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Abstract:

The migration of trees induced by climatic warming has been observed at many alpine treelines
and boreal-tundra ecotones, but the migration of temperate trees into southern boreal forest
remains less-well documented. We conducted a field investigation across an ecotone of temperate
and boreal forests in northern Greater Khingan Mountains of northeast China. Our analysis
demonstrates that Mongolian oak (Quercus mongolica), an important temperate tree species, has
migrated rapidly into southern boreal forest in synchrony with significant climatic warming over
the past century. The average rate of migration is estimated to be 12.0 + 1.0 km decade™, which is
the highest observed among migratory temperate trees (average rate 4.0 + 1.0 km decade™) and
significantly higher than the rates of tree migration at boreal-tundra ecotones (0.9 + 0.4 km decade
1y and alpine treelines (0.004 + 0.003 km decade™). Compared with the coexisting dominant boreal
tree species, Dahurian larch (Larix gmelinii), temperate Mongolian oak is observed to have
significantly lower capacity for light acquisition, comparable water-use efficiency but stronger
capacity to utilize nutrients especially the most limiting nutrient, nitrogen. In the context of
climatic warming, and in addition to a high seed dispersal capacity and potential thermal niche
differences, the advantage of nutrient utilization, reflected by foliar elementomes and stable
nitrogen isotope ratios, is also likely a key mechanism for Mongolian oak to coexist with Dahurian
larch and facilitate its migration towards boreal forest. These findings highlight a rapid

deborealization of southern Asian boreal forest in response to climatic warming.

KEYWORDS

climatic warming, elemental niche, Mongolian oak, temperate-boreal forest ecotone, niche

differentiation, tree migration, the Greater Khingan Mountains

1. INTRODUCTION

Climatic warming has been unprecedented at mid- to high latitudes and is projected to continue
throughout the 21% century (Portner et al., 2022). A warmer climate affects many demographic
processes of plants such as growth, mortality, reproduction, and establishment of seedlings, and
therefore may result in species migration into previously colder habitats where they might out-

compete previously dominant taxa (Fisichelli et al., 2012; McDowell et al., 2011; Reich et al.,
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2022; Root et al., 2003; Walther et al., 2002). Field observations indicate that climatic warming
has often contributed to a poleward or upward migration of many tree species (Dial et al., 2022;
Du et al., 2018; Fei et al., 2017; Parmesan & Yohe, 2003; Pefiuelas & Boada, 2003; Rees et al.,
2020). Previous studies have mostly focused on forest vs. non-forest ecotones, such as the boreal
forest-tundra ecotone and alpine treelines, where plant growth and reproduction are strongly
limited by cold temperatures (Korner & Paulsen, 2004; Liang et al., 2016; Myers-Smith et al.,
2015; Rees et al., 2020; Wang et al., 2016). Similarly, temperate trees are also predicted to shift
their northern or upper boundaries under climatic warming and consequently alter the species
composition and ecosystem function of adjacent southern boreal forest (Beckage et al., 2008;
Boisvert-Marsh & de Blois, 2021; Brice et al., 2020; Kelly & Goulden, 2008; Taylor et al., 2017).
The warming-induced migration of temperate trees at the temperate-boreal forest ecotone,
however, remains less-well understood (Evans & Brown, 2017; Goldblum & Rigg, 2010) and
different studies have had conflicting views of whether and how fast it is occurring (Ni & Vellend,
2021).

Unlike the migration of trees into the treeless arctic or alpine tundra, the northward migration
of temperate trees occurs in a different context of a milder climate and better soil conditions in the
southern boreal forest (Boisvert-Marsh & de Blois, 2021). These more favorable conditions (for
growth and thus reproduction and dispersal) imply a potentially higher maximum rate of migration
of temperate trees into southern boreal forest under climatic warming. However, the establishment
of migratory temperate trees also depends on successful colonization and coexistence with and/or
outcompeting the resident boreal trees (Collin et al., 2017; Delory et al., 2021; Godsoe et al., 2017;
Solarik et al., 2020). The migration of northern temperate trees under climatic warming can
therefore be constrained by a biological barrier of southern boreal trees, i.e., a negative biotic
interaction (e.g., competition for resources) between the migrators and residents occurring at their
common range boundary (Godsoe et al., 2017; Solarik et al., 2020). Although thermal and/or plant-
herbivore niche differences can contribute to and/or regulate competitive rankings (Fisichelli et
al., 2012; Reich et al., 2022), resource niche differentiation, i.e., different strategies for the use of
light, water and nutrients, are additional key mechanisms for overcoming such biological barriers
(Kraft et al., 2008; Silvertown, 2004; Tedersoo et al., 2020), but these hypothesized mechanisms

have not been well elucidated for coexisting temperate and boreal trees.
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Resource niche differentiation is conventionally quantified by comparing the species-specific
capacity to acquire and/or use various resources (e.g., light, water, and nutrients) (Silvertown,
2004). For example, taller trees can acquire more light than shorter ones, and thus perform better
under interspecific than intraspecific competition (Williams et al., 2021), so relative growth rate is
a useful indicator for the differential capacity to acquire light among tree species (Falster &
Westoby, 2003; King, 1981; Reich et al., 1998). Coexisting species may have different strategies
for the use of water and have variable water-use efficiencies, especially in regions subject to water
stress (Kulmatiski et al., 2019; Silvertown et al., 2015). Moreover, differentiation in nitrogen-use
strategies in nitrogen-limited boreal forest likely facilitates species coexistence and/or determines
success in interspecific competition (Du et al., 2020; McKane et al., 2002). Based on, but
expanding upon, these approaches, the concept of elemental niche has been proposed to define the
species-specific niche in a multidimensional space on the basis of foliar elementomes (i.e., the
composition of essential elements, such as macronutrients and micronutrients) which reflect
different species-specific needs and use of bioelements in amounts and proportions to adapt to
different abiotic and biotic environments (Pefiuelas et al., 2019; Sardans et al., 2021). Considering
that the newly arrived young temperate trees under the canopy of southern boreal forest are less
competitive in terms of acquiring light (Fukami, 2015), the key mechanisms for their survival
likely include stronger capacities to utilize nutrients, especially nitrogen that widely limits growth
of boreal trees (HOogberg et al., 2017; Lambers et al., 2013; Xing et al., 2022). This hypothesis is
consistent with experimental work showing that intrinsically slower growing less light competitive
but more shade-tolerant species could maintain relative canopy position or even reverse height
growth rankings with intrinsically faster growing Larix neighbors when resources were more

abundant, such as in lower density neighborhoods (Boyden et al., 2009).

