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Abstract

Rapid biodiversity loss under global climate change threaten forest ecosystem function.
However, the drivers of soil micro-food web on ecosystem functions across biodiversity
gradients remains equivocal. We measured responses of multiple ecosystem functions
to tree species richness in a subtropical forest. Tree species richness had negligible
effects on nutrient cycling, organic matter decomposition, and plant productivity, but
carbon stocks and multifunctionality increased with tree species richness. Soil
organisms, particularly arbuscular mycorrhizal fungi and soil nematodes, elicited the
greatest relative effects on multifunctionality. Structural equation models revealed
indirect effects of functional diversity on multifunctionality mediated by trophic
interactions in soil micro-food webs. There was a significant negative effect of G*
bacteria on soil nematode abundance, and a significant positive effect of fungal biomass
on soil nematode abundance. Our study emphasizes the significance of a multitrophic
perspective in elucidating biodiversity-multifunctionality relationships and highlights
the conservation of functioning soil micro-food webs to maintain multiple ecosystem

functions.

Keywords: functional diversity; nematodes; niche complementarity; phylogenetic

diversity; soil biodiversity; trophic interactions
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1 Introduction

Anthropogenic activities and associated changes in climate have triggered major
declines in biodiversity (Tilman et al., 2006; Isbell et al., 2023), with implications for
ecosystem function and service provision. Forest ecosystems regulate organic matter
decomposition and carbon sequestration, and support nutrient cycling (Gamfeldt et al.,
2013; Yuan et al., 2021; Augusto and Boca, 2022) that contribute to the mitigation of
effects of global climate change (Eisenhauer et al., 2013; Messier et al., 2022).
Multifunctionality research enables us to simultaneously evaluate the ability of
ecosystems to deliver multiple functions and provide policy-relevant recommendations
(van der Plas et al., 2018; Messier et al., 2022). Increasing evidence from boreal and
temperate forests has shown positive biodiversity and ecosystem functioning
relationships (BEFs) (Gamfeldt et al., 2013; van der Plas et al., 2016; Ratcliffe et al.,
2017). However, recent studies emphasized the importance of environmental
conditions in shaping the pattern of BEFs (Ratcliffe etal., 2017; Eisenhauer et al., 2018;
Liu et al., 2023). It thus remains largely unknown whether the findings from the
relatively species-poor regions are transferrable to the subtropical regions with species-
rich forests.

Although plant species richness is often the most commonly used indicator for
biodiversity, the BEFs tend to level off when plant species richness is at higher levels
(Gamfeldt et al., 2013). In this regard, understanding the impacts of different metrics
of biodiversity is crucial to predict BEFs under changing environmental conditions
(Schuldt et al., 2018). The functional diversity of plant traits might be a more
meaningful predictor than plant species richness alone (Craven et al., 2018; Xiao et al.,
2020), due to the effects of niche partitioning and modification of microenvironmental
conditions (Loreau and Hector. 2001; Sanaei et al., 2022). Furthermore, phylogenetic
diversity could also be an important indicator of complementarity effects in ecosystem
functions (Flynn et al., 2011; Xiao et al., 2020). It is increasingly recognized that
evolutionarily distant species are more likely to show niche differentiation and exhibit
facilitation (Xiao et al., 2020; Srivastava et al., 2012). Besides, phylogenetic diversity

can capture species interactions within communities that affect ecosystem functions
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(Srivastava et al., 2012), for instance, by representing interactions with higher trophic
levels like pathogens and herbivores (Craven et al., 2018). And yet, limited studies have
simultaneously evaluated the contributions of taxonomic, functional, and phylogenetic
diversity of subtropical tree communities to ecosystem multifunctionality.

The presence and abundance of soil organisms are crucial drivers of terrestrial
ecosystem multifunctionality (Wagg et al., 2014; Schuldt et al., 2018; Shi et al., 2021;
Wang et al., 2023), and a global meta-analysis has shown positive relations between
natural and managed tree species diversity and levels of biomass of soil microbes,
bacteria, and fungi (Chen et al., 2019), with great implications for soil microbe-driven
ecosystem function. However, significant knowledge gaps exist with respect to the
relative importance of different groups of soil organisms across trophic levels for
driving ecosystem multifunctionality. While the role of soil bacteria and fungi in
regulating forest ecosystem functions has been widely documented (Shi et al., 2021,
Yuan et al., 2021; Wang et al., 2023), most studies ignore the contribution of higher
trophic-level organisms, such as nematodes, to modifying ecosystem functions, despite
their key position within complex soil micro-food webs, and interactions with other
trophic and functional group types (Wagg et al., 2014; Jiang et al., 2023). It is thus
imperative to incorporate different trophic levels into multifunctionality research and
explore the extent to which the higher trophic-level organisms affect ecosystem
multifunctionality through trophic interactions.

The overarching aim of this 3-year manipulated field experiment, therefore, is to
understand the patterns and drivers of ecosystem multifunctionality (nutrient cycling,
soil carbon stocks, organic matter decomposition, plant productivity) across multiple
facets of tree biodiversity (taxonomic, functional, and phylogenetic diversity) in a
highly diverse subtropical forest. We hypothesized that (1) increasing levels of tree
diversity, particularly functional and phylogenetic diversity, promote ecosystem
multifunctionality, due to increased niche complementarity (Hooper et al., 2005;
Srivastava et al., 2012; Schuldt et al., 2018), and (2) soil micro-food webs with more
representatives of higher trophic levels (Cesarz et al., 2017) directly drive changes in

ecosystem multifunctionality, due to greater community coexistence (Xiao et al., 2020)
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2. Results and Discussion
2.1 Effects of tree diversity on ecosystem functions

There were no significant effects of tree species richness on nutrient cycling,
organic matter decomposition, or plant productivity (Figure 1). In contrast, soil carbon
stocks and ecosystem multifunctionality significantly increased with tree species
richness. Soil carbon stocks were significantly greater in the 32-species tree mixtures
than in the four-species mixtures (P < 0.05) (Figure S2). Additionally, there was no
change in the impacts of tree species richness on the ecosystem functions between
models that included or excluded monocultures, showing that tree diversity effects on
ecosystem multifunctionality were also apparent when diversity increased from four to
32 species.

