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Abstract: High mental workload reduces human performance and the ability to correctly carry out
complex tasks. In particular, aircraft pilots enduring high mental workloads are at high risk of failure,
even with catastrophic outcomes. Despite progress, there is still a lack of knowledge about the
interrelationship between mental workload and brain functionality, and there is still limited data on
flight-deck scenarios. Although recent emerging deep-learning (DL) methods using physiological
data have presented new ways to find new physiological markers to detect and assess cognitive
states, they demand large amounts of properly annotated datasets to achieve good performance.
We present a new dataset of electroencephalogram (EEG) recordings specifically collected for the
recognition of different levels of mental workload. The data were recorded from three experiments,
where participants were induced to different levels of workload through tasks of increasing cognition
demand. The first involved playing the N-back test, which combines memory recall with arithmetical
skills. The second was playing Heat-the-Chair, a serious game specifically designed to emphasize and
monitor subjects under controlled concurrent tasks. The third was flying in an Airbus320 simulator
and solving several critical situations. The design of the dataset has been validated on three different
levels: (1) correlation of the theoretical difficulty of each scenario to the self-perceived difficulty and
performance of subjects; (2) significant difference in EEG temporal patterns across the theoretical
difficulties and (3) usefulness for the training and evaluation of AI models.

Keywords: mental workload; serious games; flight simulation; EEG physiological data; deep learning;
transfer learning

1. Introduction

Abnormal cognitive states reduce human performance and diminish their ability
to solve tasks. There is a wide variety of anomalous mental states that highlight mental
workload, fatigue, distraction, and stress, as they decrease task performance, delay response
capacity time, can block physical actions, and can lead to health and psychological disorders.
Mental workload (MW or WL) has become of special interest in several areas because it
affects overall human productivity and efficiency.

MW refers to the amount of mental resources required to perform a cognitive task [1].
Due to the inherent differences between subjects, MW strongly depends on each individ-
ual’s ability, psychological motivation, and the surrounding environment [2,3]. In general,
the more difficult a task is, the greater the mental workload and its impact on correlated
mental states [4]. For example, when a high MW is in place for a long time, fatigue ap-
pears, and stress arises [5]. On the contrary, when the MW is low for an extended period
of time, the mind may become distracted and bored, which can lead to drowsiness [4].
Both cases can be harmful, especially in some activities that require a mental effort to
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succeed in a task [6], such as flying a plane [7] or driving a car [8], which can lead to
catastrophic accidents.

The multifaceted nature of MW prevents direct evaluation, but it can be feasibly
inferred from other quantifiable variables. On the one hand, a common method to evaluate
MW is based on the measurement of the performance achieved during task loading, usually
using questionnaires to capture the self-perceived workload of each participant. The
NASA Task Load Index (NASA-TLX) [9] is among the most used questionnaires that
capture the self-subject perception of a performance, complexity, time demand, and effort
of a certain task. On the other hand, MW can also be evaluated using the physiological
responses of the subject during the task [1]. Physiological data provides a more reliable
measurement than the psychologically dependent self-subject reports. Among the great
variety of physiological sensors, several studies have been carried out using a wearable
electroencephalogram (EEG) due to their low cost and easy use [10,11].

Usually, MW studies focus on assessing and detecting MW in specific human commu-
nities, such as pilots during flights [1], drivers on the road [12], and other activities [13].
N-back tests and other serious specifically designed games have been proven to be useful in
investigating MW since the use of working memory that they demand can provoke work-
load [14,15]. Although many datasets have been published using the N-back test [16,17],
they are usually too short and mostly restricted to two highly differentiable mental tasks.
Other researchers have collected specific datasets to study MW in specific areas, mainly
in aeronautical and automotive scenarios, due to catastrophic results in aviation and car
accidents. For example, in aeronautics, datasets are collected from computer-based flight
simulators [18], immersive cockpit simulators [19], and real flights [20]. However, these
datasets are generally private and have restricted access. Analogously, the datasets collected
in the automotive industry are also too limited [21].

In this work, we present a publicly available dataset (https://doi.org/10.5565/ddd.
uab.cat/259591 (accessed on 26 December 2023)) to recognize different levels of MW. It
has different levels of workload, including a baseline (BL) or normal cognitive state. Part
of this dataset has previously been used in our related work [22], and we claim that it
can be used for research purposes to test new methods for analyzing and evaluating MW.
Furthermore, this dataset has been specifically designed to enable the validation of models
able to transfer knowledge to flight scenarios, which are hard and expensive to collect.

The current repository contains physiological EEG recordings from subjects facing
tasks of different complexity in three different scenarios. In the first scenario, data are
collected from subjects performing three variants of the N-back test to induce low, medium,
and high MW. In the second scenario, data are collected from the Heat-the-Chair game, a
specifically designed serious game that combines simple and simultaneous task modes,
emphasizing attention and multitasking abilities. In the third scenario, data are col-
lected in an Airbus A-320 flight simulator cockpit, in which the pilot addresses several
real flight situations. The total amount of data collected is 48 sessions from 16 partici-
pants in the N-back test for a total of 34 h of recordings, 34 sessions from 17 volunteers
in the Heat-the-Chair game for a total of 7 h of recordings, and 5 flight sessions with
2 pilots for a total of 95 min. In addition, the ground truth of each task, the theoretical MW
complexity, the self-perceived MW complexity, the scores achieved in the games, and the
NASA-TLX answers are provided.

The dataset has been validated in three aspects. First, the validity of the theoretical MW
complexity has been assessed by correlating the performance obtained by the subjects with
their self-perceived difficulty and game scores. Second, the quality of the WL assessment of
EEG recordings has been validated by correlating their temporal patterns to the theoretical
MW. Finally, the usefulness of the whole dataset for the implementation of AI systems has
been assessed using the presented dataset for training and validating a DL method for the
recognition of MW.

https://doi.org/10.5565/ddd.uab.cat/259591
https://doi.org/10.5565/ddd.uab.cat/259591
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2. Data Acquisition Description

In this section, the main characteristics of the EEG device, participants, and experi-
mental scenarios (design, implementation, and experiment structure) used to collect the
database are described.

2.1. EEG Device Characteristics

The dataset described in this paper contains EEG signals recorded for a set of sub-
jects and a set of experiments. Signals have been recorded with an Emotiv Epoc X EEG.
As shown in Figure 1, it consists of a portable, wireless, high-resolution, 14-electrode
EEG system, according to the International 10–20 System, that communicates via Blue-
tooth in real time. The electrodes are placed over the head scalp and record the electrical
activity of the brain. This device provides the raw signals in µV at a sampling rate of
128 Hz. Furthermore, the sensor provides the power band for the major brain rhythms (beta:
4–8 Hz, alpha: 8–12 Hz, beta low: 12–18 Hz, beta high: 18–25 Hz and Gamma: >25 Hz).
Emotiv gives 8 power samples per second computed over the previous 2 s.

