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A B S T R A C T   

Online collaborative tools for medical diagnosis produced from digital pathology images have experimented an 
increase in demand in recent years. Due to the large sizes of pathology images, rate control (RC) techniques that 
allow an accurate control of compressed file sizes are critical to meet existing bandwidth restrictions while 
maximizing retrieved image quality. Recently, some RC contributions to Region of Interest (RoI) coding for 
pathology imaging have been presented. These encode the RoI without loss and the background with some loss, 
and focus on providing high RC accuracy for the background area. However, none of these RC contributions deal 
efficiently with arbitrary RoI shapes, which hinders the accuracy of background definition and rate control. This 
manuscript presents a novel coding system based on prediction with a novel RC algorithm for RoI coding that 
allows arbitrary RoIs shapes. Compared to other methods of the state of the art, our proposed algorithm 
significantly improves upon their RC accuracy, while reducing the compressed data rate for the RoI by 30%. 
Furthermore, it offers higher quality in the reconstructed background areas, which has been linked to better 
clinical performance by expert pathologists. Finally, the proposed method also allows lossless compression of 
both the RoI and the background, producing data volumes 14% lower than coding techniques included in 
DICOM, such as HEVC and JPEG-LS.   

1. Introduction 

Digital pathology imaging, also known as whole-slide imaging (WSI), 
has been boosted by novel research in cancer diagnosis [1], software 
tools that determine automatically whether an image needs to be 
re-scanned [2], as well as recent computer-aided diagnosis methods [3]. 
The combination of WSI and these software tools makes essential the 
close collaboration between researchers, pathologists, and computer 
scientists. Telepathology technologies are common in collaborative tools 
because they facilitate transmission, remote visualization and analysis of 

pathology images. For this reason, the use of telepathology applications 
for remote visualization and analysis has been established in several 
laboratories for clinical, research and educational purposes [4–8]. 

The scanners used in digital pathology generate very high-resolution 
images, outputting large data volumes as a result. Due to their size, it is 
not practical or even feasible to transmit all image regions at full reso-
lution. Instead, current telepathology systems perform partial trans-
mission in a three-step process. First, the system transmits a low- 
resolution version of the WSI, adequate for fast transmission even over 
slow connections. Second, the specialist selects the regions of interest 
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(RoIs) on which they wish to focus [9], e.g., groups of cells or tissue 
subregions. Third, the system transmits the selected RoIs with perfect 
fidelity using lossless compression, and the background regions (BG) 
with lower fidelity using lossy compression. Users can then add and read 
annotations, as well as repeating steps two and three for other image 
areas. 

In collaborative telepathology systems, two main aspects must be 
considered. First, RoIs are more important than the BG for pathologists. 
Thus, it is paramount to provide an encoding mechanism that differ-
entiates between RoIs and BG. Second, when a RoI is compressed and 
transmitted over a network, the compressed data size must be small 
enough to meet the constraints imposed by the network capabilities and 
transmission time limits. This compressed data is hereafter referred to as 
the bitstream, and its maximum size under the aforementioned condi-
tions, target bitrate. Generating bitstreams larger than the given bit 
budget causes their truncation, which can largely penalize the quality of 
the images reconstructed by the receiver. In turn, transmitting bit-
streams smaller than the bit budget (or target bitrate) wastes resources 
that could be used to improve the image fidelity. Hence, employing 
mechanisms to accurately meet a target bitrate and optimally distrib-
uting the bit budget among RoIs and BG is of utmost importance for 
maximizing the reconstructed image quality. Such mechanisms are 
known as rate control (RC) algorithms, and are an essential part of 
modern image compression algorithms used in digital pathology. 

The Digital Image and Communication in Medicine (DICOM) in-
cludes some coding techniques in its standard [10], from these tech-
niques only JPEG2000 [11], H.264 [12] and HEVC [13,14] provide RC 
with RoI coding. Modern video codecs, such as H.264 and HEVC, use 
methods called block-based predictive transform coding to compress 
images and videos, which have been proven to be very effective for both 
lossless and lossy compression of medical images and videos [15–17]. 
Focusing only on block-based predictive coding techniques, several 
compression contributions that include RC techniques and differentiate 
between the RoI and the BG have been proposed in the literature [16, 
18–27]. 

Liu et al. [18], Zhou et al. [24], Sanchez [25] describe RC techniques 
for H.264 and HEVC, but do not support RoI coding. El Sayeh Khalil 
et al. [23] enables the definition of RoIs in the decoder side, and [19,20, 
26] use RC techniques to provide higher visual quality for the RoI than 
the BG. Although these contributions provide some control over the final 
bitrate, they do not provide support for encoding the RoI losslessly, 
which is a requirement in many clinical scenarios. 

A few techniques have been presented that allow lossless compres-
sion of the RoI and lossy coding of the BG for a given image. Chen et al. 
[16] offers this capability, but it does not provide any mechanisms to 
accurately meet the target bitrate. To the best of our knowledge, only 
Sanchez et al. proposed RC techniques that allow lossless RoI and lossy 
BG coding, while approximating a target bitrate [21,22]. However, their 
average bitrate errors are of nearly 5%, and their allowed RoI shapes are 
restricted to the block partitions used by HEVC. In consequence, blocks 
with small intersections with the RoI must also be encoded losslessly. 
Therefore, more bits than necessary are devoted to encoding the RoI, 
which is in detriment of coding efficiency and the overall background 
reconstruction quality. A comparison of relevant methods for the 
compression of digital pathology images is provided in Table 1. 

Based on the aforementioned limitations in the state of the art, here 
we present a coding system that includes a novel RC method for lossless 
RoI and lossy BG coding, with highly accurate target bitrate selection. To 
achieve these features, we propose a smart predictor that can discrimi-
nate between RoI and BG pixels, enabling also arbitrarily shaped RoIs, i. 
e., any pixel can arbitrarily and individually be marked as RoI or BG. In 
addition, a novel context modeling for a binary entropy encoder is also 
introduced, which generates smaller pieces of bitstreams, yielding 
higher bitrate accuracy and improving the coding performance. The 
proposed RC method is implemented as an extension of [28]. When 
evaluated on pathology images and different RoIs, our coding system 

improves upon the state of the art [21,22] in terms of RC accuracy and 
overall coding performance. When used for purely lossless compression, 
it outperforms HEVC and JPEG-LS, the most competitive options 
included in DICOM. In terms of encoding time, our system is faster than 
HEVC for purely lossless compression when both are executed on a 
single thread. 

The rest of the paper is structured as follows: Section 2 reviews key 
elements of prediction coding techniques. Section 3 presents our coding 
system, including the proposed RC mechanism. Section 4 provides 
experimental results. Finally, Section 5 concludes this work. 

2. Previous work 

Image compression techniques are generally categorized according 
to how the data is decorrelated. In image compression, decorrelation can 
be produced through transform or prediction, thus image compression 
techniques are generally categorized into transform- or prediction-based 
approaches. Both approaches have been employed in the best- 
performing compression algorithms in the state of the art. The DICOM 
standard supports JPEG2000 [29], JPEG-LS, AVC [12], and HEVC as the 
main alternatives for image data compression. It has been shown that 
HEVC —based on prediction— outperforms JPEG2000 —based on 
transform— in terms of lossless compression performance [30–32]. 
When applied to an individual image, lossless HEVC uses block-wise 
intra prediction based at pixel-level. In JPEG-LS, this prediction is also 
performed, but without the block division. 

Prediction at the pixel-level decorrelates data by exploiting the 
redundancy among neighboring pixels. For an image x with I columns, J 
rows, and K color channels (e.g., red, green and blue), pixel-level pre-
diction estimates the value of each sample xi,j,k using only previously 
coded neighbors, i.e., the predictor is strictly causal. Given prediction 
x̃i,j,k, the residual or prediction error is defined as: 

Λi,j,k = xi,j,k − x̃i,j,k. (1) 

Table 1 
Properties of different compression algorithms with capability for Rate Control 
(RC) or Region of Interest (RoI) coding in the state of the art.   