Losses in biodiversity have triggered studies of relations between measures of
diversity and ecosystem function (Tilman et al., 2006; Isbell et al., 2023). Although the
positive relationship between biodiversity and ecosystem functioning has been
established mostly based on individual functions like primary productivity (Erskine et
al.,, 2006; Liang et al.,, 2016; Huang et al., 2018), the patterns of ecosystem
multifunctionality across tree diversity gradients and underlying drivers are less well
studied in subtropical forest ecosystems (Schuldt et al., 2018). In support of our first
hypothesis, we found that tree species richness was positively related to ecosystem
multifunctionality, where levels of soil carbon stocks, as an indicator of carbon
sequestration, were significantly greater with the higher number of tree species. This
observation agrees with previous findings that forest ecosystem soil carbon storage was
positively affected by plant species richness (Chen etal., 2019; Xu et al., 2020; Augusto
and Boca, 2022). Long-term field experiments revealed that root biomass production
was significantly enhanced along a plant species richness gradient of 1-16 (Ravenek et
al., 2014; Eisenhauer et al., 2018). The positive effect of tree species richness on soil
carbon stocks we found may be attributed to a rise in root-derived carbon inputs, such
as root exudates (Xu et al., 2020; Lange et al., 2015), due to strengthened vertical root
differentiation and resource use complementarity that consequently contributed to

belowground overyielding (Mueller et al., 2013).



138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

2.2 Ecosystem properties linked to ecosystem functioning

Linear mixed-effect models indicated that of the three groups of ecosystem
properties, soil organisms elicited the greatest relative effects on ecosystem
multifunctionality (Figure 2), where there were positive effects of nematodes (P =0.004)
and SWC (P = 0.014) and negative effects of AMF (P = 0.011) (Table 1, Figure 2).
Nutrient cycling was positively related to soil microbial biomass (P = 0.026) and
negatively related to the biomass of soil fungi and AMF (P < 0.001) and soil pH (P =
0.004) (Figure 3, Figure S3 and S5). Soil carbon stocks were positively related to the
abundance of soil nematodes (P = 0.032). Organic matter decomposition was positively
related to SWC (P = 0.023; Figure S3). Plant productivity was positively related to the
biomass of soil microbes (P = 0.027), G™ bacteria (P = 0.016), fungi (P = 0.011), and
AMF (P < 0.001), and soil pH (P < 0.001) and SWC (P = 0.011). Ecosystem
multifunctionality was positively related to soil nematode abundance (P = 0.004) and
SWC (P = 0.005) (Figure S4).

Contrary to our expectation, we found that G* bacteria and fungi were negatively
related to all three metrics of tree diversity (taxonomic, functional, and phylogenetic
diversity) (Figure 4). Indeed, this finding contrasts with previous studies showing that
high levels of diversity among tree communities stimulated microbial growth, due to
habitat and plant-derived resource diversity (Chen et al., 2019; Beugnon et al., 2021).
Nevertheless, our results align with those reported by Cesarz et al. (2022) and Schittko
et al. (2022), who illustrated the weak and negative tree diversity effects on soil
microbial biomass, possibly reflecting the context-dependent diversity effects. The
observed negative tree diversity impacts might be explained by the resource acquisition
strategies of G* bacteria and fungi (stress-tolerant) and their relatively slow growth
rates (Denef et al., 2009). Unlike copiotrophic microbes that are associated with recent
photosynthetic carbon under increasing tree species richness, growth of G* bacteria and
fungi tends to be associated with mature, stabilized organic carbon (Mellado-Vazquez
et al., 2016; Wang et al., 2021). Thus, our findings indicate that the magnitude and
direction of diversity impacts on belowground organisms may be largely dependent on

specific microbial taxa. Moreover, plant diversity effects on soil microbial communities
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may need a longer time to materialize (Eisenhauer et al., 2012; Thakur et al., 2015;
Cesarz et al., 2022).
2.3 Effects of soil multitrophic organisms on ecosystem multifunctionality

Different tree diversity metrics, taxonomic, functional, and phylogenetic diversity
significantly decreased the biomass of G* bacteria and fungi (P < 0.05; Figure 4).
Structural equation models confirmed the direct effects of aforementioned factors on
ecosystem multifunctionality. Additionally, it revealed that tree species richness was
positively associated with functional and phylogenetic diversity, where functional trait
diversity was a negative driver of the biomass of G* bacteria (Figure 5). Meanwhile,
the biomass of AMF was positively associated with soil nematode abundance (a
bottom-up effect), and the biomass of G* bacteria was negatively associated with soil
nematode abundance (a top-down effect). The abundance of soil nematodes, in turn,
significantly promoted ecosystem multifunctionality.

Soil organisms have been shown to be important drivers of ecosystem
multifunctionality (Wagg et al., 2014; Delgado-Baquerizo et al., 2020; Shi et al., 2021).
However, much attention has tended to be focused on the role of single microbial
groups, such as bacteria and fungi, in the regulation of ecosystem functions (Yuan et
al., 2021; Lietal., 2022). Nevertheless, a multitrophic perspective is particularly crucial
for low-latitude forests, where trophic interactions of highly diverse communities
influence ecosystem functions (Schuldt et al., 2018). In the soil micro-food webs,
nematodes are an integral component and are central to the regulation of multiple
ecosystem functions (van den Hoogen et al., 2019; Wang et al., 2023) and, in support
of our second hypothesis, we found that soil organisms, particularly nematodes, played
a predominant role in the regulation of plant productivity and soil carbon stocks. This
finding is consistent with previous studies showing that bacterivore nematodes can
enhance plant productivity and stabilization of soil organic carbon (Bonkowski, 2004;
Martin and Sprunger, 2021). Bottom-up and top-down effects are important regulators
of soil microbial communities (Liu et al., 2016; Asiloglu et al., 2021) and in this study,
we found a positive association between the biomass of arbuscular mycorrhizal fungi

and soil nematode abundance, indicating strong bottom-up effects of arbuscular
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mycorrhizal fungi on soil nematodes. Bottom-up processes prevail when organisms are
resource-limited, leading to the shaping of trophic levels within communities by
resource availability (Eisenhauer et al., 2013). In this regard, the positive effect of
arbuscular mycorrhizal fungi on nematodes may derive from arbuscular mycorrhizal
fungi-mediated reductions in nitrogen losses and increases in soil nutrient availability
(Chen et al., 2022; Shi et al., 2023).