Signals are recorded directly from the headset and undergo significant signal process-
ing and filtering to remove mains noise and harmonic frequencies. In particular, signals are
sampled at 2048 Hz, a dual-notch filter is applied at 50 Hz and 60 Hz, and a low-pass filter
is computed at 64 Hz. Finally, data are filtered down to 128 Hz or 256 Hz for transmission.

(a) (b)

(c)

Figure 1. EEG Emotiv Epoc X headset used for recording the data (a), spatial distribution of sensors
for the EEG Emotiv Epoc X (b), signal pattern recorded during 5 s (c).



Sensors 2024, 24, 1174 4 of 26

2.2. Participants

For all the experiments, written consent was obtained from each participant.
The consent form explains the goal of the experiment and describes what kind of data are
collected and the terms of privacy in the use of personal data. Additionally, it emphasizes
that the data released to the general public does not contain information that can directly
identify the subject and that any data and research results already shared with other inves-
tigators or the general public cannot be destroyed, withdrawn, or recalled. Each consent
was hand-signed by each subject on the day of the first experiment.

The participants in all experiments were healthy people without any condition that
might have caused an imbalance in the recorded data. The characteristics of all the partici-
pants are detailed as follows:

1. The N-back test experiment: 16 subjects (all male), with ages ranging from 20 to
60 years, participated in the experiments. The volunteers belonged to three different
university research centers and shared a scientific background with different levels of
expertise (students, junior researchers, senior researchers, or professors).

2. The Heat-the-Chair game experiment: 17 subjects (12 male and 5 female), with ages
ranging from 20 to 60 years, participated in the experiment. The volunteers shared
the same characteristics as participants in the previous experiment, and seven of them
completed the preceding test.

3. The flight simulation experiment: two professional pilots, but with different experi-
ence levels, participated in all flight missions, but they exchanged roles depending on
the mission. Table 1 details the information of the pilots.

Table 1. Pilots information.

Pilot Gender Age Flight Hours

Pilot 1 Male 51 4000
Pilot 2 Male 32 1700

Figure 2 illustrates some of the participants in the different experiments. All of them
signed a written consent to publish their images.

(a) (b) (c)

Figure 2. Volunteers, during the experiments, performing: (a) N-back test, (b) Heat-the-Chair game
and (c) flight simulation in the cockpit of an A320.

2.3. N-Back Test Experiment

We used the N-back test game to induce different levels of mental workload in par-
ticipants. This type of experiment requires the ability to manage one or two N-back tasks
simultaneously, taking into account the insights shown in the n-trial before, so it demands a
high usage of memory to complete the tasks. In particular, we designed three experiments
with different levels of complexity (low, medium, and high), and each subject performed
all the experiments, randomly assigned, using a computer. The three variants of the N-back
test to induce mental workload were implemented as follows:
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1. Low mental workload—position 1-back: As Figure 3 shows, a square appears every
few seconds in one of nine different positions on a regular 3 × 3 grid over the screen.
The player must press a key on the keyboard when the position of the square on
the current screen is the same as the position of the square that appeared on the
previous screen.

2. Medium mental workload—arithmetic 1-back: As Figure 4 shows, an integer number
between 0 and 9 appears every few seconds on the screen, while an arithmetic opera-
tion (plus, minus, times, and divide) is audibly presented. The player must solve this
operation using the number that appeared on the previous screen and the current one.
Results must be typed using the numerical keys.

3. High mental workload—dual position and arithmetic 2-back: This test combines the
two previous ones. As Figure 5 shows, an integer number between 0 and 9 appears
every few seconds in one of nine different positions on a regular grid. At the same
time, an operator is presented visually. As before, players must type the solution
of this operation using the number that appeared on the two screens before and the
current one. In addition, players must press a key in case the position of the current
number is the same as the position of the number shown two screens before.

Figure 3. Example of position 1-back test.

Figure 4. Example of arithmetic 1-back test.

Figure 5. Example of dual position and arithmetic 2-back test.

Experiment Structure. Before playing and recording the data, the subject was informed
about the rules and trained in the game for five minutes. For training, the dual position and
audio 1-back mode were used, which simultaneously combines position and audio, taking
into account the 1-back step, i.e., a number between 0 and 9 is audibly presented, and the
player must press a key if it matches the one emitted in the previous screen, another one if
its position matches, and another one if both matches occur.
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We assume that, in the absence of any required mental effort, subjects will exhibit
a baseline mental workload, and their physiological responses will accordingly be at a
minimum scale. Additionally, we expect that the baseline levels will vary among indi-
viduals. To induce this baseline state, participants watched a relaxing video for 10 min
before engaging in the N-back tests. Subsequently, they played the game for 20 min. After
completing the game, they responded to the NASA-TLX questionnaire [9] to provide their
subjective perceptions of the mental workload and effort demanded by the game. Finally,
to come back to a calm state after the task, subjects underwent a 10-minute recovery step,
mirroring the baseline stage. The experimental protocol is described in Figure 6. During
each session, all neuro-physiological responses were continuously recorded. The dataset
only contains signals from the baseline, the game task, and the recovery phase, removing
the parts not strictly belonging to the experiment. The dataset also contains the results from
the NASA-TLX questionnaire and the achieved scores of the player, which correspond to
the number of hits.

Figure 6. Timeline of the N-back test experimental protocol.

2.4. Heat-the-Chair Experiment

This game was specifically designed to create a scenario in which simultaneous
tasks must be performed, replicating the demand for concentration and alertness of pilots
while flying. The game consists of completing as many objectives as possible in 10 min.
Completing an objective consists of obtaining and using the necessary pieces to form a
4-digit number, which appears at the top left of the screen for 10 s and then disappears,
reappearing for 5 s every 1 min while the objective is not achieved. Once the correct
pieces have been obtained and the target puzzle has been completed (the 4-digit number),
the player increases the punctuation, and a new target number to be completed appears
automatically. Figure 7 shows the game user interface. The target number appears in the
upper left panel, while the pieces that the player obtains are in the lower right panel. Notice
that the bottom row is designated for storing the rewarded pieces (in cyan), while the top
row is dedicated to dragging and dropping the pieces to replicate the 4-digit number.

To obtain pieces, the player must perform two main tasks:

1. Bars with sliders: As we can observe in Figure 7, there are two colored bars in the
bottom central-hand panel with sliders that move in the horizontal and vertical
directions. The player must keep the sliders in the center of the bars using the
directional keys of the keyboard.

