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Abstract: The following differential quadratic polynomial differential system dx
dt = y − x, dy

dt =

2y − y
γ − 1

(
2 − γy − 5γ − 4

γ − 1
x
)

, when the parameter γ ∈ (1, 2] models the structure equations of

an isotropic star having a linear barotropic equation of state, being x = m(r)/r where m(r) ≥ 0 is
the mass inside the sphere of radius r of the star, y = 4πr2ρ where ρ is the density of the star, and
t = ln(r/R) where R is the radius of the star. First, we classify all the topologically non-equivalent
phase portraits in the Poincaré disc of these quadratic polynomial differential systems for all values
of the parameter γ ∈ R \ {1}. Second, using the information of the different phase portraits obtained
we classify the possible limit values of m(r)/r and 4πr2ρ of an isotropic star when r decreases.
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1. Introduction and the Main Results

The structure equations of an isotropic star having a linear barotropic equation of
state are

ẋ = y − x = p(x, y),

ẏ = 2y − y
γ − 1

(
2 − γy − 5γ − 4

γ − 1
x
)
= q(x, y),

(1)

where the parameter γ varies in the interval (1, 2], and the dot denotes the derivative with
respect to the variable t = ln(r/R) being R the radius of the star. Therefore, from the
physical point of view, we are interested in the solutions defined in the interval t ∈ (−∞, 0).
Here x = m(r)/r where m(r) ≥ 0 is the mass inside the sphere of radius r of the star,
y = 4πr2ρ being ρ the density of the star. For more details on this differential system (1)
see [1–3], and for additional information on the isotropic stars see [4–8].

The objective of this paper is double. First, we study the phase portraits of the
quadratic systems (1) modeling the structure equations of an isotropic star having a linear
barotropic equation of state from a mathematical point of view, i.e., for all the values of
parameter γ ∈ R \ {1} where the system is defined. These phase portraits are described in
the Poincaré disc, in this way we control the orbits that escape or come from infinity, see
Theorem 1. Second from the different phase portraits obtained, we classify the possible
limit values of m(r)/r and 4πr2ρ of an isotropic star when r decreases, as far as we know
this information on the behavior of the isotropic stars is new, see Theorem 2.

We remark that from the physics point of view and since x > 0 and y > 0 we are
mainly interested in the dynamics of the differential system (1) in the positive quadrant
Q = {(x, y) ∈ R2 : x > 0, y > 0} of R2.
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Note, that the straight line y = 0 is invariant because when y = 0 we have that ẏ = 0.
Therefore, since ẋ|x=0 = y the positive quadrant Q is positively invariant, i.e., orbits of
system (1) can enter in the quadrant Q through the positive y-axis but never orbits of the
quadrant Q can exit from Q.

On the other hand, the differential system (1) is a polynomial differential system of
degree 2 because the maximum of the degrees of the polynomials p(x, y) and q(x, y) is 2.
The polynomial differential systems of degree 2 are called simply quadratic systems and
they have been intensively studied, see for instance the books [9–11] and the hundreds of
references quoted therein.

The domain of the definition of the differential system (1) is the whole plane R2.
The decomposition of R2 as a union of the orbits of system (1) is the phase portrait of the
differential system (1). In particular, a phase portrait shows where each orbit is born and
where each orbit dies, whether they are equilibrium points, or periodic orbits. In summary,
a phase portrait provides all the qualitative information about the orbits of a differential
system. For more information about the phase portraits of the planar differential systems
see for instance [12].

The phase portraits of the polynomial differential systems in R2 are usually described
in the so-called Poincaré disc. Roughly speaking the Poincaré disc is the unit closed disc
D2 whose interior has been identified with the plane R2 and whose boundary, the circle
S1 is identified with the infinity of R2. Note that in the plane R2 we can go to infinity in
as many directions as points have the circle S1. For more details on the Poincaré disc see
Chapter 5 of [12].

As usual two-phase portraits in the Poincaré disc D2 are topologically equivalent if there
is a homeomorphism of D2 which sends orbits of the first phase portrait into orbits of the
second phase portrait preserving or reversing the sense of all the orbits.

Our main results are described in the next two theorems.

Theorem 1. The quadratic system (1) when γ varies in R \ {1} has 13 topologically non-equivalent
phase portraits in the Poincaré disc. These are the phase portraits γ1, γ2, γ3, γ6, γ7, γ8, γ9, γ12,
γ13, γ14, γ15, γ19 and γ22 given in Figure 1.