In addition, we observed top-down effects of soil nematodes on G* bacteria that
then led to greater ecosystem multifunctionality, supporting studies that reported the
influence on soil bacterial community composition by nematode grazing (Mesel et al.,
2004; Flues et al., 2017). While it is considered that the G~ bacteria affiliated with
Proteobacteria and Bacteroidetes were preferred prey of soil nematodes (Flues et al.,
2017; Asiloglu et al., 2021), we found a strong top-down effect of soil nematodes on
G~ bacteria, possibly reflecting a decrease in nematode predation of G~ bacteria, due to
higher levels of motility, biofilm formation, and intracellular resistance to digestion
reported for G~ bacteria (Asiloglu et al., 2021). Given that the predation of bacteria can
lead to reductions in pathogen, and enhanced soil fertility, and plant productivity (Gao
et al., 2019; Jiang et al., 2023), it is possible that nematode grazing of G bacteria may
have contributed to the increase in ecosystem multifunctionality in this study. It is worth
noting that no direct paths between tree species richness and ecosystem
multifunctionality were supported by the structural equation models. Thus, our results
demonstrated the importance of functional trait diversity and interactions across trophic
levels in the regulation of ecosystem multifunctionality. However, the relevance of the
suggested bottom-up and top-down effects needs to be tested in future experimental
work by manipulating the trophic structure of soil micro-food webs.

Our results showed that soil microbial biomass positively affected the function of
nutrient cycling and plant productivity, possibly due to the breakdown of complex
organic polymers, such as nucleic acids and chitin, that require extracellular enzymes
produced by soil microorganisms (Baldrian, 2014), and increases in the mineralization
of organic nitrogen monomers (Elrys et al., 2021) that accelerated nutrient cycling and

plant growth. However, we found that soil fungal biomass negatively impacted nutrient
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cycling, likely reflecting the close association of soil fungi-dominated microbial
communities with low rates of nutrient cycling (Wardle et al., 2004), such as in acidic
soils with high organic matter content and low resource quality (van der Heijden et al.,
2008). Likewise, we observed negative impacts of arbuscular mycorrhizal fungi on
nutrient cycling, supporting a recent study showing that arbuscular mycorrhizal fungi-
mediated decreases in soil nitrification rates in subtropical forests (Shi et al., 2023).
We found that biomass of arbuscular mycorrhizal fungi was positively associated
with plant productivity, likely due to symbiotic associations with plant roots and greater
plant uptake of phosphorus (Smith et al., 2004) that is particularly limiting in
subtropical forest (Shi et al., 2020), and increased plant resistance to pathogens and
environmental stress (Chen et al., 2022). Furthermore, arbuscular mycorrhizal fungi
can potentially improve nutrient use efficiency (van der Heijden et al., 1998) through
the inhibition of nitrous oxide emissions (Bender et al., 2014). This might be due to the
advantage of arbuscular mycorrhizal fungi over the slow-growing nitrifiers in

competing for soil ammonium (Storer et al., 2018).

Overall, tree species richness was positively related to ecosystem
multifunctionality, as indicated by higher levels of soil carbon stocks, likely as a result
of increased root biomass production and rhizodeposition. In contrast to our expectation,
the taxonomic, functional, and phylogenetic metrics of tree diversity led to decreased
biomass of G* bacteria and fungi, possibly due to their oligotrophic affinity. This result
indicates that the magnitude and direction of tree diversity impacts on belowground
organisms may be largely dependent on microbial taxonomic composition. Although
our results reveal the underlying mechanisms of tree diversity effects on ecosystem
multifunctionality by stressing the role of trophic interactions among soil bacteria, fungi,
and nematodes, additional research by manipulating the trophic structure of soil micro-

food webs is needed to test the suggested bottom-up and top-down effects.

3. Material and methods
3.1 Experimental design

The study was carried out on the experimental research platform of NaBEF-China
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(Nutrient addition and Biodiversity Ecosystem Function) located in southeastern China,
Baisha Forest Farm, Fujian Province (25°05'N, 116°42'E), where the subtropical
climate is characterized by an average annual temperature of 19.8 °C and an average
annual precipitation of 1637 mm. Vegetation in a 13-ha area that had previously been
planted with Cunninghamia lanceolata was slash-burned in 2018, prior to the
establishment of 300, 12 x 12 m plots in which 256 one-year-old seedlings were planted
in rows 75 cm apart, with a gradient of native tree species richness (1, 4, 8, 16, 32) in
March 2019 (Shi et al., 2023). For the tree species richness gradient, we randomly
selected 81, 32, 15, 110, and 4 plots, respectively, where each tree species occurred

with the same probability (Table S1).

3.2 Metrics of tree biodiversity

We measured seven plant functional traits in monocultures associated with plant
resource use strategies, comprising specific leaf area (SLA), leaf dry matter content
(LDMC), specific root length (SRL), root tissue density (RTD), specific root surface
area (SRA), and leaf and root nitrogen (N) content (Table S2), following the methods
described by Pérez-Harguindeguy et al. (2013) and Cornelissen et al. (2003). Briefly,
SLA (m? kg) and SRA (cm? g) were measured by scanning leaf and root material
using an Epson Expression 10000XL scanner (Epson, Japan). LDMC (mg g*!) was
measured following drying fresh leaf material at 60 °C for 48 h. SRL (m g!) and RTD
(g cm™) of fine roots (< 2 mm) were analyzed using WINRHIZO software (Regents
Instrument, Canada). Leaf and root N content of finely ground oven-dried tissue was
measured using an Elementar analyzer (Elemental EL MAX, Germany).

