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Covert Communication With Gaussian Noise: From
Random Access Channel to Point-to-Point Channel

Masahito Hayashi , Fellow, IEEE, and Ángeles Vázquez-Castro , Senior Member, IEEE

Abstract— We propose a covert communication protocol for
the spread-spectrum multiple random access with additive white
Gaussian noise (AWGN) channel. No existing paper has studied
covert communication for the random access channel. Our
protocol assumes binary discrete phase-shift keying (BPSK)
modulation, and it works well under imperfect channel state
information (I-CSI) for both the legitimate and adversary
receivers, which is a realistic assumption in the low power regime.
Also, our method assumes that the legitimate users share secret
variables in a similar way as the preceding studies. Although
several studies investigated the covert communication for the
point-to-point communication, no existing paper considers the
covert communication under the above uncertainty assumption
even for point-to-point communication. Our protocol under the
above uncertainty assumption allows O(n) legitimate senders
and O(n/ logn) active legitimate senders. Furthermore, our
protocol can be converted to a protocol for point-to-point com-
munication that works under the above uncertainty assumption.

Index Terms— Covert communication, information hiding,
additive white Gaussian noise, random access channel, central
limit theorem, universal code.

I. INTRODUCTION

A. Background: Point-to-Point Covert Communication

COVERT communication is a technology to hide the exis-
tence of communication, and has been actively studied.

This type of communication is often called communication
with low probability of detection. In this technology, the
legitimate sender intends to transmit an information message
to the legitimate receiver while making such communication
undetectable by the adversary. This task can be achieved
when adversary’s observation with the silent case is imitated
by adversary’s observation under the existence of a com-
munication between the legitimate sender and the legitimate
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receiver. In fact, when the output of the silent case is written
as a convex combination of other outputs in the channel to
the adversary, the above task can be easily achieved. Here,
we call this condition the redundant condition, and its rigorous
definition is given in Section III-C. Under the above condition,
using the method of wire-tap channel [1], [2], [3], the papers
[4], [5] consider this problem for the point-to-point channel
under the discrete memoryless condition. They showed that
the covert transmission length O(n) is possible with n uses of
the channel. The idea of this method is that the transmitter
transmits an independent and identically distributed (i.i.d.)
sequence for the no-communication mode, which makes the
problem more similar to covert communication in the presence
of a jammer as discussed in [6, Remark 2].

However, the redundant condition does not hold in general.
For example, when the form of the channel to the adversary
is known, the additive white Gaussian noise (AWGN) channel
and the binary symmetric channel (BSC) do not satisfy this
condition. The papers [7], [8], and [9] discussed this prob-
lem for the cases of AWGN and BSC, respectively. Then,
the papers [5] and [10] studied the covert communication
problem under general discrete memoryless channel for the
point-to-point channel when the redundant condition does
not hold. They showed that the optimal covert transmission
length is O(

√
n) in the non-redundant case with n uses of

the channel. Following these studies, the papers [11], [12],
and [13] studied this problem for AGWN as considering
continuous time models. Also, the paper [14] extended this
discussion to multiple-input multipl-output (MIMO) AWGN
channels.

The fundamental assumption of the non-redundant case is
using preshared secure keys between the legitimate sender
and the legitimate receiver. Due to the preshared keys, the
legitimate users can realize covert communication even when
the channel to the adversary has smaller noise than the
channel to the legitimate receiver. That is, to preshare keys
is a mandatory resource for covert communication whenever
Willie’s channel is not worse than Bob’s channel. Later, many
subsequent studies [15], [16], [17], [18], [19], [20], [21], [22]
analyzed the point-to-point covert communication over the
AWGN channel under different additional assumptions.

B. Background: Random Access Channel

Our focus in this work is the random access channel where
the point-to-point is a special case. A number of studies [23],
[24], [25], [26], [27] have already discussed the random access
channel from the viewpoint of information theory, however,
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Fig. 1. This figure illustrates a random access channel with one legitimate receiver (Bob), one adversary (Willie), and multiple legitimate senders. Our
protocol allows O(n/ log n) active legitimate senders. Illegitimate receivers are shown in black.

TABLE I
COMPARISON WITH EXISTING RESULTS FOR ACCESS CHANNEL

these works do not address the covertness property of this
channel. Recently, the paper [28] addressed the anti-jamming
secrecy in the random access channel, but it did not discuss
covertness. Another recent paper [29] discussed the covert
communication for the access channel assuming discrete time,
but it did not address random access channel nor AWGN
channel.

C. Problem Statement and Novelty

In this paper, we present an information theoretical study
of the covertness of (direct sequence) random access and one
time pad encryption. We assume BPSK modulation and novel
assumptions on the channel knowledge by the legitimate users
and the adversary, Willie. Furthermore, to realize covertness,
depending on the legitimate sender, our method uses preshared
secret binary symbols, which is often called secret chips. Fig. 1
shows its illustrative scenario and the relation with existing
results for access channel are summarized as Table I clarifying
the novelty of our work. Throughout this paper, we assume
logarithms with base e.

In our setting, n expresses the number of uses of the channel
during one coding block-length. Our method allows O(n)

legitimate senders and O(n/ log n) active legitimate senders
under the assumption of preshared secure keys between these
legitimate senders and the legitimate receiver.1 To achieve this
performance, we pose a novel and realistic channel condition
(in the low power regime) as follows because it is impossible
to achieve covertness of O(n/ log n) bits in the non-redundant
case when the channel parameter is completely known to
the adversary, i.e., the channel is identified by the adversary.
In a realistic scenario, it is difficult for both legitimate and
adversary parties to obtain a complete knowledge of the
channel parameters. Therefore, it is natural to assume that all
parties (legitimate and non-legitimate) do not have a complete
knowledge of the channel parameters while we assume that the
channel parameters are fixed during one coding block-length.
The latter assumption is justified when our signal model and
asymptotic results hold within the channel coherence time.
Under the above realistic conditions for the uncertainty, our
protocol guarantees that the legitimate receiver retrieves the
message.

Another novelty in our formulation is the universality of
our proposed codes. In information theory a code is called a
universal code when the code does not depend on the channel
parameter in the above way, i.e., our code construction does
not require full knowledge of the channel [30], [31]. In our
case, this means that our method allows the dispersion of
signal intensities from the senders in the detection of both
receivers due to the effect of the fading fluctuation. As a
consequence, we make the realistic assumption that for a

1In contrast, the recent paper [29] considers the case when the number of
senders is fixed to K and the size of transmitted bits behaves as o(

√
n).



1518 IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 72, NO. 3, MARCH 2024

known scenario of interest, an upper and lower bound of the
channel coefficients can be estimated.

In addition, our method assumes preshared secure keys
between the legitimate sender and the legitimate receiver in
the same way as [5], [10], [11], [12], and [13] and it works
even when the channel to the adversary has smaller noise than
the channel to the legitimate receiver. That is, for every coding
block, each legitimate sender shares secret binary symbols
as pre-shared secrets with the legitimate receiver while the
legitimate sender can send only one bit. Hence, when the
senders need to transmit ℓ bits, it is sufficient that they
repeat this protocol ℓ times. In practice, this is realistically
achieved using well known and widely available spreading
codes. Each legitimate sender has n different preshared secret
binary symbols. That is, the number of secret binary symbols
at the legitimate receiver is n times the number of legitimate
senders.

Our encoder is very simple for random access channel.
That is, when a legitimate sender is active and intends to
transmit one bit X , the sender encodes the intended bit X
into n channel inputs by using one time pad encryption with n
preshared secret binary symbols. Then, the legitimate receiver
recovers the transmitted bits by using the preshared secret bits.

The most novel point of our work is the covertness analysis
for the adversary. In our analysis, the covertness evaluation
is reduced to the difference between the Gaussian distribu-
tion and the distribution of the weighted sample mean of n
independent random variables subject to the average output
distribution of BPSK modulation. Although a variant of the
central limit theorem [32] guarantees that the distribution of
the weighted sample mean of n independent random variables
approaches to a Gaussian distribution, our covertness analysis
needs the evaluation of the variational distance between the
above two distributions. When the fading coefficients from a
sender in Willie’s detection does not depend on the sender,
it is sufficient to discuss the variational distance between the
distribution of the sample mean and a Gaussian distribution.
Such a case was discussed in [33, (1.3)]. However, the general
case requires more difficult analysis. Fortunately, the recent
papers [34] and [35] have studied this mathematical problem
by using Poincaré constant [34], [35], [36], [37]. Applying this
result, we derive our covertness analysis.