Year Prediction 
based 

RC 
for 
RoI 

RoI 
lossless 

Lossless 
RoI &BG 
lossy 

Accurate 
target 
bitrate 

Sanchez 
et al.  
[21] 

2015 

Sanchez 
et al.  
[22] 

2018 

Chen et al. 

[16] 

2013 

Liu et al.  
[18] 

2008 

Meddeb 
et al.  
[19] 

2014 

Xu et al.  
[20] 

2014 

Khalil 
et al.  
[23] 

2019 

Zhou et al. 

[24] 

2020 

Sanchez 
et al.  
[25] 

2021 

Liu et al.  
[26] 

2021 

Jiang 
et al.  
[27] 

2023 
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To control the compressed bitrates, the prediction error Λi,j,k can be 
processed by a quantizer Q, producing a reconstructed prediction error 
Λ̂i,j,k. The associated quantized error is hereafter denoted as ΛQ

i,j,k. Sub-
sequent predictions x̃i,j,k are calculated using reconstructed (lossy) 
samples x̂i,j,k, so that the decoder can replicate this calculation and 
reconstruct the image samples as: 

x̂i,j,k = Λ̂i,j,k + x̃i,j,k. (2) 

Errors in the reconstructed pixels are identical to the errors intro-
duced by the quantizer in the prediction errors at the encoder side. That 
is, xi,j,k − x̂i,j,k = Λi,j,k − Λ̂ i,j,k. The maximum error introduced in any pixel 
can be precisely controlled by the quantizer step size, thus enabling 
near-lossless compression. A reversible mapping is then applied to the 
quantized prediction residual ΛQ

i,j,k to obtain a non-negative integer λQ
i,j,k. 

Finally, these mapped residuals can be compressed using an entropy 
encoder such as Golomb [33], arithmetic coding [34], or Asymmetric 
Numeral Systems [35]. 

Another key element in any compression method is allocating the 
available bit budget during compression to accurately achieve a target 
bitrate. This is a well-known problem addressed by RC techniques. The 
main challenge for RC when used in prediction-based coding systems is 
the intricate mathematical relation between the rate and the quantiza-
tion applied to the prediction residuals. To solve this challenge, many RC 
solutions [36–41] distribute a bit budget for a collection of data ele-
ments to minimize the distortion D of the decoded image. For example, if 
two elements are constrained to be encoded with Rtarget bits, the optimal 
allocation problem is commonly formulated as: 

argmin
Q1 ,Q2

{D1(Q1)+D2(Q2)} (3)  

s.t. R1(Q1) + R2(Q2) ≤ Rtarget, (4)  

where De, Qe and Re represent the distortion, the quantization step size 
and the bitrate of the eth element, respectively. This formulation as-
sumes independent quantization. In other words, the distortion and rate 
of the first element depends on Q1 and not on Q2, and vice-versa. 

The problem of bit allocation given a target bitrate for a dependent 
quantization coding system is formulated in [38] as: 

argmin
Q1 ,Q2

{D1(Q1)+D2(Q1,Q2)} (5)  

s.t. R1(Q1) + R2(Q1,Q2) ≤ Rtarget. (6)  

Note that the distortion of the first element only depends on the quan-
tization step size employed for this element, while the distortion of the 
second element depends on the quantization steps of both the first and 
the second elements. 

A solution to (6) can be obtained through Lagrange multipliers by 
defining: 

J1(Q1) = D1(Q1) + λR1(Q1) (7)  

J2(Q1,Q2) = D2(Q1,Q2) + λR2(Q1,Q2) (8)  

and solving the following unconstrained minimization problem: 

argmin
Q1 ,Q2

{J1(Q1)+ J2(Q1,Q2)}, (9)  

by adjusting λ to satisfy (6). This can be extended to more than two 
dependent elements in a trivial way. 

Three rate control techniques have been designed for pixel-level 
predictive image coding systems and evaluated with the dependent 
predictor and entropy encoder of CCSDS 123.0-B-2 [39–41]. In [39] the 
input image is divided into blocks and different quantization steps are 
then applied to each block. The work in [40] selects a quantization step 

size for each color channel, instead of in a block-wise manner. Finally, 
[41] selects the quantization step size in a row-wise manner; i.e., it as-
signs the same quantization step size Qj to each row j, across all color 
channels. In [41], Qj is determined through a function that models an 
independent and identically distributed Laplacian source quantized by a 
uniform scalar quantizer. This function employs the median of medians 
since it is a good estimator of contiguous quantized residuals [42]. In 
[21,22], quantization steps are selected at the block level. It should be 
stressed that none of these contributions allow truly arbitrary RoIs at 
pixel level. 

3. Proposed rate control for lossless RoI and lossy BG coding 

The proposed coding system incorporates a new RC algorithm based 
on pixel-level prediction capable to prioritize truly arbitrary RoIs. Spe-
cifically, given a target bitrate and a RoI mask, the input image is first 
processed by the pixel-based predictor of CCSDS 123.0-B-2 [43]. Then, 
the RoI and the BG are entropy encoded with a novel context modeling 
that improves considerably the compression performance. The RoI is 
encoded losslessly and any remaining bits from the bit-budget are used 
to encode the BG in a lossy fashion. It is worth noting that this proposal is 
a one-pass method, each row j is only processed once. The proposed 
coding system extends the predictor and the entropy encoder of [28]. 
Fig. 1 displays the block diagram of the coding system, which comprises 
three modules: Near-Lossless Prediction, Background Rate-control, and 
Entropy Coding. In addition, this figure illustrates the definition of row j, 
as employed in this work. 

A pixel-based predictor is used, which yields ̃xi,j,k as an estimation of 
pixel xi,j,k employing neighboring pixels. The main idea behind CCSDS 
123.0-B-2 predictors is to assume spatial similarity between pixels to 
predict xi,j,k. If pixels are known to be most similar to those at the same 
column, only the nearest pixel above the current pixel is employed. 
Otherwise, four spatially adjacent causal neighbours are used. Fig. 2 
illustrates the spatial neighbours used to estimate xi,j,k. However, usu-
ally, this estimation is not accurate enough to predict xi,j,k. Therefore, the 
difference between the estimation and their corresponding original pixel 
is tracked and stored in a local difference vector. The local difference 
vector is further scaled with a weight vector through an inner product, 
which is then combined with a local sum to produce x̃i,j,k. In our coding 
system the weight vector is initialised by default as is specified in CCSDS 
123.0-B-2 standard. Further details of the prediction definition and 
weight vector initialization can be found in [43]. 

Our work proposes contributions for each of the three modules 
comprising the coding system. In the Near-Lossless Predictor module, a 
near-lossless predictor capable of differentiating between RoI and BG is 
introduced. In the Background Rate-control module, a novel mechanism 
that determines the quantization step sizes to be applied to each row is 
introduced. The proposed RC method uses the quantized predicted BG 
errors λQ

i,j,k to estimate the quantization step size for the next row. 
Quantization step sizes larger than 1 (lossy compression) are only 
applied to BG data, while the RoI is always losslessly encoded. Finally, in 
the Entropy Encoder module, a novel context model that generates small 
pieces of compressed data is introduced. This novel context model al-
lows attaining very accurate target rates and improves considerably the 
lossless compression performance for the RoI. In addition, when the 
target bitrate is sufficiently high to compress the RoI and the BG loss-
lessly, the coding performance for the whole image is also improved 
with respect to HEVC and JPEG-LS. It is worth noting that the proposed 
RC algorithm can be directly used with any other predictor, quantizer or 
entropy coder combination. 

3.1. Near-lossless prediction 

The simplest and most effective way to design a prediction-based 
lossy compression algorithm is to quantize the prediction error Λi,j,k 
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with a quantizer Q, resulting in a reconstructed prediction error Λ̂i,j,k 

(and, in consequence, λ̂i,j,k) [44]. Subsequent predictions x̃i,j,k are 
calculated using previous reconstructed (lossy) samples x̂i,j,k, which are 
obtained by reconstructing the data also at the encoder [45]. 