We quantified the study plot functional diversity using the functional dispersion
index (FDis), based on the ‘dbFD’ function in the FD package (Laliberté et al., 2015).
The phylogenetic diversity was calculated using the mean phylogenetic distance, based
on the PICANTE package (Kembel et al., 2010). The functional and phylogenetic
diversity of the mixed experimental plots were weighed by the initial relative

abundance of each tree species (Shi et al., 2023).

3.3 Soil physiochemical properties
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Ten samples of soil (0-10 cm) were collected at random points equidistant
between saplings to ensure full plot representation (Wan et al., 2022) using a 3.5-cm
diameter auger in August 2021. The ten samples were combined to form a single
composite sample per plot. Soil samples were passed through a 2-mm sieve to remove
roots and stones. Soil water content (SWC) was determined following drying soil
samples at 105 °C for 24 h. Bulk density was determined using the core method. Soil
pH was determined using a soil-to-water ratio of 1:2.5. Soil content of total C and N
was determined using an elemental analyzer (Elemental EL MAX, Germany). Soil
mineral N (extractable ammonium and nitrate) was extracted from soil and 1 M KCI (1.:
5) and determined using an automated ion analyzer (Skalar San++, Netherlands). Soil
mineralization and nitrification rates were measured as the changes in total mineral and
nitrate N content, respectively, between the start and end of a 28-d period of incubation
at 25 °C (Shi et al., 2018). Soil enzyme activity measured as pmol g * dry soil ™ h™? of
B-glucosidase, cellobiohydrolase, peroxidase, phenol oxidase, N-
acetylglucosaminidase, and acid phosphatase, was measured using methods described

by Saiya-Cork et al. (2002).

3.4 Soil organisms

Soil microbial biomass was estimated following chloroform fumigation, where
biomass of total bacteria and fungi, including gram-positive (G*) and gram-negative
(G") bacteria, and arbuscular mycorrhizal fungi (AMF) was determined using
phospholipid fatty acid analysis. We measured G* bacteria on the basis of i14:0, i15:0,
al5:0, i16:0, i17:0, and al17:0, and G~ bacteria were measured on the basis of 16:1®9,
16:107, 18:1w7, 18:1w5, cyl7:0, and cy19:0 (Tedersoo et al., 2016); the sum of
18:216,9 and 18:1®9 was used as a fungal marker, and lipid fatty acid 16:1®5 was used
as a marker for AMF. Soil nematodes were extracted from 100 g of fresh soil samples

using a Baermann funnel and identified using a Motic microscope (Wang et al., 2023).

3.5 Ecosystem multifunctionality
We measured indicators of four ecosystem functions (nutrient cycling, soil carbon

stocks, organic matter decomposition, plant productivity) to calculate ecosystem
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multifunctionality (Table S3). Soil mineralization and nitrification rates, and total and
mineral N indicators of nutrient cycling (Wang et al., 2019). Soil total carbon content
corrected by soil bulk density indicated carbon stocks (Wang et al., 2019). Soil enzyme
activities of p-glucosidase, cellobiohydrolase, peroxidase, phenol oxidase, N-
acetylglucosaminidase, and acid phosphatase were indicators of organic matter
decomposition (Shi et al., 2021), and tree height, ground basal area, and annual litterfall
yield indicated plant productivity (Shi et al., 2021). We measured tree height and
ground basal diameter after two experiment years and annual litterfall yield was
calculated from monthly litter traps (47 cm x 47 cm x 20 cm) every month from April
2021 to March 2022. We standardized the four ecosystem functions using min-max
normalization (0-1) (Wang et al., 2019) and then calculated the ecosystem
multifunctionality index as the average of the four standardized scores (Eisenhauer et
al., 2018). We used weighted ecosystem multifunctionality to down-weight highly

correlated functions, as described by Manning et al. (2018).

3.6 Statistical analysis

At first, the individual ecosystem functions and ecosystem multifunctionality were
analyzed separately using statistical models including linear, log-linear, and
exponential models with tree species richness as the explanatory variable. Meanwhile,
differences in tree species richness-level means of ecosystem functions were tested
using a one-way analysis of variance, with the comparison of means using the Duncan
test at P < 0.05.

Secondly, we used linear mixed-effect models to evaluate the relative importance
of ecosystem properties in affecting ecosystem multifunctionality using the Ime4
package. The models were established with tree species composition as a random factor
(Shi et al., 2023). In addition, we classified the ecosystem properties into three groups
including tree diversity metrics (taxonomic, functional, and phylogenetic diversity),
soil organisms (G* bacteria, G~ bacteria, fungi, AMF, nematodes), and environmental
factors. The model averaging approach was then performed to quantify the relative

importance of the three groups as predictors of ecosystem multifunctionality (Huang et
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al., 2022). Before this analysis, we controlled the variance inflation factor to < 10, to
avoid multicollinearity among variables. The regression analysis was used to
investigate the relationship between ecosystem properties and ecosystem functions.
Finally, Structural equation models (SEMs) were used to estimate the direct and
indirect effects of tree diversity on ecosystem multifunctionality using the
piecewiseSEM package (Lefcheck, 2016), and overall fit was examined using the
Fisher’s C statistic and P value. Prior to analysis, all of the variables were standardized
by subtracting the mean from observed values and dividing standard deviations. A
priori hypotheses including all potential relationships are provided in Figure S1. The

statistical analyses were performed using R4.2.0 (R Core Team, 2021).
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626  Table 1 Linear mixed-effect models evaluating the relative importance of ecosystem

627  properties in affecting ecosystem multifunctionality.

Predictors Estimates F value P value

Tree diversity

Functional trait diversity -0.01 1.18 0.280
Phylogenetic diversity 0.02 3.03 0.084
Soil organisms
Microbial biomass 0.01 2.64 0.107
AMF -0.04 6.65 0.011
Nematodes 0.02 8.61 0.004
Fungi 0.02 1.52 0.220
Gram-negative bacteria -0.01 0.70 0.405
Gram-positive bacteria 0.02 2.33 0.129
Soil properties
Soil water content 0.02 6.18 0.014
Soil pH 0.01 0.63 0.428

628  The marginal R? and conditional R*> were 0.162 and 0.316, respectively. Tree species
629  richness was removed from the final model to reduce collinearity. AMF: arbuscular

630  mycorrhizal fungi.
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Figure 1 Effects of tree species richness on indicators of nutrient cycling, carbon stocks,
organic matter decomposition, plant productivity, and ecosystem multifunctionality.
The line and shaded area represent the fitted regression and the 95% confidence interval
of the fit, respectively.