D. From Random Access Channel Protocol to Point-to-Point
Channel

Another novelty of our work is that we consider the fact
that our protocol can be converted to a protocol for point-to-
point communication that works under the above assumptions.
Under this conversion, we obtain a covert communication
protocol for the point-to-point channel that has ⌈(ln + 1)/2⌉
different values as the channel input power, and achieves
the covert transmission of O(n/ log n) bits, where ln is the
number of bits the legitimate sender wants to transmit to
the legitimate receiver. Although existing studies assuming
the redundant case [4], [5] achieve covert transmission length
O(n) with n uses of the channel, existing studies assuming
the non-redundant case [5], [10], [11], [12], [13] achieve

TABLE II
COMPARISON WITH EXISTING RESULTS FOR POINT-TO-POINT CHANNEL

covert transmission length O(
√

n), which is much smaller
than the transmission length of the conventional communica-
tion. To resolve this problem, many subsequent researchers
[15], [16], [17], [18], [19], [20], [21], [22] introduced the
uncertainty of the channel parameters only of the channel to
the adversary under the AWGN channel. In fact, due to the
uncertainty, the adversary cannot distinguish the output of the
Gaussian mixture input distribution from the output of zero
input. That is, this modification enables the channel model
to satisfy the redundant condition, which leads the covert
transmission length O(n). However, these studies assume
that the legitimate receiver knows the channel parameters
of his/her own channel, which is an unequal assumption,
i.e., an unrealistic assumption. To make a fair assumption,
we pose the novel and realistic channel condition introduced
above that the channel parameters of the AWGN channels
to both the legitimate and adversary receivers present some
uncertainty, i.e. are not completely known to them. Fortunately,
our protocol on the point-to-point channel achieves the covert
transmission of O(n/ log n) bits when both receivers (the
legitimate receiver and the adversary) have uncertainty in
their detection. In this sense, our method has an advantage
over existing methods even under the Gaussian point-to-point
channel.

Finally, we remark that our main focus is the analysis
of the asymptotic performance of our code to guarantee
covertness and therefore practical issues such as BPSK symbol
acquisition or outage probability (e.g for concrete statistics
assumptions on the channel dynamics) and practical channel
estimation are out of the scope of this work and is left for
future work. The relation with existing results for point-to-
point channel is summarized in Table II, clarifying the novelty
of our work and results.

This paper is organized as follows. Section II describes
our formulation of random access channel model, and states
our result in this case. Section III explains what protocol
is obtained for the particular case of point-to-point channel
model. Then, Section III compares our obtained code for the
point-to-point channel model with simple applications of the
methods [4], [5]. Section IV shows that Bob correctly recovers
the message with almost probability one under both models
in the asymptotic case. Section V formulates covertness with
respect to Willie, and states our covertness result. In addition,
Section V shows its proof for the case with equal fading
including the point-to-point channel model while its proof with
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the general case with unequal fading is shown in Appendix.
Section VI presents a discussion of our results.

II. RANDOM ACCESS CHANNEL

A. Random Access Channel Model

Our random access channel model has m senders
A1, . . . ,Am, one adversary, Willie, and the legitimate receiver,
Bob. The task of our protocol is formulated as follows. Each
senderAi intends to send one bit Mi to Bob within the channel
coherence time when Ai is active. If Ai is silent, he/she does
not need to send it to Bob. Also, the senders want to hide the
existence of their communication to the adversary, Willie. For
the practical implementation, we assume that the channel is
AWGN and each sender can use only BPSK modulation.

To realize the hidden communication, the senders and Bob
share secret random variables that are not known to Willie, in
the same way as [5] and [10]. That is, the sender Ai has binary
random variables Si,1, . . . , Si,n that are subject to the uniform
distribution independently. The legitimate receiver, Bob also
knows all the binary random Si,j . However the adversary,
Willie, does not know Si,j .

We consider a random access channel with Gaussian chan-
nel as follows. Assume that only l senders Ai1 , . . . ,Ail

are
active and other senders are silent. When Aik

inputs n variable
Xik,1, . . . , Xik,n, Bob receives

Yj = NB,j +
l∑

k=1

aik
Xik,j (1)

for j = 1, . . . , n. Similarly, Willie receives

Zj = NW,j +
l∑

k=1

bik
Xik,j (2)

for j = 1, . . . , n. Here, aik
and bik

are the fading coefficients
within the channel coherence time in Bob’s and Willie’s
detection. Hence, aik

and bik
are positive constants during

a coherent time. That is, we treat aik
and bik

as constants
in the following discussion. In the following, we denote the
maximum maxk aik

(maxk bik
) and the minimum mink aik

(mink bik
) by a (b) and a (b), respectively. Hence, we make

the realistic assumption that for a known scenario of interest,
upper and lower bounds of the channel coefficients can be
estimated. That is, Bob and Willie know a, b, a, and b. Also,
NB,1, . . . , NB,n (NW,1, . . . , NW,n) are independent Gaussian
variable with average 0 and variance vB (vW ).

In a realistic setting, Bob and Willie know rough values
of the variance of noise power for Bob and Willie, denoted
as vB and vW , but, they do not know their exact values
due to the following reason. Willie and Bob know their own
receiving device well. Hence, they know the noise generated
in their receiving device. In this way, Bob and Willie have a
similar performance for receiving the signal from the senders.
However, a part of the noise is generated out of Willie’s device,
which can be considered as a background noise. To discuss
Willie’s detection of the existence of the communication, we
focus on Willie’s knowledge on the value of the variance vW

of Willie’s observation. That is, we denote the set of possible

variance vW of Willie’s observation by V . In the following,
we assume that V is an open set of R. This background noise
uncertainty also affects to Bob, however, he has the pre-shared
keys so that he can recover the message nevertheless such
uncertainty. In contrast, since Willie doesn’t have it, his ability
is affected by such background noise uncertainty.

In fact, it is a common assumption that the channel is
characterized by unknown parameters. In this case, the channel
model is usually denoted as compound, and codes for such
channels are called universal codes in information theory [30]
(see e.g. the paper [31] for a Gaussian channel). Even in
the above existing universal setting, we need to assume that
the channel parameters belong to a certain subset. Otherwise,
it is impossible to guarantee secure communication. Estimating
channel coefficients is well known in signal processing. The
transmission inserts “pilots” i.e. known symbols to measure
the channel effect at reception. Hence, to assume some
underlying “roughly” estimation of the channel dynamics is
reasonable [38]. In the following, we propose our code that
does not depend on these channel parameters except for a and
vB

a2 .

B. Random Access Covert Protocol

Here, we present our protocol for random access covert
communication. When the sender Ai is silent, the input signal
Xi,j is set to zero for j = 1, . . . , n. When the sender Ai is
active and the sender Ai sends the binary message Mi, Ai

encodes the message as

Xi,j =

√
tn
n

(−1)Mi+Si,j (3)

for j = 1, . . . , n. Here, the above code uses average power tn

n
for each channel use, which is sufficiently small.

Next, we consider Bob’s decoder. In order to recover Mi,
using the secret variables Si,j , Bob calculates the decision
statistic Ȳi :=

∑n
j=1(−1)Si,j Yj from his receiving variables

Y1, . . . , Yn as Fig. 2. For each i, Bob outputs one of three
outcomes, silent, 1, and 0 as follows. When |Ȳi| <

√
natn

2 ,
Bob considers that Ai is silent. When Ȳi ≤ −

√
natn

2 , Bob
considers that Mi is 1. When Ȳi ≥

√
natn

2 , Bob considers
that Mi is 0.

Then, we have the following theorem for the analysis on
the asymptotic performance of our code.

Theorem 1: Assume that the number of senders, m, and of
active senders, l, and m, l are given as mn, ln = n

tn
to satisfy

n

l2n
→ 0, (4)

ln
n
→ 0, (5)

na2

8ln(vB + a2)
− log mn → +∞. (6)

Also, we assume that vW belongs to an open set V . Then,
under the above presented protocol, Bob can recover the
message with asymptotically zero error, and Willie cannot
detect the existence of the communication regardless of the
values of the channel parameter to Willie.
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Fig. 2. This figure shows how Bob makes his decision from Ȳi for the random access case when they use the channel n times. Here, Bob needs to output
one of three outcomes, silent, 1, and 0. The right graph shows the distribution of Ȳi when Mi = 0, and the left graph shows the distribution of Ȳi when
Mi = 1. The central graph shows the distribution of Ȳi when Ai is silent.

