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INTRODUCTION

Milk yield and composition are traits of economic im-
portance in dairy goats because cheese manufacturing 
is the main economic activity associated with the breed-
ing of this species. The performance of genome- wide 
association studies (GWAS) has been helpful to iden-
tify genomic regions associated with milk traits in sev-
eral caprine breeds including New Zealand goats (Jiang 
et  al.,  2022; Scholtens et  al.,  2020), French Alpine and 
Saanen (Martin et al., 2017, 2018; Massender et al., 2023; 

Talouarn et al., 2020), and a composite breed of Saanen, 
Toggenburg, and Alpine goats (Mucha et  al.,  2018). 
Several genomic regions have emerged as consistently as-
sociated with dairy traits. For instance, the chromosome 
6 region encompassing the casein cluster has often been 
associated with milk protein content (Guan et al., 2020; 
Martin et al., 2017; Massender et al., 2023). Such a find-
ing is probably explained by the major role of the casein 
αS1 (CSN1S1) gene polymorphism on modulating milk 
casein αS1, protein and fat contents as well as the tech-
nological and organoleptic properties of cheese (Martin 
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Abstract
Milk yield and composition phenotypes are systematically recorded across 
several lactations in goats, but the majority of genome- wide association studies 
(GWAS) performed so far have rather ignored the longitudinal nature of such 
data. Here, we have used two different GWAS approaches to analyse data 
from three lactations recorded in Murciano- Granadina goats. In Analysis 
1, independent GWAS have been carried out for each trait and lactation, 
while a single longitudinal GWAS, jointly considering all data, has been 
performed in Analysis 2. In both analyses, genome- wide significant QTL for 
lactose percentage on chromosome 2 (129.77–131.01 Mb) and for milk protein 
percentage on the chromosome 6 (74.8–94.6 Mb) casein gene cluster region were 
detected. In Analysis 1, several QTL were not replicated in all three lactations, 
possibly due to the existence of lactation- specific genetic determinants. In 
Analysis 2, we identified several genome- wide significant QTL related to milk 
yield and protein content that were not uncovered in Analysis 1. The increased 
number of QTL identified in Analysis 2 suggests that the longitudinal GWAS 
is particularly well suited for the genetic analysis of dairy traits. Moreover, our 
data confirm that variability within or close to the casein complex is the main 
genetic determinant of milk protein percentage in Murciano- Granadina goats.

K E Y W O R D S
GWAS, milk yield and composition traits, Murciano- Granadina breed

This is an open access article under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs License, which permits use and distribution in any 
medium, provided the original work is properly cited, the use is non-commercial and no modifications or adaptations are made.
© 2023 The Authors. Animal Genetics published by John Wiley & Sons Ltd on behalf of Stichting International Foundation for Animal Genetics.

www.wileyonlinelibrary.com/journal/age
https://orcid.org/0000-0002-6414-0550
https://orcid.org/0000-0003-0114-384X
mailto:
https://orcid.org/0000-0002-8999-0770
mailto:marcel.amills@uab.cat
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1111%2Fage.13391&domain=pdf&date_stamp=2023-12-22


258 |   LUIGI- SIERRA et al.

et al., 2002). Another important locus is the chromosome 
14 region containing the diacylglycerol O- acyltransferase 
1 (DGAT1) gene, which has been associated with milk fat 
content (Martin et al., 2017; Massender et al., 2023). The 
DGAT1 gene contains two causal missense R251L and 
R396W mutations that decrease milk fat content and ex-
plain 46% and 6% of the genetic variance of this trait, 
respectively (Martin et al., 2017). Finally, a chromosome 
19 region (~24–26 Mb) with adverse pleiotropic effects 
on milk production (milk, fat yield, and protein yield) 
and udder traits (udder floor position and rear udder 
attachment) has also been consistently identified in sev-
eral studies (Jiang et al., 2022; Martin et al., 2018; Mucha 
et al., 2018; Scholtens et al., 2020).