Boreal forest in northern Greater Khingan Mountains of northeast China, a component of the
southernmost Asian Taiga (Olson et al., 2001; Su et al., 2020), has experienced significant climatic
warming for decades (Portner et al., 2022). Field observations, manipulative experiments, and
climate-vegetation models suggest better regeneration and growth in this region of Mongolian oak,
a dominant tree species in adjacent northern temperate forest (Leng et al., 2006; Sun, 1998; Xu et
al., 2022; Zhou et al., 2002). This evidence implies a potential migration of Mongolian oak into
the southern Asian boreal forest (Leng et al., 2006; Xu et al., 2022). However, the rate of migration
and possible mechanisms remain unknown. Based on a field investigation of a temperate-boreal

forest ecotone in a direction approximately perpendicular to isotherms in northern Greater Khingan
4
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Mountain, northeast China (see MATERIALS and METHODS; Figure 1la—c), we estimated the
rate of migration of Mongolian oak and examined the underlying mechanisms to overcome the
biological barrier of boreal Dahurian larch (Larix gmelinii), the dominant tree species of the
regional boreal forest. Specifically, we tested two hypotheses: (i) Mongolian oak migrates into the
boreal forest in response to climatic warming at a higher rate than do tree species at colder boreal-
tundra ecotones and alpine treelines, and (ii) the advantage to utilize essential nutrients, especially
nitrogen, facilitates Mongolian oak to coexist with and overcome the biological barrier of Duharian
larch.

2. MATERIALS and METHODS
2.1 Study area and studied species
The northern Greater Khingan Mountain region (50°10’ to 53°27' N and 119°36' to 126°37' E) of
Northeast China is located in the southernmost edge of Eurasian boreal forest (Olson et al., 2001).
This region is characterized by continental monsoon climate with long cold winter and short warm
summer. About 70% of the annual precipitation occurs in summer. This region contains a large
area of boreal forest with Dahurian larch (Larix gmelinii) as the dominant tree species (Su et al.,
2020), transitioning to northern temperate forest with Mongolian oak (Quercus mongolica) as a
dominant tree species. The soil parental material is gneiss or granite bedrock. This region is
characterized by brown coniferous forest soils with an organic layer of 5—8 cm depth (Xiao & Shu,
1988). The mineral soil layer shows a depth of 20 to 40 cm with pH varying from 4.5 to 6.5 (Shi
et al., 2019). Before the 20" century, the Greater Khingan Mountain region was rarely disturbed
by anthropogenic activities due to the harsh climatic conditions and the rigorous ‘policy of
prohibition’ (during 1650s—1900s) (Jin et al., 1991). During the past century (1920s—now), the
forest ecosystems were partly disturbed due to human activities, such as hunting and logging (Jin
et al., 1991). Forest fire is infrequent due to fire-prevention polices and fire-suppressing activities
(Chang et al., 2007). Some grazers are found in this region, such as Siberian Roe Deer (Capreolus
pygargus) and Red squirrel (Sciurus Vulgaris), mainly feeding on plant twigs, leaves and seeds.
Mongolian oak and Dahurian larch are ecologically distinct in several aspects. Mongolian
oak is an initially fast but overall slowly growing tree species with intermediate shade-tolerance
that generally reaches 3—9 m in height and begins sexual reproduction at 15—20 years old(Chen et
al., 2017; Xu et al., 2022; Zheng et al., 1986). However, Mongolian oak trees grow slowly at their
northmost distribution edge (e.g., the northern part of the Greater Khingan Mountains) due to the

poor growth conditions, such as cold climate and low soil N availability (Chen et al., 2017; Wang
5
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et al., 2005; Xu et al., 2022; Zheng et al., 1986). Dahurian larch is a fast-growing deciduous,
photophilic conifer tree species that reaches 6—10 m in height at its first maturity (about 20 years
old) (Jiang, 1990; Si, 1985). Both tree species are associated with ectomycorrhizal fungi (Guo et
al., 2008), while Mongolian oak has a more advanced fine root system with higher specific root
length, root nitrogen content and root density (Wen, 2019). Across our sampling transect (see
Section 2.2 for more details), the maximum tree height (i.e., mean height of the highest 10% trees)
of Mongolian oak is lower than that of Dahurian larch (6.6 £ 3.0 m vs 20.4 + 0.8 m). Seeds of
Mongolian oak and Dahurian larch are dispersed by animals (zoochory) and wind (anemochory),
respectively (Ai et al., 1985; Zhang & Liu, 2014). The maximum seed dispersal distances of
Mongolian oak can approach several kilometers with animals as the principal agent (Bossema,
1979; Hao & Wu, 2012; Pesendorfer et al., 2016; Zhang & Liu, 2014). Mongolian oak population
can also regenerate by sprouting from rootstocks (Fan et al., 1996). In addition, Mongolian oak
trees are mainly limited to the south-slope with mid- to low elevations in the southern boreal
regions, due to the fact that temperature is too low for Mongolian oak trees to regenerate and
reproduce on the north slope and/or at high elevations (Zhou, 1991). More detailed information
for these two tree species can be found in Table S2.