Here, we have not formulated Willie’s detection.
In Section V-A, we state the impossibility of Willie’s
detection after presenting its formal definition.

Interestingly, our encoder and our decoder do not depend on
the values ai, bi, vB , vW of the channel parameters, and our
decoder do not depend on the number ln of active senders. But,
the probability of correct decoding depends on the number
ln, and is close to 1 as long as the conditions (4) and (6)
hold. Hence, in order that Bob knows whether his decoding
is correct, he needs to know whether the number ln is smaller
than a certain threshold, which can deduced by Bob from the
estimated received power.

For example, when ln = cn log n with c < 8(vB+a2)
a2

and mn = O(n), the conditions (4) and (6) hold. Also,
when ln = cn log n with c ≤ 8(vB+a2)

a2 and mn = ln,
these conditions hold. Therefore, covert communication with
random access code is asymptotically possible with O(n)
senders and O(n/ log n) active senders when all active senders
transmit only one bit.

Now, we consider the case when each active sender Ai

wants transmit un = g(n) bits, Mi,1, . . . ,Mi,un
. In this

case, the active sender Ai shares random binary symbols
Si,1,j , . . . , Si,un,j with Bob for j = 1, . . . , n, and the active
sender Ai sets Xi,j as

Xi,j =

√
tn
n

un∑
j′=1

(−1)Mi,j′+Si,j′,j (7)

as the encoding. Here, we denote the numbers of senders and
active senders by m′

n and l′n. This situation can be considered
as a special case of Theorem 1 with mn = g(n)m′

n and
ln = g(n)l′n. Hence, when mn = g(n)m′

n and ln = g(n)l′n
satisfy the conditions (4) and (6), Bob can recover the message
with asymptotically zero error, and Willie cannot detect the
existence of the communication regardless of the values of
the channel parameter to Willie.

Also, the condition (6) implies that tn goes to zero. Since
tn is the power per user, the power per user needs to be

TABLE III
RELATION BETWEEN RANDOM ACCESS CHANNEL AND

POINT-TO-POINT CHANNEL

zero asymptotically in our protocol. This agrees with the
intuition that covertness requires as low power as possible.
Further, since the values of the channel parameter to Willie
are not contained in the assumption of this theorem, the covert
communication is possible even if Willie’s channel is better
than Bob’s channel.

III. POINT-TO-POINT CHANNEL

A. Point-to-Point Channel Model

In the following, we discuss what protocol is obtained when
the above protocol is applied to the point-to-point channel
model. In this model, the legitimate sender, Alice, intends to
transmit ln bits to the legitimate receiver, Bob, with n uses of
AWGN channel while the intensity of input can be fixed to a
single value intended by Alice during one block length. This
setting is often called point-to-point communication. Table III
summarizes the relation between random access channel and
point-to-point channel.

When Alice’s j-th input variable is X , Bob receives

Yj = NB,j + aXj (8)

for j = 1, . . . , n. The variables NB,1, . . . , NB,n are indepen-
dent Gaussian random variables with mean 0 and variance vB .
Similarly, Willie receives

Zj = NW,j + bXj (9)

for j = 1, . . . , n. The variables NW,1, . . . , NW,n are indepen-
dent Gaussian random variables with mean 0 and variance vW .
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Fig. 3. This figure shows how Bob decodes the message Mi from Ȳi for the point-to-point case. The right graph shows the distribution of Ȳi when Mi = 0,
and the left graph shows the distribution of Ȳi when Mi = 1.

Then, we make the same assumption for vB and vW as the
previous section. Here, when Alice is silent, all input variables
X1, . . . , Xn are zero. Since a and b are the fading coefficients
in Bob’s and Willie’s detection, a and b are positive constants
during a coherent time. That is, we treat a and b as constants
in the following discussion. Therefore, our model is the model
in the previous section with a = a = a, b = b = b, and m = l.

B. Covert Protocol

For covert transmission of ln bits M1, . . . ,Mln within
the coherence channel time, Alice and Bob share nln secret
binary symbols {Si,j}1≤j≤n,1≤i≤ln . Then, Alice encodes the
message M1, . . . ,Mln as

Xj =

√
tn
n

ln∑
i=1

(−1)Mi+Si,j (10)

for j = 1, . . . , n. Here, the above code uses average power tn

n
for each channel use, which is sufficiently small.

To see another form of Xj , we define Aj as Aj :=
|{i|Mi + Si,j = 1 mod 2}|, where |A| expresses the number
of elements of the set A. Then, Aj is independently subject to
the binary distribution with l trials and with probability 1/2.
Xj has another form as

Xj =

√
tn
n

(ln − 2Aj). (11)

The variable
√

tn

n (ln−2Aj) has average 0 and variance tnln
n .

Hence, the power for one channel use, i.e., the expectation of
X2

j is tnln
n , which converges to zero.

Next, we consider Bob’s decoder. In order to recover Mi,
using the secret variables Si,j , Bob calculates the decision
statistic Ȳi :=

∑n
j=1(−1)Si,j Yj from his receiving variables

Y1, . . . , Yn as Fig. 3. When Ȳi ≤ 0, Bob considers that Mi is
1. When Ȳi > 0, Bob considers that Mi is 0. Then, we have
the following theorem for the analysis on the asymptotic
performance of our code. Hence, as a special case of Theorem
1, we have the following theorem.

Theorem 2: When vW belongs to an open set V and l = ln
satisfies (4) and

na2

8ln(vB + a2)
− log ln → +∞, (12)

Bob can recover the message with asymptotically zero error,
and Willie cannot detect the existence of the communication.

Similar to Theorem 1, we have not formulated Willie’s
detection. In Section V-A, we state the impossibility of Willie’s
detection after presenting its formal definition.

This theorem shows that covert communication is asymp-
totically possible with transmission length cn log n with c ≤
8(vB+a2)

a2 . Interestingly, our encoder and our decoder does not
depend on the values a, b, vB , vW of the channel parameters
as long as the condition (12) holds.

C. Relation With Redundant Condition

The existing studies [4], [5] showed the following. When
the channel to Willie satisfies the redundant condition, a better
transmission rate. However, our channel model does satisfy
this condition even when the channel parameters of the channel
to Willie are fixed. Therefore, these existing results cannot be
applied to our case. To see this fact, we recall the definition
of the redundant condition.

We denote the output sample space in the channel to Willie
by Z , which is potentially an infinite set. We also denote
a measure on Z by ν(dz). We denote the set of Alice’s
input by X , which is a finite set. Depending on Alice’s
input x ∈ X , Willie’s output is subject to the probability
density function pZ,x. When the following condition holds,
the channel to Willie is called redundant. There exist two non-
identical distributions PX and P ′X such that∑

x∈X
PX(x)pZ,x =

∑
x∈X

P ′X(x)pZ,x. (13)

In our model (9), the Willie’s output is simplified as

Z = NW + bX. (14)

Here, the variable NW is a Gaussian random variables with
mean 0 and variance vW . Since our channel model of the
channel to Willie does not satisfy the redundant condition with
given vW and b, we cannot directly apply the existing method
by [4] and [5] to our model.

D. Comparison With Existing Methods

Many recent researchers [15], [16], [17], [18], [19], [20],
[21], [22] have obtained achievability of covert transmission
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of O(n) bits when only Willie’s channel has uncertainty and
Bob knows a certain knowledge of his own channel unlike our
assumption. When the fading coefficient a is known and only
the noise power vB is unknown, the decoder for the case with
the maximum noise power works well. Hence, the existing
method does work well in this case. For example, the paper
[17] assumes that the fading coefficient a is 1 while vB is
unknown.2 However, when the fading coefficient a is unknown
in addition to vB , the conventional decoder does not work
because the decoder depends on the value of the fading coef-
ficient a. To understand this difficulty, consider the following
case with n = 1. The sender uses four points ±x1 and ±x0 in
R with x1 > x0 > 0 for the encoding. When the receiver
receives a value y ∈ (x0, x1) ⊂ R, the maximum likelihood
(ML) decoder depends on the value of the fading coefficient a.
When a < 2y

x1−x0
, the ML decoder estimates that the input is

+x1. Otherwise, it estimates that the input is +x0. In this way,
the decoder depends on the value of the fading coefficient a
in general. In the case of conventional channel coding, people
often employ universal coding to resolve this problem. The
method of type [30] enables us to develop universal coding for
the discrete memoryless channel case. The paper [31] proposed
a universal coding that works for the continuous case including
the AWGN channels. In this way, it is a crucial technology
to develop a code that works independently of the channel
parameters.