Despite the fact that milk traits are usually recorded 
for several lactations in goats, longitudinal GWAS have 
not been performed up to date, probably because re-
peated measures cannot be easily modelled with con-
ventional GWAS software. Rönnegård et  al.  (2016) 
developed the RepeatABEL program that fits fixed SNP 
effects in a linear mixed model encompassing both per-
manent environmental effects and random polygenic 
effects to model repeated measures and to correct for 
population structure, respectively. One significant ad-
vantage of this method is that for traits with high vari-
ability across time, the repeated measurements model 
implemented in RepeatABEL has a substantial increase 
in power compared to models using averaged measure-
ments (Rönnegård et al., 2016).

In a previous study, Guan et  al.  (2020) performed 
a GWAS for dairy traits recorded in 822 Murciano- 
Granadina goats during a single lactation. The goal of 
the current study was to expand the reach of the GWAS 
carried out by Guan et al. (2020) to dairy traits measured 
in three consecutive lactations. First, we aimed to com-
pare the positional concordance of the QTL identified 
for each specific lactation by performing independent 
GWAS for each lactation (Analysis 1), and second, we 
wanted to carry out a longitudinal GWAS (Analysis 2) 
and compare its results with those obtained in Analysis 1.

M ATERI A LS A N D M ETHODS

Animal material and phenotype recording

Milk production and composition phenotypes for 
three lactations were recorded in Murciano- Granadina 
goats distributed on 15 farms in Andalusia (Spain). 
The National Association of Murciano- Granadina 
Breeders (CAPRIGRAN) performs milk controls based 
on the AT4 method (one control every 4 weeks alternat-
ing mornings and evenings), so every goat has 9 or 10 
measurements per lactation that are made in intervals 
of 28–35 days. A total of 917 individuals had phenotypes 
available for the first lactation, while 805 and 660 goats 
had records for the second and third lactations, respec-
tively. The list of measured phenotypes included milk 

yield (in kg) standardised at 210 days (MY210), 240 days 
(MY240), and 305 days (MY305) of lactation as well as 
milk fat, protein, lactose, and dry matter percentages, 
and the natural logarithm of the somatic cell count di-
vided by 1000 (SCS, somatic cell score). Milk compo-
sition traits were corrected to a lactation of 210 days. 
Normality was assessed with the Shapiro test (Shapiro & 
Wilk, 1965) and traits deviating significantly from it (i.e. 
protein, fat, dry matter, and lactose percentages) were 
rank- based transformed using GenAbel in R (Aulchenko 
et al., 2007).

Genotyping with the goat SNP50 BeadChip

Genomic DNA was isolated from blood samples and 
genotyped with the Illumina Goat SNP50 BeadChip 
(Tosser- Klopp et  al.,  2014) as explained in Guan 
et  al.  (2020). Blood collection is a routine procedure 
performed by CAPRIGRAN, so it does not require ap-
proval by the Ethics Committee on Animal and Human 
Experimentation of the Universitat Autònoma de 
Barcelona. Genomic positions and single nucleotide pol-
ymorphism (SNP) identifiers were updated using plink 
1.9 (Chang et al., 2015), and the ARS1 goat genome was 
used as reference (Bickhart et al., 2017). The filtering of 
the data was performed with plink 1.9 (Chang et al., 2015) 
by removing: (1) SNPs with missing genotypes in more 
than 10% of the samples; (2) SNPs with a minor allele fre-
quency <0.01; and (3) SNPs deviating significantly from 
the Hardy–Weinberg equilibrium (p ≤ 1 × 10−5). Besides, 
individuals with a SNP missing rate over 10% were elimi-
nated from the dataset. After quality control and filter-
ing of the data, a total of 48 785 SNPs and data from 917 
(lactation 1), 805 (lactation 2), and 660 (lactation 3) goats 
were retained for downstream analyses.