2.2 Sampling transect

The rate of tree migration can be estimated by approaches such as repeated survey, repeated
photography/remote sensing and dendrochronological approach (Danby, 2011; Dial et al., 2022;
Pefiuelas & Boada, 2003; Shiyatov, 2003). We combined field sampling and dendrochronological
analysis in view of its wide application in the studies in alpine tree-line and boreal-tundra ecotones
(Dial et al., 2022; Du et al., 2018; Shiyatov, 2003; Wang et al., 2016). We first conducted a field
expedition in the mid-summer of 2020 to delineate the regional boundary between pure Mongolian
oak forests and the advancing edge of Mongolian oak saplings within the boreal forest. Accordingly,
we selected a sampling transect approximately perpendicular (i.e., with an angle of 69.5°) to the
isoline of threshold warmth index (i.e., 35 °C month) for Mongolian oak (see Section 2.5 more
detailed information on the calculation and threshold of warmth index) on the eastern slope of the
Greater Khingan Mountain, covering a distance of approximately 90 kilometers (Figure 1a, b, ¢ &
S1). This transect represents the temperate-boreal forest ecotone, extending from the colder
boundary of pure Mongolian oak forests to the warmer boundary of pure Dahurian larch forests

(Figure 1b). Longitude of the transect ranges from 122°42' to 123°59’ E and the latitude ranges from
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50°28" to 50°40" N. Moreover, the altitude gradually increases from 480 m in the east to 640 m in
the west (Figure 1c).

Within this transect, we selected four specific areas: Jagdaqi, Alihe, Ganhe, and Keyihe, latterly
denoted as Areal, Area2, Area3, and Aread, respectively. At each area, representative forest plots
(20 m x 20 m) were established at five replicated sites where the oldest Mongolian oak population
occurred, with an average distance of 1.9 £ 0.6 kilometers between them. Considering that some
sampling sites in Areal were situated near the leading edge of pure Mongolian oak forests, we
designated the forest site closest to the distribution edge of pure Mongolian oak forests (Areal-1;
see Table S1) as the starting point of the sampling transect. Overall, a total of 20 representative forest
plots across 20 sites were investigated within the four areas along the transect. According to the
Seventh National Census in 2020, the average population density is about 5.6 people per square
kilometer across our sampling transect with 75-94% of the population living in small towns
(National Bureau of Statistics, 2021).

2.3 Field sampling

Within each sampling plot, we collected foliar samples from six healthy trees in the upper crowns of
both tree species using an averruncator. Across the transect, a total of 240 foliar samples were
collected, with 120 samples obtained for each tree species, respectively. For Dahurian larch, we
selected the eight largest trees in each plot and sampled two ring cores from each tree using a 5.15-
mm-diameter increment borer (Haglof Sweden, L&ngsele, Sweden). The tree-ring cores were
obtained at breast height (~1.3 m above the ground) in two perpendicular directions (east-west and
north-south). In the case of Mongolian oak, three of the largest trees and three smaller trees were
chosen in each forest plot. These trees were carefully felled using a hand saw at a standard height of
approximately 5 cm above the ground, allowing us to sample the stem discs. Due to the relatively
small diameters of many Mongolian oak trees, tree-ring core sampling was not feasible. To gather
additional data, we measured the diameter at breast height (DBH, 1.3 m) of all larch and oak trees
with a height greater than 1.3 m using a diameter tape. Tree height measurements were taken for the
individuals selected for ring core or stem disc sampling, using an ultrasound height distance
measuring instrument (Vertex 1V, Haglof, Sweden). In total, we collected 320 tree-ring cores from
160 Dahurian larch trees and 120 stem discs from 120 Mongolian oak trees across the transect. To
characterize the soil properties in each plot, we collected five topsoil samples (0—10 cm depth) in
each forest plot and combined them into one composite sample for subsequent laboratory analyses.
Furthermore, we recorded basic geographical information including latitude, longitude, elevation,

7
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slope, and aspect for each sampling plot (Table S1) as well as any evidence of stumps or trunks of
deceased oaks.
2.4 Laboratory analysis
Foliar samples were dried in an oven at 65 °C to a constant mass and further ground in a mixer
mill (MM400; RETSCH, Haan, Germany) and sieved through a 100-mesh sieve. Soil samples
were air dried, manually refined by removing gravel and coarse plant debris, milled and sieved
through a 100-mesh sieve. Foliar nitrogen contents were measured using an elemental analyzer
(Elemental Analysis system GmbH, Hanau, Germany). Additionally, we solubilized foliar
samples with 6 ml HNOs in a microwave digestion system (Mars6 Xpress; CEM, Matthews,
USA) and diluted the digested solution with ultrapure water to 25 ml. The contents of P, K, Ca,
Mg, Cu, Fe, Mn and Zn were then measured using an ICP-AES (Optima 8000; PerkinElmer,
Waltham, USA). Moreover, stable carbon and nitrogen isotope abundance (513C and §*°N, %o)
in foliar samples were determined using a stable isotope ratio mass spectrometer (Delta V;
Thermo Fisher, Massachusetts, USA). The instruments were calibrated each nine measurements
using the laboratory standards. The analytical errors of the isotope measurements were below
0.05%o and 0.25%o for §3C and §*°N, respectively. The §'3C and §'>N were calculated according
to Equation (1),

8C or 8°N = (M- 1) #1000 %o (1)

tandard

where Rsample is the ratio of *C/*2C or **N/**N in the sample. Rstandara is the ratio of B*C/*2C in
Vienna Pee Dee Belemnite standard (Coplen, 1995; McCarroll & Loader, 2004) and **N/*N in
the atmospheric N>.

The stem discs and tree-ring cores were air dried and sanded using progressively finer grades
of sandpaper until the tree-rings were clearly identified. Tree-ring widths were measured using a
LINTAB 5.0 system (RINNTECH, Heidelberg, Germany) with a precision of 0.001mm. The time
series of tree-ring widths were visually cross-dated and corrected using the COFECHA program
(Holmes, 1983). Cambial ages of Mongolian oak and Dahurian larch were determined according
to the counts of tree-rings. Mean series intercorrelation coefficient for Mongolian oak and
Dahurian larch ranged 0.55—-0.58 and 0.59-0.67, respectively (Table S3). All laboratory analyses
were conducted in the Analysis and Test Center, State Key Laboratory of Earth Surface Processes
and Resource Ecology, Beijing Normal University.