Figure 2 The relative effects of indicators of tree diversity metrics (yellow), soil
organisms (green), and soil physiochemical properties (blue) on ecosystem
multifunctionality. The model averaging shows the relative importance of the three
groups of explanatory variables (left panel) and linear mixed-effect model parameter
estimates (right panel) were standardized regression coefficients + 95% Cls, with *P <
0.05, **P <0.01, ***P < 0.001.

Figure 3 Linear regression analyses of the relationship between soil organisms and
individual ecosystem functions. The fitted relationship (solid line) was shown with 95%
CIs (shaded area). AMF: arbuscular mycorrhizal fungi.

Figure 4 Linear regression analyses of relationships between tree diversity metrics and
soil organisms. The fitted relationship (solid line) was shown with 95% Cls (shaded
area).

Figure S Structural equation model estimates of direct and indirect effects of tree
diversity on ecosystem multifunctionality. Standardized path coefficients are shown
against arrows, where black and red arrows indicate positive and negative relationships,
respectively, at *P < 0.05, **P < 0.01, and ***P < 0.001; R’-values indicate the
contribution of explanatory variables to the relationship; Fisher’s C =39.43, P =0.17,
AIC =1227.12. AMF: arbuscular mycorrhizal fungi.
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696  Table S1 Tree species composition of study plots, ranked by species richness.

Species  Study

. Tree species composition
richness  plot P P

27 Cunninghamia lanceolata
248 Cunninghamia lanceolata
258 Cunninghamia lanceolata
259 Cunninghamia lanceolata

28 Pinus massoniana
50 Pinus massoniana
51 Pinus massoniana

134 Pinus massoniana
108 Cyclocarya paliurus
220 Cyclocarya paliurus
88 Fokienia hodginsii
89 Fokienia hodginsii
107 Fokienia hodginsii
136 Fokienia hodginsii
235 Taxus wallichiana
236 Taxus wallichiana
237 Taxus wallichiana
91 Cryptomeria japonica
142 Cryptomeria japonica
143 Cryptomeria japonica
166 Cryptomeria japonica
96 Alnus trabeculosa
144 Alnus trabeculosa
23 Castanopsis carlesii
247 Castanopsis carlesii
274 Castanopsis carlesii
275 Castanopsis carlesii
120 Castanopsis fissa
185 Castanopsis fissa
186 Castanopsis hystrix
187 Castanopsis hystrix
270 Castanopsis hystrix
8 Castanopsis sclerophylla
9 Castanopsis sclerophylla
62 Castanopsis sclerophylla
170 Castanopsis sclerophylla
44 Cinnamomum camphora
86 Cinnamomum camphora
160 Elaeocarpus sylvestris

P PR RPRRPRRPRPRRRRPRPRPRRRPRPRPREPRRRPRPRPRRRPRPRPREPRRRPREPRERRPRRPEPREPRERERLERELBR



P PR RPRRPRRPRPRRPRRRPRPRRRRPRPRRERRPRPRRRERRPRPRRRPRPRERRRRPRPRERRRPEPRPEPRERLERLSR

218
52
224
17
18
241
35
146
266
267
99
121
80
296
182
211
31
162
36
169
228
229
292
90
22
126
74
161
176
177

207
153
225
226
284
114
299
171
281
46

Elaeocarpus sylvestris
Euscaphis japonica
Euscaphis japonica
Hovenia acerba
Hovenia acerba
Hovenia acerba
Liquidambar formosana
Liquidambar formosana
Liquidambar formosana
Liquidambar formosana
Lithocarpus glaber
Lithocarpus glaber
Manglietia yuyuanensis
Manglietia yuyuanensis
Michelia macclurei
Michelia macclurei
Michelia maudiae
Michelia maudiae
Mytilaria laosensis
Mytilaria laosensis
Mytilaria laosensis
Mytilaria laosensis
Ormosia hosiei
Ormosia hosiei
Osmanthus fragrans
Osmanthus fragrans
Phoebe bournei
Phoebe bournei
Phoebe bournei
Phoebe bournei
Phoebe chekiangensis
Phoebe chekiangensis
Quercus variabilis
Quercus variabilis
Quercus variabilis
Quercus variabilis
Sapindus saponaria
Sapindus saponaria
Schima superba
Schima superba
Schima superba
Schima superba



55

56

16

14

154

41

42

105

69

116

103

104

109

110

12

112

113

117

Castanopsis  sclerophylla, Mytilaria laosensis, Acer
palmatum, Lithocarpus glaber

Castanopsis  sclerophylla, Mytilaria laosensis, Acer
palmatum, Lithocarpus glaber

Castanopsis  sclerophylla, Mytilaria laosensis, Acer
palmatum, Lithocarpus glaber

Fokienia hodginsii, Taxus wallichiana, Phoebe bournei,
Schima superba

Fokienia hodginsii, Taxus wallichiana, Phoebe bournei,
Schima superba

Fokienia hodginsii, Taxus wallichiana, Phoebe bournei,
Schima superba

Celtis sinensis, Quercus variabilis , Acer palmatum,
Lithocarpus glaber

Celtis sinensis, Quercus variabilis , Acer palmatum,
Lithocarpus glaber

Castanopsis hystrix, Cunninghamia lanceolata , Cryptomeria
japonica, Castanopsis carlesii

Castanopsis hystrix, Cunninghamia lanceolata , Cryptomeria
japonica, Castanopsis carlesii

Castanopsis hystrix, Cunninghamia lanceolata , Cryptomeria
japonica, Castanopsis carlesii

Cunninghamia lanceolata , Pinus massoniana, Taxus
wallichiana, Mytilaria laosensis