To see the difficulty to achieve the covert transmission
under imperfect knowledge for both channels, the following
part discusses what problem appears in simple applications of
the original methods [4], [5] under our setting. Our channel
model has a uncertainty for the variance vW of the additive
Gaussian noise in the channel to the adversary. This situation
is formulated as follows. Users know that the variance of the
additive Gaussian noise in the channel to the adversary, Willie,
belongs to an open set V , but they cannot identify which value
in V is the true value vW .

Since Alice is allowed to use various values as the channel
input power in the Gaussian point-to-point channel, Alice can
select the input Xj freely. Hence, we can apply the method
[5] for the redundant case as follows. First we choose a
sufficiently small positive number v′ such that vW + b2v′

belongs to V . Here, v′ expresses the possible error for Willie’s
knowledge about the variance of the additive Gaussian noise
in the channel to Willie. That is, even when the true value is
vW , Willie cannot identify which of vW and vW + b2v′ is the
true. Hence, Willie has to keep the possibility that vW + b2v′

is the true as well as vW .
Let Rv′ be a real number such that Rv′ < I(Yj ; Xj), where

Xj is subject to the Gaussian distribution with variance v′ and
mean 0. Using the conventional random coding of rate Rv′

with respect to the above Gaussian distribution, we generate
a code. Here, the choice of the code is a part of the preshared
information between Alice and Bob. When Alice encodes the
message Mn via the preshared code, using the preshared code,
Bob decodes message Mn. However, as is discussed in the

2The paper [9] considers the case when the channel parameter is unknown.
But, it assumes the BSC channel, which is different from AWGN channel.

paper [5], in this case, Willie cannot distinguish the received
signals from the Gaussian distribution with variance vW +b2v′

and mean 0, which is a special case of the silent case. In this
way, this method achieves the covert transmission of O(n)
bits. Although this method has a higher covert transmission
speed than our method, it has the following problem. When
the decoder of this method is a maximum likelihood decoder,
it depends on the value of a while it does not depend on the
value of vW . That is, the above method satisfies the condition
(i), but does not satisfy the condition (ii);

(i) Willie’s output of the code simulates the Gaussian
distribution with variance vW + b2v′ and mean 0.

(ii) Bob’s decoder does not depend on the channel
parameters a and vB .

Although the paper [31] proposed a universal coding that
works for the AWGN channel, the encoder of [31] is generated
by a distribution with finite support. Hence, use of the method
[31] satisfies the condition (ii), but does not satisfy the
condition (i).

As another idea, we apply the method [4] as follows. The
method [4] employs the code for wire-tap channel. Since
the paper [39, Appendix D] proposed a wire-tap code for
the AWGN channels, the method [4] satisfies the condition
(i) when Bob knows the channel parameters of the channel
to Bob. That is, this alternative method does not satisfy the
condition (ii). Fortunately, our code satisfies both conditions,
i.e., our method is the first method to achieve both conditions
(i) and (ii). In this sense, our code has an advantage over a
simple application of the methods [4], [5].

IV. ANALYSIS OF BOB’S DECODING

A. Characterization of Correct Decoding

The aim of this section is the asymptotic evaluation of the
probability that Bob correctly decodes all messages including
the detection of the existence of communication from all
senders. In this subsection, we derive a lower bound of this
probability.

Bob’s receiving signal is written as

Yj = NB,j +

√
tn
n

ln∑
k=1

aik
(−1)Mik

+Sik,j . (15)

The variable N̄B,i :=
∑n

j=1(−1)Si,j NB,j is a Gaussian
variable with average 0 and variance nvB . The variables
Mik

+ Sik,j + Si,j with j = 1, . . . , n and k = 1, . . . , ln with
ik ̸= i are independent binary random variables subject to the
uniform distribution.

When Bob focuses on Ȳi to recover Mi, only the term
related to Mi is of his interest and the remaining terms can
be considered as noises. Hence, by using N(i) := N̄B,i +√

tn

n

∑ln
k=1,ik ̸=i aik

∑n
j=1(−1)Mik

+Sik,j+Si,j , the term Ȳi

can be rewritten as

Ȳi =
n∑

j=1

(−1)Si,j Yj

=
n∑

j=1

(−1)Si,j

(
Nj +

√
tn
n

l∑
k=1

aik
(−1)Mik

+Sik,j

)
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= N̄B,i +

√
tn
n

ln∑
k=1

aik

n∑
j=1

(−1)Mik
+Sik,j+Si,j

= N̄B,i +
√

ntnai(−1)Mi

+

√
tn
n

ln∑
k=1,ik ̸=i

aik

n∑
j=1

(−1)Mik
+Sik,j+Si,j

=
√

ntnai(−1)Mi + N(i). (16)

That is, N(i) is considered as a noise.
Assume that Ai is silent, i.e., i ∈ ({ik}ln

k=1)
c. Bob’s decod-

ing is correct when |N(i)| <
√

ntn
a
2 . That is, the probability

of Bob’s correct decoding is Pr
(
|N(i)| <

√
ntn

a
2

)
. See Fig. 2

to illustrate this process.
Assume that Ai is active. Bob’s decoding is correct when

Mi = 0 and N(i) ≤
√

ntn(ai − a
2 ). Also, Bob’s decoding

is correct when Mi = 1 and N(i) ≥ −
√

ntn(ai − a
2 ). Since

N(i) is symmetric, i.e., the distribution of N(i) is the same
as the distribution of −N(i), the probability of Bob’s correct
decoding is Pr

(
N(i) ≤

√
ntn(ai − a

2 )
)

.
Then, we obtain the following lower bound for the proba-

bility that Bob correctly decodes all messages including the
detection of the existence of communication from all senders.

Pn : =
ln∏

k=1

Pr
(
N(ik) ≤

√
ntn(aik

− a

2
)
)

·
∏

i∈({ik}ln
k=1)

c

Pr
(
|N(i)| <

√
ntn

a

2

)
. (17)

Then, as shown in Appendix A, we have the following lemma.
Lemma 1: When l is given as ln = n

tn
and the conditions

(4) and (6) hold, we have

Pn → 1, (18)

Since the probability Pn is a non-negative value upper
bounded by 1, its convergence speed to 1 is evaluated by
the speed of the convergence of log Pn to 0. That is, this
convergence is evaluated by the speed of the convergence
of log(− log Pn) to −∞. The following expresses an upper
bound of this convergence speed.

log(− log Pn) ≤ − na2

8ln(vB + a2)
+ log mn + log 2 + o(1).

(19)

The condition (6) guarantees that this lower bound goes to
−∞.

B. Single Sender Case

The single sender case can be evaluated by putting a = a =
a and mn = ln. In the same way as (16), we have

Ȳi =
√

ntna(−1)Mi + N(i), (20)

where

N(i) := N̄i + a

√
tn
n

ln∑
i′=1,i̸=i

n∑
j=1

(−1)Mi′+Si′,j+Si,j . (21)

Since N(i) is symmetric, in the same way as (17), the
probability of correct decoding is lower bounded as

ln∏
k=1

Pr
(
N(i) <

√
ntna

)
. (22)

Then, as a special case of Lemma 1, we have the following
lemma.

Lemma 2: When l is given as ln = n
tn

and the conditions
(4) and (12) hold, we have

ln∏
k=1

Pr
(
N(i) <

√
ntna

)
→ 1. (23)

V. WILLIE’S DETECTION

A. Formulation

Since the random access channel model contains the point-
to-point channel as a special case with b = b = b and mn = ln,
we discuss the random access channel model in the following.
Under the encoder (3), Willie’s receiving signal is written as

Zj = NW,j +
1√
n

ln∑
k=1

bik
(−1)Mik

+Sik,j . (24)

We denote the distribution for Zj by PZj
and denote the

joint distribution for Z = (Z1, . . . , Zn) by PZ . PZ|M=m

expresses the conditional distribution under the condition
M(:= (M1, . . . ,Mln)) = m(:= (m1, . . . ,mln)).

We denote the Gaussian distribution with average 0 and
variance v by Gv . When all senders are silent, Willie’s
observation (Z1, . . . , Zn) is subject to the distribution Gn

vW
.

