,0
2 , f1,0,7

2 } = f3,0,0
2 = 20, it is better to start 

by using the explicit construction for H3,0,0.
• for H3,4,7, since f̃3,4,7

2 = f1,4,0
2 = 50, it is better to start with the explicit construction 

for H1,4,0.
• for H3,3,8, since f̃3,3,8

2 = f1,0,8
2 = 27, it is better to start with the explicit construction 

for H1,0,8.

7. Computational results

The explicit constructions presented in Section 5 give r-PD-sets of size r+1 with an r
that reaches up to the upper bound given by Corollary 4.2. However, these constructions 
are only defined for some specific Zps-linear GH codes: Ht1,0,...,0 and H1,0,...,0,ti,0,...,0, 
with t1 ≥ 2 and ti ≥ 1, respectively. The recursive constructions presented in Section 6
allow to obtain r-PD-sets for all Zps-linear GH codes Ht1,...,ts , but they may not achieve 
the upper bound. Indeed, for the codes where the explicit constructions can not be 
applied, r ≤ f̃ t1,...,ts

p < f t1,...,ts
p , so other strategies are necessary in order to achieve a 

value of r closer to the theoretical upper bound f t1,...,ts
p .

In this section, we present some computational results, obtained by using the computer 
algebra system Magma [9]. These results show that we can increase the value of r for Zps-
linear GH codes Ht1,...,ts , by looking for r-PD-sets randomly. We follow a similar method 
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Table 1
Maximum value r for which r-
PD-sets were found for some 
codes Ht1,t2 , with p = 2, us-
ing a non-deterministic method. 
Comparison with previous re-
sults, rold, given in [2] and the 
upper bound ft1,t2

2 .

t1 t2 rold r ft1,t2
2

3 0 4 4 4
1 6 7 7
2 10 11 11
3 16 18 20
4 26 31 35
5 42 50 63

4 0 15 15 15
1 23 23 24
2 36 38 41
3 56 62 72
4 91 103 127
5 150 172 226

5 0 50 50 50
1 72 76 84
2 116 124 145
3 187 199 255
4 312 321 454
5 518 551 818

as the one used in [2]. That is, we generate sets Pr = {M0, . . . , Mr} of r + 1 random 
matrices in PAut(Ht1,...,ts) such that all rows from the matrices of {M∗

0, . . . , M∗
r} are 

different. The sets are constructed incrementally, starting from different initial matrices 
M0 until the target value of r is achieved. Initially, the target value of r is defined as 
the upper bound f t1,...,ts

p . If the method has generated k < r matrices M∗
0, . . . , M∗

k, and 
fails to generate M∗

k+1 in a defined time constraint, then it starts again from another 
initial matrix M∗

0. If the target value r is not attained after a certain number of different 
initial matrices, then r is decreased by one and the process starts again. If, by decreasing 
r, it reaches the value of f̃ t1,...,ts

p , then the r-PD-set given by Corollary 6.2 is returned.
Table 1 shows the maximum values of r obtained for Z4-linear Hadamard codes 

Ht1,t2 , with 3 ≤ t1 ≤ 5 and 0 ≤ t2 ≤ 5. They are compared with the values given 
in [2] and the upper bound f t1,t2

2 . The results from [2] were obtained by using a method 
that is currently implemented in the Magma function PDSetHadamardCodeZ4(t1, t2: 
AlgMethod:= "Nondeterministic") included in the official distribution [9]. We have 
corrected an error found in the implementation of this function and made some im-
provements, which has allow us to achieve larger values of r in this case. Then, we have 
generalized these functions to deal with Zps-linear GH codes. Table 2 shows the maxi-
mum values of r obtained for Z8-linear Hadamard codes Ht1,t2,t3 , with t1 = 3, 0 ≤ t2 ≤ 2
and 0 ≤ t3 ≤ 3. The upper bounds f̃3,t2,t3

2 and f3,t2,t3
2 are also shown in order to see the 

improvement with respect to the recursive construction, which is bounded by f̃3,t2,t3
2 , 

and with respect to the theoretical maximum, given by f3,t2,t3
2 .
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Table 2
Maximum value r for which r-PD-sets 
were found for some codes H3,t2,t3 , 
with p = 2, using a non-deterministic 
method. Comparison with the upper 
bound of the recursive constructions 
f̃3,t2,t3
2 and the upper bound f3,t2,t3

