
Frontiers in Plant Science

OPEN ACCESS

EDITED BY

Yu-Long Feng,
Shenyang Agricultural University, China

REVIEWED BY

Luis G. Sarmiento-López,
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Divergent soil P accrual in
ectomycorrhizal and arbuscular
mycorrhizal trees: insights from
a common garden experiment in
subtropical China
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and Josep Peñuelas5,6

1School of Geographical Science, Fujian Normal University, Fuzhou, China, 2State Key Laboratory of
Subtropical Mountain Ecology (Funded by Ministry of Science and Technology and Fujian Province),
Fujian Normal University, Fuzhou, China, 3School of Design, Fujian University of Technology,
Fuzhou, China, 4Institute of Geography, Fujian Normal University, Fuzhou, China, 5Ecological and
Forestry Applications Research Center (CREAF), Cerdanyola del Vallès, Spain, 6CSIC, Global Ecology
Unit CREAF-CSIC-UAB, Cerdanyola del Vallès, Spain
Tree species establish mycorrhizal associations with both ectomycorrhizal (EM)

and arbuscular mycorrhizal fungi (AM), which play crucial roles in facilitating plant

phosphorus (P) acquisition. However, little attention has been given to the effects

of EM and AM species on soil P dynamics and the underlying mechanisms in

subtropical forests, where P availability is typically low. To address this knowledge

gap, we selected two EM species (Pinus massoniana - PM and Castanopsis

carlesii - CC) and two AM species (Cunninghamia lanceolata - Chinese fir, CF and

Michelia macclurei - MM) in a common garden established in 2012 in subtropical

China. We investigated soil properties (e.g., pH, soil organic carbon, total

nitrogen, and dissolved organic nitrogen), soil P fractions, phospholipid fatty

acids (PLFAs), enzyme activities, foliar manganese (Mn) concentration, and foliar

nutrients and stoichiometry. Our findings revealed that soils hosting EM species

had higher levels of resin P, NaHCO3-Pi, extractable Po, total P, and a greater

percentage of extractable Po to total P compared to soils with AM species. These

results indicate that EM species enhance soil P availability and organic P

accumulation in contrast to AM species. Moreover, EM species exhibited

higher P return to soil (indicated by higher foliar P concentrations) when

compared to AM species, which partly explains higher P accumulation in soils

with EM species. Additionally, resin P showed a positive correlation with acid

phosphatase (ACP) activity, whereas no correlation was found with foliar Mn

concentration, which serves as a proxy for the mobilization of sorbed soil P. Such

findings indicate that organic P mineralization has a more substantial impact than

inorganic P desorption in influencing P availability in soils hosting both EM and

AM species. In summary, our study contributes to a more comprehensive

understanding of the effects of mycorrhizal associations on soil P

accumulation in subtropical forests and provide valuable insights into plant-soil

interactions and their role in P cycling in regions with limited P availability.
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1 Introduction

Phosphorus (P) is a vital nutrient for plant growth, playing a

crucial role in sustaining terrestrial ecosystems’ productivity and

functionality, especially in tropical and subtropical forest soils

where P is often strongly fixed and has low availability (Vitousek

et al., 2010; Hidaka and Kitayama, 2011; Mirriam et al., 2022;

Suriyagoda et al., 2023). To combat nutrient deficiencies, plants

have formed symbiotic relationships with soil microorganisms,

particularly mycorrhizal fungi (Phillips et al., 2013; Tedersoo

et al., 2020; Li et al., 2022). Specifically, tree species establish

associations with two main types of mycorrhizal fungi,

ectomycorrhizal (EM) and arbuscular mycorrhizal fungi (AM),

which significantly enhance the efficient acquisition of soil P

(Landeweert et al., 2001; Seleiman et al., 2013; Rosling et al.,

2016; Seleiman and Hardan, 2021; Wang et al., 2023). However,

the extent to which EM and AM species influence soil P dynamics

and the underlying mechanisms remain insufficiently understood.

Soil P exists in complex forms, primarily as organic P and

inorganic P (Hedley et al., 1982; Seleiman et al., 2020; Cheptoek

et al., 2021). Organic P cannot be directly assimilated by plants, while

most inorganic P is absorbed by soil minerals, resulting in the majority

of soil P being non-bioavailable (Tiessen and Moir, 1993; Seleiman,

2014). When faced with P limitations, plants may increase

phosphatase activity to mineralize organic P or release carboxylates

to liberate sorbed inorganic P (Plassard et al., 2019; Zhang et al., 2023).