2. Dots: In the same panel, there is a large square that will be filled with dots. To avoid
this, the player must drag them to the dashed-line box shown in the center.

In the top central panel, there is a circular button with a depleting energy bar below
it. The difficulty of tasks will increase proportionally to the depletion of the energy bar:
the emptier the bar, the more challenging the game will become. Thus, the player must
regularly recharge the power bar using the circular button.
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Figure 7. The Heat-the-Chair game user interface.

The key point is that the game supports two modes of operation: with or without
interruptions. Interruptions are introduced in the game design to emulate the interruptions
that pilots receive when interacting with Air Traffic Control (ATC). In this mode, incoming
events randomly appear to be solved. In particular, five different tasks, in random order,
are required to be completed by the player. Tasks can be either to report a current flight
parameter (altitude, wind speed, wind direction, and bearing) or to change the number
of the switch box (the switch box starts randomly at each game). Flight information is
shown on the left-center portion of the screen, and the switch box is shown on the top-
right portion of the screen. When an interruption arrives, an alert of messaging is shown
on the bottom-left portion of the screen. The player must click and read the message.
Each required task has a starting and an ending time to be completed, beyond which the
player is penalized. Figure 8 depicts an interruption asking for a change to the current
switch box. The start and end times to complete the task are highlighted in green and red,
respectively. If the player does not complete the task or inserts incorrect information as an
answer, one rewarded piece is lost.

Figure 8. The Heat-the-Chair game with an interruption message.

Experiment Structure. Before playing and without recording data, the subject was
informed about the rules and trained in the Heat-the-Chair game without interruptions
for 5 min to familiarize themselves with controls. The game mode was chosen randomly
before starting the experiment.
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Given that each subject randomly faces the two modes of the game, each game is
recorded in separate sessions. As Figure 9 shows, a session consists of three phases.
The baseline lasts 3 min, in which the subject drags balls that randomly appear on the
screen and drops them to the dashed square in the center. The game has the subject
play the randomly selected game mode for 10 min, either with interruptions or without
interruptions. In addition, finally, there is the NASA-TLX questionnaire, which the subject
fills out, indicating his/her subjective perceived game complexity. Neurophysiological
responses are continuously recorded for the entire session using the Emotiv. The dataset
provides the signals from the baseline and the task phase, removing the time intervals that
do not take part in the experiment. The dataset also contains the player’s achieved scores
and the results from the NASA-TLX questionnaire.

Figure 9. Timeline of the Heat-the-Chair experimental protocol.

2.5. Flight Simulation Experiment

The goal of this experiment was to collect experimental data useful for quantify-
ing the impact of an increase in the mental workload of pilots during the performance
of routine flight tasks (i.e., within reference parameters) and when they must manage
additional unexpected phenomena, such as wind shears, machine failures, equipment
warnings, and unusual traffic. In these situations, interaction between the crew and the
ATC increases, and pilots are more likely to make mistakes due to the mental workload.
For that, five flight-simulated scenarios were designed to evaluate the pilots’ task load
changes while they solve unexpected situations. Each flight scenario is an experiment,
and each experiment is unique, with its own characteristics. The flight simulation was
carried out in an immersive Airbus-320 cockpit simulator, and the chosen flight route
was from Barcelona to Lleida in Spain, with an approximate duration of 14 minutes.
Figure 10 illustrates the route followed by the pilot. Weather, weight, and speed conditions
were fixed for all flights.

Figure 10. Flight simulation route.



Sensors 2024, 24, 1174 9 of 26

An expert flying pilot defined five flying scenarios with different levels of complexity
and events:

1. Flight 1 [easy difficulty]: The pilot performs a standard flight to be used as reference
parameters.

2. Flight 2 [medium difficulty]: During the flight, the ATC reports much traffic, so the
pilot is asked to change the position of the airplane above the glide slope at high
speed.

3. Flight 3 [hard difficulty]: During the final stage of the flight, the airplane is hard
destabilized by a strong wind shear, so the pilot must maneuver, recover the plane
stability, and land it.

4. Flight 4 [medium-hard difficulty]: During the flight, a malfunction during the ap-
proach provokes an engine failure that increases the crew workload.

5. Flight 5 [medium difficulty]: This flight is similar to Flight 2 with a little variation.

Two flying pilots participated in the experiment. Before starting the experiment, pilots
received a printed description of the assigned flight mission, and one was chosen as the
pilot, whereas the other remained as the copilot/observer. A third pilot was monitoring
the whole flight for the annotation of the pilot’s perceived complexity in time stamps of
30 s. Table 2 reports the distribution of the roles of the two flying pilots for the five
flying scenarios.

Table 2. Pilots roles.

Experiment Pilot = Pilot 1 Pilot = Pilot 2
Observer = Pilot 2 Observer = Pilot 1

Easy - Flight 1
Medium Flight 2 Flight 5

Medium-Hard - Flight 4
Hard Flight 3 -

Experiment Structure. The experimental protocol of each flight was divided into two
phases. First was the baseline phase, in which the pilot stays on the runway awaiting the
order to take off. Second was the flight phase, which at the same time can be split into three
stages: the takeoff, when the flight starts, and the plane climbs; the task phase itself; and a
short time for landing the plane on the ground. The task phase encompasses cruise, descent,
and approach tasks, along with standard communication with the ATC, and includes the
specific tasks requested for each flight simulation. Figure 11 shows the timeline of the flight
simulation experiment. The dataset contains the neurophysiological responses from all
phases of the experiment. It also contains the difficulty perceived by pilots obtained from
a modification of the NASA-TLX questionnaire to obtain a dynamic perceived difficulty
across the flight phase collected by the third pilot named above. The level of difficulty was
graded from 0 to 3, with 0 being the easiest one.

Figure 11. Timeline of the flight simulation experimental protocol.

3. Data Format and Structure

The dataset described in this paper has been made publicly available on the Digital
Document Deposit of the Universitat Autònoma de Barcelona, accessible at https://doi.org/
10.5565/ddd.uab.cat/259591 (accessed on 26 December 2023). No registration is required.

https://doi.org/10.5565/ddd.uab.cat/259591
https://doi.org/10.5565/ddd.uab.cat/259591
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The dataset is provided in a compressed file workload\_dataset.zip. After decom-
pression, the dataset contains three main folders that store the collected data
for the N-back test data (folder data_n_back_test), the Heat-the-Chair
data (folder data_heat_the_chair), and the flight simulation data (folder
data_flight_simulator), respectively.

The next subsections explain the data format and structure for each experiment.

3.1. N-Back Test

EEG signals, game performance, and TLX questionnaires were stored in 3 .parquet
files containing the data obtained from all participants in the following structure.

