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A B S T R A C T   

The warming of boreal ecosystems accelerates decomposition and increases nitrogen (N) availability. The impact 
of increased N on subarctic soil fauna communities, however, remains poorly understood. We investigated the 
response of soil hexapods to a N addition experiment in a subarctic grassland. We characterized the soil hexapod 
communities using environmental DNA metabarcoding and analyzed the levels of dissolved organic carbon 
(DOC), dissolved organic nitrogen (DON), microbial carbon (Cmic), and microbial nitrogen (Nmic). N addition 
increased DON and Nmic, while DOC and Cmic pools remained unchanged. Furthermore, N addition caused 
shifts in soil hexapod community compositional diversity between control and N plots in herbivore and 
microbivore taxa. The levels of DON and Nmic strongly correlated with these shifts, explaining 54% and 45% of 
the compositional variability, respectively. This study demonstrates a clear link between N availability and shifts 
in soil hexapod communities, associated to changes in microbial and dissolved N pools in subarctic grasslands.   

The subarctic region harbors the largest pool of terrestrial carbon (C) 
on Earth (Scharlemann et al., 2014). Increasing temperatures in these 
ecosystems are expected to accelerate the decomposition of soil organic 
matter (SOM) eventually leading to a higher availability of nitrogen (N) 
due to the higher N mineralization rates of soil microbes (Mar-
añón-Jiménez et al., 2018; Walker et al., 2018). Yet, the impacts of this 
potential increase in N availability on the communities of soil fauna in 
subarctic ecosystems remain largely unknown. This is of particular 
importance due to our increasing appreciation of the interactions be-
tween microbes and soil fauna, which typically accelerate SOM 
decomposition (Handa et al., 2014), and how these relationships may be 
mediated by overall nutrient availability at an ecosystem level (Peguero 

et al., 2019). 
Arthropod-mediated decomposition is a prominent example of our 

knowledge gap regarding the impact of N addition. Soil hexapods 
facilitate decomposition and mineralization via litter fragmentation and 
habitat transformation (Bardgett and van der Putten, 2014; Filser, 
2002), but little is known about their response to shifts in N availability. 
Most detritivore hexapods are adapted to low-N diets, and microbial N 
(Nmic) is their main path for N assimilation (Douglas, 2009). Conse-
quently, N availabity may drive a bottom-up control on microbivore soil 
hexapods mediated by microbial communities (i.e. food resources), ul-
timately regulating hexapods’ abundance, diversity and activity (Cha-
hartaghi et al., 2005; Fiedler et al., 2007; Filser, 2002; Hyodo et al., 
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2011; Traugott et al., 2008). However, to our knowledge no previous 
research has assessed the validity of this trophic cascade involving the 
response of hexapod communities to shifts in nutrient availability and 
microbe-derived C and N, which may be particularly sensitive at 
high-latitude ecosystems. 

To better understand the impact of changes in carbon (C) and ni-
trogen (N) availability on soil hexapod communities in subarctic eco-
systems, we conducted a N fertilization experiment (+150 kg N ha-1) in 
a natural grassland in Iceland. We characterized soil hexapod commu-
nities by means of environmental DNA (eDNA) metabarcoding, and we 
analyzed the levels of dissolved organic carbon (DOC), dissolved organic 
nitrogen (DON), microbial carbon (Cmic), and microbial nitrogen 
(Nmic). Additionally, we investigated whether these environmental 
variables could account for the compositional dissimilarities observed 
among hexapod communities. We hypothesized that N addition would 
affect the structure and compositional diversity of soil microbivore 
hexapod communities through indirect effects arising from alterations in 
microbial C and N. 

We conducted this study at the ForHot research site in Iceland 
(Sigurdsson et al., 2016) from August 2017 to June 2018 (64◦0′N, 
21◦11′W) (see the supplementary materials for further information on 
the sampling site). Since 2014, the experimental plots had received 
annual treatments of 150 kg N ha− 1, applied in three doses as NH4–NO3. 
We collected soil cores using an auger to a depth of 10 cm from five 
replicate plots (2 × 2 m) per N level (control vs. N addition) in four 
seasons (2 treatments x 5 replicates x 4 seasonal samplings; N = 40) (see 
Table S1 for the nil impact of seasonality over arthropod communities). 
We characterized the soil hexapod communities using molecular Oper-
ational Taxonomic Units (mOTUs) obtained through eDNA meta-
barcoding of the 16S mitochondrial rDNA region (see supplementary 
materials for detailed protocol information). We quantified dissolved 
organic C (DOC) and dissolved organic N in all soil samples in 1 M KCl 
extracts. We determined soil Cmic and Nmic using the 
chloroform-fumigation extraction method, followed by 1 M KCl 
extraction. We analyzed all extracts for DOC and DON concentrations 
using a TC/TN-Analyzer (Shimadzu, TOC-VCPH/CPNTNM-1 analyzer). 
The units for all environmental variables are concentrations in parts per 
million (ppm). We conducted data handling, visualization, and statisti-
cal analyses using R v4.0.6 (R Core Team, 2020) (see the supplementary 
materials for further details on the statistical analyses). 