Recent studies have demonstrated that the leaf Mn concentration is

often positively related with rhizosphere carboxylates, and can be used

as a useful proxy that reflects the mobilization of sorbed soil inorganic

P (Lambers et al., 2015; Lambers, 2022; Yu et al., 2023a). However, the

efficiency of mobilizing recalcitrant P in soil can vary depending on

the type of mycorrhizal association formed by the plant (Tedersoo and

Bahram, 2019; Jiang et al., 2022). AMF species are good at activating

sorbed inorganic P, while EMF species are effective in hydrolyzing

organic P, which potentially affecting the composition and availability

of soil P. Consequently, this variability might explain the inconsistent

response of soil P fractions to changes in environmental conditions.

EM and AM species have evolved the ability to convert

unavailable P into bioavailable forms through organic P

mineralization and inorganic P desorption (Richardson et al.,

2011; Jiang et al., 2021). Previous studies have indicated that EM

species generally exhibit greater enzymatic capability for

hydrolyzing organic P compared to AM species (Read and Perez-

Moreno, 2003; Phillips et al., 2013). This observation is supported

by studies in temperate forests, which have shown lower organic P

levels and higher acid phosphatase (ACP) activity in soils

dominated by EM species (Rosling et al., 2016). However,

contrasting results were found in a study conducted in a

subtropical karst forest, where lower phosphatase activity and

reduced available P were observed in soils dominated by EM

species when compared to those dominated by AM species (Yang

et al., 2021). These findings highlight that the type of mycorrhizal

association in trees plays a role in shaping P forms in soil, although

the underlying mechanisms are not yet fully understood.
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Variations in P demand among different tree species could be an

additional factor contributing to differences in soil P status (Weand

et al., 2010; Guilbeault-Mayers et al., 2020; Lu et al., 2023;

Wagenknecht et al., 2023; Zheng et al., 2023). Previous studies have

found that soil microbes account for 68-78% of the total biomass P in

mature forests, but only 20% of them in 5-year-old forests (Turner

et al., 2013). These findings suggest that plant P, such as foliar P, has a

lesser impact on the soil P pool in mature forests but may

significantly influence soil P dynamics in young forests. Therefore,

young trees with rapid growth and high P demand (Chen et al., 2023),

as indicated by foliar C:P ratios, might extract more P from the soil,

resulting in lower soil P levels. Additionally, tree species with high

foliar P concentrations might return more P to the soil through

litterfall, which could be advantageous for soil P accumulation

(González et al., 2022). Generally, EM species tend to adopt a

conservative nutrient strategy and exhibit relatively lower growth

rates, while AM species employ an acquisition strategy and display

rapid growth. This distinction implies that AM species may have

higher P demands compared to EM species, potentially hindering P

accumulation in soils where AM species dominate. However, it is

important to note that further validation is required to support

this assertion.

To investigate the impact of trees with different mycorrhizal

types on the availability and accumulation of P in subtropical forest

soils with P limitations, we selected four tree species, including two

EM species, Pinus massoniana (PM) and Castanopsis carlesii (CC)

(Fan et al., 2018; Pang et al., 2023; Yang et al., 2023), and two AM

species, Cunninghamia lanceolata (Chinese fir, CF) and Michelia

macclurei (MM) (Cui et al., 2019; Li L. et al., 2019; Ma et al., 2023).

We conducted investigations into soil properties, soil P fractions,

phospholipid fatty acids (PLFAs), enzyme activities, foliar

manganese (Mn) concentration, and foliar nutrients and

stoichiometry. Our objectives were to: 1) examine changes in soil

P fractions after planting EM or AM species following an 8-year

cultivation period; 2) compare foliar P content and nutrient

stoichiometry between EM and AM species; and 3) identify the

key factor predominantly influencing soil P status and availability in

different mycorrhizal species.
2 Methods and materials

2.1 Study site

The study site is located within the Sanming Forest Ecosystem

and Global Change National Observatory and Research Station,

situated in Fujian Province, China (26°11′N, 117°228′E). This
region experiences a subtropical monsoon climate, characterized by

an average annual temperature of 19.5 °C. The average annual

precipitation measures approximately 1656 mm, with 77% of this

total rainfall occurring between March and August. The evaporation

rate is around 1585 mm. The soil is classified as an Oxisol, derived

from sandstone, and is categorized as Fluventic Dystrochrept in the

USDA soil classification system (Fan et al., 2020).
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2.2 Experimental design