Cunninghamia lanceolata , Pinus massoniana, Taxus
wallichiana, Mytilaria laosensis

Liquidambar formosana, Pinus massoniana, Celtis sinensis,
Quercus variabilis

Liquidambar formosana, Pinus massoniana, Celtis sinensis,
Quercus variabilis

Celtis sinensis, Quercus variabilis , Acer palmatum,
Lithocarpus glaber

Celtis sinensis, Quercus variabilis , Acer palmatum,
Lithocarpus glaber

Cryptomeria japonica, Celtis sinensis, Phoebe bournei, Acer
palmatum

Cryptomeria japonica, Celtis sinensis, Phoebe bournei, Acer
palmatum

Cryptomeria japonica, Celtis sinensis, Phoebe bournei, Acer
palmatum

Cryptomeria japonica, Castanopsis carlesii, Phoebe bournei,
Schima superba



118

139

122

130

131

132

25

194

137

155

217

58

223

150

11

Cryptomeria japonica, Castanopsis carlesii, Phoebe bournei,
Schima superba

Cryptomeria japonica, Castanopsis carlesii, Phoebe bournei,
Schima superba

Castanopsis hystrix, Liquidambar formosana, Fokienia
hodginsii, Castanopsis sclerophylla

Castanopsis hystrix, Liquidambar formosana, Fokienia
hodginsii, Castanopsis sclerophylla

Castanopsis hystrix, Liquidambar formosana, Fokienia
hodginsii, Castanopsis sclerophylla

Castanopsis hystrix, Cunninghamia lanceolata, Fokienia
hodginsii, Taxus wallichiana

Castanopsis hystrix, Cunninghamia lanceolata, Fokienia
hodginsii, Taxus wallichiana

Castanopsis hystrix, Cunninghamia lanceolata, Fokienia
hodginsii, Taxus wallichiana

Liquidambar formosana, Pinus massoniana, Celtis sinensis,
Quercus variabilis

Liquidambar formosana, Pinus massoniana, Celtis sinensis,
Quercus variabilis

Liquidambar formosana, Pinus massoniana, Celtis sinensis,
Quercus variabilis

Castanopsis hystrix, Cunninghamia lanceolata , Cryptomeria
japonica, Castanopsis carlesii, Michelia macclurei |,
Euscaphis japonica, Manglietia yuyuanensis, Alnus
trabeculosa

Castanopsis hystrix, Cunninghamia lanceolata, Cryptomeria
japonica, Castanopsis carlesii, Michelia macclurei,
Euscaphis japonica, Manglietia yuyuanensis, Alnus
trabeculosa,

Castanopsis hystrix, Cunninghamia lanceolata, Cryptomeria
japonica, Castanopsis carlesii, Michelia macclurei,
Euscaphis japonica, Manglietia yuyuanensis, Alnus
trabeculosa,

Castanopsis hystrix, Cunninghamia lanceolata, Cryptomeria
japonica, Castanopsis carlesii, Michelia macclurei,
Euscaphis japonica, Manglietia yuyuanensis, Alnus
trabeculosa

Castanopsis  sclerophylla, Mytilaria laosensis, Acer
palmatum, Lithocarpus glaber, Cinnamomum camphora,
Elaeocarpus sylvestris, Lagerstroemia indica, Osmanthus
fragrans



269

141

75

147

289

101

174

214

79

239

24

Castanopsis  sclerophylla, Mytilaria laosensis, Acer
palmatum, Lithocarpus glaber, Cinnamomum camphora,
Elaeocarpus sylvestris, Lagerstroemia indica, Osmanthus
fragrans

Castanopsis  sclerophylla, Mytilaria laosensis, Acer
palmatum, Lithocarpus glaber, Cinnamomum camphora,
Elaeocarpus sylvestris, Lagerstroemia indica, Osmanthus
fragrans

Fokienia hodginsii, Taxus wallichiana, Phoebe bournei,
Schima superba, Ormosia hosiei, Michelia maudiae, Machilus
pauhoi, Phoebe chekiangensis

Fokienia hodginsii, Taxus wallichiana, Phoebe bournei,
Schima superba, Ormosia hosiei, Michelia maudiae, Machilus
pauhoi, Phoebe chekiangensis

Fokienia hodginsii, Taxus wallichiana, Phoebe bournei,
Schima superba, Ormosia hosiei, Michelia maudiae, Machilus
pauhoi, Phoebe chekiangensis

Fokienia hodginsii, Taxus wallichiana, Phoebe bournei,
Schima superba, Ormosia hosiei, Michelia maudiae, Machilus
pauhoi, Phoebe chekiangensis

Liquidambar formosana, Pinus massoniana, Celtis sinensis,
Quercus variabilis, Hovenia acerba, Castanopsis fissa,
Cyclocarya paliurus, Sapindus saponaria

Liquidambar formosana, Pinus massoniana, Celtis sinensis,
Quercus variabilis, Hovenia acerba, Castanopsis fissa,
Cyclocarya paliurus, Sapindus saponaria

Liquidambar formosana, Pinus massoniana, Celtis sinensis,
Quercus variabilis, Hovenia acerba, Castanopsis fissa,
Cyclocarya paliurus, Sapindus saponaria

Liquidambar formosana, Pinus massoniana, Celtis sinensis,
Quercus variabilis, Hovenia acerba, Castanopsis fissa,
Cyclocarya paliurus, Sapindus saponaria

Castanopsis hystrix, Cunninghamia lanceolata , Cryptomeria
japonica, Castanopsis carlesii, Michelia macclurei,
Euscaphis japonica, Manglietia yuyuanensis, Alnus
trabeculosa, Fokienia hodginsii, Taxus wallichiana, Phoebe
bournei, Schima superba, Ormosia hosiei, Michelia maudiae,
Machilus pauhoi , Phoebe chekiangensis



16

16

16

16

16

16

16

33

48

179

181

193

277

250

Castanopsis hystrix, Cunninghamia lanceolata , Cryptomeria
japonica, Castanopsis carlesii, Michelia macclurei |,
Euscaphis japonica, Manglietia yuyuanensis, Alnus
trabeculosa, Fokienia hodginsii, Taxus wallichiana, Phoebe
bournei, Schima superba, Ormosia hosiei, Michelia maudiae,
Machilus pauhoi , Phoebe chekiangensis