Our coding system includes a smart quantizer that discriminates 
between RoI, which must be encoded losslessly, and BG, which can be 
encoded with loss. Thus, we propose to estimate the quantization step 
size employed in each row j and then quantize only the BG data. The 
quantizer mechanism used by this method is the Uniform Scalar Dead-
zone Quantizer (USDQ) [11]. Note that this proposal compresses arbi-
trary RoIs without loss and the BG area with loss. Other techniques also 
encode the RoI in a lossless manner, but are restricted to define the RoI 
on a block-wise level, not on a pixel level [16,21,22]. Our proposed 
mechanism quantizes Λi,j,k, obtaining the quantized index ΛQ

i,j,k accord-
ing to: 

ΛQ
i,j,k =

⎧
⎪⎨

⎪⎩

sign
(
Λi,j,k

)
⌊
|Λi,j,k|

Qj,k

⌋

if xi,j,k ∈ BG

Λi,j,k otherwise
, (10)  

where Q is the quantization step, with Q ≥ 1. The operation to recon-
struct Λ̂i,j,k from its quantization index is: 

Λ̂i,j,k =

⎧
⎨

⎩

sign
(

ΛQ
i,j,k

)(
Qj,k + δ

)
ΛQ

i,j,k if xi,j,k ∈ BG

ΛQ
i,j,k otherwise

, (11)  

with δ = 0.5 for Qj,k > 1 and δ = 0 for Qj,k = 1. USDQ partitions the 
range of input values into several intervals, all of size Qj,k, except for the 
interval that contains zero, which is of size 2Qj,k. USDQ has been 
selected due to its straightforward implementation and excellent per-
formance at low bitrates [29]. 

3.2. Proposed background rate-control 

The proposed RC method is described in Algorithm 1. This method 
can handle arbitrarily-shaped RoIs with pixel-level accuracy and very 
high target bitrate accuracy. The algorithm exploits the monotonically 
increasing property of D(Q), i.e., Q1 ≤ Q2 implies D1 ≤ D2. On the other 
hand, the relation between Q and R is monotonically decreasing, i.e., 
Q1 ≤ Q2 implies R1 ≥ R2. Fig. 3 depicts the monotonic nature of a 
typical rate-distortion function. 

The proposed RC method (see Algorithm 1) estimates a step size Q to 
be applied to the BG residual data to achieve the target-bit rate. This is 
obtained by applying a single quantization step size to each row j, thus 
only one Q value needs be stored per row as auxiliary information for 
decoding purposes. To attain the target bitrate, it is necessary to char-
acterize the relation between BG residuals and step size. The proposed 
RC algorithm is based on four functional blocks: PREDICT(xi,j,k), QUANTIZE 

(Λi,j,k,QBG
j , MASK), ENCODE(λQ

j ), and RATE(BGk{},QBG
j+1). 

The PREDICT(xi,j,k) function is in charge of predicting the sample xi,j,k 

and returning the prediction error Λi,j,k. Then QUANTIZE(Λi,j,k,QBG
j , MASK) 

quantizes the associated prediction error with step size QBG
j and maps it 

to a positive value, returning λQ
i,j,k. Finally, when all the samples in a row 

are predicted and quantized, they are entropy coded using the ENCODE 

(λQ
j ) function, returning the compressed bitrate BGBitsj for row j in the 

BG. 
To construct the final compressed file guaranteeing both lossless 

reconstruction of the RoI and accurately attaining the target bitrate, the 
quantization step sizes of the BG must be selected carefully. The pro-
posed Algorithm 1 proceeds as follows:  

1. Once each sample is predicted and the consequent residual is 
calculated (line 6 and 7), the quantizer described in Eq. (10) is 
employed. BG residuals are also appended to a specific list (BG{}) of 
the encoder to allow accurate compressed bitrate selection in suc-
cessive rows of the image.  

2. BGBitsj is employed to compute the BG residual median of medians 
for estimating the rate and quantization step sizes of the coming rows 
(see lines 14, and 20–21).  

3. After the current row is encoded, the available rate for the remaining 
rows is computed (lines 26–27). This is crucial to attain high RC 
accuracy since not all the rows have the same number of BG samples 
due to the arbitrary RoI shape. Rtarget is updated to denote the 
remaining bits, whereas rBGSamples and rBGSamplesj denote, 
respectively, the remaining number of BG samples to be encoded and 
the number of BG samples in line j. Thus Rj+1

target is the BG target bitrate 

Fig. 1. Proposed RoI coding scheme with rate control for the BG area.  

Fig. 2. Pixels used to calculate the local sum to predict x̃i,j,k.  
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for the next row to be encoded according to the remaining BG 
samples. 

4. Assuming high similarity between adjacent rows, lines 28–29 esti-
mate the rate R for the coming row. This estimation employs the 
median of medians of the BG residual data used and QBG

j+1, set to QBG
j 

—due to the high similarity assumption—, in function RATE((BGk{},

QBG
j+1)). This estimation function is proposed by Valsesia in [41] using 

the median of all row data, whereas here only BG data is used.  
5. The rest of the algorithm (lines 32–49) adapts the quantization step 

size for the next row to be processed QBG
j+1, according to the mono-

tonically decreasing relation between Q and D.  
6. The MASK is coded as auxiliary information and considered in the 

final rate of the generated bitstream. This ancillary data is on average 
about 0.003 bits per pixel per component (bpppc). 

3.3. Proposed entropy coding 

Contextual entropy encoders employ surrounding information to 
estimate the probability of the symbol to be encoded with high preci-
sion; the more accurate the estimation, the better the coding perfor-
mance. Once the quantized residual is obtained and mapped to a non- 
negative integer λQ

i,j,k, our proposed entropy encoder encodes λQ
i,j,k with 

binary alphabets and a lightweight contextual arithmetic encoder [28]. 
This encoder employs a small context window, shown in Fig. 4(a), where 
the bit to be encoded is shaded in blue, and the single bit employed for 
the contextual modeling is the one above it, shaded in orange. Let bn

i,j,k 

denote the nth bit of the binary representation of λQ
i,j,k, with N −

1 ≥ n ≥ 0. N is chosen so as to provide a sufficient number of bits to 
represent any possible λQ

i,j,k value, with bN− 1
i,j,k being the most significant 

bit. The entropy encoder makes use of context model patterns to encode 
all symbols bn

i,j,k. 
Consider M the set of all possible patterns that can occur within the 

context window. Context m ∈ M is then a particular realization and is 
associated to a unique context index c ∈ C = {0,...,C − 1}. These context 
indices, hereinafter simply referred to as contexts, are determined by a 
modeling function F : M→C. For each bit b to be coded, a probability 
model is used, corresponding to its context c. In particular, our model 
estimates the conditional probability p(b|c) = p(b|F(m)). After encoding 
the current bit, the probability model is updated with the latest coded bit 
b at a context c. That is, p(b|c) is estimated on the fly. Specifically, our 
probability model estimates the probability p(b = 0|c) (and deduces 
probability p(b = 1|c) = 1 - p(b = 0|c)). 

To determine the context of bit bn
i,j,k, we employ a context window 

that contains causal bits of the current bitplane, previous bitplanes, and 
already encoded color channels. Neighbours used for the context 
modeling are depicted in Fig. 4. More specifically, Fig. 4(b) portraits the 
causal bit context employed for bitplane n; not-used bits in the context 
modeling are depicted in white. Fig. 4(c) and (e) depict bits of previous 
bitplanes considered for the context modeling, i.e., n − 1 and n − 2, 
when these bits have been already encoded. Fig. 4(d) and (f) show the 
bits employed from preceding color channels k − 1 and k − 2. For 
instance, when coding the blue channel, k − 1 and k − 2 refer to the 
green and red channels, respectively. Rather than the actual bit (from 
bitplane n) of each neighboring sample, the so-called “significance state” 

Inputs: Rtarget, L, QBG = 1,Qmax

1: R=∞, rBGSamples=
∑J−1

j=0 BGSamples j,BG{}=NULL,

B̃G{}=NULL
2: for j = 0, ..., J − 1 do
3: for k = 0, ...,K − 1 do
4: l← 1
5: for i = 0, ..., I − 1 do
6: x̃i, j,k = Predict(xi, j,k)
7: Λi, j,k ← x j,k − x̃i, j,k