Theorem 1 is proved in Section 2.
In Figure 1 phase portraits appear which are needed to complete the bifurcation

diagram as described in the proof of Theorem 1.

Theorem 2. The isotropic star having a linear barotropic equation of state modeled by the differential
system (1) with 1 < γ ≤ 2 verifies that

(i) when r → 0 there is a set of initial conditions of dimension two such that the orbits determined
for these conditions satisfy that

m(r)
r

→ ∞ and 4πr2ρ → 0;

(ii) There is another set of initial conditions of dimension two such that the orbits determined for
these conditions when r tends to some finite value r0 (which depends on the initial conditions)
satisfy that

m(r)
r

→ 0 and 4πr2ρ → k ≥ 0,

where k can take any positive value when the initial conditions vary;

(iii) If
m(R)

R
= 4πR2ρ = −

2
(
γ2 − 2γ + 1

)
γ2 + 4γ − 4

,
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then
m(r)

r
= 4πr2ρ = −

2
(
γ2 − 2γ + 1

)
γ2 + 4γ − 4

,

for all r ∈ (0, R]; finally

(iv) There is a set of initial conditions of dimension one such that he orbits determined by these
initial conditions when r → 0 satisfy that m(r)/r and 4πr2ρ tend to

−
2
(
γ2 − 2γ + 1

)
γ2 + 4γ − 4

.

Theorem 2 is proved in Section 3.

Figure 1. Phase portraits of the quadratic systems (1).
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2. Proof of Theorem 1

Even the study of the bifurcation diagram of this system is very easy since it has just
one parameter, we will make use of the Theory of Invariants developed by the Sibirskii
school, and fully developed for quadratic systems in the book [9]. The invariants (and
also the comitants) allow us to easily determine all the geometric features provided by the
system in a methodic and consistent way. These geometric features may even exceed the
most simple topological features to which later we will reduce the classification.

Each one of these geometric features is characterized using some of the following
16 invariant polynomials:{

µ0, µ1, µ2, U, W4, T3, T4, F1, . . . ,F4, B1, B2, B3, η
}

. (2)

The invariants B1 to B3 can be found in page 14 of [13]. The rest of the invariants can be
found on pages 121–128 of [9].

Apart from the geometric properties of the singularities, there may also exist bifur-
cations due to separatrix connections. If these connections are invariant straight lines or
polynomial curves, they may also be determined by means of algebraic invariants. But they
may also be of non-algebraic nature in which case, only an analytical and numerical study
may detect them. Anyway, we will not meet any of them in this family.

The first important detail to be remarked of this system is that it is not defined for
γ = 1. Thus the bifurcation diagram will show a jump from cases with γ < 1 to cases with
γ > 1 and no continuity or coherence must be expected from one to the other.

Next, we detect that invariants/comitants µ0 = µ1 are equal to zero which proves
that two finite singularities have already escaped to infinity, and they will remain there
for all the family. Moreover, for every γ the straight line y = 0 is invariant. For some
values of γ we may have more invariant straight lines. It is a known result that quadratic
systems having an invariant straight line can have at most one limit cycle which is either
stable or unstable [14], and that quadratic system having two invariant straight lines cannot
have limit cycles [15]. Moreover, in this case, the systems have double multiplicity of
the line at infinity since we may perturb the first equation by adding a linear factor as
x′ = (y − x)(1 + εx). Since it is known that a quadratic system with two invariant lines
cannot have limit cycles, the fact that there exists an invariant line plus a double line at
infinity also voids the existence of limit cycles. The reason is that if such a system would
have a limit cycle, the mentioned perturbation would produce the second straight line
while conserving the limit cycle.

Since we already have µ0 = µ1 = 0, the next relevant comitant is

µ2 =

(
γ2 + 4γ − 4

)
y
(
5γx − 4x + γ2y − γy

)
(γ − 1)4

which if it vanishes (for some γ), will determine if a third singularity escapes to infinity.

We will also need the invariant η = γ2(5γ−4)2

(γ−1)6 which if equal to zero, determines if two
infinite singularities coalesce.

The comitant U =
4(γ − 2)2y2(x − y)2(5γx − 4x + γ2y − γy

)2

(γ − 1)6 = 0 tells (in this con-

crete system) that the two finite singularities coalesce.