2.5 Data on climate and temporal trend of climatic variables

8
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Monthly data on temperature and precipitation (1960-2015) for two of the four sampling areas
(i.e., Areal and Area2) were derived from two nearby meteorological stations (i.e., about 9 km to
Jiagedaqi station, and 16 km to Alihe station) (China Meteorological Data Service Center,
http://data.cma.cn). Climatic data (1920-2019) for all four sampling areas were also derived from

CRU TS 4.05 with a resolution of 0.5 degree (http://climexp.knmi.nl/). The monthly temperature
from January to December and the mean annual temperature correlated fairly well between these
two datsets for Areal and Area2 (Pearson’s coefficient varied from 0.87 to 0.97, Table S4),
indicating a good precision of CRU temperature data in the study area. Monthly precipitation
correlated less well between these two datasets (Pearson’s coefficient ranged from 0.55 to 0.89).
Using the CRU dataset, we conducted linear regression analyses to evaluate the temporal trends
of warmth index (cumulative monthly temperature above 5°C) during 1920-2020 (Kira, 1948).
The temporal trend of annual precipitation and growing-season precipitation (May—September)
(Du & Tang, 2021) were evaluated using data from meteorological stations (Figure S3). The

warmth index (WI, °C month) was calculated according to Equation (2),
WI=>(T,-5) ()
i=1

where T is the monthly mean temperature that exceeded a threshold temperature (i.e., 5 °C). A
threshold warmth (WI=35 °C month) is required for seed maturity of Mongolian oak (Kaplan,
2001; Xu, 1985, 1986; Yin et al., 2013). We demonstrated the isoline of the threshold for warmth
index in the past century using regional monthly temperature data (1920—2020; CRU TS 4.05)
(Figure 1b and S1).

2.6 Analysis of the age structure and the year of establishment

The ages of sampled trees were estimated based on the counts of tree-rings from basal discs and
tree-ring cores. Given that the basal discs of Mongolian oak were sampled close to the ground
(about 5 cm), the estimated age could thus indicate the actual age of the tree stem. We further
explored the age-height relationship of Mongolian oak for each of the four areas using four
commonly used models, i.e., linear, quadratic, exponential and power models (Table S5). The best
model with the highest determinant coefficient (R?) and the lowest Akaike Information Criterion
(AIC) was established and used to predict the ages of all individuals of Mongolian oak for the
sampling plots at the five replicated sites in each area. The age structure was illustrated using a

frequency histogram. The year of establishment of Mongolian oak at each plot was estimated based
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on three approaches, i.e., (i) the age of the oldest tree, (ii) the mean age of the oldest three trees,
and (iii) the mean age of the oldest 10 percent of all trees, respectively.

2.7 Estimation of migration rate of Mongolian oak and movement rate of climate threshold
Raw migration rates (Rateraw) of Mongolian oak were estimated by the inter-area distance and the

difference in establishment year of Mongolian oak according to Equation (3),

Rate,,, = Dist/A Year (3)

where Dist and AYear indicate the geographical distance between two adjacent sampling areas and
the difference in the establishment year of Mongolian oak, respectively. Specifically, for the
estimation of the migration rate of Mongolian oak, the distance (i.e., Dist) between adjacent areas
was calculated as the distance between each location of the five sampling sites and the location
(averaged latitudes and longitudes of the five sites) of the adjacent sampling area where Mongolian
oak established earlier. Estimates of migration rates for Mongolian oak were conducted separately
based on three different estimates of the establishment year, i.e., the age of the oldest tree, the
mean age of the oldest three trees, and the mean age of the oldest 10 percent of all trees,
respectively. Because the sampling transects showed an angle of 69.5° with the isoline of the
threshold warmth index (35 °C month) for Mongolian oak (Figure 1b & S1), the migration rates

(i.e., Ratecorrect) Were further corrected according to Equation (4),

Rate,,., = Rate,,, * Sin69.5° (4)

correct

We also estimated the spatial moving rates of threshold warmth index (i.e., 35 °C month)
using a similar method. Specifically, the distance (i.e., Dist) between adjacent areas was calculated
as the distance between the location (averaged latitudes and longitudes of the five sites) of the
sampling areas and the location of the adjacent sampling area where the warmth index reached the
threshold (35 °C month) earlier. Difference in the years (i.e., AYear) for warmth index reaching
35 °C month were computed accordingly. Moving rates of threshold warmth index across the
transect were hence calculated and corrected according to Equation (3) and (4), respectively. We
compared the migration rates of Mongolian oak and the isoline of threshold warmth index using

Wilcoxon rank-sum test.
2.8 Comparison of migration rates among and within ecotones

To more broadly compare tree migration rates among temperate-boreal forest ecotones, boreal-

tundra ecotones and alpine treelines, we collected data on estimated migration rates from literature.
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The migration rates of trees in alpine treelines were derived from a very recent synthesis instead
of a repeated review of literature (Lu et al., 2020). To collect tree migration rate data for temperate-
boreal forest ecotones and boreal-tundra ecotones, we conducted a literature survey via Web of
Science (https://www.webofscience.com) and Google Scholar (https://scholar.google.com) using
different combinations of the following key words: “temperate/boreal/Arctic treeline/alpine
treeline” and “expansion/ migration/range/distribution/boundary shift”. We only recorded the data
when (i) the migration rate was estimated based on observed migrations or range limit shifts, (ii)
the life form of migratory species was tree, (iii) the observed migration occurred at temperate-
boreal forest ecotones, boreal-tundra ecotones or alpine treelines, and (iv) the observed migration
of tree species was caused by climatic warming. For temperate-boreal forest ecotones, we
identified temperate tree species following previous studies (Beckage et al., 2008; Martin et al.,
2021; Reich et al., 2022; Sittaro et al., 2017; Tyree et al., 1991). Only migration rates of temperate
tree species were included in our analysis, while the studies on northward retreat of southern boreal
trees were excluded. We further excluded the literature results either from non-ecotones or using
different approaches from our study (e.g., based on the shift in geographical center rather than the
leading edge of species distribution). In addition to the migration rates originally reported in the
literature, we also calculated the migration rate of temperate trees based on available information,
e.g., shifts in distribution edge and the corresponding time of migration. For the same species
analyzed in different studies in a same region, we calculated the mean migration rate for further
analysis. Based on the newly compiled database (Table S6), we compared the migration rate of
trees among temperate-boreal forest ecotones, boreal-tundra ecotones and alpine treelines using
one-way ANOVA with a Scheffe post hoc test.