8: λQ
i, j,k = Quantize(Λi, j,k,QBG

j ,MASK)
9: if xi, j,k ∈ BG then

10: BG.Add(λQ
i, j,k)

11: end if
12: if i mod L = L − 1 then
13: if xi, j,k ∈ BG then
14: B̃G.Add(median(BG{})
15: BG{} = empty list
16: end if
17: end if
18: end for
19: BGk{} ← median(B̃G{})
20: B̃G{} = empty list
21: end for
22: BGBits j ← ENCODE(λQ

j )
23: BGBpppc j = BGBits j/BGSamples
24: Rtarget ← Rtarget − BGBpppc j

25: rBGSamples← rBGSamples − BGSamples j

26: Rj+1
target ← Rtarget/rBGSamples

27: Update Rj+1
target using (14) from [10]

28: QBG
j+1 ← QBG

j

29: R← ∑K−1
k=0 RATE(BGk{},QBG

j+1)

30: if R ≥ Rj+1
target then

31: while R ≥ Rj+1
target AND QBG

j+1 < Qmax do
32: Rold ← R
33: QBG

j+1 ← QBG
j+1 + 2

34: R← ∑K−1
k=0 RATE(BGk{},QBG

j+1)
35: end while
36: if |R − Rj+1

target| > |Rold − Rj+1
target| then

37: QBG
j+1 ← QBG

j+1 − 2
38: end if
39: else
40: while R ≤ Rj+1

target AND QBG
j+1 > 1 do

41: Rold ← R
42: QBG

j+1 ← QBG
j+1 − 2

43: R← ∑K−1
k=0 RATE(BGk{},QBG

j+1)
44: end while
45: if |R − Rj+1

target| > |Rold − Rj+1
target| then

46: QBG
j+1 ← QBG

j+1 + 2
47: end if
48: end if
49: end for

Algorithm 1. Proposed RC method.  

Fig. 3. Monotonicity property of a Rate-Distortion function.  
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is employed to compute the context c. To this end, let sn
i,j,k denote the 

significance state of the sample at location i, j, k at bitplane n. A value of 
1 indicates that the sample contains a 1 at bitplane n or higher. 

Table 2 shows how c is derived from the significance states of the 
neighbors for a set of the causal bits represented in Fig. 4(a). This table 
shows the set of causal bits of Fig. 4(b) c = [0...2#t − 1], where #t de-
notes the number of different types of neighbours evaluated. In Fig. 4(b), 
five different types are considered: red, green, orange, purple and gray 
neighbours. This is trivially extensible to a larger number of evaluated 
bits. 

4. Experimental evaluation and discussion 

This section provides results for a comprehensive set of pathology 
images and RoI definitions. Some of these images contain a single RoI, 
while others contain multiple RoIs. Seventy images for a total of more 
than 2 GB of data have been employed for the experimental evaluation. 
All images are acquired at 24 bpp with 8 bits per pixel per component 
(bpppc), with three components corresponding to the R, G and B color 
channels. They depict various tissues of different sizes and stained with 
Hematoxylin and Eosin (H & E) stain. In this study, a diverse set of tis-
sues was employed for experimental analysis, encompassing: Skin 
fibroblast (SKNF), which synthesizes collagen and contributing to the 
structural integrity of the skin; Endometrial (END) to explore the cyclic 
changes during the menstrual cycle, mechanisms of implantation, or 
pathologies related to the uterus; Lung fibroblast (LNGF) employed to 
understanding lung diseases, fibrosis, or responses to environmental 
factors; Embryonic stem cells (ES), valuable in biology studies and 
which hold promise for regenerative medicine and cell replacement 
therapies; Kidney clear cell carcinoma (KIRC), for a better 

understanding of kidney cancer development, progression, and potential 
therapeutic targets; Pancreatic tissue (PANC), to cover areas such as 
diabetes, pancreatic cancer, or the function of pancreatic enzymes; Brain 
glioblastoma multiforme (GBM), which are essential for gaining insights 
into the biology of brain tumors; Colon adenocarcinoma (COAD), to 
understand colorectal cancer pathology and molecular mechanisms; 
and, Lymphatic (LYMP) tissues, to contribute to the understanding of 
immune responses, lymphatic diseases, or interactions with other organ 
systems. This selection represents a comprehensive range of cell types 
and organs, allowing for a multifaceted investigation of cellular 
behavior, disease processes, and potential therapeutic interventions. 
The inclusion of both normal and cancerous tissues underscores the 
study’s breadth, offering insights into diverse biological phenomena and 
pathology. 

The names, dimensions and number of RoIs of these images are 
tabulated in Tables 3 and 4 These images were obtained from the Center 
for Biomedical Informatics and Information Technology of the US Na-
tional Cancer Institute [46]. To facilitate reproducibility, our imple-
mentation and the original dataset employed in our experiments are 
publicly available in [47] and [48], respectively. Results for reference 
standard software HEVC and JPEG-LS have been carried out with free 
available implementations [49,50]. All the experimental results are 
obtained in a macOS Catalina v.10.15.7 on an Intel Core i7 at 3.4 Ghz 
with 32 RAM GB. 

The proposed coding system is evaluated using two different context 
models for the arithmetic encoder: either a single context bit bn

i,j− 1,k 

(when available), as summarized in Section 2, hereafter referred to as 
Proposed-A; and the context modeling described in Section 3.3, hereafter 
referred to as Proposed-B. The number of color channels K is 3. In [39] it 
was concluded that L = 17 was a good election to estimate the rate of the 
residuals produced by the predictor of CCSDS 123.0-B-2. Thus, L = 17 
was employed in [41,51] and also in our contribution. On the other 
hand, Qmax is the maximum quantization step applied to each line. As the 
bit-depth of the images in the evaluation set is of 8 bits per sample, it 
does not make sense to use quantization steps larger than 255. For the 
proposed RC method, the L and Qmax values are set to, respectively, 17 
and 255. 

To provide a meaningful comparison, Proposed-A and Proposed-B 
techniques are evaluated against the latest contributions [21,22]. Note 
that [21,22] contributions are implemented using the reference software 
HM16.9 of HEVC [49]. For [21,22], images are compressed using 
intra-prediction as a single RGB frame in 4:4:4 format, setting the largest 

Fig. 4. Illustration of context model used to encode bn
i,j,k. The colored bits are used as contextual data to estimate the probability. (a) Illustration of the context model 

selected in [28]. (b) context model bits for the current bitplane n and color channel k; (c) and (e) context model when n < N − 2 and n < N − 3, respectively; (d) and 
(f) context model when k > 0 and k > 1, respectively. 

Table 2 
Context assignments considering only bits for the current bitplane n and 
component k, i.e., using only neighbors according to Fig. 4(b). All bits in gray 
have the same value in the context formation.  

sn
i− 1,j,k sn

i− 1,j− 1,k sn
i,j− 1,k sn

i+1,j− 1,k sn
i− 2,j,k, …,…, sn

i+2,j− 2,k 
c 

0 0 0 0 0 0 
1 0 0 0 0 1 
0 1 0 0 0 2 
1 1 0 0 0 3 
⋮ ⋮ ⋮ ⋮ ⋮ ⋮ 
1 1 1 1 1 31  
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coding unit to 64× 64 samples. 
Results for four distinct approaches are then provided: [21,22], 

Proposed-A and Proposed-B. These results aim to assess: 1) the ability of 
encoding arbitrarily shaped RoIs to allow using more bits for the BG area 
without exceeding the target bitrate, 2) the accuracy of all the evaluated 
methods in terms of bitrate error (BRE), measuring how accurately the 
target bit rate is attained; 3) the average BRE for all tested images at a 
specific bitrate t, which is denoted as BREt and defined in Eq. (13); and 
4) the impact of the proposed context modeling on the target rate ac-
curacy and the RoI lossless coding performance. 