And finally, the invariant T4 =
(γ − 3)γ(5γ − 4)2(3γ2 − 4

)
(γ − 1)8 = 0 tells that one finite

singularity is weak (if T3 ̸= 0), that is, the trace of its Jacobian matrix is zero. This may
imply that either it is a weak focus (or a center if more invariants vanish) or it is a weak
saddle. There are also invariants to distinguish all these possibilities, and even invariants
to determine the level of weakness of the weak point. Anyway, since this system has
just one parameter, once T4 = 0 the system is unique and the weak singularity is fully
determined. If T4 = T3 = 0 then either there are two finite weak singularities, or there is
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a finite nilpotent singularity, or a linearly zero singularity also called intricate singularity
in [9], or a singularity with trace zero has escaped to infinity (as it happens for γ8 and γ12).

Another interesting geometric feature to capture is whether the system has or does not
have invariant straight lines. Sometimes these lines will not imply a separatrix connection
and thus, breaking them will not produce a different phase portrait. However, at other
times, on these lines, we will find separatrix connections and they must be included in the
bifurcation diagram. The invariants/comitants that will help us to find those invariant
straight lines are B1, B2 and B3. Since B1 = B2 = 0 for this family, we must just concentrate
on B3 which is

B3 = −
3(5γ − 4)

(
3γ2 − 4

)
x2y2

(γ − 1)4 .

We normally add one more invariant in every study which is W4. This invariant
detects the transition from a node to a strong focus when the invariant changes its sign.
This does not produce a topological change in the phase portrait but for the quadratic
systems bounds the regions where limit cycles may exist because if a quadratic system has
a limit cycle this must surround a focus, see [16]. Since the fact that an antisaddle is a node
or a focus may have some physical interest, we have preferred to include it.

In summary, extracting from the different invariant/comitants the equations that must
be solved for obtaining the mentioned qualitative information are

γ2 + 4γ − 4 = 0,
γ(5γ − 4) = 0,

γ − 2 = 0,
(γ − 3)γ(5γ − 4)(3γ2 − 4) = 0,

(5γ − 4)(3γ2 − 4) = 0.

(3)

Then easy computations determine that the bifurcations points are the values

γ2 = −2(1 +
√

2), γ6 = −2
√

3/3, γ8 = 0,
γ12 = 4/5, γ14 = 2(

√
2 − 1), γ18 = 1,

γ20 = 2
√

3/3, γ22 = 2, γ26 = 3.
(4)

We have enumerated them with even numbers and left some gaps in order to leave space
for intermediate generic cases and the values where W4 = 0. We have also assigned a place
for the case γ = 1 even knowing that the differential system is undefined there so as to
maintain the coherence in the numeration between generic cases (odd) and singular (even).

The invariant

W4 = γ2(3γ − 5)2(5γ − 4)4
(

γ5 − 57γ4 + 40γ3 + 408γ2 − 624γ + 240
)

only changes sign on the roots of the component of degree 5. We must solve it numerically.
And now we add intermediate values between each singular values. So to obtain all the
bifurcation diagram of this family.

γ1 = −5, γ2 = −2(1 +
√

2), γ3 = −4,
γ4 ≈ −2.9649 . . . , γ5 = −2, γ6 = −2

√
3/3,

γ7 = −1/2, γ8 = 0, γ9 = 2/5,
γ10 =≈ 0.76 . . . , γ11 = 78/100, γ12 = 4/5,
γ13 = 81/100, γ14 = 2(

√
2 − 1), γ15 = 84/100,

γ16 ≈ 0.865822 . . . , γ17 = 9/10, γ18 = 1,
γ19 = 93/100, γ20 = 2

√
3/3, γ21 = 3/2,

γ22 = 2, γ23 = 21/10, γ24 ≈ 2.17019 . . . ,
γ25 = 5/2, γ26 = 3, γ27 = 5,
γ28 ≈ 56.1619 . . . , γ29 = 60.

(5)
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Now using the program P4 (see [12]) we obtain a picture of every phase portrait
and we describe briefly the bifurcations, explaining what has happened when we move
from one case to another one. In fact, we additionally have verified that all the local
phase portraits of the finite and infinite equilibrium points of the differential system (1)
are the ones obtained by the program P4. Thus, the local phase portraits of the hyperbolic
equilibrium points (i.e., the ones such that the eigenvalues of the linear part of the system
evaluated on them have real part non-zero) have been computed with Theorem 2.15 of [12].
The local phase portraits of the semi-hyperbolic or also called semi-elemental equilibrium
points (i.e., the ones such that one and only one of the eigenvalues of the linear part of
the system evaluated on them is zero) have been computed with Theorem 2.19 of [12].
The local phase portraits of the nilpotent equilibrium points (i.e., the ones such that both
eigenvalues of the linear part of the system evaluated on them are zero but the linear part
is not identically zero) have been computed with Theorem 3.5 of [12].