Statistical analysis of the data

To identify SNPs significantly associated with dairy 
traits, we adjusted a univariate linear mixed model using 
two approaches: (1) independent GWAS were carried 
out for each lactation; and (2) a single GWAS combining 
data from the three lactations was performed (longitudi-
nal analysis).

Analysis 1 (three lactations considered 
independently)

Three independent GWAS, one for each lactation, were 
carried out with GemmA (Zhou & Stephens,  2012). The 
model is defined as follows:

where y is a vector of phenotypic records from 917 (lac-
tation 1), 805 (lactation 2), and 660 (lactation 3) goats; 

y =W ∝ +X� + u + �
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W = (w1, …, wc) is an n × c matrix of three fixed effects 
(farm, with 16 levels for lactation 1 and 15 levels for lac-
tations 2 and 3; year of birth, with 10 levels; litter size, 
with five levels); α is a c- vector of the corresponding fixed 
effects including the intercept; X is an n- vector of marker 
genotypes; β is the effect size of the marker (allele substi-
tution effect); u is an n- vector of random individual ge-
netic effects with a normal distribution u ∼ N(0, λ τ− 1 K), 
where τ− 1 is the variance of the residual error, λ is the 
ratio between the 2 variance components, and K is the 
relatedness matrix derived from SNP genotypes. Finally, 
ϵ is an n- vector of errors.

We corrected the results for multiple testing 
using the false discovery rate method (Benjamini & 
Hochberg,  1995), and the significance threshold was 
set to a q- value ≤0.05. Here, we have defined quantita-
tive trait loci (QTL) as genomic regions containing one 
or several SNPs (spaced less than 1 Mb from each other) 
significantly associated with the variation of a dairy 
phenotype in the Murciano- Granadina goat population 
under study. The boundaries of the QTL are defined by 
the most up/downstream SNPs ±500 bp. We also define 
lead SNP as the SNP displaying the most significant as-
sociation with a given phenotype. Results have been visu-
alised using custom scripts implemented in the GGplot2 
package (Wilkinson, 2011) on R (R Core Team, 2022).

Analysis 2 (longitudinal analysis)

In this second analysis, we did a longitudinal GWAS tak-
ing into account the joint phenotypic data from the three 
lactations. Herewith, we employed the rGLS function 
from the RepeatABEL package (Rönnegård et al., 2016) 
included in the GenAbel suite (Aulchenko et al., 2007). The 
model is very similar to the one implemented in GemmA 
(Zhou & Stephens, 2012), but allows the inclusion of ran-
dom effects into the model. It is defined as follows:

where y is a vector of phenotypic records from 660 goats 
with three lactations; W is a matrix of three fixed effects 
(farm, with 15 levels; year of birth, with 10 levels; litter 
size, with five levels); μ is a vector of the corresponding 
fixed effects including the intercept; xsnp is a vector of 
genotypes (coded as 0, 1, or 2) for each SNP; βsnp is the 
effect size of the SNPs (allele substitution effect); Z are 
incidence matrices relating the individuals to their ob-
served values; g is a vector of random individual genetic 
effects with a multivariate Gaussian distribution g ∼ N(0, 
�2

g
 Kn), where K is the relatedness matrix derived from 

SNP genotypes and n the number of individuals; p is a 
vector of permanent environmental effects with a multi-
variate Gaussian distribution p ∼ N(0, �2

P
In) where In is an 

identity matrix with subscript indicating its size. Finally, 
ϵ is an n- vector of errors with a multivariate Gaussian 

distribution ϵ ∼ N (0, �2

�
IN), where I is an identity matrix 

and N is the total number of observations. The false 
discovery rate method (Benjamini & Hochberg,  1995) 
was used to correct for multiple testing and ggplot2 
(Wilkinson, 2011) was employed to visualise the results 
of the GWAS as Manhattan plots.