The acquisition software saves the raw data in a CSV file that has 139 columns
with datetime, timestamps, the 14-electrode data, the five frequency power band data,
and quality metrics supplied by the sensor. Since a session itself is split into phases, the
recording is a continuous signal. We used manual annotations of the starting and ending
times of each phase to remove data outside the phases. Also, all the annotations were
synchronized by means of a specifically designed application. The data recorded for the
session phases and all participants was stored in a .PARQUET file that included metadata
added as three additional columns: SUBJECT, TEST, PHASE. The SUBJECT column is the
identifier of the volunteer. Participants are labeled as subject_xx, for xx ∈ {1, . . . , 16}
a number identifying the subject. The TEST column identifies the variant of the N-back
test (1 for the position 1-back, 2 for the arithmetic 1-back, and 3 for the dual position and
arithmetic 2-back). The PHASE column identifies the phase in the session (1 for the baseline,
2 for the task, and 3 for the recovery).

The dataset also provides the performance of the subject’s game during the N-back
test. Each subject has three measurements—one for each task difficulty. Since the task
phase lasts 20 min and the trial of the game is almost two minutes, the subject played the
game many times, so scores are provided as a list of punctuation. The .PARQUET file also
includes the fields SUBJECT and TEST defined as before for the identification of the subject
and N-back test variant.

The answers to the TLX questionnaires were also collected for all games and partici-
pants and stored in a .PARQUET file including the fields SUBJECT and TEST.

The directory tree for the dataset of the N-back test is the following:

data_n_back_test
eeg

eeg.parquet
game_performance

game_scores.parquet
subjective_performance

tlx_answers.parquet

where the file eeg.parquet stores the EEG signals for all participants, the file
game_scores.parquet the game scores per subject and tlx_answers.parquet their an-
swers to the TLXs questionnaires.

3.2. Heat-the-Chair Game
The EEG raw data stored in CSV files for each session was processed to remove

parts outside the baseline and the task phase. The data of all participants was stored in
a single parquet file, including metadata for the identification of the subject, game type,
and phase. The dataset also provides the performance of the subject during the game, and
the self-perceived workload for each task reported in the TLXs. The directory tree for the
dataset for the Heat-the-Chair game is the following:

data_heat_the_chair
eeg

eeg.parquet
game_performance

https://ddd.uab.cat/pub/dadrec/2022/259591/workload_dataset.zip
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subject_01_with.csv
subject_01_without.csv
...
subject_26_with.csv
subject_26_without.csv

subjective_performance
tlx_answers.parquet

Each of the folders contains the following information:

1. The folder eeg contains the file eeg.parquet storing a pandas dataframe with all the
EEG data and three extra columns (SUBJECT, TEST, PHASE) of metadata.
The field SUBJECT identifies the volunteer as ‘subject_xx_’, for ‘xx’ a two-digit num-
ber. The field TEST identifies the game mode: 1 for a game without interruptions and 2
for a game with interruptions. The field PHASE identifies the stage of the experiment:
1 for the baseline and 2 for the game.

2. The folder game_performance contains the game scores for each subject and game
into separated CSV. The name of these files follows the pattern ‘subject_xx_mode’,
where xx is a two-digit number identifying the volunteer, and mode is the game type:
‘with’ for a game with interruptions and ‘without’, otherwise.

3. The folder subjective_performance contains the file tlx_answers.parquet with the
answers to TLX questionnaires for all participants and games.

From the set of 17 volunteers, the seven subjects compressed between 1 and
16 subjects have also participated in the N-back test; the rest of them, from 17 to 26,
were new participants.

3.3. Flight Simulator

The data recorded from the flight simulator is in the folder data_flight_simulator.
To make the processing of data easier, the original ‘csv’ files provided by the sensors
were prepared by adding additional columns and saved into a single one, ‘parquet’. Five
columns were added for both EEG and ECG. The column SUBJECT identifies the pilot who
is flying (number 1 identifies pilot 1, whereas number 2 identifies pilot 2). The column
FLIGHT indicates the flight experiment performed, ranging from 1 to 5. The column PHASE

indicates the stage of the flight. Values are ‘baseline’ and ‘flight’ (see Figure 11). The column
THEORETICAL DIFFICULTY represents the expected theoretical workload induced in the
pilot, and the values range from −1 to 4 to indicate easy to hard. Each flight has its own
theoretical difficulty. Finally, the PERCEIVED DIFFICULTY columns provide the perceived
difficulty reported by the pilot about the complexity of the assigned mission. During the
simulation, at every certain interval, the pilot scores the complexity of the scenario from 0
to 3. We encoded the perceived difficulty of the ‘baseline’ stage as −1.

Finally, the flight simulator data are organized into three sub-folders:

data_flight_simulator
eeg

eeg.parquet
perceived_difficulty

flight_1.json
flight_2_4.json
flight_3_5.json

Each of the folders contains the following information:

1. The folder eeg contains a single file eeg.parquet with the EEG data.
2. The folder perceived_difficulty contains the perceived difficulty of the pilots dur-

ing the flight. It contains three ‘.json’ files: flight1.json, flight2_4.json, and
flight3_5.json.
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The flight simulator experiment Wasim contains the collected data from two pro-
fessional pilots who performed five simulation flights in an A320 cockpit. The expected
induced degree of workload and the self-perceived workload reported by the pilots them-
selves are also registered.

4. Data Validation

In this section, we present the technical validation of the proposed data. To show its use-
fulness for training and evaluation of AI models, we have conducted 3 different experiments:

1. Correlation to the Perceived Difficulty. The goal of this experiment was to assess
that the theoretical difficulty of each experimental scenario can be used as a valid
annotation defining a ground truth for AI models. This assessment checks that
the evolution of the difficulty perceived by participants increases along with the
theoretical one. For the two games, we also include the performance to check if it is
decreasing as theoretical performance increases.

2. Analysis of Differences in Temporal Patterns. The goal of this experiment was to show
that the temporal waveforms of signals recorded under different WL conditions had
different patterns. In particular, we have analyzed the number of spikes extracted
from EEG recordings to assess whether their distribution is different across increasing
levels of WL (N-back-test dataset), number of interruptions (serious game), and
flight difficulty.

3. Usefulness for Training AI models. The goal of this experiment was to assess the
usefulness of the presented dataset by training a DL model using the N-back test data
and testing it on the Heat-the-Chair and flight simulator data to show its transfer
task capability.

In the next sections, we report the experimental setup and results obtained for each of
the experiments.