2 .

t2 t3 f̃3,t2,t3
2 r f3,t2,t3

2

0 0 20 20 20
1 20 30 31
2 20 46 50
3 20 73 84

1 0 20 61 63
1 20 94 101
2 20 149 169
3 20 242 291

2 0 20 189 203
1 20 299 340
2 20 476 584
3 20 773 1023

The Magma function developed to construct r-PD-sets of size r + 1 for Zps-linear 
GH codes has been included in a new Magma package to deal with linear codes over 
Zps [17]. This package also allows the construction of Zps-linear GH codes, and includes 
functions related to generalized Gray maps, information sets, the process of encoding 
and decoding using permutation decoding, among others. This package generalizes some 
of the functions for codes over Z4, which are already included in the standard Magma 
distribution [9]. It has been developed mainly by the authors of this paper and the 
collaboration of some undergraduate students. The first version of this new package and 
a manual describing all functions will be released this year, and it will be available in a 
GitHub repository and in the CCSG web site (http://ccsg .uab .cat)

8. Conclusions

In this paper, we determine the permutation automorphism group of Zps-additive GH 
codes, PAut(Ht1,...,ts), and give a representation of the elements as matrices of the general 
linear group over Zps of dimension t1 + · · ·+ ts. Then, explicit constructions of r-PD-sets 
of size r+1 for Zps-linear GH codes of types (n; t1, 0, . . . , 0) and (n; 1, 0, . . . , 0, ti, 0, . . . , 0), 
with t1 ≥ 2 and ti ≥ 1, respectively, are given. For these cases, the value of r is upper-
bounded by f t1,0,...,0

p or f1,0,...,0,ti,0,...,0
p depending on the type. In general, for Zps-linear 

GH codes of any type (n; t1, . . . , ts), we also present some constructions of r-PD-sets of 
size r + 1, but only up to r ≤ f̃ t1,...,ts

p ≤ f t1,...,ts
p .

The computational results given in Section 7 confirm that r-PD-sets of size r+1, with 
values of r closer to the theoretical upper bound f t1,...,ts

p , may exist for Zps-linear GH 
codes of any type. Therefore, a natural further research on this topic would be to find 
explicit constructions for codes Ht1,...,ts , with f̃ t1,...,ts

p ≤ r ≤ f t1,...,ts
p .

http://ccsg.uab.cat
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Another direction which extends this line of research would be the generalization of 
these results to ZpZp2 · · ·Zps-linear GH codes, which are GH codes and can be obtained 
from the generalized Gray map image of subgroups over mixed alphabets Zα1

p ×Zα2
p2 ×· · ·×

Zαs
ps . In particular, Z2Z4-linear codes have been studied extensively, see for example [7,8], 

and the permutation decoding method given in [4] is also defined for these codes, since 
they are systematic. More generally, ZpZp2 · · ·Zps-linear codes have been studied for 
example in [1,31]. The results given in [32] can be extended to ZpZp2 · · ·Zps-linear codes, 
in order to obtain a systematic encoding for ZpZp2 · · ·Zps-linear codes, which allow us 
to use the permutation decoding method for these codes. This gives a motivation to 
construct r-PD-sets for ZpZp2 · · ·Zps-linear GH codes, which have been recently studied 
in [5,6] showing that they are not necessarily equivalent to the Zps-linear GH codes 
considered in this paper.

For any Zps-additive GH code Ht1,...,ts , we have obtained PAut(Ht1,...,ts), which is 
a subgroup of the monomial automorphism group, MAut(Ht1,...,ts). We also have that 
Φ(PAut(Ht1,...,ts)) ⊆ PAut(Ht1,...,ts). The study of these groups, MAut(Ht1,...,ts) and 
PAut(Ht1,...,ts), also remain as an open problem for p ≥ 3 or s ≥ 3. For Z4-linear 
Hadamard codes, these groups are studied in [25]. The description of PAut(Ht1,...,ts)
may allow us to find r-PD-sets of size r + 1 for r > f t1,...,ts

p or r-PD-sets of larger size, 
up to the error-correcting capability, improving the results obtained in this paper.

Data availability

No data was used for the research described in the article.
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