To investigate the influence of different mycorrhizal tree species

on soil nutrient turnover and the underlying mechanisms, a common

garden experiment was established in February 2012. The experiment

comprised four tree species: two EM species (CC and PM) and two

AM species (CF and MM). Following clearcut logging and burning in

a secondary forest, 2-year-old saplings were planted at a density of

2,860 seedlings per hectare. A total of 16 plots were arranged in a

random block design, each plot was planted a single tree species and

covering an area of approximately 0.4 hectares. Each tree species was

replicated 4 times. Additionally, a 2-meter buffer zone was

implemented between plots to minimize mutual interference.
2.3 Soil and leaf sampling

Soil sampling was conducted in July 2020. Within each plot, 10

cores were randomly collected from 0-10 cm depth using a

stainless-steel sampler with a diameter of 5 cm. After removing

stones, roots, and plant and animal residues, the soil cores were

combined to create a composite sample, which was then sealed in a

plastic bag. A total of 16 samples (4 tree species × 4 replications)

were transported to the laboratory, where samples were sieved

through a 2 mm mesh and divided into three separate

subsamples. The first subsample was stored at -20°C for the

analysis of enzyme activity and phospholipid fatty acid (PLFA).

The second subsample was air-dried and used for determining soil

pH, soil organic carbon (SOC), total nitrogen (TN), and soil P

fraction. Finally, the third subsample was stored at -4 °C and used to

detect NH4
+-N, NO3

–N, and dissolved organic nitrogen (DON).

In each plot, 5 trees with an average diameter at breast height

were selected, 200 g of mature leaves in different direction of each

tree were collected, and approximately 1000 g of leaves were

sampled in each plot. A total of 16 leaf samples (4 tree species ×

4 replicates) were brought to the laboratory for processing. The

leaves samples were heated at 105°C for 30 minutes to eliminate any

living organisms. They were then dried at 65°C for 48 hours and

subsequently ground in a ball mill. The resulting ground leaf

samples were stored in polypropylene vials for the determination

of C, N, P, and manganese (Mn) concentrations.
2.4 Soil and leaf nutrient analysis

SOC and TN were quantified using a C-N analyzer (ElementarVario,

MAX, Germany). Soil pH was measured using a pH meter in a 1:2.5

soil-water suspension. DON was extracted by mixing the soil with

deionized water in a 1:4 ratio, then analyzed using a Continuous Flow

Analytic System (SAN++; Skalar, Netherlands). NH4
+-N and NO3

–N

were extracted using a 2 M KCl solution, then analyzed using the

Continuous Flow Analytic System (SAN++; Skalar, Netherlands).

Soil P fractions were assessed using a sequential extraction

method based on Hedley et al. (1982) and Tiessen and Moir

(1993). Briefly, 0.5 g of air-dried soil was sequentially extracted by
Frontiers in Plant Science 03
deionized water and one resin strip, 0.5 M NaHCO3, 0.5 M NaOH,

1M HCl, and subsequent digestion of the residual fraction using

H2SO4-H2O2 at 360 °C. The P concentration in each extract was

measured using a Continuous Flow Analytic System (SAN++; Skalar,

Netherlands). The NaHCO3, NaOH, and HCl extracts contained

both inorganic P (Pi) and organic P (Po). Pi was the P concentration

in these extracts without digestion, and Po was the difference between

the total P digested and the Pi in each extract. Soil P fractions

included resin P, NaHCO3-Pi, NaHCO3-Po, NaOH-Pi, NaOH-Po,

HCl-Pi, HCl-Po, and residual-P. Extractable Po was the sum of

NaHCO3-Po, NaOH-Po, and HCl-Po, while extractable Pi was the

sum of NaOH-Pi and HCl-Pi. Total P was the sum of all P fractions.