Also, we assume that Willie does not know the exact value of
the variance vW of his receiving device while Willie knows its
rough value because a part of the noise NW,j is generated out
of Willie’s device, which can be considered as a background
noise. Then, we denote the set of possible variances with the
silent case by V . In the following, we assume that V is an
open set of R.

In this case, to cover Willie’s advantageous scenario, we
assume that Willie knows the secret message M , but he
does not know the binary symbols {Si,j}. That is, we show
that Willie cannot detect the existence of the communica-
tion even though he knows the secret message M . When
no communication is made, the joint distribution of Willie’
receiving signal Z and the secret message belongs to the set
{Gn

vW
× PM |vW ∈ V}.

It is known that the statistical distinguishablity is character-
ized by the variational distance as follows, where we denote
the variational distance between P and Q by dV (P,Q). Given
a method T to distinguish P and Q, we denote the probability
being incorrectly deciding the distribution to be P while the
true is Q, by ϵ1(T ), and the probability being incorrectly
deciding the distribution to be Q while the true is P , by ϵ2(T ).
The sum of ϵ1(T ) and ϵ2(T ) is evaluated as.3

ϵ1(T ) + ϵ2(T ) ≥ 1− dV (P,Q). (25)

3This fact is well known in the community of quantum information. For
example, the reader might see the reference [40, Section 3.2].
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Hence, the distinguishability between the real distribu-
tion PZ,M of making the communication and the case
with no communication is measured by the minimum
minv∈V dV (PZ,M , Gn

v × PM ), which shows the ability of
distinguishing the following two hypotheses. One is the
hypothesis that the true distribution is PZ,M , which corre-
sponds to the case of making the communication. The other
one is the hypothesis that the true distribution belongs to the
set {Gn

vW
× PM |vW ∈ V}, which corresponds to the case

of no communication. Hence, when our covertness measure
minv∈V dV (PZ,M , Gn

v × PM ) is sufficiently small with any l
active senders, the situation with any l active senders cannot
be distinguished with the situation with no communication,
i.e., Willie cannot detect any active user.

Theorem 3: Assume that l is given as ln = n
tn

to satisfy the
condition (5). Also, we assume that vW belongs to V , Then,
our covertness measure goes to zero as under the protocol
presented in Section II-B

min
v∈V

dV (PZ,M , Gn
v × PM ) → 0. (26)

The combination of Lemma 1 and Theorem 3 leads Theo-
rem 1.

Further, under the case with equal fading in Willie’s detec-
tion, the condition in Theorem 3 can be relaxed as follows.

Theorem 4: Assume that b = b = b and l is given as ln =
n
tn

to satisfy the condition

n

l2n
,

l2n
n3

→ 0. (27)

Also, we assume that vW belongs to V , Then, our covert-
ness measure goes to zero under the protocol presented in
Section II-B as

min
v∈V

dV (PZ,M , Gn
v × PM ) → 0. (28)

When ln is linear with n, the condition (5) does not hold,
but the condition (27) does hold. In this sense, Theorem 4
has a weaker condition for ln than Theorem 3. The case with
equal fading in Willie’s detection, i.e., the case with b = b =
b, covers the case with the point-to-point channel. Thus, due
to Theorem 4, one sender, Alice, can send ln bits to Bob
in one channel coherence time securely with covertness to
Willie. the conditions (4) and (6) imply the condition (27), the
combination of Lemma 2 and Theorem 4 leads Theorem 2.

B. Useful Formula for Our Covertness Measure

As a preparation of our proofs of Theorems 3 and 4, we
prepare a useful formula for our covertness measure, i.e., the
minimum variational distance as follows.

min
v∈V

dV (PZ,M , Gn
v × PM )

≤ min
v∈V

dV (D(PZ,M , PZ × PM ) + dV (PZ × PM , Gn
v × PM )

= dV (PZ,M , PZ × PM ) + min
v∈V

dV (PZ , Gn
v ). (29)

The first term dV (PZ,M , PZ × PM ) expresses the secrecy
of the message, and the second term minv∈V dV (PZ , Gn

v )

expresses the possibility that Willie detects the existence of
the communication.

The variables (Mi + Sik,j)k,j are independently subject to
the binary uniform distribution under the condition M = m.
The variables Z = (Z1, . . . , Zn) do not depend on m. That
is, we have PZ|M=m = PZ . Hence, Willie has no information
for the message M = m, i.e.,

dV (PZ,M , PZ × PM ) = 0. (30)

In the following, we discuss minv∈V dV (PZ , Gn
v ).

We choose v′ := 1
n

∑l
k=1 b2

ik
. When c = l

n is sufficiently
small, v′ is small so that vW + v′ belongs to V because
vW ∈ V and V is an open set. Hence, we have

min
v∈V

dV (PZ , Gn
v ) ≤ dV (PZ , Gn

vW +v′). (31)

Combining (29), (30), and (31), we obtain

min
v∈V

dV (PZ,M , Gn
v × PM ) ≤ dV (PZ , Gn

vW +v′). (32)

Applying the Pinsker inequality dV (P,Q)2 ≤ 1
2D(P∥Q),

where D(P∥Q) :=
∫

(log P (x) − log Q(x))P (x)dx,
we have dV (PZ , Gn

vW +v′)
2 ≤ 1

2D(PZ1,...,Zn
∥Gn

vE+v′).
Hence, it is sufficient to show that the relative entropy
D(PZ1,...,Zn∥Gn

vE+v′) between the joint distribution PZ1,...,Zn

of the random variables Z1, . . . , Zn and the n-fold Gaussian
distribution Gn

vE+v′ is sufficiently small. Combining (29),
(30), and the above application of the Pinsker inequality, we
have

min
v∈V

dV (PZ,M , Gn
v × PM ) ≤

√
1
2
D(PZ1,...,Zn

∥Gn
vE+v′).

(33)

Therefore, the remaining part evaluates
D(PZ1,...,Zn∥Gn

vE+v′).

C. Analysis of Case With Equal Fading

Now, we show Theorem 4 by using the result in [33].
We assume that b = b = b. To state the result by [33], we
define χ2 distance χ2(P,Q) as

χ2(P,Q) :=
∫

(p(x)− q(x))2

q(x)
dx, (34)

where p and q are probability density functions of the dis-
tributions P and Q. We define Renyi divergence of order 2,
D2(P∥Q) as

D2(P∥Q) := log
∫

p(x)2

q(x)
dx. (35)

We have

D(P∥Q) ≤ D2(P∥Q) ≤ log(1 + χ2(P,Q)) ≤ χ2(P,Q).
(36)

Proposition 1 [33, (1.3)]: U1, . . . , Un are n independent
and identical distributed variables with average 0 and variance
vW . The distribution of Ui is absolutely continuous and has
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the probability density function PU (u). PU (u) is symmetric,
i.e., PU (u) = PU (−u). Define

Un :=
n∑

i=1

1√
n

Ui. (37)

Then, we have

χ2(PUn
, G1) =

(α4 − 3)2

24n2
+ O(

1
n3

), (38)

where α4 := E[G4
1].

Since v′ is simplified as v′ = lnb2

n = b2

tn
, we have

α4(j) := E
[( 1√

v + v′
Zj

)4]
=

v′
2 + 6vW v′ + 3v2

(vW + v′)2

=
v′

2 + 6vW v′ + 3v2 − 3(vW + v′)2

(vW + v′)2
+ 3

=
−2( b2

tn
)2

(vW + b2

tn
)2

+ 3. (39)

Since b = b = b, we have bik
= b for all k, Proposition 1

guarantees that

χ2(PZj , GvW +v′) = χ2(P 1√
v+v′

Zj
, G1)

=

(
α4(j)− 3

)2
24l2

+ O(
1
l3n

)

(a)
=

4( b2

tn
)4

24l2n(vW + b2

tn
)4

+ O(
1
l3n

)

=
b8

6n2t2n(vW + b2t−1
n )4

+ O(
t3n
n3

), (40)

where (a) follows from (39). Hence, we have

D(PZj
∥GvW +v′) ≤

b8

6n2t2n(vW + b2t−1
n )4

+ O(
t3n
n3

). (41)

Thus,

D(PZ1,...,Zn∥Gn
vW +v′)

≤ n
( b8

6n2t2n(vW + b2t−1
n )4

+ O(
t3n
n3

)
)

=
b8

6nt2n(vW + b2t−1
n )4

+ O(
t3n
n2

). (42)

The condition (27) guarantees that b8

6nt2n(vW +b2t−1
n )4

and t3n
n2

go to zero, which implies that the term D(PZ1,...,Zn∥Gn
vW +v′)

goes to zero. Hence, combining (33), we obtain Theorem 4.