Castanopsis hystrix, Cunninghamia lanceolata , Cryptomeria
japonica, Castanopsis carlesii, Michelia macclurei,
Euscaphis japonica, Manglietia yuyuanensis, Alnus
trabeculosa, Fokienia hodginsii, Taxus wallichiana, Phoebe
bournei, Schima superba, Ormosia hosiei, Michelia maudiae,
Machilus pauhoi , Phoebe chekiangensis

Liquidambar formosana, Pinus massoniana, Celtis sinensis,
Quercus variabilis , Hovenia acerba, Castanopsis fissa,
Cyclocarya paliurus, Sapindus saponaria, Castanopsis
sclerophylla, Mytilaria laosensis, Acer palmatum,
Lithocarpus glaber, Cinnamomum camphora, Elaeocarpus
sylvestris, Lagerstroemia indica, Osmanthus fragrans
Liquidambar formosana, Pinus massoniana, Celtis sinensis,
Quercus variabilis , Hovenia acerba, Castanopsis fissa,
Cyclocarya paliurus, Sapindus saponaria, Castanopsis
sclerophylla, Mytilaria laosensis, Acer palmatum,
Lithocarpus glaber, Cinnamomum camphora, Elaeocarpus
sylvestris, Lagerstroemia indica, Osmanthus fragrans
Liquidambar formosana, Pinus massoniana, Celtis sinensis,
Quercus variabilis, Hovenia acerba, Castanopsis fissa,
Cyclocarya paliurus, Sapindus saponaria, Castanopsis
sclerophylla, Mytilaria laosensis, Acer palmatum,
Lithocarpus glaber, Cinnamomum camphora, Elaeocarpus
sylvestris, Lagerstroemia indica, Osmanthus fragrans
Liquidambar formosana, Pinus massoniana, Celtis sinensis,
Quercus variabilis, Hovenia acerba, Castanopsis fissa,
Cyclocarya paliurus, Sapindus saponaria, Castanopsis
sclerophylla, Mytilaria laosensis, Acer palmatum,
Lithocarpus glaber, Cinnamomum camphora, Elaeocarpus
sylvestris, Lagerstroemia indica, Osmanthus fragrans
Castanopsis hystrix, Cunninghamia lanceolata, Cryptomeria
japonica, Castanopsis carlesii, Liquidambar formosana,
Pinus massoniana, Celtis sinensis, Quercus variabilis,
Fokienia hodginsii, Taxus wallichiana, Phoebe bournei,
Schima superba, Castanopsis sclerophylla, Mytilaria
laosensis, Acer palmatum, Lithocarpus glaber



16

16

32

32

198

199

57

157

Castanopsis hystrix, Cunninghamia lanceolata, Cryptomeria
japonica, Castanopsis carlesii, Liquidambar formosana,
Pinus massoniana, Celtis sinensis, Quercus variabilis,
Fokienia hodginsii, Taxus wallichiana, Phoebe bournei,
Schima superba, Castanopsis sclerophylla, Mytilaria
laosensis, Acer palmatum, Lithocarpus glaber

Castanopsis hystrix, Cunninghamia lanceolata, Cryptomeria
japonica, Castanopsis carlesii, Liquidambar formosana,
Pinus massoniana, Celtis sinensis, Quercus variabilis,
Fokienia hodginsii, Taxus wallichiana, Phoebe bournei,
Schima superba, Castanopsis sclerophylla, Mytilaria
laosensis, Acer palmatum, Lithocarpus glaber

Castanopsis hystrix, Cunninghamia lanceolata, Cryptomeria
japonica, Castanopsis carlesii, Michelia macclurei,
Euscaphis japonica, Manglietia yuyuanensis, Alnus
trabeculosa, Fokienia hodginsii, Taxus wallichiana, Phoebe
bournei, Schima superba, Ormosia hosiei, Michelia maudiae,
Machilus pauhoi, Phoebe chekiangensis, Liquidambar
formosana, Pinus massoniana, Celtis sinensis, Quercus
variabilis , Hovenia acerba, Castanopsis fissa, Cyclocarya
paliurus, Sapindus saponaria, Castanopsis sclerophylla,
Mytilaria laosensis, Acer palmatum, Lithocarpus glaber,
Cinnamomum camphora, Elaeocarpus sylvestris,
Lagerstroemia indica, Osmanthus fragrans

Castanopsis hystrix, Cunninghamia lanceolata , Cryptomeria
japonica, Castanopsis carlesii, Michelia macclurei,
Euscaphis japonica, Manglietia yuyuanensis, Alnus
trabeculosa, Fokienia hodginsii, Taxus wallichiana, Phoebe
bournei, Schima superba, Ormosia hosiei, Michelia maudiae,
Machilus pauhoi , Phoebe chekiangensis, Liquidambar
formosana, Pinus massoniana, Celtis sinensis, Quercus
variabilis , Hovenia acerba, Castanopsis fissa, Cyclocarya
paliurus, Sapindus saponaria, Castanopsis sclerophylla,
Mytilaria laosensis, Acer palmatum, Lithocarpus glaber,
Cinnamomum camphora, Elaeocarpus sylvestris,
Lagerstroemia indica, Osmanthus fragrans
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698

32

32

175

238

Castanopsis hystrix, Cunninghamia lanceolata, Cryptomeria
japonica, Castanopsis carlesii, Michelia macclurei,
Euscaphis japonica, Manglietia yuyuanensis, Alnus
trabeculosa, Fokienia hodginsii, Taxus wallichiana, Phoebe
bournei, Schima superba, Ormosia hosiei, Michelia maudiae,
Machilus pauhoi , Phoebe chekiangensis, Liquidambar
formosana, Pinus massoniana, Celtis sinensis, Quercus
variabilis , Hovenia acerba, Castanopsis fissa, Cyclocarya
paliurus, Sapindus saponaria, Castanopsis sclerophylla,
Mytilaria laosensis, Acer palmatum, Lithocarpus glaber,
Cinnamomum camphora, Elaeocarpus sylvestris,
Lagerstroemia indica, Osmanthus fragrans