Foliar C and N concentrations were measured using the same C-N

analyzer (ElementarVario, MAX, Germany). Foliar P and Mn

concentrations were determined using inductively coupled plasma-

mass spectrometry after digesting the leaf samples with HNO3-HClO4.
2.5 PLFA analysis

PLFA analysis was conducted following a previously established

protocol. In brief, soil samples were extracted using a phosphate

buffer in the Bligh-Dyer extraction method. The resulting extraction

solution was then purified using solid-phase extraction. The

extracted compounds were further transesterified to generate fatty

acid methyl esters, which were subsequently analyzed using gas

chromatography equipped with a flame ionization detector. Fatty

acids were identified utilizing the PLFAD1 method in Sherlock

software (MIDI Inc., Newark, DE, USA) and quantified using the

internal standard 19:0. The assignment of specific phospholipid

fatty acids to microbial groups was based on (Swallow et al., 2009;

Frostegård et al., 2011; Fan et al., 2020), the PLFAs i14:0, i15:0,

a15:0, i16:0, a17:0, and i17:0, as well as 16:1w7c, cy17:0, 18:1w7, and
cy19:0, were designated as bacterial biomarkers. The PLFAs

18:1w9c and 18:2w6,9c was used as fungal biomarker.
2.6 Enzyme activity assay

The activity of 4-N-acetylglucosaminidase (NAG), acid phosphatase

(ACP), beta glucosidase (bG), and cellobiohydrolase (CBH) was assessed
following the experimental procedure described by Saiya-Cork et al.

(2002). Briefly, fresh soil samples weighing 1 g were extracted using 125

mL of acetate buffer. The soil samples and buffer were homogenized

using a Brinkmann Polytron PT 3000 homogenizer, resulting in soil

suspensions. To initiate the enzyme assay, 200 mL of the soil suspensions
and 50 mL of fluorescence enzyme substrate (bG, 4-methylumbelliferyl-

b-D-glucoside; NAG, 4-methylumbelliferyl-N-acetyl-b-D-

glucosaminide; CBH, 4-methylumbelliferyl-b-D-cellobioside; ACP, 4-
methylumbelliferyl -phosphate) were added to 96-well microplates, with

each sample having 16 replicate wells. The microplates were then

incubated at a temperature of 20°C for a duration of 4 hours, in the

absence of light. The enzyme activity was subsequently determined using

a Multifunction microplate reader with 365 nm excitation and 450 nm

emission filters (Synergy H4, America).
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2.7 Statistical analysis

Statistical analyses were conducted using IBM SPSS Statistics

21, version 19.0 (IBM, Armonk, NY, USA), and graphical

representations were generated using Origin 9.0 software (Origin

Lab, Massachusetts, USA). One-way analysis of variance (ANOVA)

was employed to determine the significance of differences among

the four forest plantations in terms of soil properties, leaf nutrition,

soil P fractions, PLFAs, and enzyme activity. The distinction

between arbuscular mycorrhizal tree species and two

ectomycorrhizal tree species was investigated via a samples t-test.

The study also utilized the random forests algorithm via the

“random Forest” package in the R platform to assess the

predictive capacity of soil properties, leaf nutrition, microbial

biomass, and soil enzyme activity regarding available P (Resin P)

and organic P (extractable Po). Any P-value less than 0.05 was

considered significant in this study.
3 Results

3.1 Soil properties

There were no statistically significant differences in pH, SOC, TN,

DON, and NH4
+-N between EM and AM species soils (P > 0.05),

except for higher NO3
–N levels in soils of EM species compared to

AM species (P < 0.001, Table 1). Similarly, no significant differences

in pH, SOC, TN, and NH4
+-N were observed among four forest soils

(P > 0.05, Table 1). However, the concentration of DON in MM was

higher than in PM, CC, and CF (P < 0.05), and the NO3
–N levels in

PM and CC were higher than those in CF and MM (P < 0.05).
3.2 Soil P fractions

The influence of tree species on soil P varied with different P

fractions (Figure 1). Resin P and extractable Po were lower in CF
Frontiers in Plant Science 04
than in PM, CC, and MM, while the total P was higher in PM than

in MM. There were no significant differences in NaHCO3-Pi,

extractable Pi, and residual P among the four forest soils (P >

0.05, Figure 1). Moreover, mycorrhizal type significantly influenced

soil P fractions, with resin P, NaHCO3-Pi, extractable Po, and total

P being higher in EM species soils than in AM species forest soils

(P < 0.05, Figure 1). Regarding the proportion of different P

fractions in total P, neither tree species nor mycorrhizal type had

a significant effect, except that the extractable Po in EM species was

higher than in AM species soils (P < 0.05, Figure 2).
3.3 Leaf nutrient stoichiometry and
Mn concentration