We note that when a saddle-node or a nilpotent equilibrium is at infinity the Theorems 2.19
and 3.5 are not sufficient in order to determine the position of the sectors of these points
with respect to the line.

Once we know all the local phase portraits of the finite and infinite equilibrium points
in order to determine the global phase portraits in the Poincaré disc for the different values
of the parameter γ we only need to control where start and end the separatrices of the
differential system. For the differential systems (1) the separatrices are all the orbits of
the infinity, the finite equilibrium points and the separatrices of the hyperbolic sectors
of the finite and infinite equilibrium points, for more details see Section 1.9 of [12]. The
limit cycles, when they exist, also are separatrices but the differential systems (1) have no
separatrices for the reason previously explained.

For γ1 we see a saddle at the origin and a finite node. The infinite singularity N1 =

[1 : 0 : 0] is a saddle-node(1
1)SN (see notation in Section 3.7 or Appendix A of [9]). There

is another infinite singularity at N2 = [0 : 1 : 0] which is an elemental node, and there is
a third equilibrium point at infinity (on the first and third quadrant) N3 which is also a

(1
1)SN. The phase portrait is completely determined by the invariant straight line and the

distribution of singularities.
For γ2 we see that the finite node has coalesced with the infinite singularity N3

producing a (2
1)N.

For γ3 the infinite singularity N3 ejects a node into the first quadrant and becomes

again a (1
1)SN.

At γ4 the node becomes a focus. So the phase portrait is equivalent to the previous
one and also to the case γ5.

At γ6 the focus becomes weak. But also other invariants, such as F1, F2, and F3F4
become zero, and thus the singularity is a center. This forces the existence of a separatrix
connection between the saddle at the origin and the singularity N3. This connection is
required to form the graphic that encloses all the periodic orbits surrounding the center.
Moreover, the connection takes place in an invariant straight line. This system is known as
Vulpe17 in the classification [17]. This notation (for quadratic systems with centers) was
introduced later in papers like [18].

At γ7 the center becomes again a focus. Before it was a repellor and now it is an
attractor.

At γ8 the infinite singularity N3 coalesces with N2 producing a nilpotent singularity
whose local phase portrait is formed by one elliptic and one hyperbolic sector separated by
two parabolic sectors.

For γ9 the infinite singularity breaks. The singularity N3 is now in the second-fourth
quadrant. Somehow, the singularity N3 has transited over N1 and this has required a higher
multiplicity singularity.

At γ10 the focus turns back into a node. So the phase portrait is equivalent to the
previous one and also to the case γ11.
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At γ12 the infinite singularity N3 coalesces with N1 producing an intricate singularity
that forces the existence of two parallel invariant straight lines and one hyperbolic sector
on each side of infinity. Even though this singularity may seem topologically equivalent
(locally) to a semi-elemental saddle-node, it is not because the hyperbolic sectors would
have to be in different semiplanes. Moreover, the number of directions arriving at the
singularity clearly show their highest codimension.

For γ13 the infinite singularity breaks. The singularity N3 is now again in the third-first
quadrant. For γ14 the finite node coalesces again with N3. N3 is again a semi-elemental
node of multiplicity 3.

For γ15 the singularity N3 ejects a node into the third quadrant.
At γ16 the node turns back into a focus again. So the phase portrait is equivalent to

the previous one and also to the case γ17.
At γ18 we have γ = 1 and the system is undefined. No continuity and no coherence

may be expected from what we had before and what we will meet after.
For γ19 we must start describing the phase portrait from zero. We have a node at the

origin and a saddle on the upper semiplane. The infinite singularity N1 is a (1
1)SN as well as

N3 which is at the second-fourth quadrant while N2 is a node. We deploy the positive part
of halfline y = 0 with dashes to recall it is an invariant straight line, but it is not a separatrix.

For γ20 we have again a finite weak singularity, but since the origin is a node, it cannot
be a weak focus. So the saddle must be weak. Since there is no possibility of the existence
of a loop formed by separatrices of this saddle, this produces no topological interest. So,
this is equivalent to the previous case and γ21 is also equivalent to γ19.