RESU LTS A N D DISCUSSION

The distribution of each phenotype is depicted in 
Figures  S1–S3. Summary statistics for each trait and 
lactation are displayed in Table  1. Pearson phenotypic 
correlations (rp) between traits were estimated with the 
r software (R Core Team, 2022). Positive and significant 
correlations were observed between the same trait meas-
ured in different lactations (Figure S4 and Table S1). As 
shown in Figure  S4, milk yield and composition traits 
showed low to moderate negative correlations (r = −0.05 
to −0.2).

Analysis 1 made it possible to identify several associ-
ations that reached the genome- wide significance level 
(Table 2, Figure 1, and Figures S5–S7). The most rele-
vant result corresponded to one region on chromosome 6 
(74.8–94 Mb) which was consistently associated (q- value 
<0.05) with milk protein percentage in the three lactations 
(Figure 1 and Table 2). In contrast, several associations 
were not replicated in different lactations (Figures S8–
S10). When analysing lactation 1 data, for instance, 
we found several genetic markers significantly associ-
ated with lactose percentage on chromosome 2 (125.96, 
129.77–131.01 Mb) that did not yield genome- wide signif-
icant associations with such trait in lactations 2 and 3 
(Figure 1, Figures S9 and S10). At the chromosome- wide 
level of significance, this lack of positional concordance 
was even more evident (Table  S2). These discrepancies 
could be due to differences in sample size across lacta-
tions, e.g. data from 917 and 660 goats are available for 
lactations 1 and 3, respectively. However, when we per-
formed three GWAS (one per lactation), using the same 
660 individuals in each analysis, we obtained identical 
results, and the very same lack of QTL positional con-
cordance was detected. Cho et  al.  (2015) carried out a 
GWAS in a population of 456 Holstein proven bulls with 
estimated breeding values of milk production traits re-
corded in different lactations (from first to fourth lac-
tation) and genotyped with the Bovine SNP50 v2 chip 
(Illumina). They found that most of SNPs displaying 
significant associations with estimated breeding values 
showed different associations in first and subsequent 
lactations, and they also noted that genetic correlations 
between the first and subsequent lactations were weaker 
than those between the second, third, and fourth lacta-
tions (Cho et al., 2015). Moreover, significant genotype 
by lactation stage interactions have been also reported 
(Lu et al., 2020). In this regard, Lu et al. (2020) reported 
that the magnitude of associations between QTL on 

y =W� + xsnp�snp +Zg +Zp + �
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BTA14 for milk yield, lactose yield, and fat content and 
on BTA19 for lactose content changed during lactation 
in Dutch Holstein cows. In addition, Mucha et al. (2014) 
determined that the heritability of milk yield in cross-
bred dairy goats changes across lactations and within 
lactation, probably because of the differential impact 
of environmental and genetic influences on phenotypic 
variance. In this regard, Mucha et  al.  (2014) reported 
that heritability for milk yield in the first lactation was 
higher than in subsequent lactations, and that heritabil-
ity reached its highest peak in the middle of lactation, 
declining at the beginning and end of it. Besides, genetic 
correlations between milk yield in the first and second 
lactation ranged between 0.57–0.88 (Mucha et al., 2014). 
These findings do not necessarily imply that different 
measurements of the same phenotype obtained in dis-
tinct lactations should be considered as independent 
traits, since environmental variance and/or interactions 
between genetic and environmental factors may change 
over time.

The longitudinal analysis (Analysis 2) yielded genome- 
wide significant associations between one chromosome 6 
(78.51–93.50 Mb) region containing the casein genes and 
milk protein and dry matter contents as well as between 

one chromosome 2 region (129.80–130.75 Mb) and lac-
tose percentage, thus confirming the results obtained 
in Analysis 1 (Table  2, Figure  1; Table  S3, Figures  S11 
and S12). However, with the longitudinal analysis it 
was possible to identify a larger number of SNPs sig-
nificantly associated with milk traits than in the com-
bined results of the first analysis, e.g., one chromosome 
6 region (17.02 Mb) was associated with milk yield at 210 
and 240 days, and two regions on chromosomes 4 and 
9 were associated with protein percentage. Detailed in-
formation about the effect of each SNP within the QTL 
regions can be found in Table S3. Associations attaining 
the chromosome- wide level of significance are reported 
in Table S4.