The foliar C, N, and P concentrations in PM and CC were higher

than in CF and MM species (P < 0.05), while the values of foliar C:P

and C:N ratios in PM and CC were lower than in CF and MM species

(P < 0.05, Table 2). Compared with AM species, foliar N and P were

higher but the foliar C:P and C:N were lower in EM species (P < 0.05,

Table 2). There were no significant effects of mycorrhizal type on foliar

C and foliar N:P (P > 0.05, Table 2). Additionally, neither tree species

nor mycorrhizal type had significant influences on foliar Mn

concentration (P > 0.05, Table 2).
3.4 The PLFAs and enzyme activity

There were no statistically significant differences in bacterial,

fungal, and total PLFAs between EM and AM species (P > 0.05,

Figure 3). Similarly, no significant differences in these PLFAs were

observed among the four forest soils (P > 0.05), except that the

bacterial and total PLFAs in CF were lower than in other species

(P < 0.05, Figure 3). Mycorrhizal type mainly altered the ACP

activity, which was higher in EM species than in AM species soils

(P < 0.05, Figure 4), whereas it did not affect the enzyme activity of

CBH, bG, and NAG (P > 0.05).
TABLE 1 Soil properties in Pinus massoniana (PM), Castanopsis carlesii (CC), Chinese fir (CF), and Michelia macclurei (MM) forest soils in
subtropical China.

Soil properties
EM species AM species

t P
PM CC CF MM

pH 4.46 ± 0.18a 4.48 ± 0.06a 4.42 ± 0.13a 4.38 ± 0.16a 1.055 0.309

SOC (g kg-1) 17.17 ± 2.97ab 16.71 ± 0.57ab 15.42 ± 1.36b 18.45 ± 1.56a -0.001 0.999

TN (g kg-1) 1.28 ± 0.08a 1.31 ± 0.08a 1.20 ± 0.12a 1.33 ± 0.08a 0.769 0.457

DON (mg kg-1) 3.00 ± 0.91b 3.01 ± 0.40b 3.01 ± 1.77b 6.24 ± 1.55a -1.911 0.092

NH4
+-N (mg kg-1) 9.44 ± 1.78a 11.18 ± 2.95a 8.62 ± 0.81a 8.36 ± 0.97a 1.993 0.079

NO3
–N (mg kg-1) 0.40 ± 0.10a 0.35 ± 0.11a 0.12 ± 0.03b 0.11 ± 0.02b 7.144 < 0.001***
fro
EM species, ectomycorrhizal species; AM species, arbuscular mycorrhizal species; SOC, soil organic carbon; TN, total nitrogen; DON, dissolved organic nitrogen. Different letter presents
statistical difference among four species (P < 0.05); *** present statistical difference (P < 0.001) between EM and AM species.
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3.5 Relationships between soil P fractions
and soil properties, leaf nutrients, and
microbial activity

The results of the Random Forest model showed that foliar P,

ACP, and extractable Po or foliar C:P were the dominant factors

influencing resin P and extractable Po (P < 0.05), followed by
Frontiers in Plant Science 05
bacteria, pH, foliar N, and NAG, and so on (Figure 5). Among these

factors, resin P and extractable Po were positively correlated with

foliar P (P < 0.02), but negatively correlated with foliar C:P (P <

0.01, Figure 6). In addition, a significant positive relationship was

observed between resin P and ACP activity (P = 0.001), whereas no

correlation was obtained between resin P and foliar Mn

concentration (P = 0.77, Figure 6).
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4 Discussion

4.1 Differences of soil P fractions between
EM and AM species forests

Prior research has consistently recognized that EM species

demonstrate a greater capacity to mobilize soil P, leading to

increased soil P availability (Steidinger et al., 2014; Rosling et al.,

2016; Fan et al., 2018). In line with these findings, our study also

noted higher concentrations of available P (resin P and NaHCO3-

Pi) in soils associated with EM species compared to AM species soils

(P < 0.05, Figure 1). This may be associated with the differences in P

utilization strategy between EM and AM species (Rosling et al.,

2016; Fan et al., 2018). EM species have a great ability to mineralize

organic P, as EM fungi can produce ACP. In contrast, AM tree

species preferentially uptake inorganic P, as AM fungi lack the

ability to synthesize ACP (Phillips et al., 2013; Rosling et al., 2016).

