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The standard treatment in glioblastoma includes maximal safe resection followed by

concomitant radiotherapy plus chemotherapy and adjuvant temozolomide. The first

follow-up study to evaluate treatment response is performed 1 month after concomi-

tant treatment, when contrast-enhancing regions may appear that can correspond to

true progression or pseudoprogression. We retrospectively evaluated 31 consecutive

patients at the first follow-up after concomitant treatment to check whether the met-

abolic pattern assessed with multivoxel MRS was predictive of treatment response

2 months later. We extracted the underlying metabolic patterns of the contrast-

enhancing regions with a blind-source separation method and mapped them over the

reference images. Pattern heterogeneity was calculated using entropy, and associa-

tion between patterns and outcomes was measured with Cramér's V. We identified

three distinct metabolic patterns—proliferative, necrotic, and responsive, which were

associated with status 2 months later. Individually, 70% of the patients showed meta-

bolically heterogeneous patterns in the contrast-enhancing regions. Metabolic het-

erogeneity was not related to the regions' size and only stable patients were less

heterogeneous than the rest. Contrast-enhancing regions are also metabolically het-

erogeneous 1 month after concomitant treatment. This could explain the reported

difficulty in finding robust pseudoprogression biomarkers.
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1 | INTRODUCTION

The standard treatment in glioblastoma patients includes maximal safe resection followed by concomitant treatment with radiotherapy plus che-

motherapy with temozolomide (TMZ), and adjuvant TMZ.1 The first MR follow-up study to evaluate treatment response is performed 1 month

after concomitant treatment (P1M). The assessment of this MR study is challenging because an abnormal contrast-enhancing growth at this

moment can be due to either tumor growth (true progression, TP), or treatment-associated changes (pseudoprogression, PP). Currently, these

patients must wait for about 2 months until the next MR examination is performed to confirm the progression status of the abnormal contrast-

enhancing growths—that is, whether they grow, shrink, or remain stable. In this respect, two recent studies using advanced imaging techniques

that provide metabolic information have shown strong potential for distinguishing between TP and PP. In one of them,2 microstructural informa-

tion obtained from diffusion kurtosis MRI was combined with a positron emission tomography (PET) tracer derived from O-(2-[18F]-fluoroethyl)-l-

tyrosine (18F-FET) PET, achieving an area under the receiver operating characteristic curve (AUC) of 0.97 on a set of 32 glioblastoma patients at

time points between one and 55 months after the end of the radiotherapy. In another study3 with 27 patients, eight of whom were with a P1M

follow-up, the authors used 3D echo-planar spectroscopic imaging and found very promising differences in the choline/N-acetyl aspartate

(Cho/NAA) ratio from the abnormal contrast-enhancing growths, with an AUC of 0.83. Other studies using MRS4–6 are equally limited due to low

numbers of cases. A recent multicenter retrospective study7 (98 patients), using radiomic features extracted from the perfusion images for the

classification task using a support vector machine (SVM), achieved an AUC of 0.89. Despite their potential, these techniques are far from the

reach of clinical practitioners, and in general the cohorts under study are small even when pooling different time-points after the end of the con-

comitant treatment. In this respect, studies in cohorts with more extended periods after concomitant treatment would be focusing more effec-

tively on tumor versus post-treatment changes, given that the PP dilemma appears exclusively within 3–6 months after concomitant treatment.

For example, in Reference 8, a subset of patients from the AVAglio trial (NCT00943826) with early progressive disease were analyzed with radio-

mics, and a 70.6% accuracy in the prediction of one-year survival after the early progression phenomenon was found.

The purpose of our study was to evaluate whether the metabolic pattern at the P1M timepoint, assessed using MRS of early suspicious

contrast-enhancing regions (SCERs), would be predictive of the progression status at the next exam (P3M).

2 | MATERIALS AND METHODS

2.1 | Study design and sample size calculation for machine learning (MLe)

Retrospective, observational MRS data were analyzed from 53 consecutive patients, who were treated at Hospital Universitari de Bellvitge between

July 2016, when the first magnetic resonance spectroscopic imaging (MRSI) sequence was implemented, and January 2019.