The increased number of QTL detected by longitudi-
nal analysis is probably due to the fact that the repeated 
measurements model implemented in RepeatABEL has 
more statistical power than simpler models using single 
or averaged measurements (Rönnegård et al., 2016). By 
contrast, discrepancies between the results obtained 
in Analyses 1 and 2 could be also attributed to the use 
of different methods of analysis. Indeed, Manunza 
et al. (2014) performed a GWAS for serum lipids in pigs 
with four different software packages (emmAx, GemmA, 

Lactation Trait Mean SD Min Max

Lactation 1 Fat, % 5.21 0.75 3.14 10.57

Protein, % 3.59 0.36 2.55 5.55

Lactose, % 4.86 0.28 3.54 6.41

Dry matter, % 8.79 1.03 6.06 16.11

SCS 6.29 0.95 3.68 9.18

MY210, kg 412.81 127.85 21.95 963.43

MY240, kg 453.27 147.84 78.84 1089.19

MY305, kg 506.12 189.99 85.95 1176.45

Lactation 2 Fat, % 5.15 0.88 3.18 8.12

Protein, % 3.6 0.53 2.38 4.82

Lactose, % 4.77 0.53 3.44 6.15

Dry matter, % 8.76 1.29 5.63 12.94

SCS 6.72 0.95 3.43 9.55

MY210, kg 523.74 147.49 26.79 1026.62

MY240, kg 584.57 173 138.6 1166.51

MY305, kg 668.36 222.5 227.6 1417.63

Lactation 3 Fat, % 4.68 0.81 1.58 8.68

Protein, % 3.43 0.51 1.43 6.04

Lactose, % 4.61 0.72 1.87 13.05

Dry matter, % 8.12 1.19 3.01 14.72

SCS 6.77 0.90 4.01 9.99

MY210, kg 498.93 192.2 16.04 1010.69

MY240, kg 555.99 225.06 146.2 1155.08

MY305, kg 639.76 283.34 170.7 1445.95

Abbreviations: min, minimum value; max, maximum value; MY210, milk yield in kg at 210 days of lactation; 
MY240, milk yield in kg at 240 days of lactation; MY305, milk yield in kg at 305 days of lactation; SD, 
standard deviation; SCS, somatic cell score.

TA B L E  1  Summary statistics of 
milk production and composition traits 
recorded in 917, 805, and 660 Murciano- 
Granadina goats during lactations 1, 2, 
and 3, respectively.
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GenAbel and plink), by using the same data set in all 
analyses, and found a good, but not perfect, consistency 
between emmAx, GemmA and GenAbel outputs, while re-
sults obtained with plink were quite discordant. In the 
current study, the GWAS performed in Analysis 1 was 
conducted with the GemmA software, which assumes a 
linear mixed model where β is the effect size of a given 
SNP (Zhou & Stephens, 2012). The magnitude of β is es-
timated via a maximum likelihood or restricted maxi-
mum likelihood approach, and then for each SNP the 
null hypothesis (H0: β = 0) is contrasted against the alter-
native one (H1: β ≠ 0) by computing exact association test 
statistics such as Wald or likelihood ratio tests (Zhou & 
Stephens, 2012). In contrast, Analysis 2 was performed 
with the RepeatABEL software that also assumes a lin-
ear mixed model, but, in contrast with GemmA, includes a 
permanent environmental effect term to model repeated 
measurements (Rönnegård et  al.,  2016). RepeatABEL 
proceeds in two steps: first residuals and random effects 
distributions are estimated in a model that does not con-
sider the SNP effects. Subsequently, a model including 
the SNP effect is fitted. Since SNP effects are partly 

encapsulated within the random polygenic effect fitted in 
the first model, the magnitude of such polygenic effects 
might be overestimated (this issue is broadly discussed in 
Rönnegård et al., 2016). In RepeatABEL, marker effects 
(β) are estimated through a least squares approach, in-
stead of maximum likelihood, and similar test statistics 
as those reported for GemmA (e.g. Wald test) are calcu-
lated to contrast the null hypothesis (H0: β = 0) with the 
alternative (H1: β ≠ 0) one and derive the corresponding 
p- values (Rönnegård et al., 2016).