Principal component analysis (PCA) showed that DON and Nmic 
were the most significant environmental variables distinguishing the 
control and N treatment groups (Fig. 1), with non-overlapping confi-
dence ellipses in the environmental PCAs between the treatments. 
General linear models (GLMs) confirmed that N addition increased DON 
and Nmic, while reduced the microbial C:N ratio (P < 0.01, <0.05 and 
<0.05, respectively; Table 1). The number of eDNA reads and mOTU 
richness did not differ between plots with or without N addition (P =
0.84 and 0.57, respectively; Fig. S1 in the supplementary materials). 
However, we identified significant differences between the soil hexapod 
communities in the control and the N plots (P < 0.01, explained variance 
15%; Fig. 2) based on a sparse partial least squares discriminant analysis 
(sPLS-DA). A higher score in the first variate of the sPLS-DA indicated a 
greater compositional dissimilarity with the control plots. The compo-
sitional dissimilarities driven by N addition were primarily influenced 
by certain species, notably the collembolans Protaphorura armata, 
Sminthurinus bimaculatus, and Megalothorax minimus, as well as the plant 
hopper Javesella obscurella (Fig. 2). In contrast, the collembolan Pogo-
nognathellus flavescens, the rove beetle Philhygra debilis, and the crane fly 
Tipula cockerelliana stood out as the more distinct taxa under control 
conditions (Fig. 2). The first sPLS-DA variate was then subjected to GLMs 
against the set of environmental variables to assess to what extent these 
predictors could account for compositional variability. The values of this 
first variate positively correlated with the amount of Nmic and soil DON 
(P < 0.05 and <0.01, respectively) and also marginally correlated with 
the amount of DOC (P = 0.06; Table 2). Thus, this indicated that the 

higher the amount of Nmic, DON and to a lower extent of DOC, the 
greater was the compositional dissimilarity of the soil hexapod com-
munities between the control and the N plots. 

Nitrogen addition had a clear impact on the compositional diversity 
of soil hexapod communities in our studied grassland in the subarctic, 
which correlated with the increased level of N both in the soil solution 
and the microbial pool (Table 2). The extreme variations in N re-
quirements among trophic levels and across phylogenetic lineages pre-
clude generalizations of the effect of N for the whole subphylum 
Hexapoda (Fagan et al., 2002). Previous research has shown that 
increased N concentrations in the soil can benefit the fitness of insect 
herbivores via lower C:N ratio in plant tissues (Mattson 1980; Zech-
meister-Boltenstern et al., 2015). For instance, the increase of the 
phloem-sucking J. obscurella after our N-addition experiment may un-
derscore the end of the N limitation (Firn et al., 2019; Gargallo-Garriga 
et al., 2021). Similarly, lower C:N ratio in leaf-litter may favor microbial 
biomass and ultimately detritivore populations (Table 1) (Gargallo--
Garriga et al., 2021). Therefore, it comes as no surprise that –since 
S. bimaculatus can be classified as an epigeic primary decomposer 
feeding on recently fallen litter, and P. armata and M. minimus are 
euedaphic secondary decomposers (Chahartaghi et al., 2005; Potapov 
et al., 2016)– detritivore collembolan species prefer N rich soils. 

Interestingly, certain taxa thrived in conditions of lower N avail-
ability. A notable example is T. cockerelliana, whose larvae demon-
strated a competitive advantage when nitrogen was scarce due to their 
ability to address nitrogen deficiency through microbial nitrogenase 
activity (Kostina et al., 2020). Additionally, the microbivore 

Fig. 1. Soil environment. Principal component analysis of the variables 
describing the soil environment (microbial carbon, microbial nitrogen, soil 
dissolved organic carbon and nitrogen -DOC and DON, respectively-). Ellipses 
denote 95% confidence envelopes for the control and the nitrogen addi-
tion plots. 

Table 1 
Effect of nitrogen (N) addition over dissolved and microbial carbon and N.  

Response variable Effect estimate F P-value Adjusted R2 

Soil DOC 40 ± 30 1.34 0.27 0.03 
Soil DON 60 ± 10 41.4 0.001 0.81 
Microbial C 230 ± 230 0.93 0.36 0 
Microbial N 170 ± 60 7.74 0.02 0.42 
Microbial C:N − 0.66 ± 0.22 8.78 0.01 0.46 

Effect estimates (± standard error) were calculated by means of separate general 
linear models for each environmental variable. The intercepts (not shown) are 
the ambient conditions. Units of response variables are in parts per million 
(ppm). All models have 8 degrees of freedom. 
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collembolan P. flavescens also flourished in lower N concentrations, 
supporting a previous study that suggested enhanced fitness for this 
species in environments with reduced microbial nitrogen (Chagnon 
et al., 2001). Regrettably, there are no published studies that shed light 
on the preference of the rove beetle P. debilis for N-poor soils. 

In contrast to N, microbial C did not influence the compositional 
diversity of soil hexapod communities and only the increase of C in the 
soil solution appeared to have a minor role (Table 2 and Fig. 2). The 
breadth of the isotopic signature of detritivores in soil meso and mac-
rofauna is narrower for C than for N (Korobushkin et al., 2014; Potapov 
et al., 2016). This suggests a relatively small variation of C sources in soil 
detritivores that could eventually result in lower sensitivity to variations 
of this resource in the soil environment. Yet, the experimental addition 
of N barely affected the pools of C in the soil solution and in the mi-
crobial communities. Nonetheless, N addition might influence nutrient 
availability beyond C pools. For instance, previous research show how a 
large N supply favors phosphatase synthesis and increases P availability 
increasing plant productivity and ultimately modifying soil quality 
(Deng et al., 2016; Marklein and Houlton, 2012). Overall, this study 
provides a clear linkage between the availability of N and shifts in the 
compositional diversity of soil hexapod communities, which are related 
with changes in the microbial and dissolved N pools in subarctic 
grasslands. 

Further research is needed to elucidate the specific mechanisms 

underlying these responses, with a closer examination of the trophic 
interactions between subarctic hexapods and soil microorganisms and 
plant traits, and additionally, assessing the potential feedbacks of the 
observed changes at a community-level for ecosystem functioning. 
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