2.2 | Ethics statement

Unspecific informed consent to participate in research projects was obtained from all patients and a waiver of a specific informed consent was

provided by the ethics committee for this retrospective study (Hospital Universitari de Bellvitge, procedure number PR168/22). Patients' data were

anonymized for this analysis. The confidential information of the patients was protected in accordance with national and international norms. The

study was conducted in accordance with the Declaration of Helsinki.

2.3 | Inclusion criteria

1. Consecutive patients with histopathologically verified glioblastoma, having undergone resection and treatment with concomitant

chemoradiotherapy with TMZ, followed by adjuvant TMZ according to the Stupp protocol.1

2. Detection of one or more early SCERs in the routine P1M exploration, an SCER being a contrast-enhancing mass adjacent to the postsurgical

cavity.

3. Endpoint availability: follow-up with MR at least 2 months after the P1M and a clinical diagnosis of TP, PP, stable disease (S) or response

(R) according to the RANO working group criteria.9,10

4. MRSI acquired at the P1M available.
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2.4 | Acquisition protocol

The following full MR explorations were acquired at 1.5 T or 3 T with a Philips Ingenia scanner (Philips Healthcare, Best, The Netherlands):

pre-operative, early post-operative, P1M, and every 2–3 months afterwards. For this study, the pre-operative, early post-operative, and P1M

explorations and the next one (P3M) were evaluated. Each exploration included T1 weighted (T1w) with/without contrast, T2 weighted (T2w),

and fluid-attenuated inversion recovery (FLAIR).

All P1M explorations were performed in a 3 T scanner and included MRSI with the following parameters: dimensions, field of view

8 � 8 � 1.5 cm3, volume of interest 8 � 8 � 1.5 cm3, with 16 � 16 � 1 resolution; voxel size, 0.5 � 0.5 � 1.5 cm3; sequence, point resolved

spectroscopy (PRESS); echo time (TE) = 30 ms, repetition time (TR) = 2000 ms. The MRSI grid was positioned to avoid bone or subcutaneous

lipids and to include most of the SCER. One radiologist (AP-E) labelled the voxels over the SCER using the post-contrast T1w image at P1M, with

the MRS grid overlaid onto the post-contrast T1w image, marking each individual voxel that was fully included in the SCER region. Progression

status was determined according to RANO criteria9,10 by the participating radiologist (either AP-E or CM).

2.5 | MRS data processing

One 16 � 16 MRSI grid per patient was available. Processing was performed by an experienced spectroscopist (MJ-S) using the jMRUI2XML11

plugin of jMRUI,12 with INTERPRET parameters,13,14 to ensure that all spectra had been processed exactly in the same way (no manual first- or

second-order phasing). All SCER voxels that had been marked by the radiologist (AP-E) were labelled with the same outcome according to the

follow-up of each patient as TP, PP, R or S. From the labelled spectra, the same spectroscopist who processed the data performed a final quality

control step, discarding bad-quality data. Criteria included the recognition of the following artifacts: bad water suppression with remaining water

signal after Hankel–Lanczos singular value decomposition (HLSVD); bad phasing after eddy-current correction and low signal-to-noise ratio

(no distinguishable peaks); baseline distortions. Provided that there were visible peaks in the 0–4.2 ppm region and there was no first- or second-

order phasing problem and SNR was >20, the spectrum was considered acceptable, and as a final step spectra were UL2 renormalized in the 0–

4.2 ppm region.

2.6 | MRS data analysis

2.6.1 | Data analysis design

Distinctive spectral patterns were extracted from the pooled SCER spectra that had passed all inclusion criteria and spectral quality control, using

convex non-negative matrix factorization (cNMF).15 The contribution of the extracted patterns to each spectrum in each patient's SCER was used

to create color maps as overlays onto the reference MRI. The association of the sources with the progression status was calculated using Cramér's

V, and the degree of heterogeneity of the SCER voxels was measured with Shannon's entropy. The weights obtained for each of the sources

extracted for each spectrum were also used as input features for supervised MLe based classification, with the aim of predicting which patients

would show progression in the P3M.

2.6.2 | cNMF

cNMF15 is a variant of NMF, a method for blind source separation that, from a pattern recognition perspective, can also be seen as a feature

extraction technique. cNMF can decompose all spectra from a dataset into sources or distinctive spectral patterns, as well as providing a value for

the predominance of each source in each spectrum.