4.1. Correlation to the Perceived Difficulty

To evaluate the technical quality of the collected data in the N-back test, we analyzed
the answers to TLX questionnaires. Since TLX reports the self-perceived degree of workload
enforced by the tasks, we put them in correspondence with the performance of the players.
Figure 12 shows boxplots of the perceived difficulty given by the TLX questionnaire
and game performance given by the percentage of correct operations for the 3 levels of
difficulty of the game. On the one hand, the performance of subjects is decreasing with
the theoretical difficulty of the game, as expected. On the other hand, the perceived
workload of participants also has the expected increasing correlation with the theoretical
difficulty. Finally, the perceived workload increases as the performance decreases, which
is also consistent with the hypothesis that each test offers a challenge according to its
difficulty level.

For the validation of the Heat-the-Chair game, we observe that, unlike the N-back test
single memory task, this game includes simultaneous tasks (memory, perception, manual
operations, and decision making) triggered by interruptions. Thus, the validation of these
datasets is based on the correlation between perceived workload, participant performance,
and the two modes of operation: with or without interruptions. As before, the perceived
workload is given by the TLX questionnaire, while performance is given by the average
time (in seconds) required to obtain pieces during the game. In this case, as the metric
chosen to measure performance is the average time it takes the subject to obtain a piece, an
increase in this time reflects a decrease in performance. Figure 13 shows boxplots of the
perceived workload and performance obtained for games with and without interruptions.
Since, in this case, the two quantities have different ranges, we show their boxplots with
a standardized y-axis. The y-axis range shown in red on the left-hand side corresponds
to the time needed to obtain pieces, while the range shown in blue on the right-hand side
corresponds to the range of punctuation for TLX results, scaled between 0 and 50. As
expected, both quantities are clearly increasing with the number of interruptions.
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Figure 12. TLX analysis in the N-back test. Perceived workload and game performance across
theoretical difficulty.

Figure 13. TLX analysis in the Heat-the-Chair test. Perceived workload and game performance
across interruptions.

Given that we do not have any metric of pilot performance, for the validation of
the flight simulations, we have analyzed the correlation between the distribution of the
perceived difficulty (given by the dynamic TLX collected during the flight) and the global
difficulty of the different flying scenarios. We recall that in this case, the perceived diffi-
culty rates the complexity of the flight at time stamps according to 0—low, 1—mid–low,
2—mid–high, and 3—high. Figure 14 shows a boxplot of the perceived workload for the
5 flying scenarios with the median line in bold for better visualization. The theoretically
easiest Flight 1 also has the lowest perceived difficulty, with values below 2 and 50% of the
time stamps rated with mid–low difficulty. The twin flights, Flight 2 and Flight 5, have
an identical distribution of values, with 50% of the flying time considered to be mid–low
difficulty and only 25% rated as high. Flight 3, with the highest theoretical complexity, is
also the one with the highest values of perceived WL, with 50% of the flight considered
high-complexity by the monitoring pilot. Finally, Flight 4, of medium theoretical difficulty
but with an unexpected event, is perceived as being of low–mid difficulty 50% of the time
but with a 25% of high perceived complexity. This peak of complexity coincides with
the time of the unexpected malfunction. This match between perceived and theoretical
complexities validates as ground truth annotations both the global theoretical difficulty as
well as the perceived complexity annotated by experts along the flying time.
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Figure 14. TLX analysis in Simulated flights. The perceived workload in the flight scenarios.

4.2. Analysis of Differences in Temporal Patterns

To analyze the differences in the temporal patterns of EEG recorded at different levels
of task complexity, we have decomposed the signal of each EEG node into their power
spectra waves (θ, α, β, and γ). These signals are obtained by filtering each sensor signal at
the following 4 frequency bands clinically related to main brain processes [11]:

1. θ (4–8 Hz). The θ activity is seen in drowsiness, arousal, and often during meditation.
Dominant θ activity is associated with relaxed, meditative, and creative states, memory
recall, and ‘flow’ states. It is reported that an increase in theta, particularly frontal
theta, is often associated with an increase in working memory load, especially in
single-task contexts.

2. α (8–12 Hz). The α waves are the default ‘relaxed and alert’ mode of the brain. High α
levels appear in the frontal lobes during relaxation and are suppressed when other
activities (like linguistic, abstract spatial thinking, or muscular) take place. It is
reported that the alpha power during high-workload tasks might be lower than the
alpha power during low-workload conditions.

3. β (12–25 Hz). This band is often associated with active, task-oriented, busy, or anxious
thinking and active concentration. It is reported that beta power during a high-
workload task is moderately greater than beta power in low-workload conditions.
Numerous studies have established the involvement of this frequency in a variety
of cognitive processes such as working memory [23], language processing [24], and
decision making [25]. Since the Emotiv API provides access to two sub-bands in the
β zone (12–18 Hz, labeled βl and 18–25 Hz, labeled βh), we have analyzed both.

4. γ (greater than 25 Hz). The γ band activates when different populations of neurons
network together to carry out demanding cognitive or motor functions requiring
fast. Coupled processing is required [26]. It is reported that γ activation is related to
emotions, perception, and attention. However, there are no conclusive studies of any
relationship between γ power and WL.

For each power band, we computed the peaks of each node waveform as an indicator
of temporal variability in brain activity associated with WL. Peaks were computed as local
maxima with a value above 95% percentile of the node power spectra band.

Figures 15–17 show the barplots for the average number of peaks of the recordings for
all participants of a given experiment. We show a different barplot for each band (rows) and
experimental scenario (columns). For each barplot, we have grouped by node the number
of peaks obtained under the different complexities of the experimental scenarios. For the
N-back test and serious game, we have used the global theoretical difficulty, while for the
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simulator, given the variety of complexity along a single flight, we have used the perceived
workload grouped into easy-mild (scores 0, 1) and mild-high (scores 2, 3). The expected
pattern is that the number of peaks is a monotonous function of the level of complexity for
some of the EEG nodes.

Figure 15. Number of Peaks of EEG Nodes Power Bands. Barplots for the n_back test Experiment.

For the N-back test, the peaks of the θ band are increasing in game complexity for
all sensors except the occipital O7. This is aligned with the fact that the N-back test is a
memory-demanding activity. The increasing pattern is also observed in most of the left
sensors of the α band associated with spatial thinking. The β and γ bands do not present
a monotonous pattern, which is not surprising given that they are not associated with
memory items. For the Heat-the-Chair game, θ and α are again the bands with a more
prominent increasing pattern, which is followed for all nodes. This reflects the increased
complexity in memory items and spatial coordination required to play the game. In this
case, the β and γ bands also have an increasing pattern for most nodes, which indicates
that the game requires multitask solving (γ) and provokes anxious thinking (β). For the
flight simulator, the distribution of peaks is different. The θ wave has a small decreasing
pattern, although with very similar values (see ranges in Table 3) which are the highest
ones. This indicates that flying is a knowledge-based task that requires recalling learned
concepts. The peaks of the α wave do not follow a well-defined pattern and are missing for
some sensors. In fact, it is the band that has the lowest values (see ranges in Table 3). This
suppression of the α band indicates that even for easy flights, pilots flying an aircraft is a
highly demanding mental task. The betah band is the only one presenting a clear increasing
pattern for almost all nodes, which can be attributed to the fact that during hard flying
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conditions, the pilot needs to make a lot of quick decisions. This is also reflected in the
increasing pattern of the γ wave for both parietal nodes.