4.1. Visual evaluation 

To evaluate the visual quality of the recovered images, we show 
some test images reconstructed at different rates with Proposed-B and 
[22] in Fig. 5. The images are reconstructed at the smallest rate at which 
[22] losslessly recovers the RoIs. The Peak Signal-to-Noise Ratio (PSNR) 
of the BG is shown for each recovered image. This enables a visual 
evaluation of the impact of processing arbitrarily shaped RoIs and 
employing the remaining bits for enhancing the quality of the BG. From 

this visual comparison it can be appreciated that both approaches 
recover the RoIs without loss, but Proposed-B can also recover signifi-
cant parts of the BG area, enabling a sounder clinical assessment. 

4.2. Target bitrate accuracy evaluation 

The BRE is defined as BRE = |Rtarget − BGBpppc|, which measures 
how precisely the target bitrate is attained. The value of BGBpppc is 
computed as: 

BGBpppc =

∑J− 1
j=0 BGBitsj

BGSamples
, (12)  

where J denotes the number of rows of the image and BGSamples the 
number of BG samples. 

The target bitrates Rtarget used to compress the image BG are Rtarget =

{0.067, 0.134, 0.201, 0.268, 0.335, 0.402, 0.469, 0.536, 0.603, 0.67, 
0.737, 0.804, 0.871, 0.938, 1.005, 1.072, 1.139, 1.206, 1.273, 1.34, 
1.407, 1.474, 1.541, 1.608, 1.675, 1.742, 1.809, 1.876, 1.943, 2.000}, i. 
e., we evaluate 30 target rates per image. Rtarget is expressed in terms of 

Table 3 
Characteristics of SKNF, END, LNGF, and ES images, and absolute BRE values (in %) of all approaches. Best results are bold faced.     

[21] [22] Proposed-A Proposed-B 

ID Dimensions #RoIs avg min max avg min max avg min max avg min max 

SKNF1 3200× 2816 5 92.903 0.001 310.658 0.945 0.079 1.344 0.208 0.000 6.337 0.005 0.001 0.072 
SKNF2 4096x3328 3 74.128 0.000 281.883 0.726 0.276 0.919 0.586 0.000 17.654 0.001 0.000 0.014 
SKNF3 1600x2560 1 22.558 0.025 78.589 0.695 0.222 7.981 0.740 0.000 22.213 0.000 0.000 0.008 
SKNF4 1280x4160 2 7.508 0.000 92.677 0.166 0.010 0.932 0.426 0.000 12.899 0.006 0.000 0.055 
SKNF5 3328x3072 2 0.012 0.001 0.078 0.051 0.003 0.329 0.007 0.001 0.172 0.001 0.000 0.016 
SKNF6 4160x1280 3 0.758 0.000 16.673 0.151 0.075 0.342 0.855 0.000 25.746 0.001 0.001 0.042 
SKNF7 4096x3200 4 3.773 0.003 39.542 0.346 0.014 0.581 2.353 0.000 70.537 0.000 0.000 0.016 
SKNF8 1920x2880 1 52.571 0.001 493.100 0.368 0.000 4.735 2.519 0.000 70.740 0.004 0.000 0.024 
SKNF9 3392x2280 4 37.846 0.002 274.435 0.197 0.015 1.059 1.858 0.000 55.709 0.002 0.000 0.020 
SKNF10 2520x2880 1 69.223 0.001 230.169 0.483 0.001 4.009 1.970 0.000 58.997 0.010 0.000 0.098 

All SNF images 36.128 0.000 493.100 0.413 0.000 7.981 1.151 0.000 70.740 0.001 0.000 0.098 

END1 2880x3200 4 25.418 0.025 190.371 0.411 0.022 0.229 3.369 0.001 91.715 0.008 0.000 0.172 
END2 3200x2816 3 26.910 0.003 211.514 0.532 0.062 1.920 0.574 0.001 17.242 0.021 0.000 0.573 
END3 3072x2112 3 5.004 0.001 30.545 0.381 0.015 0.755 0.048 0.000 1.452 0.001 0.000 0.009 
END4 3072x1920 2 125.714 0.006 1050.340 0.731 0.286 2.202 0.671 0.000 20.209 0.001 0.000 0.045 
END5 4096x2368 1 149.344 0.002 1353.582 0.409 0.159 1.370 0.114 0.000 3.457 0.000 0.000 0.079 
END6 2280x2112 2 48.888 0.003 294.768 0.289 0.059 1.370 6.051 0.000 146.312 0.001 0.001 0.145 
END7 1280x4096 2 60.552 0.012 814.534 0.521 0.077 1.829 3.090 0.000 81.415 0.000 0.000 0.024 
END8 2112x2816 4 9.307 0.001 133.010 0.327 0.007 1.211 1.145 0.001 34.410 0.002 0.001 0.130 
END9 2816x3200 2 7.812 0.003 111.774 0.155 0.007 0.362 0.897 0.000 26.994 0.000 0.000 0.027 
END10 3200x2880 1 1.971 0.000 28.569 0.279 0.087 0.754 6.304 0.001 124.887 0.025 0.000 0.557 

All END images 46.092 0.000 1353.582 0.404 0.007 2.202 2.226 0.000 146.312 0.006 0.000 0.573 

LNGF1 3072x3840 2 4.453 0.001 13.384 0.112 0.042 0.378 1.746 0.000 52.490 0.001 0.002 0.022 
LNGF2 3840x1920 5 39.825 0.031 193.198 0.834 0.351 1.720 0.558 0.000 16.936 0.007 0.000 0.048 
LNGF3 3520x2880 1 27.781 0.000 151.635 0.291 0.020 0.645 1.218 0.001 36.715 0.007 0.001 0.315 
LNGF4 2816x4800 5 0.186 0.000 4.840 0.063 0.006 0.221 1.981 0.000 55.848 0.001 0.000 0.011 
LNGF5 2816x2560 1 0.155 0.000 4.476 0.018 0.003 0.077 0.629 0.001 18.713 0.004 0.001 0.039 
LNGF6 3392x2560 2 0.192 0.000 2.620 0.182 0.016 0.382 0.007 0.001 0.047 0.015 0.001 0.056 
LNGF7 2816x2560 1 0.240 0.000 2.684 0.099 0.001 0.251 4.328 0.001 99.454 0.008 0.000 0.036 
LNGF8 1600x3328 3 1.369 0.000 35.469 0.062 0.011 0.262 0.004 0.000 0.104 0.000 0.000 0.022 
LNGF9 3200x3520 3 29.990 0.005 180.836 0.157 0.029 0.614 0.238 0.001 7.116 0.011 0.000 0.201 
LNGF10 4096x1600 1 0.530 0.000 15.198 0.069 0.001 1.720 2.957 0.000 81.831 0.002 0.000 0.036 

All LNGF images 10.472 0.000 193.198 0.189 0.001 1.720 1.366 0.000 99.454 0.003 0.000 0.315 

ES1 3200x2880 2 45.602 0.002 211.894 0.555 0.115 1.153 4.150 0.000 111.816 0.005 0.000 0.070 
ES2 3328x4096 3 67.626 0.004 188.937 0.600 0.008 0.870 5.764 0.000 134.976 0.001 0.001 0.019 
ES3 3328x3328 3 29.127 0.001 520.424 0.823 0.190 2.387 14.069 0.000 267.493 0.002 0.000 0.052 
ES4 4480x3200 6 24.751 0.000 277.427 0.643 0.001 1.180 5.508 0.000 139.455 0.001 0.000 0.040 
ES5 3200x3200 1 31.364 0.001 109.611 0.501 0.079 1.601 8.045 0.000 154.633 0.001 0.001 0.052 
ES6 2560x2816 4 16.288 0.000 128.471 0.508 0.006 0.989 12.018 0.001 237.043 0.012 0.002 0.418 
ES7 3520x4096 5 1.208 0.000 16.403 0.070 0.004 0.292 2.359 0.001 70.285 0.040 0.033 0.757 
ES8 4480x4160 2 4.381 0.000 30.130 0.111 0.045 0.404 10.410 0.000 207.878 0.016 0.001 0.277 
ES9 4160x4160 5 2.007 0.000 22.876 0.104 0.005 0.355 3.235 0.000 88.601 0.015 0.001 0.249 
ES10 5120x4480 3 2.651 0.000 42.384 0.054 0.010 0.222 3.519 0.001 90.679 0.025 0.000 0.446 

All ES images 22.501 0.000 520.424 0.397 0.001 2.387 6.908 0.000 267.493 0.010 0.000 0.757  
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bpppc. 
Tables 3 and 4 show the average absolute BRE values for all target 

bitrates, along with the minimum and maximum BRE values achieved 
for each image by all evaluated approaches. These results are labeled as 
“avg”, “min”, and “max”, respectively. The BRE is provided in percent-
age with respect to the target bitrate, computed as 100⋅BRE /Rtarget. 
Reported results are grouped by tissue type. The last row of Table 4 
displays results for all the tested images. 