2.9 Evaluating niche differentiation in light, water, and nutrient utilization

The height growth rate (HGR), an indicator of the capacity to compete for light during early stages
of stand development (King, 1981; Leps, 1999; Reich et al., 1998), was calculated as the height
divided by the age of the tree. Specifically, the height growth rates of Dahurian larch were
estimated based on the cambium age at breast height (1.3 m) and the height of the tree minus 1.3
m. The ratio of tree height growth rate was calculated for Mongolian oak versus Dahurian larch

according to Equation (5),

RatiOHGR = HGRoak / HGRIarch (5)

where HGRoak and HGRiareh indicate the growth rate of tree height of Mongolian oak and Dahurian

11
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larch, respectively.

To evaluate the differentiation of water use, we estimated the intrinsic water use efficiency
(iWUE) based on foliar '3C data and calculated their ratios (Ratioiwur) between Mongolian oak

and Dahurian larch according to Equation (6),

Ratio,, . =IWUE_, /IWUE

IWUE 0ak larch (6)

where iWUEqa and iWUEareh indicate the intrinsic water use efficiencies of Mongolian oak and
Dahurian larch, respectively. Intrinsic water use efficiency was defined as the ratio between the
net assimilation speed (A) of CO> and the stomatal conductance to water vapor (gs). Based on the
mechanisms of A¥3C and its relationship with Ci/C,, the intrinsic water use efficiency (iWUE) was
calculated according to Equation (7) (McCarroll & Loader, 2004),

C,* (b-A¥C)

IWUE = A/ g, =
1.6* (b—a)

(7)

where the symbol a is the fractionation against **CO; during diffusion through stomata (4.4%o)
(O'Leary, 1981), b is the fractionation during carboxylation (27%o) (Farquhar & Richards, 1984)
and Ca, is the concentration of ambient CO. obtained from Mauna Loa records
(https://gml.noaa.gov/ccgg/trends/) (Keeling et al., 2001). The values of A¥C, were calculated

according to Equation (8),

13

e
ABC = (8°C, - 8°C,)* (1+ 100(‘)’ (8)

where 8!3C, and 8'3C;, are the isotope ratios of carbon (i.e., **C/*2C) in the atmospheric CO2 and
plant (e.g., foliar samples), respectively.
Foliar 5!°N are indicative for plant N utilization (Amundson et al., 2003; Craine et al., 2015).
To assess the differentiation in nitrogen utilization between coexisting Mongolian oak and
Dahurian larch, we evaluated the N use difference (Dify) based on the foliar §°N according to
Equations (9),
Dif, =8°N_, — "N, 9)

We further compared the elementomes of coexisting Mongolian oak and Dahurian larch based on
the foliar contents of nine essential nutrients (N, P, K, Ca, Mg, Cu, Fe, Mn and Zn). Nutrient
content data were first normalized (mean = 0, sd = 1) and then a general principal components

analysis (PCA) was conducted to test the inter-specific difference of elementomes in the PCs space
12
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(Pefiuelas et al., 2010; Urbina et al., 2017). Then a paired t-test was employed to determine how
PC1 and PC2 scores of elementomes differed between Mongolian oak and Dahurian larch
(Pefiuelas et al., 2010; Urbina et al., 2017). The elementomic distances (Euclidean) between
Mongolian oak and Dahurian larch were calculated using vegdist function (vegan package) in R
environment (Fernandez-Martinez et al., 2021; Oksanen et al., 2013). Smaller elementomic
distances indicate more similar functional strategies and stronger overlap of stoichiometric niches
(Fernandez-Martinez et al., 2021).

Paired t-test or Wilcoxon rank-sum test were used to compare the indicators for light
acquisition (i.e., tree height growth rate), water use (i.e., water use efficiency), nitrogen (i.e., foliar
5N and N content) and nutrient use (i.e., foliar elementome) of coexisting Mongolian oak and
Dahurian larch. Linear regression analyses were conducted to explore the spatial variation of
indicators for interspecific differentiation in light (the ratio of tree height growth rate), water (the
ratio of water use efficiency), nitrogen (Difn) and nutrient use (elementomic distances) across the
sampling transect, respectively. All statistical analyses were performed in R 4.2.0 software with a
significance level of 0.05 (R Core Team, 2015).

3. RESULTS
3.1 Significant climatic warming across the temperate-boreal forest ecotone

The warmth index in the study region increased significantly during the last nine decades (P <
0.001; 0.135-0.143 °C month y 1), especially after 1960 (Figure 1d). The warmth index at the
current border of the pure temperate Mongolian oak forest (i.e., Areal) was consistently above the
threshold warmth index (35 °C month) for Mongolian oak throughout the recorded period. The
warmth index for Area2 and Area3 approximated the threshold around 1950 while it stayed
consistently below the threshold in Aread until 1995 (Figure 1d). In the context of climatic
warming, the front border of the threshold warmth index (i.e., 35 °C month) moved towards the
boreal forest at an average rate of 14.7 + 3.5 km decade ™ across the transect (Figure S2). Both
annual precipitation and growing-season precipitation (i.e., May-September) (Du & Tang, 2021)

had no significant trends during the same period (P > 0.05; Figure S3).
3.2 Rapid migration of Mongolian oak into the southern Asian boreal forest