Tables 3–5 report descriptive statistics for the number of peaks summarized as
mean ± standard deviation computed for all nodes. The expanded descriptive statistics for
each sensor can be found in Appendix A. For the N-back test, the ranges of all bands are
higher during the tests compared to the ones of the baseline. However, the only band that
has increasing ranges along test complexity is θ. For serious games, the ranges of all bands
are higher in the games with interruptions. Finally, for the simulator, only βh and γ bands
have higher ranges for mild-hard phases of the flight.

Table 3. Number of peaks of EEG node power bands. Summary of the descriptive statistics for the
simulator experiment.

Easy-Mild Mild-Hard

theta 37.25 ± 1.73 24.39 ± 1.88

alpha 0.64 ± 0.58 0.68 ± 0.36

beta_l 2.86 ± 0.58 2.00 ± 0.80

beta_h 1.57 ± 0.52 2.46 ± 0.83

gamma 0.68 ± 0.75 1.68 ± 1.76

Figure 16. Number of peaks of EEG node power bands. Barplots for the Heat-the-Chair experiment.
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Figure 17. Number of peaks of EEG node power bands. Barplots for the simulator experiment.

Table 4. Number of peaks of EEG node power bands. Summary of the descriptive statistics for the
n_back test.

BL Low Medium Hard

theta 95.43 ± 30.52 405.93 ± 213.24 458.57 ± 63.02 632.14 ± 100.31

alpha 125.79 ± 56.91 442.93 ± 129.18 407.07 ± 63.41 623.43 ± 72.52

beta_l 101.43 ± 25.68 440.14 ± 75.51 371.64 ± 44.39 597.43 ± 83.51

beta_h 122.49 ± 42.75 524.50 ± 145.39 294.86 ± 49.20 596.29 ± 115.51

gamma 143.57 ± 49.29 553.57 ± 181.67 259.29 ± 28.64 553.86 ± 142.94

Table 5. Number of peaks of EEG node power bands. Summary of the descriptive statistics for the
Heat-the-Chair game.

Without With

theta 89.50 ± 44.29 160.57 ± 41.10

alpha 75.50 ± 27.20 115.00 ± 33.34

beta low 63.43 ± 31.00 87.79 ± 25.69

beta high 51.50 ± 38.17 71.93 ± 25.21

gamma 37.79 ± 23.91 63.50 ± 30.49
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To detect if the differences in ranges were significant, we adjusted a generalized
regression model [27] for the number of peaks with the complexity as a fixed factor and the
sensor as a random effect to account for differences between them and correct for repeated
measures. A different model was adjusted for each power band and experimental scenario.
For the detection of significant differences, all models compare the number of peaks of
each complexity level with the lowest-complexity ones. For each regression model, we
report model parameters, p-values for significance in fixed effects, 95% CI for their mean
values. In the case of a change in scale or transformation of data required to satisfy model
assumptions, the CIs were back-transformed to the original scale. For all statistical analysis,
a p-value < 0.05 was considered significant. Statistical analyses were conducted using
R version 4.3.2.

Tables 6–8 report a summary of the regression models for each of the experimental
scenarios. For the N-back test, the complexity factor was significant for all bands except γ.
For the θ band, peaks were significantly increasing with complexity. This is not the case for
the remaining bands, where models detect a significant decrease in the number of peaks of
the Medium complexity. The peaks of the high-complexity waves are significantly higher
than the low-complexity waves, except for γ. The models for the Heat-the-Chair game
detect a significant increase in the number of peaks of games with interruptions for all bands.
Finally, for the flight simulator, models detect a significant increase in the number of peaks
of the β waves and a significant decrease for θ. There are no significant differences for α
and θ.

Table 6. Number of peaks of EEG node power bands. Regression model for the N-back test.

Coefficient p-Value 95% CI

θ
Low 5.93 × 100 - (326.66, 425.48)

Medium 1.89 × 10−1 0.02 (394.68, 514.09)
Hard 5.07 × 10−1 <0.001 (542.43, 706.53)

α
Low 6.06 × 100 - (383.55, 471.91)

Medium 2.81 × 102 <0.001 (361.16, 452.99)
Hard 4.98 × 102 <0.001 (577.51, 669.34)

βl

Low 6.07 × 100 - (400.17, 468.23)
Medium −1.62 × 10−1 <0.001 (340.27, 398.14)

Hard 3.10 × 10−1 <0.001 (545.68, 638.48)

βh

Low 6.21 × 100 - (432.24, 568.05)
Medium −5.42 × 10−1 <0.001 (251.50, 330.53)

Hard 1.59 × 10−1 0.03 (506.76, 665.99)

γ
Low 6.25 × 100 - (434.64, 598.50)

Medium −6.95 × 10−1 <0.001 (216.88, 298.64)
Hard 4.06 × 10−2 0.67 (452.64, 623.28)

Table 7. Number of peaks of EEG power bands. Regression model for the Heat-the-Chair game.

Coefficient p-Value 95% CI

θ
without 4.38 × 100 - (61.19, 97.85)

with 6.71 × 10−1 <0.001 (119.76, 191.50)

α
without 4.24 × 100 - (54.09, 84.98)

with 4.63 × 10−1 <0.001 (85.90, 134.95)

βl
without 3.99 × 100 - (39.07, 69.27)

with 4.47 × 10−1 <0.001 (61.11, 108.35)

βh
without 3.60 × 100 - (20.72, 52.21)

with 6.25 × 10−1 0.02 (38.71, 97.56)

γ
without 3.44 × 100 - (21.80, 40.69)

with 6.31 × 10−1 <0.001 (40.98, 76.50)



Sensors 2024, 24, 1174 19 of 26

Table 8. Number of peaks of EEG power bands. Regression model for the flight simulator.