D. Analysis of Case With Unequal Fading

Now, we show Theorem 3. We consider the case with
unequal fading in Willie’s detection. For the analysis of this
case, we have the following theorem.

Theorem 5: The relative entropy D(PZ1,...,Zn∥Gn
vW +v′) is

evaluated as

D(PZ1,...,Zn
∥Gn

vW +v′)

≤
1

nv′2

∑ln
k=1 b4

ik

(
(vW +v′)(e

v′
vW +2v′ +e

− v′
vW )

2
√

vW (vW +2v′)
− 1
)

e
− v′+vW

2vW

2 + (1− e
− v′+vW

2vW

2 ) 1
n2v′2

∑ln
k=1 b4

ik

. (43)

Since the proof of this theorem is very long, Appendix C
proves it by using the result in [35], which employs the
Poincaré constant.

We choose cn := ln
n = 1

tn
. We have

∑ln
k=1 b4

ik
≤ lnb

4
=

cnb
4
n and v′ ≤ lnb

2

n = cnb
2
. Since the condition (5) by using

(66), the RHS of (43) is evaluated as

( RHS of (43))

≤
∑ln

k=1 b4
ik

nv′2
1

e
− v′+vW

2vW

2

(1
6

( v′

vW

)3

+ O
(( v′

vW

)4))

=
( ln∑

k=1

b4
ik

)e1/2

3

( v′

nv3
W

)(
1 + O

( v′

vW

))
+ O

(( v′

vW

)4)
≤ cnb

4 e1/2

3

( cb
2

v3
W

)
(1 + O(cn)) + O(c4

n)

=
c2
ne1/2

3

( b
2

vW

)3

+ O(c3
n). (44)

Since the condition (5) guarantee that cn → 0, we have

D(PZ1,...,Zn
∥Gn

vW +v′) → 0. (45)

Hence, combining (33), we complete the proof of Theorem 3.
Here, we compare the evaluation of (43) with the evaluation

of (42). Eq. (43) has the order O( 1
t2n

) = O( 1
log n2 ) for n, and

Eq. (42) has the order O( 1
nt2n

) = O( 1
n log n2 ) for n. Hence,

Eq. (42) results in a much better covertness evaluation than
Eq. (43). Therefore, combining this discussion and Lemma 1,
we obtain Theorem 1.

VI. DISCUSSION AND OPEN PROBLEMS

We have discussed covert communication assuming BPSK
over AWGN channels. Our results are composed of two
contributions: covert communications for the random access
channel and point-to-point communication. In the former case,
we assume that the sender can choose the power to a certain
value that is fixed during a coding block length. Our encoder
and our decoder in both settings are quite simple. Thus,
the proposed methods are easily implementable being the
main complexity the problem of key sharing, as in traditional
spread spectrum. However, we have not described the detail of
the implementation of our method based on spread-spectrum
principle, which is needed for practical application. Its detailed
description is an important future study.

In our method, we assume that Willie does not have perfect
knowledge on the channel parameter. That is, using this lack
of Willie’s knowledge, our method improves the transmission
speed over existing methods [11], [12], [13] in the case of
AWGN channel. The key idea for our method is convergence
of the distribution of the weighted sample mean of n inde-
pendent random variables to a Gaussian distribution, which is
related to a kind of central limit theorem [32]. This method
depends on the fact that our output distribution is a Gaussian
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distribution. That is, it is impossible to extend this method to
another channel model. Due to this reason, we also assume
that Bob does not have perfect knowledge on the channel
parameter. Our code is shown to guarantee that Bob reliably
recovers the message under this condition. That is, our code
is a universal code in this sense unlike the recent papers [15],
[16], [17], [18], [19], [20], [21], and [22].

In addition, since our covertness analysis needs the eval-
uation of the variational distance, we need more precise
evaluation than the variant of central limit theorem [32].
To resolve this problem, we have employed the results from
the papers [33], [35], and [34]. As discussed in Section V-
C, the result in [33] has been used for the analysis on the
case with equal fading. For the general case with unequal
fading, as discussed in Section V-D, the analysis on the papers
[34], [35] employs Poincaré constant [34], [35], [36], [37].
Although Section V-D analyzes the case with unequal fading,
the evaluation in Section V-C is tighter than in Section V-D.
Hence, the above analysis has better evaluation for the ability
of Willie’s detection of the existence of the communication
than the use of evaluation in Section V-D. Hence, Eq. (42)
suggests a possibility to improve the evaluation (43). For
this improvement, it is needed to extend Proposition 1 to the
case (62), i.e., the case with unequal weighted sum. It is an
interesting a future study.

Further, we have not proved the converse part for the trans-
mission length for our covert communication model. Since our
code construction is based on an elementary idea, there is a
possibility to improve the transmission speed of our method.
It is another future problem to derive the asymptotically tight
transmission speed under both settings. In the relation to this
topic, to state the advantage of our method for the point-to-
point communication, we have pointed that existing methods
[4], [5] need perfect knowledge for channel parameters. That
is, our model requires a code to satisfy the two conditions
(i) and (ii) defined in Section III-D simultaneously. Although
our code satisfies both conditions, we have not shown that no
code with transmission length O(n) satisfies both conditions in
the point-to-point communication. In fact, in our protocol for
the point-to-point communication, our code is essentially con-
structed with bit-by-bit communication. Clearly, this method
is not efficient when covertness is not discussed. Therefore,
it is an interesting point whether or not our protocol can be
improved by a more efficient method in the point-to-point
scenario. It is another open problem to clarify this issue.

Also, our method needs pre-shared secret of O(n2) bits.
Since this is larger than the size of transmitted message, it is
better to reduce this size while keeping our transmission rate.
One possibility for this solution is choosing the matrix Si,j

to be a Toeplitz matrix. While this choice reduces the size of
pre-shared secret to O(n), it changes the stochastic behaviors
of Yj and Zj . It is another future study to evaluate the
performance of this modified code. Finally, it is an interesting
future study to apply the theoretical limits obtained in this
work to a practical engineering setting with realistic fading
channel parameters and evaluate the performance with practi-
cal BPSK symbol acquisition and realistic channel dynamics
using metrics such as covert security outage probability.

APPENDIX A
PROOF OF LEMMA 1

To evaluate the above quantity, we introduce two kinds of
cummulant generating functions ϕb and ϕg,v as

ϕb(s) := log
es + e−s

2
, ϕg,v :=

vs2

2
. (46)

That is, ϕb is the cummulant generating function of the
variable (−1)X when X obeys the binary distribution with
probability 1

2 , and ϕg,v is the cummulant generating func-
tion of Gaussian distribution with average 0 and variance
v. Therefore, the cummulant generating function of N(i) is
ϕn,i(s) := ϕg,nvB

(s) +
∑ln

k=1,ik ̸=i nϕb(aik
s
√

tn

n ). We have

ϕn,i(s) ≤ ϕn(s) := ϕg,nvB
(s) + lnnϕb

(
as

√
tn
n

)
. (47)

When n is large,

ϕn(s) =
s2

2
(nvB + lna2tn) + O

(
nl
( tn

n

) 3
2
s3
)

=
s2

2
(nvB + lna2tn) + O

(
l

√
t3n
n

s3
)
. (48)

We assume that Ai is silent. Since the condition (4) guar-
antees n

l2n
→ 0, using (48), we have

βn := max
s

(
s
√

ntn
a

2
− ϕn(s)

)
=

(
√

ntn
a
2 )2

2(nvB + lna2tn)
+ O

(
ln

√
t3n
n

(
√

tn√
nvB

)3
)

=
ntna2

8n(vB + a2)
+ O

( lnt3n
n2v3

B

)
=

tna2

8(vB + a2)
+ o(1).

(49)

Thus, under the condition (6), we have

mn exp(−βn) = exp(log mn − βn) → 0. (50)

Also, the condition (6) guarantees(
1− 2 exp(−βn)

) 1
2 exp(βn)

→ 1
e
. (51)

Markov inequality implies

1− Pr
(
|N(i)| <

√
ntn

a

2

)
≤ 2 exp

(
−max

s

(
s
√

ntn
a

2
− ϕn,i(s)

))
≤ 2 exp(−βn). (52)

Therefore,∏
i∈({ik}ln

k=1)
c

Pr
(
|N(i)|<

√
ntn

a

2

)
≥
(
1−2 exp(−βn)

)mn−ln
.