Castanopsis hystrix, Cunninghamia lanceolata, Cryptomeria
japonica, Castanopsis carlesii, Michelia macclurei,
Euscaphis japonica, Manglietia yuyuanensis, Alnus
trabeculosa, Fokienia hodginsii, Taxus wallichiana, Phoebe
bournei, Schima superba, Ormosia hosiei, Michelia maudiae,
Machilus pauhoi, Phoebe chekiangensis, Liquidambar
formosana, Pinus massoniana, Celtis sinensis, Quercus
variabilis , Hovenia acerba, Castanopsis fissa, Cyclocarya
paliurus, Sapindus saponaria, Castanopsis sclerophylla,
Mytilaria laosensis, Acer palmatum, Lithocarpus glaber,
Cinnamomum camphora, Elaeocarpus sylvestris,
Lagerstroemia indica, Osmanthus fragrans
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Table S2 Definition and justification for measurement of plant functional traits.

Functional trait

Definition and measurement

Specific leaf area
(SLA)

SLA (m? kg?) is the area of one side of a fresh leaf divided by its
oven-dried mass.

SLA is positively related to an acquisitive resource use strategy, and
reflects a positive relation with growth rate (Cornelissen et al., 2003;
Shi et al., 2020).

In May 2021, fully developed leaves without herbivore or pathogen
damage were cut from the stem and assayed following the methods
described by Cornelissen et al. (2003). Leaves were scanned using a
scanner (Epson Expression 10000XL scanner) and then oven-dried at
60 °C for 48 h.

Leaf dry matter content
(LDMC)

LDMC (mg g?) is the oven-dried mass of a leaf divided by its water-
saturated fresh mass.

Leaves with high LDMC tend to be tough, and negatively correlate
with growth rate. LDMC tends to scale with 1/SLA.

Fully developed leaves without herbivore or pathogen damage were
cut from the stem and assayed for LDMC, as described by
Cornelissen et al. (2003). Briefly, water-saturated fresh mass was
measured and then dry mass was measured after oven-drying at 60 °C
for 48 h.

Leaf N content

Leaf N content (mg g?) is the total amount of N per unit of dry leaf
mass.

Leaf N content tends to be closely associated with high nutritional
quality to the consumers in food webs (Cornelissen et al., 2003).

Leaf N content was measured from finely ground oven-dried leaf
using an Elementar analyzer (Elementar Analysensysteme Co.,
Hanau, Germany).

Specific root length
(SRL)

SRL (m g?) is the ratio of root length to mass.

High SRL usually refers to faster root elongation rates and higher
rates of nutrient and water uptake capacity, and is therefore positively
related to relative growth rates (Cornelissen et al., 2003; Weemstra et
al., 2020).
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Surface soil (0—20 cm) at the base of the trees was carefully excavated
to expose the main lateral roots, and roots (< 2 mm) were gently
washed in deionized water to remove adhered soil. Total length of
roots was analyzed using WINRHIZO software (Regents Instrument,
Canada), and dry mass was measured following oven-drying at 60 °C
for 48 h.

Root tissue density
(RTD)

RTD (g cm™) is the root dry mass over volume.

RTD is positively related to root longevity and negatively associated
with nutrient uptake.

Total length and diameter of roots were analyzed using WINRHIZO
software (Regents Instrument, Canada). Dry mass was measured
following oven-drying at 60 °C for 48 h.

Specific root surface
area (SRA)

SRA (cm? g1) is the amount of root surface per gram of root.

SRA is a surrogate of plant nutrient uptake strategy (Hodge et al.,
2009). High SRA is related to greater contact with soil nutrient, and
higher N uptake potential (Cornelissen et al., 2003).

SRA was assayed by scanning washed roots using a scanner (Epson
Expression 10000XL scanner) after oven-drying at 60 °C for 48 h.

Root N content

Root N content (mg g?) is the total amount of N per unit of dry leaf
mass.

Root N content tends to be closely associated with high nutritional
quality to the consumers in food webs (Cornelissen et al., 2003).

Root N content was measured from finely ground oven-dried leaf
using an elementar analyzer (Elementar Analysensysteme Co.,
Hanau, Germany).
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Table S3 Indicators of ecosystem function.

Ecosystem function

Indicator

Soil carbon stocks

Nutrient cycling

Organic matter
decomposition

Plant productivity

Soil total carbon corrected by bulk density

Soil mineralization and nitrification rates, total N, mineral N
Enzyme activities of p-glucosidase, cellobiohydrolase,
peroxidase, phenol oxidase, N-acetylglucosaminidase, acid
phosphatase

Tree height, ground basal area, annual litterfall yield
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705  Figure S1 A priori structural equation model assumptions of direct and indirect effects

706  of tree diversity on ecosystem multifunctionality.
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Figure S2 Effects of tree species richness on indicators of nutrient cycling (a), soil
carbon stocks (b), organic matter decomposition (c), plant productivity (d) and
ecosystem multifunctionality (e). Values for boxplots are medians, with 75% of
observations in the boxes, and whiskers above and below the boxes indicating the 95"
and 5™ percentiles. Different letters indicate statistical differences at P < 0.05 using the

one-way analysis of variance based on the Duncan test.
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715  Figure S3 Linear regression analysis of the relationship between soil properties and
716  ecosystem function. The fitted relationship (solid line) is shown with 95% CIs (shaded

717  area). OM decomposition: organic matter decomposition.
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721 Figure S4 Linear regression analysis of the relationships between soil nematode
722 abundance and soil water content with ecosystem multifunctionality. The fitted

723 relationship (solid line) is shown with 95% Cls (shaded area).
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Figure S5 Correlation between ecosystem properties and ecosystem functions. Blue
and red circles with asterisks indicate significant (P < 0.05) positive and negative
effects, respectively. Circle size scales with the predictors’ correlation estimate. AMF:

arbuscular mycorrhizal fungi, OM decomposition: organic matter decomposition.
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