Coefficient p-Value 95% CI

θ
easy-mild 3.62 × 100 - (35.92, 38.51)
mild-hard −4.25 × 10−1 <0.001 (23.48, 25.17)

α
easy-mild 6.43 × 10−1 - (0.37, 0.92)
mild-hard 3.57 × 10−2 0.85 (0.40, 0.95)

βl
easy-mild 2.86 × 100 - (2.46, 3.26)
mild-hard −8.57 × 10−1 <0.001 (1.60 , 2.40)

βh
easy-mild 1.57 × 100 - (1.17, 1.97)
mild-hard 8.93 × 10−1 <0.001 (2.07, 2.86)

γ
easy-mild 6.79 × 10−1 - (−0.09, 1.45)
mild-hard 1.00 × 100 0.06 (0.91, 2.45)

4.3. Usefulness for Training AI Models

In this section, we illustrate the usefulness of the EEG dataset by training AI models.
We report partial results of previous work on DL models for WL detection, published in [22].
In that work, several architectures for EEG channel fusion were presented and validated
on the n_back test data using a leave-one-subject-out cross-validation scheme. The best
performers trained on the whole n_back set were also validated on the Heat-the-Chair set to
assess the task transfer of models. We summarize the main findings and report preliminary
results obtained on the flight simulator by models trained on the nback test.

Our best-performing architecture was a convolutional neural network (CNN) that
fuses the channels of the features obtained after the convolutional block and before the
Fully Connected (FC) layers. Concretely, signals are processed as follows: input data are
taken by the input data module and feed the convolutional module, which performs feature
extraction. The number of channels remains along convolutions so that a channel fusion
unit transforms them into a single signal channel for each feature. The outcome of the
previous unit is flattened and processed by two FC layers to combine features and perform
output predictions.

Figure 18 depicts the proposed neural architecture. Notice that C corresponds to
the number of channels, T to the time window, L to the convolution, and n f eats to the
number of features extracted by the convolutional block Lth.Hence, after the convolu-
tional process L, xC×T becomes xn_feats@C×(T//L), and T//L is due to the pooling operation
in each convolutional block. During the channel fusion unit, the input xn_feats@C×(T//L)

becomes xn_feats@1×(T//L). The convolution unit has 3 blocks consisting of one convolu-
tional layer with max pooling and with 16, 32, and 64 neurons for each convolutional
layer, respectively. The classification layer has 256 neurons. The output unit has 2 blocks
consisting of one convolutional layer before the classification layer. The first one has
64 neurons, and the second one projects convolutional features also using 64 neurons.

Figure 18. Neural network architecture for mid-fusion.
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For the validation of the models, the N-back test data were split using a leave-one-
subject-out scheme, and 16 independent models were trained on 15 participants and tested
in the remaining one. The models were trained for the classification of BL and medium
phases using a weighted cross-entropy loss to compensate for imbalances between baseline
and workload phases. We used a batch size of 750, Adam as the optimization method,
100 epochs, and a learning rate of 0.0001. The quality metrics were the sensitivity and
specificity, considering BL the positive class.

Results show a 76.25% sensitivity and 87.81% specificity in WL detection for a leave-
one-out subject evaluation in the N-back-test data and good task transfer with the detected
WL increasing with the number of interruptions in the Heat-the-Chair game (see Figure 19).

Figure 19. Correspondence between interruptions in the Heat-the-Chair game and the number of
WL detection.

Regarding the capability of task transfer, Figure 20 shows the barplots for the number
of predictions in BL and WL for 4 of the 5 flights (the last has not been checked, as it
is very similar to the second). As expected, the highest number of BL detections is for
Flight 1, while Flight 2 and Flight 4 show more WL detections since they are characterized
as more difficult. Flight 3 was not as expected and could be attributed to the discrepancies
in waveform between synthetic games and the simulator, detected in Section 4.2.

Figure 20. Correspondence between the number of interruptions in the Heat-the-Chair game and the
number of WL detections by the neural network.
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5. Conclusions

This paper provides a complete dataset of physiological recordings from electroen-
cephalogram (EEG) and electrocardiogram (ECG) devices, which are useful for testing
methods that recognize mental workload. Three different experiments have been presented
in whose participants were induced to different levels of workload:

1. on the well-known dual N-back game
2. on a specifically designed serious game mimicking the increase of workload an aircraft

pilot can suffer
3. on a flight simulator

Technical validation at three different levels shows the correlation between objective
measures from the experiments and the corresponding subjective self-perceived complexity
from subjects. Our games are specifically designed to target mental activities and, thus, can
be used to assess the capability of a physiological sensor to detect mental WL or any other
specific mental effort. Moreover, we have shown that they could be powerful means for
collecting unambiguous annotated data valid for training AI models.

However, there is room for improvement. The results obtained on the transfer to
the simulator are sub-optimal for an AI system deployable in the cockpit. The analysis
of the power band patterns of Section 4.2 shows that the synthetic games have a mental
demand different from that of flying pilots. Therefore, more specific serious games should
be designed to guarantee a fully successful transfer to flight-deck scenarios.
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Appendix A. Extended Descriptive Statistics

In this appendix, we show the tables of expanded descriptive statistics for each
experiment. Each cell reports the mean of the number of peaks for all subjects in a specific
sensor and WL. Rows group the sensor signals based on their power spectra, while columns
correspond to the different levels of WL.

https://doi.org/10.5565/ddd.uab.cat/259591
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Table A1. Number of Peaks of EEG Power Bands. Descriptive statistics for the n_back test.