From these results, it can be seen that Proposed-B yields better per-
formance in terms of BRE than Proposed-A and [22] on average for all 
images. It is worth noting that the maximum BRE values for [22], 
Proposed-A, and -B are, respectively, 39.125%, 267.493% and 5.745%, 
clearly showing the better performance of our Proposed-B approach. In 
turn, [22] yields better results than Proposed-A in terms of average BRE. 
Proposed-B outperforms the latest contribution [22] for all tissue types 
and aggregation functions (minimum, maximum and average), except 
for only 4 images and always for the case of the minimum BRE value. 

Our RC algorithm produces consistent performance for all tissue 
types. More concretely, the average BRE attained by our algorithm for 
all evaluated images is 0.008%, i.e., 56.87 times smaller compared to the 
0.455% of [22]. Furthermore, it produces minimum and maximum BRE 
values closer to zero than [22]. 

Fig. 6 plots BRE results for [21,22] and Proposed-B for each target 
bpppc, for SKNF6, END1, LNGF1, and PANC5 images. The horizontal 
and vertical axes denote the target bpppc and the BRE expressed as a 

percentage of the target bpppc, respectively. Note that our proposal 
attains BRE values closer to 0 (higher accuracy) than [21,22] for all 
bitrates (except at the extremely low rate 0.067 bpppc for LNGF1 and 
PANC5 images). Moreover, Proposed-B is very stable in terms of bitrate 
accuracy for all the assessed rates. 

Finally, Fig. 7 plots the average BRE for all tested images at a specific 
bitrate t ∈ Rtarget, which is referred to as BREt , and is computed as: 

BREt =
1
M

(
∑M− 1

m=0

⃒
⃒Rtargett − BGBpppct

⃒
⃒

)

, (13)  

where M denotes the number of tested images. 
BREt is plotted for Proposed-B and for [22]. From this plot, it can be 

seen that Proposed-B attains the lowest BREt values for all target 
bitrates. For both methods, the largest BREt values are provided at very 
low bitrates. This is due to the small degree of freedom when distrib-
uting the available budget across the whole image. In turn, the lowest 
values of BREt are obtained in the middle range of Rtarget, i.e., 
0.800 ≤ Rtargett ≤ 1.600. Our proposal achieves better results than [22], 
always producing BREt < 0.2%, except for the target bitrate 0.133 
bpppc, for which BREt = 0.39%. 

4.3. Lossless compression performance 

This experiment is aimed to evaluate lossless compression 

Table 4 
Characteristics of KIRC, PANC, GBM, COAD, and LYMP images, and absolute BRE values (in %) of all approaches. Best results are bold faced.     

[21] [22] Proposed-A Proposed-B 

ID Dimensions #RoIs avg min max avg min max avg min max avg min max 

KIRC1 4480x3200 3 42.256 0.001 390.622 0.241 0.056 1.299 3.343 0.000 88.872 0.006 0.000 0.254 
KIRC2 4160x4480 2 5.312 0.003 88.297 0.198 0.012 0.403 4.684 0.002 115.504 0.006 0.004 0.313 
KIRC3 1600x3328 3 89.602 0.088 568.023 6.613 1.443 39.125 4.344 0.103 45.913 0.370 0.000 5.104 
KIRC4 3520x2880 1 32.788 0.005 291.756 0.821 0.123 3.081 3.183 0.001 85.127 0.006 0.000 0.034 
KIRC5 1600x1920 3 90.502 0.019 257.921 0.341 0.012 1.712 0.399 0.001 12.000 0.013 0.001 0.352 
KIRC6 2816x1920 2 9.651 0.002 108.634 0.680 0.217 2.668 1.421 0.000 42.548 0.014 0.000 0.382 
KIRC7 3072x2880 1 11.817 0.000 96.679 0.722 0.060 2.527 6.505 0.000 132.304 0.025 0.001 2.318 
KIRC8 2560x2816 4 0.084 0.000 15.097 0.238 0.028 1.008 0.345 0.001 10.209 0.028 0.003 0.621 
KIRC9 2816x4096 3 5.678 0.008 67.909 0.615 0.021 1.108 0.818 0.004 24.001 0.035 0.001 0.328 
KIRC10 1280x3200 1 7.629 0.008 194.585 0.570 0.244 0.987 1.675 0.000 49.784 0.008 0.000 0.056 

All KIRC images 29.532 0.000 568.023 1.104 0.012 39.125 2.672 0.000 132.304 0.031 0.000 5.104 

PANC1 4800x3200 1 2.545 0.002 18.398 0.202 0.043 0.671 2.773 0.001 77.188 0.012 0.000 0.497 
PANC2 1600x2560 2 0.985 0.061 17.828 1.336 0.044 4.217 4.791 0.001 114.007 0.002 0.001 0.255 
PANC3 3328x3072 1 0.572 0.001 9.334 0.225 0.023 0.565 4.671 0.001 106.539 0.018 0.000 0.281 
PANC4 2816x3200 3 1.269 0.001 15.001 0.086 0.001 0.479 1.660 0.000 49.852 0.010 0.000 0.363 
PANC5 1920x2880 2 3.494 0.002 10.669 0.223 0.005 0.962 1.382 0.000 40.857 0.023 0.001 0.315 
PANC6 2240x4096 4 11.408 0.000 64.197 0.221 0.036 0.968 1.021 0.001 31.025 0.011 0.245 0.032 
PANC7 3328x3072 1 102.393 0.009 889.886 0.126 0.000 0.692 2.105 0.001 62.866 0.012 0.000 0.118 
PANC8 3520x2560 3 0.535 0.000 6.980 0.056 0.001 0.439 1.927 0.000 58.021 0.001 0.001 0.080 
PANC9 2112x2816 1 1.114 0.001 11.215 0.077 0.000 0.396 1.280 0.000 37.696 0.045 0.004 0.229 
PANC10 3072x2816 1 0.448 0.003 9.228 0.037 0.000 0.306 0.018 0.004 1.015 0.003 0.002 0.199 

All PANC images 12.476 0.000 889.886 0.259 0.000 4.217 2.163 0.000 114.007 0.011 0.000 0.497 

GBM1 4480x3840 3 6.675 0.016 42.022 0.264 0.142 1.456 2.041 0.000 57.264 0.000 0.000 0.046 
GBM2 3392x3072 1 19.984 0.000 137.293 0.015 0.000 0.074 4.475 0.000 96.940 0.014 0.000 0.275 
GBM3 3520x2880 2 110.748 1.963 427.996 0.724 0.383 2.054 2.742 0.000 71.825 0.003 0.000 0.016 
GBM4 2880x2816 4 0.390 0.000 5.800 0.129 0.010 0.647 1.722 0.001 51.773 0.005 0.000 0.029 

All GBM images 34.449 0.000 427.996 0.283 0.000 2.054 2.745 0.000 96.940 0.004 0.000 0.275 

COAD1 4096x3840 2 41.423 0.000 177.730 0.154 0.041 0.687 1.619 0.001 48.848 0.004 0.000 0.049 
COAD2 2816x4480 3 1.936 0.001 9.374 1.611 0.089 4.712 5.920 0.128 86.699 0.520 0.000 5.745 
COAD3 3840x3200 2 2.572 0.000 15.572 0.093 0.007 0.840 3.146 0.000 79.525 0.005 0.000 0.027 

All COAD images 15.310 0.000 177.730 0.619 0.007 4.712 3.562 0.000 86.699 0.173 0.000 19.783 