The age structures of Mongolian oak in the five repeated forest plots were generally more similar

within each area than among them (Figure 2) and the maximum ages of the oak trees decreased

13
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significantly towards the boreal forest (p<0.001; Figures 3a). Mongolian oak was estimated to
establish in Areal around 1924, arrive at Area2 and Area3 in 1955 and 1975, respectively, and
reach the current leading edge, i.e., Area4, around 2000 (Figure 2a). Based on the three oldest trees
in each plot, we estimated that Mongolian oak migrated into the southern boreal forest at an
average rate of 12.0 + 1.0 km decade ™ (Figure 3c). The migration rates estimated using the ages
of the oldest tree and the oldest 10% of all oak trees were similar (Figure 3b & 3d). This migration
rate is rapid compared to those recorded elsewhere in similar contexts; in fact, it is the highest rate
of migration for a temperate tree species among all reported expansions of temperate conifer (e.g.,
white pine) and broadleaf trees (e.g., gray birch, red oak and sugar maple) into the southern boreal
forest (Figure 4a; Table S6). Our further analysis shows that the rate of migration associated with
climatic warming decreased significantly in the order of the ecotone of temperate-boreal forest
(4.0 = 1.0 km decade ) > boreal-tundra ecotones (0.9 + 0.4 km decade ) > alpine treelines (0.004
+0.003 km decade ) (P < 0.05; Figure 4b and Table S6). Thus, the migration of Mongolian oak
is extremely rapid among multiple high latitude biomes and contexts (the highest for the fastest

migrating group).
3.3 Performance and niche differentiation between Mongolian oak and Dahurian larch

The height growth rate of Mongolian oak was significantly lower than that of Dahurian larch,
implying a lower light acquisition capacity of Mongolian oak (ti9 = 56.27, P < 0.01; Figure 5a).
The ratio of the height growth rate of Mongolian oak versus Dahurian larch decreased significantly
toward the southern boreal forest (P < 0.05; Figure 5b). Intrinsic water-use efficiency did not differ
significantly between these two species (ti9 = —1.64, P = 0.12; Figure 5c), and the ratio of the
water-use efficiencies showed no significant trend across the transect (P = 0.46; Figure 5d). The
foliar 3*°N was significantly lower for Mongolian oak than Dahurian larch (tio = 2.13, P < 0.05;
Figure 5€). The difference in foliar 8N (Nify) between these two species increased significantly
toward the southern boreal forest (P < 0.05; Figure 5f), suggesting consistently higher capacity of
Mongolian oak to utilize nitrogen that significantly limits the growth of Dahurian larch (Xing et
al., 2022).

Principal component analysis (PCA) of leaf elements suggests significant differentiation
between Mongolian oak and Dahurian larch on the PC1 axis (W =0, P < 0.01; Figures 59 & S4
and Table S7). The PC1 axis was closely associated with the variation of the foliar contents of N,

P, Ca, Mg and Cu and explained 43.1% of the total variance of the elemental contents (Figures 5g

14



412
413
414
415
416
417
418

419

420

421
422
423
424
425
426
427

428
429
430
431
432
433
434
435
436
437
438

439
440
441

& S4, Table S7). The variations of the foliar contents of K, Fe and Mn along the PC2 axis also
differed significantly between the two species (tio= —2.97, P < 0.01; Figures 59 & S4 and Table
S7) and explained 18.% of the total variance of the elemental contents (Figures 59 & S4).
Specifically, the foliar contents of N, P, Ca, Mg, and Mn were significantly higher for Mongolian
oak than Dahurian larch (P < 0.05; Figures 59 & S5). The elementomic distances between
coexisting Mongolian oak and Dahurian larch increased significantly towards the southern boreal
forest (P < 0.01; Figure 5h).

4. DISCUSSION
4.1 Rapid migration of Mongolian oak

Our results indicate that Mongolian oak has migrated rapidly into the southern Asian boreal forest
during the last century, likely at least in part in response to the significant climatic warming. The
migration rate of Mongolian oak (i.e., 12.0 + 1.0 km decade *) estimated in our study is comparable
to that of the oak trees (i.e., ~10 km decade ™) migrating into Great Britain after the last glacial
period documented in Reid’s paradox (Clark, 1998). The migration of Mongolian oak nearly kept
pace with the movement of threshold warmth index (35 °C month) across the transect (12.0 + 1.0
vs 14.7 + 3.5 km decade%; Figure S2).

Consistent with our first hypothesis, the migration of Mongolian oak into the boreal forest
was significantly faster than the migration of trees at boreal-tundra ecotones and alpine treelines,
where migration lags far behind the rapid climatic warming (Figure 4 and Table S7) (Lu et al.,
2020; McLaren et al., 2017; Payette, 2007; Rees et al., 2020). The slower migration of tree species
at boreal-tundra ecotones and alpine treelines may be limited by lower seed germination and
seedling recruitment due to the harsh climates (e.g., low temperatures, frequent frost and/or intense
ultraviolet radiation) and poor soil conditions (e.g., low contents of nutrients and/or availability of
water) (Harsch & Bader, 2011; Lenoir et al., 2008; Macias-Fauria & Johnson, 2013; Rees et al.,
2020). In contrast, better climatic and edaphic conditions in the southern boreal forest may partially
facilitate the migration of temperate trees at the temperate-boreal forest ecotone (Boisvert-Marsh
et al., 2019; Sittaro et al., 2017).

Previous studies conducted in the northern Greater Khingan Mountain region have also provided
evidence for the expansion of Mongolian oak into the boreal forest. Sun (1998) and Zhou et al.