NMF methods factorize the data into two non-negative matrices: one being the sources (F) with dimensions d � k, where k is the number of

sources and d is the observed data dimension, and another (M) with the source-mixing coefficients, with dimensions k � n, where n is the number

of spectra, such that the product of F and M gives a good approximation to the original data matrix as X ≈ FM. In this study, we used cNMF in

the Matlab implementation from previous studies performed by our group using similar data.16,17 For each voxel analyzed, the “winning source”
was defined as in Reference 17, where the main source contributing to the spectral pattern was inferred from the highest value of the mixing

matrix for that spectrum. Since NMF methods tend to converge to local minima, k-means initialization was used for the cNMF algorithm, as pro-

posed in Reference 15. Convergence was considered to be achieved when the reconstruction error of the signals was below the threshold value

of 10�5. Given that in a previous study18 we reported that the application of cNMF to a similar dataset often includes a variable number of
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sources that are either artifactual or very unstable, in this study we performed a previous robustness evaluation of the sources extracted. To this

end, we extracted k = 2, 3, 4, 10, and 20 sources, and repeated each extraction 100 times.

2.6.3 | Visualization: winning source maps

Color maps of winning sources were obtained using source mixing coefficients and the winning source. Color maps were overlaid onto the refer-

ence DICOM image of the MRSI, with an in-house Matlab script based on the code already available in the Gannet software,19 which can read

Philips multivoxel (MV) data in DICOM. Briefly, from the DICOMMV and reference image, slice thickness, mid-slab position, and mid-slab orienta-

tion parameters were extracted and used in Gannet to find the exact grid location and to extract a patch of the reference image that matched the

MV grid for each case.

2.6.4 | Statistics

Sample size was calculated according to References 20 and 21 for a Fisher's linear discriminant analysis (LDA), which has proven to perform well

with this type of data,13,22 and an asymptotic probability of misclassification P (infinite number of training samples) of P = [0.001,0.1]. For this

case the number of samples needed would be N = [32–72] for a dimensionality of eight features, using N = 4f for P = 0.1 and N = 9f for

P = 0.001, where N is the number of samples and f the number of features, features being those used for classification (see the following

section).

The association between sources and progression status was calculated with Cramér's V (Reference 23) using jamovi.24 Cramér's V ranges

from 0 to 1: the closer to 1 the higher the association. For two categories, a medium association would be greater than 0.3 and large would be

greater than 0.5.

Shannon's entropy (H) was calculated to evaluate the heterogeneity of the winning source outputs for each patient and each outcome (TP,

PP, S, R), using the equation

H Xð Þ¼�
Xn

i¼1

P xið Þ log2P xið Þ

where xi is the weight value in matrix H for each SCER voxel in the dataset.

2.6.5 | MLe-based classification

Several binary classifiers were developed to predict outcome: the goal was to distinguish TP (positive class) from response (negative class), defin-

ing response as a superclass including PP, R, and S. The following techniques from the scikit-learn Python library25 were used: logistic regression

(LR), random forest (RF), SVM and LDA (details in Supporting Information S3). Two different classification tasks were performed: voxel based and

patient based. Class labelling was performed in this way: for the voxel-based classification, a voxel was assumed to be predicted as TP if S3 was

the winning source for the three-source extraction. For the patient-based classification, all voxels in each patient were labelled according to the

winning source for the patient. The input features for the classifiers were the three values of the mixing matrix M for each SCER voxel in

the dataset. Overfitting was avoided with grid-search of parameters. Validation was performed with a fivefold cross-validation on both tasks, by

randomly assigning voxels or patients to each of the folds. Classification performance measures were balanced accuracy, sensitivity, specificity,

positive likelihood ratio and AUC.