BL Low Medium Hard BL Low Medium Hard

θ

AF3 3.00 20.38 22.31 29.25

βl

AF3 4.00 20.06 24.25 32.25

F7 5.00 21.06 26.81 45.25 F7 5.00 29.38 26.00 39.63

F3 4.00 20.06 25.19 39.38 F3 6.00 30.44 19.63 39.19

FC5 5.00 18.63 29.56 46.56 FC5 7.00 23.50 25.44 42.63

T7 6.00 30.13 33.19 40.25 T7 6.00 38.31 25.19 45.00

P7 6.00 19.25 34.00 38.94 P7 6.00 27.19 28.00 43.25

O1 5.00 21.63 33.19 36.06 O1 6.00 23.81 26.69 35.63

O2 10.00 69.50 30.44 34.81 O2 7.00 28.38 20.38 30.38

P8 7.00 24.31 29.81 38.75 P8 6.00 20.75 20.31 35.13

T8 9.00 29.13 32.50 45.50 T8 10.00 28.56 20.38 45.50

FC6 7.00 25.44 29.44 48.06 FC6 6.00 30.31 21.13 35.44

F4 7.00 19.88 25.63 33.88 F4 9.00 31.69 21.31 31.81

F8 5.00 20.50 27.19 46.69 F8 5.00 26.25 22.25 35.81

AF4 4.00 15.31 22.00 29.75 AF4 5.00 26.50 24.25 31.13

mean 5.93 25.37 28.66 39.51 mean 6.29 27.51 23.23 37.34

std 1.94 13.33 3.94 6.27 std 1.59 4.72 2.77 5.22

α

AF3 3.00 18.56 23.81 30.88

βh

AF3 3.00 11.69 14.69 27.19

F7 6.00 25.38 26.63 42.81 F7 8.00 45.06 21.19 40.63

F3 6.00 28.50 22.50 42.69 F3 8.00 37.63 18.88 40.06

FC5 7.00 22.19 29.00 44.31 FC5 7.00 31.19 21.00 41.75

T7 5.00 34.69 31.94 41.06 T7 10.00 38.88 14.13 36.25

P7 6.00 22.13 32.44 41.25 P7 6.00 29.81 20.88 50.19

O1 6.00 25.31 30.19 37.63 O1 7.00 27.44 24.44 35.94

O2 12.00 49.13 22.19 33.31 O2 5.00 25.44 16.38 29.38

P8 9.00 24.13 22.75 38.19 P8 6.00 22.44 14.19 30.44

T8 16.00 34.56 24.94 44.63 T8 14.00 34.81 15.81 51.31

FC6 11.00 31.13 24.63 40.94 FC6 10.00 46.06 19.00 38.94

F4 11.00 29.63 22.06 35.50 F4 10.00 35.69 17.94 32.06

F8 7.00 24.38 23.13 40.44 F8 8.00 37.13 20.38 35.69

AF4 5.00 17.88 20.00 31.88 AF4 6.00 35.69 19.13 31.94

mean 7.86 27.68 25.44 38.96 mean 7.71 32.78 18.43 37.27

std 3.51 8.07 3.96 4.53 std 2.70 9.09 3.07 7.22

γ

AF3 3.00 9.94 17.69 22.75

F7 9.00 48.38 17.06 38.25

F3 8.00 40.69 17.19 37.31

FC5 9.00 35.75 17.38 37.38

T7 10.00 43.75 12.69 33.50

P7 7.00 32.94 14.69 46.50

O1 8.00 27.25 17.75 34.13

O2 5.00 22.31 15.25 24.81

P8 6.00 22.19 13.81 24.69

T8 14.00 31.19 15.13 56.00

FC6 14.00 52.38 19.00 38.25

F4 13.00 38.00 15.88 29.88

F8 10.00 39.25 17.94 32.31

AF4 10.00 40.38 15.44 28.88

mean 9.00 34.60 16.21 34.62

std 3.23 11.35 1.79 8.93
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Table A2. Number of Peaks of EEG Power Bands. Descriptive statistics for the Heat-the-Chair game.

Without With Without With

θ

AF3 8.88 12.12

βl

AF3 3.24 5.18

F7 4.71 7.65 F7 1.82 4.29

F3 5.88 10.29 F3 6.24 5.71

FC5 6.53 9.47 FC5 5.00 6.24

T7 6.88 12.94 T7 0.65 2.88

P7 5.18 10.29 P7 5.47 9.41

O1 2.18 6.65 O1 5.35 5.94

O2 2.00 6.71 O2 5.41 5.12

P8 2.65 7.47 P8 2.59 4.59

T8 10.94 12.94 T8 2.06 4.53

FC6 3.71 8.24 FC6 3.71 4.53

F4 4.00 9.35 F4 5.82 5.06

F8 3.24 6.00 F8 1.53 3.59

AF4 6.94 12.12 AF4 3.35 5.24

mean 5.26 9.45 mean 3.73 5.16

std 2.51 2.33 std 1.76 1.46

α

AF3 7.18 9.71

βh

AF3 9.24 5.00

F7 2.35 5.12 F7 2.06 4.41

F3 4.18 6.06 F3 2.24 4.00

FC5 4.53 6.94 FC5 4.24 5.18

T7 4.65 6.88 T7 0.18 1.71

P7 6.12 9.18 P7 5.00 8.35

O1 4.41 7.59 O1 2.06 3.76

O2 5.35 5.65 O2 2.47 3.71

P8 3.12 5.53 P8 2.47 3.18

T8 5.65 8.35 T8 0.29 3.88

FC6 3.29 4.88 FC6 3.12 4.06

F4 4.18 5.41 F4 2.29 3.65

F8 1.18 3.47 F8 2.35 3.29

AF4 6.00 9.94 AF4 4.41 5.06

mean 4.44 6.76 mean 3.03 4.23

std 1.54 1.89 std 2.16 1.43

γ

AF3 4.94 4.35

F7 2.24 4.29

F3 2.18 3.35

FC5 3.59 3.76

T7 1.12 3.47

P7 4.76 9.29

O1 1.24 2.29

O2 0.53 1.94

P8 0.94 3.06

T8 2.41 4.47

FC6 1.71 2.94

F4 1.18 2.29

F8 1.18 2.76

AF4 3.12 4.00

mean 2.22 3.74

std 1.36 1.73
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Table A3. Number of Peaks of EEG Power Bands. Descriptive statistics for the simulator experiment.

Easy-Mild Mild-Hard Easy-Mild Mild-Hard

θ

AF3 37.5 23.5

βl

AF3 4 1

F7 35.5 25.5 F7 1.5 2

F3 36.5 25 F3 3 1

FC5 36.5 25 FC5 2 2.5

T7 37 23 T7 3.5 3

P7 37 25.5 P7 3 3.5

O1 36.5 23 O1 3 3

O2 38 23 O2 2.5 2

P8 37 23.5 P8 3 2

T8 37 22.5 T8 3 2.5

FC6 35.5 25 FC6 3 2

F4 37 22.5 F4 3 1

F8 43 30 F8 2.5 1

AF4 37.5 24.5 AF4 3 1.5

mean 37.25 24.39286 mean 2.857143 2

std 1.729471 1.882045 std 0.580288 0.801784

α

AF3 0 0.5

βh

AF3 2 1.5

F7 0 0.5 F7 1.5 0.5

F3 1.5 1.5 F3 2 3

FC5 0 0 FC5 2.5 3

T7 1 0.5 T7 1 1.5

P7 1.5 1 P7 1 3

O1 1.5 0.5 O1 1 3

O2 0.5 1 O2 1.5 3

P8 0.5 1 P8 2 2.5

T8 0 0.5 T8 1.5 3.5

FC6 1 0.5 FC6 1.5 2.5

F4 0.5 1 F4 2 2

F8 0 0.5 F8 0.5 3.5

AF4 1 0.5 AF4 2 2

mean 0.642857 0.678571 mean 1.571429 2.464286

std 0.580288 0.358924 std 0.529728 0.833758

γ

AF3 0 1

F7 1 1

F3 0 1.5

FC5 0.5 0

T7 0.5 0

P7 2.5 5

O1 0 0

O2 0 1.5

P8 2 5.5

T8 1 2.5

FC6 0.5 0.5

F4 0 1.5

F8 0.5 0

AF4 1 3.5

mean 0.678571 1.678571

std 0.746591 1.758725
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