However, a recent study in subtropical karst forests reported
Frontiers in Plant Science 06
contrasting results, linking low P availability in EM species soils

to reduced ACP activity (Yang et al., 2021). In contrast, another

study found that P deficiencies stimulated the production of ACP

activity in EM species (Meeds et al., 2021). Previous study have

demonstrated that microbes-driven mineralization of organic P,

through the production of ACP, serve as a key pathway for EM

species to acquire soil P (Fan et al., 2018; Fan et al., 2019). In fact,

this study also observed higher ACP activity in EM species

compared to AM soils (P < 0.05, Figure 4) and identified a

positive correlation between resin P and ACP activity (P = 0.001,

Figure 6). This suggests that the higher P availability in EM species

soil may be attributed to organic P mineralization (Fan et al., 2018;

Fan et al., 2019). Importantly, we also found that changes in resin P

were predominantly influenced by extractable organic P (Figure 5),

underscoring the critical role of organic P in regulating available P

in forest soils with different mycorrhizal types (Figure 7).

Furthermore, mycorrhizal type has an impact on organic P

levels in forest soils (Koele et al., 2014; Rosling et al., 2016). For
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TABLE 2 Leaf nutrient stoichiometry of Pinus massoniana (PM), Castanopsis carlesii (CC), Chinese fir (CF), and Michelia macclurei (MM) forest in
subtropical China.

Foliar nutrient
EM species AM species

t P
PM CC CF MM

Foliar C (g kg-1) 501.17 ± 7.83a 472.88 ± 2.69c 483.01 ± 6.43b 470.45 ± 1.37c 1.624 0.135

Foliar N (g kg-1) 15.47 ± 1.04b 18.42 ± 0.16a 10.22 ± 1.24c 12.13 ± 2.75c 5.815 < 0.001**

Foliar P (g kg-1) 1.03 ± 0.05b 1.50 ± 0.14a 0.85 ± 0.00c 0.88 ± 0.04c 4.175 0.004**

Foliar C:N 32.52 ± 2.57bc 25.67 ± 0.08c 47.77 ± 5.72a 40.16 ± 8.06ab -4.870 < 0.001**

Foliar C:P 488.75 ± 28.65b 317.94 ± 27.23c 569.86 ± 10.52a 534.26 ± 22.50a -4.286 0.003**

Foliar N:P 15.05 ± 0.48a 12.39 ± 1.03ab 12.06 ± 1.47b 13.77 ± 3.14ab 0.778 0.450

Foliar Mn (g kg-1) 1.00 ± 0.40a 1.77 ± 0.76a 1.72 ± 0.87a 0.88 ± 0.32a 0.235 0.818
fron
EM species, ectomycorrhizal species; AM species, arbuscular mycorrhizal species; Foliar C, foliar carbon concentration; Foliar N, foliar nitrogen concentration; Foliar P, foliar phosphorus
concentration; Foliar C:N, ratio of carbon to nitrogen in leaf; Foliar C:P, ratio of carbon to phosphorus in leaf; Foliar N:P, ratio of nitrogen to phosphorus in leaf; Foliar Mn, foliar manganese
concentration. Different letter presents statistical difference among four species (P < 0.05); ** present statistical difference (P < 0.01) between EM and AM species.
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example, a study in temperate forests revealed that EM species led

to lower organic P content (-28%) compared to AM species

following an 80-year period of natural recovery in abandoned

soils (Rosling et al., 2016). This difference may be attributed to
Frontiers in Plant Science 07
the distinct P utilization strategies employed by tree species (Koele

et al., 2014; Rosling et al., 2016). AM species predominantly rely on

inorganic P, while EM species exhibit a greater ability to use organic

P (Becquer et al., 2014; Plassard et al., 2019; Yu et al., 2023b).
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Consequently, organic P is more likely to accumulate in soils