(2002) conducted field investigations along an ecological transect at the northern distribution edge
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of Mongolian oak in the northern Great Khingan mountains. Their findings revealed successful
regeneration and establishment of Mongolian oak within boreal larch forest stands over the past few
decades. These studies contribute further support to the understanding of Mongolian oak's migration
into the boreal forest in the studied region. However, neither the migration rate of Mongolian oak
nor the potential mechanisms driving its expansion, aside from the assumed role of climatic

warming, were estimated or systematically explored in these studies.
4.2 Mechanisms of the migration of Mongolian oak

The migration of tree species is jointly controlled by climatic barriers (e.g., cold limitation),
dispersal barriers (e.g., seed dispersal limitation, seedbed suitability and seed predation), biological
barriers (e.g., competition with resident species), and their interaction (e.g., shifting competitive
rankings across thermal gradients (Figure 6) (Fisichelli et al., 2012; Lambers et al., 2013; Reich et
al., 2022; Reich et al., 2015). In our study region, rapid climatic warming in recent decades has
resulted in a significant increase of warmth index (Figure 1d & 6a) that continuingly exceeded the
assumed thermal threshold of regeneration and reproduction of oak trees beyond the previous
leading edge. In view of the alleviated climatic barrier, limits to the dispersal of propagules (e.g.,
seeds) by animals (i.e., dispersal barrier) (Johnson & Webb 111, 1989; Wall, 2001) and the
biological barrier of coexisting boreal trees can control the migration success and rate of temperate
trees under climatic warming (Fukami, 2015; Lambers et al., 2013; Solarik et al., 2020) (Figure
6a). Specifically, the known dispersal agents of oak acorns include sciurid and other large rodents
(e.g., Red squirrels and Siberian chipmunk) and corvid birds (e.g., Eurasian jays and Eurasian
nutcracker) in this region (Hao & Wu, 2012; Pesendorfer et al., 2016; Zhang & Liu, 2014), and
acorns of oaks can be dispersed by these animals up to a maximum of several kilometers (Bossema,
1979; Higgins et al., 2003; Purves et al., 2007). The estimated rate of migration of Mongolian oak
(12.0 + 1.0 km decade™?) falls in the range of the maximum seed dispersal rate (Figure 6b),
implying that seed dispersal is not likely a strongly limiting factor for the migration of Mongolian
oak; i.e., high seed dispersal capacity is likely a key mechanisms contributing to the rapid

migration of Mongolian oak.

Another key mechanism for the rapid migration of Mongolian oak involves how it overcomes
the biological barrier of residential boreal larch trees (Solarik et al., 2020) (Figure 6a). Our analyses
revealed that Mongolian oak exhibited lower capacity for light acquisition and did not demonstrate

a significant advantage in water use efficiency when compared to the coexisting Dahurian larch
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(Figure 5g, S5, S7 & S8). However, Mongolian oak was shown to possess intermediate shade
tolerance (Beon & Bartsch, 2003; Kweon & Comeau, 2021), allowing it to adapt to the light
conditions beneath the canopy of the larch forest. In addition, the canopy of boreal larch forest
allows considerable sunlight transmittance to the forest floor (Zheng et al., 1986) and this may
potentially both alleviate the light limitation of young Mongolian oaks and protect them from
potential photo damage of unshaded sunlight. Moreover, Mongolian oaks had stronger capacities
to utilize essential nutrients, especially nitrogen, that widely limits the growth of Dahurian larch
in the studied region (Xing et al., 2022). As reflected by the elementomes, higher contents of the
macronutrients could favor photosynthesis and growth of Mongolian oak in competition with
regenerating larch and/or native shrubs in the partially shaded understories. The advantage in
utilization of limiting nutrients is likely a key mechanism for Mongolian oak to overcome the
biological barrier and coexist with existing older and taller larch trees under continuing climatic

warming (Figure 6), in line with our second hypothesis.

Other factors, such as disturbance, could also affect shifts in species distributions (Boisvert-
Marsh & de Blois, 2021; Brice et al., 2020; Hill & Field, 2021). For instance, disturbances could
directly influence the demographic processes (e.g., growth and mortality) and species turnover or
indirectly provide establishment opportunities for migratory trees by creating canopy gaps (Brice
et al., 2020). As one of the most important disturbances in boreal region, fire events, have neither
been evidenced by the sampled tree-ring cores nor been reported previously across the studied
transect (Jin et al., 1991). Furthermore, we found only few dead trees (e.g., N = 17 and mean
DBH= 4.6 £ 2.2 cm) and stumps of Mongolian oak across the transect during the field expedition
and investigation. This refutes the idea of a dominant role of species infilling or turnover induced
by disturbances in shaping the significant age trends of Mongolian oak relative dominance to
migrating into the boreal forest. Overall, the spatial trends of tree age and relative basal area of
Mongolian oak (Figures 3a & S6) across the temperate-boreal forest ecotone most likely result

from the species migration under climatic warming.
4.3 Implications and future research needs

Tree-ring studies in the southern Asian boreal forest have suggested a growth decline of Dahurian
larch in response to recent climatic warming (Bai et al., 2019; Li et al., 2020; Li et al., 2023). For
instance, a recent analysis of large-scale networks of tree ring data (i.e., the International Tree-

Ring Data Bank, ITRDB) suggests that rapid climatic warming has induced widespread growth
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decline of Dahurian larch in the southern Asian boreal forest mainly as a result of the warming-
induced drought stress (Li et al., 2023). Specifically, the maximum temperature during the growing
season (generally > 20°C) has exceeded the physiological optimum temperature for Dahurian larch
(15—20 °C) in the southern boreal regions (Huang et al., 2019), which would likely result in a
decline in foliar photosynthetic productivity (Medlyn et al., 2002). On the contrary, climatic
warming has been found to significantly enhance the growth of temperate oak trees and several
other temperate trees in temperate-boreal ecotones (Fisichelli et al., 2012; Goldblum & Rigg, 2005;
Reich et al., 2022; Reich et al., 2015; Zhou et al., 2002). The potentially distinct growth responses
of larch and oak trees to climatic warming imply that warmer temperatures in the future may
further weaken the biological barrier for the migration of Mongolian oak. In this context, the
migration of Mongolian oak will likely continue, which may consequently trigger a major change
in the ecosystem structure and functioning of the southern Asian boreal forest. Therefore, further
research efforts are needed to reveal the ecological and biogeochemical impacts of temperate tree

migration on the southern Asian boreal forest.