3 | RESULTS

3.1 | Number of patients and voxels

A total of 53 patients were eligible for the study (32 [58.1%] men, 21 [38.9%] women); median age, 62 ± 10.3 years (61 ± 7.7 men and

62 ± 13.3 years women). Twenty-eight patients were MGMT(�), 24 were MGMT(+), and in one patient MGMT status was not available. Only

one patient (number 39) was IDH mutant (also with methylated MGMT), in two other patients the IDH status was not available, and the remaining

patients were IDH wildtype. The number of patients and reasons for exclusion, together with the accepted and discarded voxels per patient per
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class, are shown in Figure 1 and in Table S1. From the 31 patients analyzed, (21 [67.7%] men, 10 [32.3%] women) the median age was

60 ± 9.1 years (60 ± 7.8 for men and 59 ± 11.4 years for women), and the class distribution was 11 TP, 15 PP, 3 S, and 2 R patients, amounting to

a total of 172 individual voxels, with 72, 80, 12, and 8 voxels per class, respectively (Figure S1). The number of SCER voxels per patient ranged

from 1 to 13.

3.2 | Source extraction from SCER spectra

The robustness of the set of solutions obtained decreased when increasing the number of sources, similarly to previous studies using the same

approach.18 For two and three sources, the same set was obtained in 100% of the repetitions. Beyond three sources, the solutions were exceed-

ingly unstable. For four sources, there were three different solutions, the first one appearing in 80% of the 100 repetitions, the second one in

15% and the third one in 5%. For 10 sources 10 different solutions resulted with the same frequency (10%), and for 20 sources 20 different solu-

tions with the same frequency (5%) (Supporting Information S1, Figures S2–S6). Figure 2 displays the spectral data used for the cNMF extractions,

as well as the result of two- and three-source extractions. As can be observed, the spectral data from the different classes look very similar, with

fatty acyl chains of mobile lipids (ML) at 0.9 and 1.28 ppm, lipid macromolecules (MM) at 2.0 ppm, total choline containing compounds (Cho) at

3.21 ppm, and total creatine (Cr) at 3.03 ppm, with variable ratios depending on the class, the S class being mostly composed of lipid signals and

the TP class having on average a choline signal of similar intensity to the 1.28 ppm lipid signal, as would be expected from a proliferating tissue, in

contrast with the PP class, in which the mean choline signal is about half of the intensity of the mean lipid signal at 1.28 ppm, but with high

intraclass variability. Table 1 shows the winning source contribution for each voxel included in the study.

Source extraction resulted in the appearance of interpretable spectral patterns. For two sources (Figure 2, middle row), the first source

(S1) corresponded to the typical necrotic tumor pattern, mainly mobile lipids at 0.9, 1.28, and 2.0 ppm, while the second (S2) was characteristic of

proliferating glial tumors, still with mobile lipids at 0.9 and 1.28 ppm, lipid macromolecules between 2.0 and 2.5 ppm, and choline/creatine > 1,

choline being the most prominent signal at 3.21 ppm. With three-source extraction (Figure 2, bottom row), the S1 of the previous extraction

seemingly split into two slightly different patterns, with S2 very similar to the S1 of the two-source extraction, and S1, an intermediate pattern

between proliferation and higher lipid signals. Interestingly, this S1 pattern also displayed a 2.8 ppm signal corresponding to polyunsaturated fatty

acids (PUFAs), which we have recurrently found to be associated with response to different chemotherapies in previous studies with animal

models.26–28

F IGURE 1 Flow diagram with patients and data included in the study.
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3.3 | Statistics

Regarding the association of sources with outcome, Cramér's V test between the winning source of each spectrum and the class resulted in mod-

erate to high associations. The highest association was found for three sources and four classes (V = 0.410). For three sources and dichotomizing

(TP versus the rest), association decreased (V = 0.388). Association also decreased when testing for two sources (V = 0.350 for four classes, and

V = 0.314 for dichotomization).

Regarding heterogeneity, for three sources, voxel entropies (H) and their 95% confidence interval (CI) were H(TP) = �0.986 [�1.08, �0.891],

H(PP) = �1.141 [�1.21, �1.07], H(R) = �1.178 [�1.30, �0.231], H(S) = �0.553 [�0.875, �0.231], with p = 0.003 on the one-way ANOVA. The

post hoc Games–Howell test resulted in significant differences between S and PP (p = 0.035) and S and R (p = 0.026), meaning that only S voxels

were less heterogeneous than the rest of the classes, and no differences in heterogeneity between TP, PP, and R were found. Voxel entropy was

F IGURE 2 Top row: mean (thick line) overlaid onto individual spectra with SNR > 20. Middle row: result of two-source extraction. S1, Source
1; S2, Source 2. Bottom row: result of three-source extraction. S1, Source 1; S2, Source 2; S3, Source 3.