LYMP1 1280x1280 1 9.374 0.004 87.621 0.673 0.281 5.630 9.246 0.001 203.276 0.007 0.000 0.046 
LYMP2 1920x3840 2 0.128 0.001 1.322 0.166 0.009 0.571 4.376 0.000 112.342 0.015 0.000 0.054 
LYMP3 4480x4480 3 19.990 0.000 162.425 0.361 0.020 2.293 4.080 0.001 99.354 0.014 0.000 1.073 

All LYMP images 9.831 0.000 162.425 0.400 0.009 5.630 5.901 0.000 203.276 0.002 0.000 1.073 

All images in Table 3 and 4 25.503 0.000 1353.582 0.455 0.000 39.125 2.917 0.000 267.493 0.008 0.000 5.745  
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performance for the RoI and for the entire image. Columns 2–5 of 
Table 5 shows the lossless compression performance of HEVC, JPEG-LS, 
Proposed-A and Proposed-B for the entire images (RoI + BG). Columns 7 
and 8 indicate the amount of samples belonging to the RoI used by 
Sanchez et al. [21], Sanchez and Hernández-Cabronero [22] and our 
proposals. Note that the number of RoI samples used by Sanchez et al. 
[21], Sanchez and Hernández-Cabronero [22] is larger because RoIs are 
defined on a block level, as opposed to our pixel-level approach. Finally, 
column with symbol ★ provides the lossless coding performance for only 

the RoI area when using [21,22]. Columns with symbol ✤ and ✦ provide 
the lossless coding performance for RoI areas for the Proposed-A and 
Proposed-B methods, as well as the percentage difference with respect to 
column ★. For Proposed-A and Proposed-B, the percentage gain 
compared to [21,22] is also reported. It is worth noting that, considering 
that the size of the dataset is about 2GB, and that the RoI compression 
performance is, on average, 0.44 for [21,22] and 0.31 for our proposal, 
the lossless storage or transmission of all the RoIs would need 112MB 
for [21,22] and 79MB for our proposal. 

Fig. 5. Visual comparison of recovered images with Proposed-B and [22] for different images. (a) and (f) SKIN10 at 0.5 bpppc, (b) and (g) END7 at 0.5 bpppc, (c) and 
(h) COAD2 at 0.5 bpppc, (d) and (e) LNGF7 at 0.5 bpppc, (i) and (n) LYMP1 at 1 bpppc, (j) and (o) END2 at 0.3 bpppc, (k) and (p) PANC2 at 0.75 bpppc, and (l) and 
(m) LNGF2 at 0.3 bpppc. All RoIs, green delimited, are losslessly recovered for both evaluated methods. 
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The lossless compression results indicate that, on average and for all 
tissues, Proposed-A and Proposed-B outperform HEVC. This also occurs 
for JPEG-LS, with the exception of SKNF3. Compared to HEVC and 
JPEG-LS, Proposed-B provides an improvement in compression perfor-
mance, on average for all tissues, of 13.61% and 15.06%, respectively. 
Proposed-A and Proposed-B outperform [21,22] for the case of lossless 
compression of the RoI only, furthermore Proposed-B provides much 
better performance than Proposed-A. On average, improvements close 
to 16% and 30% compared to [21,22] are observed for Proposed-A and 
Proposed-B, respectively. 

4.4. Execution time evaluation 

The last results are aimed at assessing the coding time of the proposal 
when performing lossless compression. Table 6 provides the lossless 
compression times for Proposed-A, Proposed-B, HEVC, and JPEG-LS. 
Execution time is measured as the total user and system time reported 
by the operating system. All experiments have been executed on a single 
thread. The HEVC and JPEG-LS implementations used are freely avail-
able at [49,50]. It is worth noting that [21] and [22] use the HEVC 
implementation evaluated here as their baseline. The fastest imple-
mentation of all tested compressors is JPEG-LS, however it provides the 
poorest lossless compression performance. The slowest compressor is 
HEVC, which is almost 44 and 17 times slower than Proposed-A and 
Proposed-B, respectively. It can be observed that Proposed-B is, 
approximately, 2.7 times slower than Proposed-A. 

The computational complexity of the proposed approach can be 
determined by enumerating the operations per sample executed during 
the encoding procedure by the different functions. Let n = J⋅K⋅I repre-

sent the total number of samples to be compressed. Then, considering 
that the inner loop entails invocations of the PREDICT and QUANTIZE 

functions, denoted, respectively, as f(n) and g(n) and which are linear 
with respect of n, and that the list operations exhibit a complexity of 
O(n) in the worst-case scenario, the overall complexity can be succinctly 
expressed as O(f(n)+ g(n)) = O(n). 

4.5. Discussion 

According to the visual comparison, Proposed-B can also recover 
significant parts of the BG area because our coding system only encodes 
losslessly those pixels that are marked as RoI. Hence, more bits can be 
assigned to the background area while meeting the target bitrate. Ac-
cording to the physicians who coauthor this paper, the BG area recov-
ered at low bitrates provides biological contextual information, thus 
enabling a sounder clinical diagnosis than all previously proposed 
methods at same bitrates. 

In terms of target bitrate accuracy, Proposed-B yields better results 
than Proposed-A and [22] because Proposed-B employs a sophisticated 
probability estimator with more contextual information —including 
current and previous bitplanes and processed color channels—. This is 
because the adaptive context model generates smaller bitstream por-
tions per processed row, which allows meeting the target bitrate more 
accurately than Proposed-A and [21,22]. It is important to note that the 
difference in max values are very large because at very-low rates the 
context model cannot generate bitstreams small enough to attain the 
target bitrate. 

Regarding the lossless compression performance of the whole Image 
and the RoI, Proposed-B outperforms HEVC and JPEG-LS when the 
whole image or RoI are losslessly encoded. These improvements are due 
to the ability of our coding system to employ the predictor of CCSDS 
123.0-B-2 followed by a binary entropy encoder that relies on a so-
phisticated new context modeling defined in Section 3.3; this modeling 
allows accurate probabilities estimation. It is worth noting that the 
lossless compression bitrate is 4.70 and 4.06 bpppc on average for HEVC 
(the base coding technique of [21,22]) and our proposal, respectively. 
Therefore, the 2 GB test corpus can be losslessly compressed using 1.17 
GB and 1.01 GB, respectively. 

Based on the obtained execution times, Proposed-B is 2.7 times 
slower than Proposed-A. This can be explained by the larger amount of 
computations executed during the context modeling procedure. While 
Proposed-A only checks one neighbor of the current bit, Proposed-B 

Fig. 6. Average BRE values (in %) of the evaluated approaches for 30 bitrates (bpppc). (a) SKNF6, (b) END1, (c) LNGF1, and (d) PANC5.  

Fig. 7. BREt (in %) averaged for all the images for the Proposed-B and [22].  
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evaluates 25 neighbors (see Fig. 4). Overall, Proposed-B provides a very 
good trade-off between coding performance and coding time. 

5. Conclusions 

This paper introduces a coding system based on prediction that in-
cludes a novel Rate Control (RC) algorithm for Region of Interest (RoI) 
coding in pathology imaging and employs a novel smart context 
modeling for entropy encoding. The proposed RC method selects and 
carefully controls the quantization step sizes applied to the BG to 
accurately achieve a target bitrate. Residual data produced by the pre-
dictor are entropy coded using a lightweight arithmetic encoder with a 
new smart context modeling. The new context model allows to effi-
ciently construct small sets of bitstreams. The proposed RC approach is 
compared to other RC algorithms designed to encode RoIs without any 
loss and the BG with losses. Results over a large set of pathology images 
with multiple RoIs suggest that the proposed coding system attains the 
target bitrate for the BG much more precisely than other state-of-the-art 
methods. The bitrate error reduction is in the order of 56 times smaller 
on average. Furthermore, the proposed system is also able to produce 
smaller compressed bit streams when compressing the RoI in a lossless 
regime, allowing to transmit more contextual background data. In 
addition, our proposed coding system outperforms the best-performing 

lossless compression methods included in DICOM, HEVC and JPEG-LS 
standards, when the whole image (RoI + BG) is compressed in a loss-
less manner, achieving average bitrate reductions of 15.7% and 17.7%, 
respectively. Our proposal recovers more BG information, allowing the 
pathologists to have more contextual information for the clinical 
diagnosis. 
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Sagristà: Formal analysis, Funding acquisition, Methodology, Writing – 
original draft, Writing – review & editing. Pouya Jamshidi: Formal 
analysis, Validation. J. Castellani: Formal analysis, Validation. 