Additionally, the analysis of the elemental niche indicates a greater capacity for nutrient
utilization by Mongolian oak compared to boreal Dahurian larch (Figure 5 & S7 & S8). This could
potentially promote the establishment of Mongolian oak and its coexistence with Dahurian larch
in the southern boreal forest, characterized by low soil nutrient availability. To further validate this
mechanism, experimental nutrient manipulations, such as varying levels of nitrogen addition, are
required to assess how nutrient availability affects the colonization and growth of Mongolian oak
in boreal forest stands. Furthermore, with future climate warming expected to accelerate nutrient
cycling and enhance nitrogen availability in the southern boreal forest, these experimental efforts
are likely to provide insights into the future migration of Mongolian oak and its interaction with
boreal trees in the context of climate change.

5. Conclusions

Based on a systematic field investigation across a temperate-boreal forest ecotone in the northern
Great Khingan mountains in Northeast China, we estimated the rate of migration of Mongolian
oak and evaluated potential mechanisms. Our findings suggested that temperate Mongolian oak
has migrated rapidly toward the southern Asian boreal forest and kept pace with significant
climatic warming during the past century. Key mechanisms underlying the rapid migration of

Mongolian oak include relatively long distance seed dispersal capacity, potential thermal niche

18



535
536
537
538
539

540

541
542
543
544
545
546
547
548
549
550
551

552

553

554
555
556

557

558

559

560

561

562
563

differences and the ability of migratory Mongolian oak to co-exist with Dahurian larch, and thus
overcome a biological barrier to migration. This latter ability likely involves its advantage to
nutrient utilization, especially for the limiting nitrogen, reflected by foliar elementomes and stable
nitrogen isotope ratio. Overall, these findings highlight a rapid deborealization of southern Asian

boreal forest in this region in response to climatic warming.
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Figure legends

Figure 1. Study area and sampling transect. (a) Location of the study region. (b) The sampled
transect (Area 1 to 4) across the temperate-boreal ecotone and isolines of warmth index in the
northern Greater Khingan Mountains in northeast China. The red points indicate sampling Area 1
to 4. The isolines indicate threshold warmth index (35 °C month) for Mongolian oak during
1920-1930 (brown) and 2010-2020 (purple), respectively. The regional vegetation map was
adapted from Su et al. (2020). (c) Topography of the study region. (d) Significant increases in the
warmth index during 1920—2019. The warmth index was calculated based on the sum of monthly
mean temperatures > 5 °C in each year (see section 2.5 for more details), and the gray dotted line
indicates a threshold of warmth index (35 °C month) for Mongolian oak. Note that fitted regression

lines were overlapped for Area 2 and 3.

Figure 2. Migration direction and age structure of Mongolian oak in the forest plots across
the temperate-boreal forest transect. (a) Migration of Mongolian oak across the temperate-
boreal forest transect. (b) Age structure of Mongolian oak. The brown line shows the density curve

in each frequency histogram. N indicates the number of Mongolian oak trees in each forest plot.

Figure 3. Estimated rates of migration of Mongolian oak. (a) The spatial variation of oldest
tree ages of Mongolian oak across the sampling transect. The rates of migration of Mongolian oak
were estimated separately based on the age of the oldest one tree (b), the oldest three trees (c), and
the oldest 10 percent of all trees (d), respectively (see more details in Materials and Methods). Std
indicates standard deviation. Old_1, Old_3 and Old_10% indicate the oldest one tree, the oldest
three trees and the oldest 10 percent of oak trees at each forest plot, respectively. The shaded areas

in (a) represent the 95% confidence intervals of the linear model fit.

Figure 4. Migration rates of trees within and across ecotones due to climatic warming. (a)
Reported migration rates of temperate trees at the temperate-boreal ecotone (TBE) and (b) average
tree migration rates at temperate-boreal ecotone (TBE), boreal-tundra ecotone (BTE) and alpine
treelines (ALT). Species are ordered from left to right from the fastest to the slowest rate of
migration. Abbreviations: Mon_oak, Mongolian oak; Pin_str, Pinus strobus; Bet_pop, Betula
populifolia; Que_rub, Quercus rubra; Pic_gla, Picea glauca; Ace_rub, Acer rubrum; Ulm_ame,
Ulmus americana; Pop_gra, Populus grandidentata; Bet_pub, Betula pubescens; Ace sac, Acer
saccharum; Til_ame, Tilia americana; Pic_mar, Picea mariana; Thu_occ, Thuja occidentalis;

Fra_Nig, Fraxinus Nigra; Tsu_can, Tsuga canadensis; Pin_syl, Pinus sylvestris; Lar_gme, Larix
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gmelinii; Ost_vir, Ostrya virginiana; Lar_sib, Larix sibirica. See Supplementary Table 5 for more
detailed information on the rates of migration. Different letters in (b) indicate significant
differences (p<0.05) using a one-way ANOVA with a Scheffe post hoc test. The error bar in (b)
represents standard deviation.

Figure 5. Differences of height growth (a, b), WUE (c, d) and nitrogen utilization (e, f) and
elementomes (g, h) between Mongolian oak and Dahurian larch and their variations across
the ecotone. The ratio of height growth rate, the ratio of water-use efficiencies and the difference
in foliar $°N between the two species indicate the differential acquisition/use of light, water and
nitrogen, respectively. Distance represents the geographical distance of each site to Areal-1 (i.e.,
the start of the transect, see Section 2.2 and Table S1). The shaded areas in (b), (d), (f) and (h)
represent the 95% confidence intervals of the linear model fit.

Figure 6. The mechanisms (a) and conceptual model (b) of Mongolian oak migration under
climatic warming. The maximum rate of migration of Mongolian oak into boreal forests is
ultimately limited by the propagule dispersal rate and the actual rate of migration is jointly
constrained by dispersal barriers, climatic barriers, and biological barriers of resident boreal trees.
Sa, Sp and Sc represent site a, site b and site c, respectively.
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