dominated by AM species, whereas it is more readily depleted in

soils dominated by EM species. Besides, the elevated DON in MM

soil compared to that in AM species (such as PM and CC) present

an interesting finding. A likely biological explanation for this

difference can be attributed to leaf protection mechanisms. Leaves

of CC and PM species, with thick wax layers, are less prone to

microbial decomposition. Conversely, the thinner wax layer onMM

leaves facilitates more rapid decomposition, allowing foliar N being

easily assimilated by microbes. This process results in a higher

accumulation of organic N, such as DON, in MM soil. Additionally,

the nutrient utilization strategies between EM and AM species show

divergence (Phillips et al., 2013). EM species exhibit a substantial

ability to utilize organic nutrients, AM specie primarily depend on

inorganic nutrients and show a reduced capacity to break down

organic matter (Phillips et al., 2013; Rosling et al., 2016). This

disparity could explain the lower NO3
–N content in EM species’

soils and the higher DON in soils with AM species.

As expected, mycorrhizal type did not trigger notable

modifications in the concentration and proportion of unavailable

P (e.g., extractable Pi and residual P) in the soils (P > 0.05, Figures 1

and 2). This resistance to change could be attributed to the strong

adsorption of these soil P by iron and aluminum components, as

well as their association with internal surfaces of soil aggregates and
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secondary minerals (Hedley et al., 1982; Fan et al., 2021). These

forms of P are not easily accessible to microbes or plant roots and

are generally insensitive to environmental changes (Hedley et al.,

1982; Tiessen and Moir, 1993; Zhang et al., 2020). This suggests that

mycorrhizal type primarily influenced the dynamics of available P

and organic P, with a lesser impact on the fractions of P strongly

fixed in the soil.

Interestingly, the total P content was higher in soils associated

with EM species compared to AM species (P < 0.05, Figure 1). This

finding deviates from previous studies that did not detect significant

alterations in total P among different tree species soils (Yang et al.,

2021; Jiang et al., 2022). In general, P accumulation in the soil is

primarily shaped by microorganisms and plants (Richardson and

Simpson, 2011; Richardson et al., 2011; Yu et al., 2023a). In this

study, no noteworthy distinction emerged in microbial biomass

(e.g., bacterial and fungal PLFAs) and C and N hydrolysis enzymes

(e.g., bG, CBH, and NAG) between soils with EM and AM species

(P > 0.05, Table S1; Figures 3, 4). One possible explanation is that

soil properties, such as pH, SOC, TN, NH4
+-N, showed no

significant differences in EM and AM species soils (Table 1),

indicating a similar capacity that provide C and N to

microorganisms. As a result, no significant difference in synthesis

of enzymes involved in the acquisition of C and N (Saiya-Cork et al.,

2002). In contrast, ACP activity is higher in soils planted with EM
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species, suggesting a more pronounced difference in the impact of

soil microbes on P cycling between EM and AM species (Rosling

et al., 2016). This may due to the fact that microbes in subtropical

soils are more limited by P rather than C and N (Plassard et al.,

2019; Zhang et al., 2023). Given that EM species have a great ability

to synthesize ACP, while AM fungi lack such ability (Phillips et al.,

2013; Rosling et al., 2016). Therefore, ACP in EM species soil

originates from both plant roots and EM fungi, potentially inducing

higher ACP activity than in AM species soil. Altogether, the

elevated levels of available P, extractable organic P, and total P in

EM species soils compared to AM species imply that mycorrhizal

type plays a pivotal role in soil P accumulation, with EM species

exhibiting a greater propensity for P accumulation at the plot level

(Figure 7). However, this finding is based on observations of two

EM and AM tree species, evidences from more species are required

to demonstrate the differential contribution of mycorrhizal type to

P accrual in forest soils on a larger scale.
4.2 Dominant factors for P fractions
accrual in EM and AM species forests soils