Based on the linkage disequilibrium estimates ob-
tained by Guan et al. (2020) in the same goat population, 
we retrieved all protein- coding genes mapping within a 
1- Mb window around the significantly associated SNPs 
taking as a reference the NCBI ARS1 reference genome 
(GCF_001704415.1). Genes were functionally annotated 
using DAVID bioinformatics tools (Huang et al., 2009) 
with goat as reference database (species- specific data 
were retrieved from NCBI, Uniprot, Ensembl, Gene 
Ontology, Kyoto Encyclopaedia of Genes and Genomes, 
among others). Both Analyses 1 and 2 provided very 
strong evidence about the key role of casein gene 

TA B L E  2  Genome- wide significant SNPs associated with milk traits recorded in Murciano- Granadina goats with three available 
lactations (allele frequencies, substitution effects and statistical significance correspond to the lead SNP).

Trait Lead SNP Chr Position, Mb
# 
SNPs AF A1 A0 β ± SE p- Value q- Value

Univariate analysis (three lactations considered independently)

Lactation 1

Protein, % rs268290908 6 74.8–94.6 40 0.42 A G −0.36 ± 0.05 7.47E- 14 3.67E- 09

rs268234071 6 99.76 1 0.29 G A −0.22 ± 0.05 1.72E- 05 0.026

rs268258054 6 103.34 1 0.13 G A −0.29 ± 0.07 1.76E- 05 0.026

rs268268932 9 82.43 1 0.21 A G −0.26 ± 0.06 1.67E- 05 0.026

Lactose, % rs268253126 2 125.96 1 0.27 A G −0.27 ± 0.05 8.30E- 07 0.01

rs268253425 2 129.77–131.01 5 0.21 A G −0.44 ± 0.06 1.42E- 13 7E- 0.9

Lactation 2

Protein, % rs268290908 6 85.57–87.85 11 0.43 A G −0.41 ± 0.05 1.40E- 15 6.87E- 11

Dry matter, 
%

rs268260283 6 81.08 1 0.28 A G 0.28 ± 0.06 2.87E- 06 0.04

rs268290908 6 86.85–86.90 2 0.43 A G −0.3 ± 0.05 7.50E- 09 0.0003

Lactation 3

Protein, % rs268290908 6 83.2–86.9 5 0.43 A G −0.3 ± 0.05 8.17E- 08 0.004

Longitudinal analysis (3 lactations considered jointly)

Protein, % rs268288251 4 113.17 1 0.38 A C 0.21 ± 0.05 2.93E- 05 0.044

Protein, % rs268290909 6 78.51–93.50 32 0.06 A G −0.37 ± 0.04 1.11E- 16 5.46E- 12

Protein, % rs268235611 7 107.74 1 0.34 A G 0.18 ± 0.04 3.39E- 05 0.048

Protein, % rs268268930 9 82.51 1 0.34 A G −0.24 ± 0.05 3.29E- 06 0.008

MY210, kg rs268284580 6 17.02 1 0.2 A G 41.28 ± 8.38 8.40E- 07 0.041

MY240, kg rs268284580 6 17.02 1 0.2 A G 48.13 ± 9.83 9.94E- 07 0.048

Dry matter, % rs268290909 6 86.20–86.94 6 0.06 A G −0.21 ± 0.04 2.68E- 07 0.013

Dry matter, % rs268273385 6 92.85 1 0.42 A G −0.28 ± 0.04 1.36E- 06 0.022

Lactose, % rs268253426 2 129.80–130.75 3 0.29 G A −0.30 ± 0.05 4.11E- 10 2.02E- 05