(53)

We assume that Ai is active. Since we have

s
√

ntn

(
ai −

a

2

)
− ϕn,i(s) ≥ s

√
ntn

a

2
− ϕn(s) (54)
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for s ≥ 0, we have

max
s

(
s
√

ntn(ai −
a

2
)− ϕn,i(s)

)
≥ βn. (55)

Markov inequality implies

1− Pr
(
N(i) <

√
ntn(ai −

a

2
)
)

≤ exp
(
−max

s

(
s
√

ntn(ai −
a

2
)− ϕn,i(s)

))
≤ exp(−βn).

(56)

Therefore, we have

ln∏
k=1

Pr
(
N(ik) ≤

√
ntn(aik

− a

2
)
)
≥ (1− exp(−βn))ln .

(57)

Combining (53) and (57), we have

Pn =
ln∏

k=1

Pr
(
N(ik) ≤

√
ntn(aik

− a

2
)
)

·
∏

i∈{ik}ln
k=1

Pr
(
|N(i)| <

√
ntn

a

2

)

≥ (1− exp(−βn))ln ·
(
1− 2 exp(−βn)

)mn−ln

≥
(
1− 2 exp(−βn)

)mn

=
((

1− 2 exp(−βn)
) 1

2 exp(βn))2mn exp(−βn) (a)→ 1,

(58)

where (a) follows from (50) and (51). Hence, we obtain (18).
In addition, using (49) and (51), we have

log(− log Pn)

(a)

≤ log
(
− log

((
1− 2 exp(−βn)

) 1
2 exp(βn))2mn exp(−βn))

=log
(
2mn exp(−βn)

(
−log

((
1−2 exp(−βn)

) 1
2 exp(βn))))

=log(2mn)−βn+log
(
−log

((
1−2 exp(−βn)

) 1
2 exp(βn)))

(b)
= − na2

8ln(vB + a2)
+ log mn + log 2 + o(1) + log(1 + o(1))

= − na2

8ln(vB + a2)
+ log mn + log 2 + o(1), (59)

where (a) follows from (58) and (b) follows from (49) and
(51). This relation implies (19).

APPENDIX B
PREPARATION FOR PROOF OF THEOREM 5

For our proof of Theorem 5, we make several preparations
in this subsection. First, we introduce the Poincaré constant.
Assume that the random variable H is subject to a distribution

P on R. We define the Poincaré constant C(P ) for the
distribution P as

C(P ) := inf
f :smooth on R

E[(f ′(H))2]
V [f(H)]

. (60)

The value C(P ) will be used in (63). For example, it is known
that the Poincaré constant C(Gv) is calculated as [41], [42]

C(Gv) =
1
v
. (61)

Using the Poincaré constant, we have the following propo-
sition.

Proposition 2 [35, Theorem 1]: U1, . . . , Un are n inde-
pendent and identical distributed variables with average 0 and
variance 1. The distribution of Ui is absolutely continuous and
has the probability density function PU (u). Define

Un :=
n∑

i=1

αiUi, L(α) :=
n∑

i=1

α4
i , (62)

where
∑n

i=1 α2
i = 1. Then, we have

D(PUn∥G1) ≤
L(a)

C(p)
2 + (1− C(p)

2 )L(a)
D(PU∥G1). (63)

As another preparation, we introduce the probability den-
sity function Pv,v′ of the random variable

√
v′

v′+v

(
(−1)X +√

v
v′N

)
, where X is the binary variable subject to the uniform

distribution and N is the standard Gaussian variable.
The Poincaré constant of Pv,v′ is evaluated as follows.
Lemma 3: We have

C(Pv,v′) ≥ e−
v′+v
2v . (64)

Also, we evaluate the relative entropy between Pv,v′ and
the Gaussian distribution in the following lemma.

Lemma 4:

D(Pv,v′∥G1) ≤
(v + v′)(e

v′
v+2v′ + e−

v′
v )

2
√

v(v + 2v′)
− 1. (65)

In addition, when v′

v is small, we have

(v + v′)(e
v′

v+2v′ + e−
v′
v )

2
√

v(v + 2v′)
− 1 =

1
6

(v′

v

)3

+ O
((v′

v

)4)
.

(66)

The proofs of Lemmas 3 and 4 will be given in Appendices
E and D, respectively.

APPENDIX C
PROOF OF THEOREM 5

In this subsection, we show Theorem 5 by using the above
preparation. We prepare ln independent standard Gaussian
variables N1, . . . , Nln . We have

Zj = NW,j +
1√
n

ln∑
k=1

bik
(−1)Mi+Sik,j

=
ln∑

k=1

bik√
n

(
(−1)Mi+Sik,j +

√
vW

v′
Nk

)
. (67)
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We apply Proposition 2 to the case n = ln, i = k,
αk = bik√

nv′
, Uk =

√
v′

v′+vW

(
(−1)Mi+Sik,j +

√
vW

v′ Nk

)
.

Then, we have

ln∑
k=1

α4
k =

1
n2v′2

ln∑
k=1

b4
ik

. (68)

Since Zj =
√

vW + v′
(∑ln

k=1 αkSk

)
, applying Proposition 2,

we have

D(PZj
∥GvW +v′)

= D(P∑ln
k=1 αkSk

∥G1)

≤
1

n2v′2

∑ln
k=1 b4

ik

C(PvW ,v′ )

2 +
(
1− C(PvW ,v′ )

2

)
1

n2v′2

∑ln
k=1 b4

ik

D(PvW ,v′∥G1)

(a)

≤
1

n2v′2

∑ln
k=1 b4

ik

(
(vW +v′)(e

v′
vW +2v′ +e

− v′
vW )

2
√

vW (vW +2v′)
− 1
)

C(PvW ,v′ )

2 +
(
1− C(PvW ,v′ )

2

)
1

n2v′2

∑ln
k=1 b4

ik

(b)

≤
1

n2v′2

∑ln
k=1 b4

ik

(
(vW +v′)(e

v′
vW +2v′ +e

− v′
vW )

2
√

vW (vW +2v′)
− 1
)

e
− v′+vW

2vW

2 +
(
1− e

− v′+vW
2vW

2

)
1

n2v′2

∑ln
k=1 b4

ik

, (69)

where (a) and (b) follow from Lemma 4 and Lemma 3,
respectively. Therefore,

D(PZ1,...,Zn
∥Gn

vW +v′)

=
n∑

j=1

D(PZj
∥GvW +v′)

≤ n

1
n2v′2

∑ln
k=1 b4

ik

(
(vW +v′)(e

v′
vW +2v′ +e

− v′
vW )

2
√

vW (vW +2v′)
− 1
)

e
− v′+vW

2vW

2 +
(
1− e

− v′+vW
2vW

2

)
1

n2v′2

∑ln
k=1 b4

ik

=

1
nv′2

∑ln
k=1 b4

ik

(
(vW +v′)(e

v′
vW +2v′ +e

− v′
vW )

2
√

vW (vW +2v′)
− 1
)

e
− v′+vW

2vW

2 +
(
1− e

− v′+vW
2vW

2

)
1

n2v′2

∑ln
k=1 b4

ik

. (71)

APPENDIX D
PROOF OF LEMMA 4

The probability density function pv,v′ of the distribution
Pv,v′ for

√
v′

v′+v

(
(−1)X +

√
v
v′N

)
is

pv,v′(x) =
1
2

√
v′ + v

2πv
e−

(v′+v)

(
x−

√
v′

v′+v

)2
2v

+
1
2

√
v′ + v

2πv
e−

(v′+v)

(
x+

√
v′

v′+v

)2
2v . (72)

Then, we have (70), as shown at the bottom of the next page.
Hence,

χ2(Pv,v′ , G1) + 1

=
∫ ∞

−∞

(
1
2

√
v′ + v

v
e−

(v′+v)

(
x−

√
v′

v′+v

)2
2v + x2

2

+
1
2

√
v′ + v

v
e−

(v′+v)

(
x+

√
v′

v′+v

)2
2v + x2

2

)2√
1
2π

e−
x2
2 dx

=
∫ ∞

−∞

(
v′ + v

4 v
e−

(v′+v)

(
x−

√
v′

v′+v

)2
v +x2

+
v′ + v

4 v
e−

(v′+v)

(
x+

√
v′

v′+v

)2
v +x2

+
v′ + v

2 v
e−

(v′+v)