For γ22 the two finite singularities coalesce forming a semi-elemental saddle-node
sn(2) (see notation in Section 3.7 or Appendix A of [9]). For γ23 the origin splits, it remains
as a saddle and ejects a node into the lower halfplane.

At γ24 the node turns back into a focus. So the phase portrait is equivalent to the
previous one and also to the case γ25.

For γ26 we have again a finite weak singularity, and even both focus and saddle have
the possibility to be weak, it happens that again the saddle is the weak singularity. Since
there is no possibility of the existence of a loop formed by separatrices of this saddle, this
produces no topological interest. So, this is equivalent to the previous case and γ27 is also
equivalent to γ25.

And at γ28 the focus turns back into a node again. So the phase portrait remains
topologically equivalent and also at γ29. Notice also that this phase portrait is topologically
equivalent to the case with γ1.

It must be remarked that this kind of study must normally be conducted in a family of
systems whose parameter space may be compactified in a projective space. In this way, one
can control also what may happen when one parameter escapes to infinity. Somehow, we
may even study the phase portrait when one parameter is ∞. Normally there we find some
kind of bifurcation that links both sides (positive and negative of the parameter). Then, by
confirming the coherence between the phase portrait at ∞ and the largest (and smallest)
γ of our bifurcation, we cannot forget any other large singular value of the partition. In
general, one cannot affirm that he has found all possible phase portraits, but one can be
certain that the whole set is complete and coherent, and that no new slice is needed to
obtain the full picture of the diagram. If some other bifurcation occurs, this may not be
related to singular points, and whatever occurs, must be undone by another unfound
singular slice. This may theoretically occur in a very small part of the parameter space
although we have never found such phenomena.

In the current family, it seems that the case γ = ∞ is not a bifurcation since the phase
portrait we obtain for γ > γ23 is topologically equivalent to the case γ < γ2. However, we
have a problem with the undefined case γ = 1 which will produce a similar phenomena as
the described case when γ → ∞. That is, we have detected the biggest singular value for
γ lower than 1 and the lowest greater than 1. But, in general, we cannot know for sure if
there are other phantom singular values of γ very close to 1.
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As this family has a permanent invariant straight line, and there are so few separatrices,
it is not hard to see that the phase portrait in every one of the parts that we have divided
the straight line, is the corresponding one of Figure 1.

This completes the proof of Theorem 1.

3. Proof of Theorem 2

The phase portrait of the differential system (1) when γ ∈ (1, 2] is topologically
equivalent to the phase portrait γ19. So the restriction of this phase portrait to the positive
quadrant Q is shown in Figure 2.

Figure 2. Restriction of system (1) to the first quadrant.

Since t = ln(r/R) and r varies in the interval (0, R], t varies in the interval (−∞, 0].
Taking into account that the meaning of the variables x and y are x = m(r)/r > 0 and
y = 4πr2ρ > 0, from Figure 2 it follows that all the orbits which are on the right-hand side
of the curve formed by the separatrices s1 and s2 of the saddle point

P =

(
−

2
(
γ2 − 2γ + 1

)
γ2 + 4γ − 4

,−
2
(
γ2 − 2γ + 1

)
γ2 + 4γ − 4

)
,

when r → 0 satisfy that
m(r)

r
→ ∞ and 4πr2ρ → 0.

Hence statement (i) is proved.
While all the orbits are on the left-hand side of the curve formed by the separatrices s1

and s2 of the saddle point P satisfy that

m(r)
r

→ 0 and 4πr2ρ → k > 0, (6)

for some finite negative value of t, i.e., there is a positive value r = r0 < R for which (6)
holds. This completes the proof of statement (ii).

Clearly, the equilibrium point p proves statement (iii).
There are two special orbits, the separatrices s1 and s2 of the saddle P such that when

r → 0 they tend to the equilibrium point P. So statement (iv) is proved.
This completes the proof of Theorem 2.

4. Conclusions

In Theorem 1 we have classified all the topologically distinct phase portraits in the
Poincaré disc of the family of quadratic systems (1), i.e., of the structure equations of an
isotropic star having a linear barotropic equation of state.



AppliedMath 2024, 4 78

In Theorem 2, using the information provided in Theorem 1, if m(r) ≥ 0 is the mass
inside the sphere of radius r of an isotropic star, and ρ is the density of the isotropic star,
we have classified the possible limit values of m(r)/r and 4πr2ρ when r decreases.
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