Plant-derived P, particularly foliar P, constitutes a major source

of soil P, and its fluctuations might lead to variations in P

accumulation and availability in soils (Vitousek, 1984; Sayer and

Tanner, 2010; Gao et al., 2022). In this study, foliar P concentration

was significantly higher in EM species in contrast to AM species

(P < 0.05, Figure 1). These findings are consistent with the elevated

levels of soil available P and organic P in EM species relative to AM

species (Figure 1). Suggesting that the higher P availability in soil

may be associated with greater plant-derived P input (Sayer and

Tanner, 2010; Gao et al., 2022) (Figure 7). Moreover, the higher

ACP activity in EM species soils is beneficial to hydrolyze foliar

organic P, contributing to increases in available P in soil. This can

be further supported by the findings from random forest analysis,

which revealed that foliar P was the dominant factor regulating

available P (resin P) and organic P (extractable Po) (Figure 5). Thus,

it can be inferred that plant-mediated pathways governing P

turnover processes may account for the observed variation in P

content between EM and AM species soils (Richardson et al., 2009;

Steidinger et al., 2014; Fan et al., 2019).

Besides, foliar nutrient stoichiometry also exhibited significant

differences between EM and AM species, with AM species

displaying higher foliar C:P ratios compared to EM species

(Table 1, P < 0.01). This disparity may due to the elevated foliar

P content in EM species. The higher foliar P content in EM species

implies a great uptake of soil P by plants, potentially resulting in

lower P accumulation in EM soils. However, both available P and

organic P were higher in soils with EM species than AM soils

(Figure 1). One possible explanation was the larger biomass of AM

species, despite their lower foliar P. AM species (both CF and MM),

known for their rapid growth (Chen et al., 2020; Wei et al., 2023),

exhibited significantly higher tree height and diameter at breast

height during the early stages of growth compared to EM species
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(PM and CC) (unpublished data), suggesting a higher biomass P in

AM species than in EM species. These findings provide further

evidence that the presence of AM species in the soil may lead to

increased assimilation of P by plants, resulting in lower available P

and organic P compared to soils with EM species (Figure 7).

The differences in foliar P between EM and AM species may

suggest varying abilities to mediate the transformation among various

P fractions, potentially affecting the proportion of different P fractions

in total soil P (Rosling et al., 2016; Cheeke et al., 2017; Chang et al.,

2022). However, the proportion of inorganic P (e.g., resin P,

NaHCO3-Pi, and extractable Pi) to soil total P did not exhibit

significant changes, whereas extractable Po and its proportion to

total P were higher in soils dominated by EM species than in AM

species (P < 0.05, Figures 1, 2). This decrease in organic P may be

attributed to its decomposition acting as the main P source for plant

uptake (Becquer et al., 2014; Fan et al., 2018; Plassard et al., 2019).

Two pieces of evidence support this: firstly, the dominant factor

influencing resin P and organic P was found to be ACP (Figure 5);

and secondly, the foliar Mn concentration, which serves as a proxy

for plant capacity to mobilize inorganic P (Lambers et al., 2015; Yu

et al., 2020; Lambers, 2022; Yu et al., 2023b), did not differ between

EM and AM species (P > 0.05, Table 2), nor did it have a significant

influence on available P and organic P (Figures 5, 6). These findings

collectively suggest that ACP-driven organic P mineralization is more

vital than inorganic P mobilization for plant P uptake (Fan et al.,

2018; Andrino et al., 2020), providing a reasonable explanation for

the observed differences in organic P accumulation between EM and

AM species (Figure 7).

Additionally, we found that interspecific differences also affect P

accumulations in soils (Li M. et al., 2019). Such as the available P

and organic P in soil hosting CF were lower than those in CC and

PM soils (Figure 1). This is probably due to CF has a higher growth

rate than other species, resulting in greater P accumulation in plant

biomass and consequently reducing soil P levels. Therefore, it is

crucial to consider the contribution of tree species when evaluating

the influences of mycorrhizal associations on nutrient cycling and

soil fertility in forest ecosystems.
5 Conclusions

This study demonstrated that EM species have a greater

capacity for accumulating soil P (e.g., available P and organic P)

compared to AM species at the plot level. One explanation is the

higher return of plant-derived P (e.g., foliar P) to the soil during

litter decomposition in EM species. Furthermore, organic P

mineralization plays a more significant role than inorganic P

desorption in influencing P availability in soils. These findings

provide valuable insights into plant-soil interactions and

emphasize the critical role mycorrhizal associations play in soil P

dynamics. Further studies into changes in soil P associated with

broader EM and AM species is essential to reinforce our findings

and elucidate P cycling mechanism in forest ecosystems with

limited P availability.
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