(
x−

√
v′

v′+v

)2
2v −

(v′+v)

(
x+

√
v′

v′+v

)2
2v +x2

)

×
√

1
2π

e−
x2
2 dx

=

√
1
2π

∫ ∞

−∞

(
v′ + v

4 v
e−

v+2v′
2v

(
x− 2

√
v′(v′+v)
v+2v′

)2
+ v′

v+2v′

+
v′ + v

4 v
e−

v+2v′
2v

(
x+

2
√

v′(v′+v)
v+2v′

)2
+ v′

v+2v′

+
v′ + v

2 v
e−

v+2v′
2v x2− v′

v

)
dx

= 2 · v′ + v

4 v

√
v

v + 2v′
e

v′
v+2v′ +

v′ + v

2 v

√
v

v + 2v′
e−

v′
v

=
v + v′

2
√

v(v + 2v′)

(
e

v′
v+2v′ + e−

v′
v

)
, (73)

which implies that

χ2(Pv,v′ , G1) =
(v + v′)(e

v′
v+2v′ + e−

v′
v )

2
√

v(v + 2v′)
− 1. (74)

Combination of (36) and (74) yields (65).
When v′ is small, 1

2
√

v(v+2v′)
= 1

2v (1− 1
2

2v′

v + 3
8 ( 2v′

v )2 −
5
16 ( 2v′

v )3 + O( 1
v ( v′

v )4) = 1
2v

(
1 − v′

v + 3
2 ( v′

v )2 − 5
2 ( v′

v )3 +

O( 1
v ( v′

v )4)
)

. Hence, using (70) in the top of this page, we
obtain (66).

APPENDIX E
PROOF OF LEMMA 3

To show Lemma 3, we prepare the following proposition.
Proposition 3 ( [34, Proposition 5]): Two absolutely con-

tinuous distributions µ and ν satisfy the inequality

minx
dν
dµ (x)

maxx
dν
dµ (x)

CP (µ) ≤ CP (ν). (75)

We define the function f(x) as

f(x) :=
pv,v′(x)
pv,0(x)

=
1
2

√
v′ + v

v
e
− (v′+v)

2v

(
x−

√
v′

v′+v

)2
+ x2

2

+
1
2

√
v′ + v

v
e
− (v′+v)

2v

(
x+

√
v′

v′+v

)2
+ x2

2
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=
1
2

√
v′ + v

v
e
− v′

2v x2+
(v′+v)

v

√
v′

v′+v
x− v′

2v

+
1
2

√
v′ + v

v
e
− v′

2v x2− (v′+v)
v

√
v′

v′+v
x− v′

2v . (76)

For x ≥ 0, we have

f(x) ≤
√

v′ + v

v
e
− v′

2v x2+
(v′+v)

v

√
v′

v′+v
x− v′

2v

=

√
v′ + v

v
e−

v′
2v

(
x2−2

√
v′+v

v′ x
)
− v′

2v

=

√
v′ + v

v
e−

v′
2v

(
x−

√
v′+v

v′

)2
+ v+v′

2v − v′
2v

=

√
v′ + v

v
e−

v′
2v

(
x−

√
v′+v

v′

)2
+ 1

2 ≤
√

v′ + v

v
e

1
2 . (77)

The derivative of f is calculated as

df

dx
(x) =

1
2

√
v′ + v

v

(
− v′

v
x +

v′ + v

v

√
v′

v′ + v

)
× e

− v′
2v x2+ v′+v

v

√
v′

v′+v
x− v′

2v

+
1
2

√
v′ + v

v

(
− v′

v
x− v′+v

v

√
v′

v′+v

)
× e

− v′
2v x2−v′+v

v

√
v′

v′+v
x− v′

2v . (78)

Assume that x ≥ 0. The relation df
dx (x) = 0 holds if and only

if(
− v′

v
x +

v′ + v

v

√
v′

v′ + v

)
e
− v′

2v x2+ v′+v
v

√
v′

v′+v
x− v′

2v

=
(v′

v
x +

v′ + v

v

√
v′

v′ + v

)
e
− v′

2v x2− v′+v
v

√
v′

v′+v
x− v′

2v . (79)

The above relation is equivalent to

e2

√
(v′+v)v′

v x = e
2 v′+v

v

√
v′

v′+v
x

=
v′

v x + (v′+v)
v

√
v′

v′+v

−v′

v x + v′+v
v

√
v′

v′+v

=
x +

√
v′+v

v′

−x +
√

v′+v
v′

. (80)

That is,

2

√
(v′ + v)v′

v
x

= log
(
x +

√
v′ + v

v′

)
− log

(
− x +

√
v′ + v

v′

)
. (81)

We denote the RHS and the LHS by g(x) and h(x), respec-
tively. Their derivatives are calculated as

dg

dx
(x) = 2

√
(v′ + v)v′

v
(82)

dh

dx
(x) =

1

x +
√

v′+v
v′

+
1

−x +
√

v′+v
v′

=
2
√

v′+v
v′

−x2 + v′+v
v′

.

(83)

Hence, we have
dg
dx (0)
dh
dx (0)

=
v + v′

v
> 1. (84)

Since
dg
dx (x)
dh
dx (x)

is monotonically decreasing for x, the solution

of dg
dx (x) − dh

dx (x) = 0 in (0, v′+v
v′ ) is only one element

χ2(Pv,v′ , G1) + 1 =
(v + v′)(e

v′
v+2v′ + e−

v′
v )

2
√

v(v + 2v′)

=
v(1 + v′

v )(2 + v′

v+2v′ −
v′

v + 1
2 ( v′

v+2v′ )
2 + 1

6 ( v′

v+2v′ )
3 + 1

2 ( v′

v )2 + 1
6 ( v′

v )3 + O((v′

v )4)))
2v

·
(
1− v′

v
+

3
2
(
v′

v
)2 − 5

2
(
v′

v
)3 + O

(1
v

(v′

v

)4))
=

(1 + v′

v )(2 + v′

v (1− 2 v′

v + (2 v′

v )2)− v′

v + 1
2 ( v′

v )2(1− 4 v′

v ) + 1
6 ( v′

v )3 + 1
2 ( v′

v )2 + 1
6 ( v′

v )3)
2

·
(
1− v′

v
+

3
2
(
v′

v
)2 − 5

2
(
v′

v
)3
)

+ O
((v′

v

)4)
=

(1 + v′

v )(2− ( v′

v )2 + 7
3 ( v′

v )3)
2

·
(
1− v′

v
+

3
2
(
v′

v
)2 − 5

2
(
v′

v
)3
)

+ O
((v′

v

)4)
= (1 +

v′

v
)
(
1− 1

2
(
v′

v
)2 +

7
6
(
v′

v
)3
)
·
(
1− v′

v
+

3
2
(
v′

v
)2 − 5

2
(
v′

v
)3
)

+ O
((v′

v

)4)
=
(
1− 1

2
(
v′

v
)2 +

7
6
(
v′

v
)3
)
·
(
1− v′

v
+

3
2
(
v′

v
)2 − 5

2
(
v′

v
)3 +

v′

v
− (

v′

v
)2 +

3
2
(
v′

v
)3
)

+ O
((v′

v

)4)
=
(
1− 1

2

(v′

v

)2

+
7
6

(v′

v

)3)
·
(
1 +

1
2

(v′

v

)2

−
(v′

v

)3)
+ O

((v′

v

)4)
= 1 +

1
6

(v′

v

)3

+ O
((v′

v

)4)
.

(70)
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x0. We have dg
dx (x0) = dh

dx (x0). Hence, the solution of
g(x)−h(x) = 0 in (0, v′+v

v′ ) is only one element x1. We have
g(x1) = h(x1). We have g(x) > h(x) for x < x1, and
g(x) < h(x) for x > x1. That is, df

dx (x) > 0 for x < x1, and
df
dx (x) < 0 for v′+v

v′ > x > x1. Also, df
dx (x) < 0 for x ≥ v′+v

v′ .
Hence, we find that minx≥0 f(x) is realized with x = 0 and
maxx≥0 f(x) is realized with x = x1. Thus, we have

min
x≥0

f(x) = f(0) =

√
v′ + v

v
e−

v′
2v . (85)

Combining (77) and (85), we have

minx
dν
dµ (x)

maxx
dν
dµ (x)

≥ e−
v′+v
2v . (86)

Therefore, (64) follows from the combination of (61), (86),
and Proposition 3.
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