TABLE 1 Contingency tables for two and three sources, depicting the winning source for each of the individual spectra, pooling all 31
patients.

Type

TotalTP PP R S

Two sources

Source1 53 34 7 1 95

Source2 19 46 5 7 77

Total 72 80 12 8 172

Three sources

Source1 29 48 9 1 87

Source2 1 12 0 6 19

Source3 42 20 3 1 66

Total 72 80 12 8 172

6 of 12 UNGAN ET AL.
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not correlated with the number of voxels per patient (Spearman's rho = �0.019, p = 0.801), that is, the degree of heterogeneity was not related

to the size of the SCER.

3.4 | Visualization

Given that the three-source extraction was the best associated with outcome, we chose this solution to visualize the source maps of each patient

overlaid onto the MR reference image. As expected from the entropy and the source contribution results, the metabolic patterns of the SCER

were almost always contributed by more than one source, and in some cases there was a remarkable metabolic heterogeneity for the spectra ana-

lyzed from the different individual voxels. Representative examples of the maps obtained can be seen in Figure 3, and a full report of the color

maps obtained for all 31 cases included is available in Supporting Information (Figures S7–S37). Note that there are SCER areas in the maps that

are not colored: this is because the spectra corresponding to these regions were of bad quality and therefore excluded from the analysis. Even so,

we detect metabolic heterogeneity. As can be seen in Figure 3, there are patients for whom all voxels have a clear winning spectral pattern

(Figure 3A,C, Winning source column), which is also the same source in all or practically all voxels. However, there are cases in which there is het-

erogeneity in the winning sources for each individual voxel and for the patient's set of SCER voxels (Figure 3B,D; TP cases can even show S1

source in particular areas of the SCER). For a detailed display of each case, please check Supporting Information S7 (Figures S7 to S37).

Figure 4 (left panel) shows the relationship between the winning source contribution for each voxel and each patient as well as the outcome

class (TP, PP, S, R), for the three-source extraction. Again, homogeneous and heterogeneous metabolic patterns appear in each of the classes. For

three sources, the S3 (proliferative pattern) contributes to TP and PP, while S1 (the lipid pattern with PUFA signal) is mainly found in PP, R, and

TP. Finally, S2 (the necrotic pattern) contributes to S and PP.

Figure 4 (right panel) is a 3D scatterplot of the sources' contribution, and the message is the same: TP spectra are distributed in two groups,

roughly those with a contribution from S3 lower than 0.5 or higher than 0.5. Most TP spectra have a contribution of more than 0.5 from S1. R

spectra have an S1 contribution greater than 0.5 and S2 less than 0.5, whereas most S cases have a contribution from S2 of almost 1 and S1

almost 0. Most PP spectra have S1 contribution greater than 0.5, S2 greater than 0.5, and S3 less than 0.4, but another subset has similar factor

contributions to the S spectra. A third subset of PP spectra has contributions of S1 greater than 0.5, S2 less than 0.5, and S3 less than 0.4.

F IGURE 3 Four representative cases for the three-source extraction. Maps are overlaid onto contrast-enhanced T1-weighted image
reference.
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3.5 | MLe classification analysis

Results of the TP versus PP classification task are shown in Table 2. Results of TP versus the rest are available in Table S2. For the voxel-based

approach, RF had over 90% sensitivity (true positive detection) on both training and test sets at the cost of a moderate specificity (true negative

detection), while LR and SVM had over 90% specificity on both training and test sets at the cost of a suboptimal sensitivity. The best overall

results (AUC) were achieved by RF and SVM on the training set, but in the test set all models were in the 60% AUC range. Results were better

when the patient-based approach was chosen, with balanced accuracies in the 80% range both for training and test set, irrespective of the model.

Taking the patient into account, LDA was the best technique, with likelihood ratios of 16.7 in the training set and 5.0 in the test set. Sensitivity

was over 92% in all models except LDA, for both the training and the test sets, while LDA worked in the opposite way (true negative detection

F IGURE 4 Left panel: Sankey diagrams displaying the relationship between the main contribution for each spectrum (winning source) and the
class, per case. Right panel: source weight plots for each class in 3D perspective, for all pooled spectra. S1 axis, Source 1 weights; S2 axis, Source
2 weights; S3, Source 3 weights.