Abbreviations: AF, alternative allele frequency; A1, alternative allele; A0, reference allele; β ± SE, allele substitution effect ± standard error; Chr, chromosome; # 
SNPs, number of SNPs within a QTL region significantly associated with a specific dairy trait.
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F I G U R E  1  Negative log10 q- values (y- axis) of the associations between SNPs and milk production and composition traits are plotted 
against the genomic location of each SNP marker (x- axis). Markers on different chromosomes are indicated with different colours. Two 
analyses have been performed: (a) independent genome- wide association studies (GWAS) for traits measured in each one of the three lactations; 
and (b) a single longitudinal GWAS jointly considering traits measured in the three lactations. Only traits with genome- wide significant results 
are plotted. The dashed red line indicates the genome- wide significance level, corresponding to a −log10 (q = 0.05) = 1.30.
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variability on the determinism of milk protein content 
in Murciano- Granadina goats. Caseins are the major-
ity proteins in milk and several polymorphisms in the 
CSN1S1, CSN1S2, CSN2, and CSN3 genes have been 
associated, often causally, with milk protein content 
as well as with many other dairy and cheese traits [re-
viewed by Amills et al.  (2012), Martin et al.  (2002) and 
Rahmatalla et al. (2022)]. In Murciano- Granadina goats, 
the CSN1S1 genotype has been significantly associated 
with increased levels of milk CSN1S1 and with the cur-
dling rate (Caravaca et al., 2008, 2011). While a couple of 
studies have reported that the CSN1S1 genotype is not 
significantly associated with milk protein, casein, or fat 
concentrations in Murciano- Granadina goats (Caravaca 
et al., 2008, 2009), the opposite result has been obtained 
in other investigations (Pizarro et  al.,  2019; Pizarro 
Inostroza et al., 2020). Furthermore, the polymorphism 
of the CSN3 gene has been associated with milk protein 
and casein levels and with rennet coagulation time in 
this Spanish breed (Caravaca et al., 2009, 2011).

It is noteworthy that the markers displaying the most 
significant associations with protein percentage in Analysis 
1 (rs268290908) and Analysis 2 (rs268290909) are located 
about 1 Mb away from the casein genes, suggesting that a 
causal mutation might be located in an intergenic region 
containing a regulatory element. Regarding the chromo-
some 2 QTL for lactose percentage, it is worth mention-
ing that the very same region was identified by Costa 
et  al.  (2019) as associated with milk lactose content in 
Fleckvieh cattle. This region contains the ORMDL sphin-
golipid biosynthesis regulator 1 (ORMDL1) gene, which is 
involved in the negative regulation of the synthesis of cer-
amides which are necessary for the production of sphingo-
lipids (Green et al., 2021). Galactose can be a component 
of sphingolipids (Quinville et al., 2021) and it is also a key 
precursor in the synthesis of lactose. The hydroxyacyl- 
CoA dehydrogenase (HADH, chromosome 6: 17 529 001–
17 573 045) locus, mapping close to QTL (chromosome 6: 
17.02 Mb) associated with milk yield at 210 and 240 days of 
lactation, is another interesting candidate gene because it 
encodes an enzyme that catalyses the penultimate reaction 
in the β- oxidation of fatty acids and its inactivation leads 
to hypoketotic hypoglycaemia (Clayton et al., 2001). Such 
a decrease in available blood glucose can have important 
consequences on lactation since this sugar is the precur-
sor of lactose, which has key osmoregulatory effects on the 
mammary gland (Liu et al., 2013).

In summary, the implementation of a longitudinal 
GWAS integrating data from the three lactations con-
firmed the QTL for protein content on chromosome 6 
as well as the QTL for lactose on chromosome 2, and it 
also uncovered several QTL not identified in the three 
separate GWAS. This finding is consistent with the in-
creased statistical power of longitudinal GWAS (when 
compared to the non- longitudinal ones) and supports its 
widespread use in the genetic analysis of dairy traits.
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