Declaration of competing interest 

The authors declare that they have no known competing financial 
interests or personal relationships that could have appeared to influence 

Table 5 
Lossless and RoI lossless compression performance (in bpppc) results for SKNF, END, LNGF, KIRC, PANC, GBM, COAD and LYMP images.   

Whole Image Lossless Compression RoI Lossless Compression         

[21,22] Proposed ★ ✤ ✦ 

ID Entropy HEVC JPEG-LS Proposed-A Proposed-B #RoIs #RoI samples #RoI samples [21,22] Proposed-A Proposed-B        
x1000 x1000      

SKNF1 7.57 5.63 5.22 5.22 5.09 5 303.10 200.64 0.20 0.19 4.35 % 0.13 34.55 % 
SKNF2 7.17 5.02 4.76 4.71 4.49 3 573.44 418.76 0.25 0.26 -2.81 % 0.19 24.87 % 
SKNF3 7.11 5.20 4.53 4.80 4.62 1 126.98 88.06 0.18 0.15 17.13 % 0.12 33.71 % 

Avg SKNF 6.17 5.53 4.84 5.08 4.73 - 334.51 235.82 0.21 0.20 6.22 % 0.15 31.04 % 

END1 7.27 4.52 4.64 4.18 4.02 4 1187.84 921.87 0.57 0.47 18.26 % 0.40 34.55 % 
END2 7.16 4.34 4.78 4.03 3.84 3 540.67 379.54 0.30 0.25 16.85 % 0.20 24.87 % 
END3 7.31 5.18 4.96 4.88 4.71 3 307.20 213.28 0.27 0.19 30.51 % 0.14 33.71 % 

Avg END 7.24 4.68 4.79 4.36 4.19 - 678.57 504.90 0.38 0.30 21.87 % 0.25 31.04 % 

LNGF1 7.61 5.15 4.82 4.55 4.44 2 765.95 622.72 0.35 0.34 18.70 % 0.27 30.43 % 
LNGF2 7.44 5.01 4.84 4.59 4.41 5 372.74 238.40 0.27 0.21 36.04 % 0.16 33.48 % 
LNGF3 6.92 4.87 4.34 4.41 4.26 1 606.21 435.46 0.33 0.30 28.17 % 0.23 48.80 % 

Avg LNGF 7.32 5.01 4.66 4.52 4.37 - 581.63 432.19 0.31 0.28 27.64 % 0.22 37.57 % 

KIRC1 7.63 4.78 4.50 4.39 4.08 3 1597.44 1007.20 0.48 0.44 8.89 % 0.35 27.53 % 
KIRC2 7.77 4.47 5.18 3.94 3.62 2 2326.53 2040.94 0.59 0.54 8.03 % 0.46 21.65 % 
KIRC3 7.06 3.81 4.26 3.46 3.16 3 851.97 129.62 0.22 0.13 40.59 % 0.11 49.73 % 

Avg KIRC 7.49 4.35 4.65 3.93 3.62 - 1591.98 1059.25 0.43 0.37 19.17 % 0.31 32.97 % 

PANC1 7.78 4.65 5.00 4.10 3.92 1 1179.65 1034.15 0.39 0.39 0.00 % 0.32 17.95 % 
PANC2 7.55 5.01 4.73 4.36 4.24 2 602.11 436.65 0.76 0.56 26.56 % 0.50 34.43 % 
PANC3 7.11 3.36 4.14 3.22 3.07 1 1687.55 1490.30 0.70 0.53 24.38 % 0.51 27.23 % 

Avg PANC 7.48 4.34 4.62 3.89 3.74 - 1156.44 987.03 0.62 0.49 16.98 % 0.44 26.54 % 

GBM1 7.64 4.49 4.90 4.05 3.81 3 1306.62 1039.69 0.36 0.31 12.92 % 0.26 26.97 % 
GBM2 7.19 4.46 4.45 3.96 3.82 1 921.60 780.43 0.47 0.37 22.08 % 0.32 32.61 % 
GBM3 7.13 4.85 4.92 4.53 4.22 2 782.34 636.89 0.40 0.39 1.71 % 0.31 21.87 % 

Avg GBM 7.32 4.60 4.75 4.18 3.95 - 1003.52 819.00 0.41 0.36 12.24 % 0.30 27.15 % 

COAD1 7.65 5.01 5.03 4.38 4.24 2 1019.90 850.43 0.33 0.33 0.63 % 0.27 18.70 % 
COAD2 7.18 4.35 5.10 4.06 3.74 3 1150.98 927.93 0.48 0.47 1.92 % 0.38 20.70 % 
COAD3 7.61 4.90 5.21 4.49 4.30 2 925.70 736.89 0.39 0.37 5.43 % 0.30 23.32 % 

Avg COAD 7.48 4.75 5.11 4.31 4.09 - 1032.19 838.42 0.40 0.39 2.66 % 0.32 20.91 % 

LYMP1 7.74 4.70 4.75 4.12 3.94 1 299.01 205.48 0.97 0.76 21.99 % 0.62 36.36 % 
LYMP2 7.55 4.39 4.48 3.70 3.45 2 1052.67 850.80 0.68 0.52 23.44 % 0.44 35.22 % 
LYMP3 7.23 4.00 4.96 3.64 3.36 3 2125.82 1827.04 0.55 0.49 10.65 % 0.41 25.24 % 

Avg LYMP 7.51 4.36 4.73 3.82 3.58 - 1159.17 961.11 0.73 0.59 18.70 % 0.49 32.27 % 

Avg 7.25 4.70 4.78 4.26 4.06 - 942.25 729.71 0.44 0.37 15.68% 0.31 29.94%  
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Table 6 
Lossless coding times for HEVC, JPEG-LS, Proposed-A and Proposed-B for SKNF, 
END, LNGF, KIRC, PANC, GBM, COAD and LYMP images.   

Coding time (in seconds) 

ID HEVC JPEG-LS Proposed-A Proposed-B 

SKNF1 2402.5 4.8 52.0 149.8 
SKNF2 3628.2 7.0 77.3 218.4 
SKNF3 1078.3 2.2 24.2 73.2 

Average SKNF 2369.6 4.7 51.2 147.1 

END1 2363.1 4.6 52.9 142.4 
END2 2319.9 4.6 51.2 136.5 
END3 2219.0 4.6 49.8 137.1 

Average END 2300.6 4.6 51.3 138.6 

LNGF1 3250.3 6.0 67.4 181.4 
LNGF2 2028.0 3.8 43.4 118.1 
LNGF3 2748.7 5.0 57.7 158.5 

Average LNGF 2675.7 4.9 56.2 152.6 

KIRC1 3953.0 7.2 80.0 218.0 
KIRC2 5131.0 9.9 101.7 268.5 
KIRC3 1406.9 2.5 30.3 82.6 

Average KIRC 3497.0 6.5 70.7 189.7 

PANC1 4227.2 7.9 87.5 223.3 
PANC2 1103.1 2.1 24.0 70.5 
PANC3 2664.1 4.9 57.8 154.3 

Average PANC 2664.8 4.9 56.4 149.4 

GBM1 4600.2 9.2 98.4 249.3 
GBM2 2750.2 5.1 59.9 157.4 
GBM3 2666.5 5.2 62.2 152.5 

Average GBM 3339.0 6.5 73.5 186.4 

COAD1 4269.1 8.0 89.2 243.6 
COAD2 3177.5 6.6 71.2 185.6 
COAD3 3257.4 6.5 68.3 189.1 

Average COAD 3568.0 7.0 76.2 206.1 

LYMP1 450.2 0.9 11.9 33.6 
LYMP2 1976.2 3.7 42.4 110.2 
LYMP3 5227.8 10.3 112.5 281.6 

Average LYMP 2551.4 5.0 55.6 141.8 
Average 2870.8 5.5 61.4 164.0  
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