TABLE 2 Summary of classification results on the TP versus PP task.

Classifier Train/test Classification task Balanced accuracy Accuracy Sensitivity Specificity Likelihood ratio (+) AUC

LDA Train Voxel 65.2 65.1 ± 2.7 79.2 ± 2.4 61.2 ± 2.3 2, 0 65.2 ± 2.7

LDA Test Voxel 63.7 63.2 ± 2.4 79.1 ± 2.5 41.2 ± 2 1, 3 60.3 ± 2.4

LR Train Voxel 66.3 68.4 ± 2.5 66.4 ± 2.6 91.3 ± 2.6 7, 3 66.1 ± 2.5

LR Test Voxel 65.4 66.4 ± 2.5 35.3 ± 2.9 91.1 ± 1.8 3, 9 65.2 ± 2.4

RF Train Voxel 65.1 75.7 ± 3.0 91.6 ± 2.7 62.5 ± 2.7 2, 4 77.2 ± 3.0

RF Test Voxel 63.2 65.2 ± 3.2 91.6 ± 3.5 53.7 ± 2.9 1, 9 64.1 ± 3.2

SVM Train Voxel 77.2 75.3 ± 3.0 62.6 ± 3.2 91.2 ± 2.9 6, 9 77.2 ± 3.0

SVM Test Voxel 66.8 65.1 ± 3.2 53.7 ± 3.5 91.2 ± 2.7 5, 9 64.1 ± 3.2

LDA Train Patient 81.1 83.3 ± 3.9 50.3 ± 4.4 97.1 ± 3.0 16, 7 79.2 ± 3.4

LDA Test Patient 79.3 80.8 ± 7.3 50.5 ± 7 90.3 ± 4.0 5, 0 75.1 ± 3.9

LR Train Patient 79.1 83.1 ± 6.0 98.2 ± 2.0 50.4 ± 4.4 2, 0 79.4 ± 3.5

LR Test Patient 75.2 80.2 ± 7.3 95.3 ± 5.0 50.4 ± 8.0 1, 9 75.1 ± 6.4

RF Train Patient 79.2 83.3 ± 3.9 92.2 ± 8.0 66.2 ± 4.4 2, 7 82.1 ± 3.5

RF Test Patient 77.3 80.1 ± 7.3 92.3 ± 8.0 66.2 ± 8.0 2, 7 81.2 ± 6.3

SVM Train Patient 83.4 80.7 ± 1.2 92.2 ± 4.4 66.1 ± 3.6 2, 7 83.3 ± 7.0

SVM Test Patient 79.2 83.2 ± 3.9 92.5 ± 4.4 66.3 ± 3.6 2, 7 79.2 ± 3.8

Note: Balanced accuracy, accuracy, sensitivity, specificity, positive likelihood ratio, and AUC in % ± 95% CI.
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over 90% at the cost of almost random detection of true positives). In general, LDA had high specificity at the cost of a lower sensitivity, in con-

trast to LR, RF, and SVM.

4 | DISCUSSION

In this work, we retrospectively evaluated in 31 consecutive glioblastoma patients whether a conventional PRESS MV MRS exploration, coupled

with an MLe-based classification analysis, would be predictive of early progression. The MRS pattern is not fully predictive, although there is an

association with outcome. The reason is that most patients present metabolic heterogeneity. Heterogeneity is also the reason why the MLe

approach does not have optimal results, although as we will see later our results are comparable to those in the literature.

We chose a blind-source separation approach, instead of directly trying supervised MLe, as we had previously found that the unsupervised

approach was better than supervised MLe methods on their own in the prediction of follow-up, both in preclinical models26,29 and in a preliminary

study on a smaller set of these patients.30

The blind-source separation approach used, uncovered three robust metabolic patterns: one that is characteristic of a proliferative status,

with choline as the most intense peak and lipid macromolecules at 0.9, 1.28, and 2–2.5 ppm respectively—the S3 source. Another pattern was

typical of necrosis (the S2 source) and there was also a pattern very similar to S2 in terms of the 0.9 and 1.28 ppm peaks—the S1 source—with

weaker signals from choline at 3.21 ppm and creatine at 3.03, and a 2.8 ppm peak tentatively corresponding to PUFAs. S1 was extremely similar

to the spectral pattern that we and others had already found to be consistently associated with response to therapy in preclinical models of glio-

blastoma.27–29,31–34

The three patterns were associated with patient outcome but not in a univocal way. This was explained by the marked heterogeneity we

detected when plotting the color maps, in the 3D scatterplots, and in the Sankey diagrams.

The observed intrapatient heterogeneity also explains the MLe results: we obtained either good (>90%) specificity or good sensitivity but not

both, depending on the classification technique. LDA seemed to achieve more balanced results between sensitivity and specificity, albeit with a

slightly lower performance. A similar result with univariate statistics using peak ratio values was also obtained in a recent study by Sidibe et al.,35

with the multicenter prospective randomized Phase III NCT01507506 SpectroGlio trial, in which the Cho/Cr had sensitivity 83% and specificity

64%, and lactate/NAA had sensitivity 100% and specificity 63%. Our classification results were also comparable in terms of AUC to the study by

Verma et al.3 when considering the data on a patient basis. In general, distinguishing TP from PP remains difficult, and despite promising results

no single or combined technique can unequivocally distinguish between these two entities. In recent reviews,36–38 it is shown that there is a lack

of a quantitative imaging biomarker for PP, despite promising results with different metabolic and physiological imaging techniques, one important

pitfall being that cohorts of patients are small and sampled at different time points. In most studies, sensitivities and specificities fall in our range:

70%–90% (see tab. 1 in Reference 36), also sometimes when sensitivity is more than 90% specificity drops and vice versa. For spectroscopy in

particular, Le Fèvre et al.37 also report substantial variations in sensitivities (54%–100%), and specificities (40%–100%), similarly to a previous

meta-analysis from 201439 focused on distinguishing recurrent glioma from radiation necrosis. All previous studies used metabolite ratios35–37 in

contrast to our approach and Reference 30, and as pointed out in Reference 39 there is an ample variety of techniques (SV, MV, 1.5 T, 3 T) and

metabolite ratios, as well as combinations of them and varieties in the thresholds used by the different studies. In our study, we also found signifi-

cant differences in the Cho/N-acetyl-aspartate-containing compound (NAC) ratio of the TP versus PP, but we deem this to be a limited picture of

the real extent of the metabolic pattern differences in the spectral pattern.

With respect to the metabolic patterns identified, we can compare our results with those in the study by Verma et al.,3 in which the authors

acquired echo planar spectroscopic imaging super-resolution MRS data. They segmented the regions into contrast-enhancing, immediate peri-

tumoral, and distal peritumoral regions, computing a single value of a ratio (Cho/Cr, Cho/NAA) for the entire segmented region. In this way, they

found that there were significant differences in the Cho/Cr ratios between TP and PP. Their cohort of 27 patients covered a wider temporal range

(6 months post concomitant chemoradiotherapy), with only eight patients having been explored at the same timepoint as in our study. In this

sense, since glioblastoma evolves quickly, these authors might have worked with a dataset enriched in more “end-point” metabolic characteristics

than ours. Despite these differences, when fig. 2 of their study is carefully evaluated, it can be appreciated that in the spectra of one PP patient,

from the overall contrast-enhancing region, there is also a 2.8 ppm peak, whereas it is absent from the spectrum of the TP patient. Their work

focused on the Cho/Cr and the Cho/NAC ratios, and they did not evaluate the lipid signals, although that could have been possible with their

17 ms TE.

In another study, Sawlani et al.40 performed a descriptive study on five patients (four PP and one TP) of the single voxel spectroscopy pattern

at short (35 ms) and long (144 ms) TE, with the same purpose. PP patients were explored 3 months after therapy. In their study, they acquired one

single voxel from the whole suspicious area. Strikingly, at short TE (close to our TE = 30 ms), all four PP patients presented with the same pattern

as our S1, including a very prominent 2.8 ppm PUFA peak. In addition, three of these four patients were alive after 1.5 years of the exploration.

Their TP patient had the same pattern as our S3, with high choline and no PUFA signal. Our interpretation of their results is that they studied
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patients more evolved into the disease than we had (our P1M versus their P3M), and sampled the global metabolic pattern of the SCER with a sin-

gle voxel, while we captured the heterogeneity with an MV acquisition.

In addition, in previous studies, patient cohorts comprise a wide range of time points after the end of the radiotherapy36,41: for example, Elias

et al. in 201142 monitored patients from 2 to 41 months after therapy in order to distinguish recurrence and radiation injury. Similarly, the Sawlani

et al.40 study used the P3M timepoint, and the Verma et al.3 study focused on the 6 month period after concomitant treatment, just to name a

few examples, making it difficult to establish a fair comparison in terms of the metabolic pattern through time, which has also been acknowledged

recently in the previously mentioned AVAglio trial.8

Interestingly, there are also a few studies in which authors implicitly assume the existence of heterogeneity, and deal with it by considering a

“mixed tumors” group—validating their results with biopsy specimen analysis. For example, Kim et al.43 analyzed histograms of normalized perfu-

sion cerebral blood volume values in a retrospective cohort of 39 patients with two or more explorations showing SCERs, in which there were

14 recurrences, 10 mixed tumors, and 15 patients with post-treatment changes, and they obtained sensitivities and specificities greater than 90%.

In a previous study,44 there were 21 TP, 8 PP, and 12 mixed tumors, which were analyzed by combining diffusion tensor imaging (DTI) and

dynamic susceptibility contrast MRI (DSC-MRI). As can be seen, the percentages of heterogeneous tumors in these studies are 25% and 19%

respectively. In our study, as per the winning source maps, we have heterogeneous metabolic patterns in 18 of the 31 cases (58%), and this is

probably an underestimation as we had to exclude many voxels because of low quality in a proportion of cases, having only a partial representa-

tion of the metabolome in the entire SCERs. In addition, in the previous study,44 the cohort was obtained over a longer time frame than was our

patient set, as patients were included if they had an SCER detected 6 months after therapy. Patients were biopsied within 2 weeks after the dis-

covery of the SCERs. The mixed tumor category was established when 25%–75% malignant features were identified in the histopathological spec-

imens, and PP was when less than 25% malignant features were identified. Among histological features related to treatment response rather than

malignancy, these authors considered lymphocyte and macrophage infiltrates.

Regarding the clinical validation of the progression status, we followed the RANO group guidelines,9 which suggest discriminating the two

entities in a follow-up examination done at month +3. Additionally, the RANO group accepts that we lack robust evidence about PET, perfusion-

weighted imaging, and MRS for this differentiation. Histopathology is also known to be heterogeneous in these cases, and necrosis and viable

tumor coexist on most surgical specimens. This is in full agreement with our results, in which we show this non-invasively.

Gliomas are infiltrated by glioma-associated microglia/macrophages (GAMs) during their progression,45 and infiltration by CD4+ and CD8+

lymphocytes has also been reported in PP cases.46 We have previously demonstrated, in a preclinical model, that the spectroscopic response pat-

tern was associated with macrophage and lymphocyte infiltration,28 particularly by GAMs with increased macrophage M1/M2 ratios and PD-L1

expression in responding mice.33 Macrophage polarization to the M1 phenotype involves a full metabolic reprogramming, as has been recently

demonstrated by one-dimensional nuclear Overhauser effect spectroscopy MRS and hyperpolarization.47 In this sense, it could be hypothesized

that we might be clinically detecting the same phenomenon. It has been reported that GAMs can contribute up to 30%–50% to the tumor

microenvironment.38

Among the limitations of our study, we assume the limited sampling of the SCERs, due to the low spectral quality, which is to be expected

since we were often sampling the peri-tumoral cavity, and in several other cases difficult locations near the ventricles, but even so, we detected

heterogeneous patterns. In this sense, we may even be underestimating the true metabolic heterogeneity. Another limitation is the use of the

standard PRESS package provided by the manufacturer in the public hospital where the data were acquired. Possible improvements should

involve the harmonization of the semi-LASER sequence48,49 in the standard vendors' packages, to allow for future multicenter studies and

decrease the proportion of discarded spectra. Even with the above-mentioned limitations, the standard PRESS sequence, as performed in clinical

routine, allowed us to detect meaningful metabolic information that was not otherwise available with other techniques.
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