
This is the **accepted version** of the journal article:

Shi, Xiuzhen; Eisenhauer, Nico; Peñuelas, Josep; [et al.]. «Trophic interactions in soil micro-food webs drive ecosystem multifunctionality along tree species richness». *Global Change Biology*, Vol. 30, issue 3 (March 2024), art. e17234.
DOI 10.1111/gcb.17234

This version is available at <https://ddd.uab.cat/record/290856>

under the terms of the IN COPYRIGHT license

1 *Title page*

2 **Trophic interactions in soil micro-food webs drive ecosystem multifunctionality**

3 **along tree species richness**

4 Xiuzhen Shi ^{1,2}, Nico Eisenhauer ^{3,4}, Josep Peñuelas ^{5,6}, Yanrong Fu ^{1,2}, Jianqing Wang
5 ^{1,2*}, Yuxin Chen ⁷, Lulu He ^{1,2}, Shengen Liu ⁸, Liyan Wang ^{1,2}, Manuel Esteban Lucas-
6 Borja ⁹, Zhiqun Huang ^{1,2*}

7 ¹*Key Laboratory for Humid Subtropical Eco-geographical Processes of the Ministry of*
8 *Education, Institute of Geography, Fujian Normal University, Fuzhou 350117, China*

9 ²*Fujian Provincial Key Laboratory for Subtropical Resources and Environment, School*
10 *of Geographical Sciences, Fujian Normal University, Fuzhou 350117, China*

11 ³*German Center for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig,*
12 *Leipzig, Germany*

13 ⁴*Institute of Biology, Leipzig University, Leipzig, Germany*

14 ⁵*CREAF, Centre de Recerca Ecològica i Aplicacions Forestals, Cerdanyola del Vallès,*
15 *Catalonia, Spain*

16 ⁶*CSIC, Global Ecology Unit CREAF-CSIC-UAB, Bellaterra, Catalonia, Spain*

17 ⁷*Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems,*
18 *College of the Environment & Ecology, Xiamen University, 361102 Xiamen, China*

19 ⁸*College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, China*

20 ⁹*Higher Technical School of Agricultural and Forestry Engineering, Castilla-La*
21 *Mancha University, Albacete, Spain*

22

23 *Author for correspondence: Jianqing Wang and Zhiqun Huang

24 E-mail address: jianqingwang@aliyun.com; zhiqunhuang@hotmail.com

25 **Running title:** Soil micro-food webs regulate ecosystem multifunctionality

26

27 **Abstract**

28 Rapid biodiversity loss under global climate change threaten forest ecosystem function.
29 However, the drivers of soil micro-food web on ecosystem functions across biodiversity
30 gradients remains equivocal. We measured responses of multiple ecosystem functions
31 to tree species richness in a subtropical forest. Tree species richness had negligible
32 effects on nutrient cycling, organic matter decomposition, and plant productivity, but
33 carbon stocks and multifunctionality increased with tree species richness. Soil
34 organisms, particularly arbuscular mycorrhizal fungi and soil nematodes, elicited the
35 greatest relative effects on multifunctionality. Structural equation models revealed
36 indirect effects of functional diversity on multifunctionality mediated by trophic
37 interactions in soil micro-food webs. There was a significant negative effect of G⁺
38 bacteria on soil nematode abundance, and a significant positive effect of fungal biomass
39 on soil nematode abundance. Our study emphasizes the significance of a multitrophic
40 perspective in elucidating biodiversity-multifunctionality relationships and highlights
41 the conservation of functioning soil micro-food webs to maintain multiple ecosystem
42 functions.

43

44 **Keywords:** functional diversity; nematodes; niche complementarity; phylogenetic
45 diversity; soil biodiversity; trophic interactions

46 **1 Introduction**

47 Anthropogenic activities and associated changes in climate have triggered major
48 declines in biodiversity (Tilman et al., 2006; Isbell et al., 2023), with implications for
49 ecosystem function and service provision. Forest ecosystems regulate organic matter
50 decomposition and carbon sequestration, and support nutrient cycling (Gamfeldt et al.,
51 2013; Yuan et al., 2021; Augusto and Boća, 2022) that contribute to the mitigation of
52 effects of global climate change (Eisenhauer et al., 2013; Messier et al., 2022).
53 Multifunctionality research enables us to simultaneously evaluate the ability of
54 ecosystems to deliver multiple functions and provide policy-relevant recommendations
55 (van der Plas et al., 2018; Messier et al., 2022). Increasing evidence from boreal and
56 temperate forests has shown positive biodiversity and ecosystem functioning
57 relationships (BEPs) (Gamfeldt et al., 2013; van der Plas et al., 2016; Ratcliffe et al.,
58 2017). However, recent studies emphasized the importance of environmental
59 conditions in shaping the pattern of BEPs (Ratcliffe et al., 2017; Eisenhauer et al., 2018;
60 Liu et al., 2023). It thus remains largely unknown whether the findings from the
61 relatively species-poor regions are transferrable to the subtropical regions with species-
62 rich forests.

63 Although plant species richness is often the most commonly used indicator for
64 biodiversity, the BEPs tend to level off when plant species richness is at higher levels
65 (Gamfeldt et al., 2013). In this regard, understanding the impacts of different metrics
66 of biodiversity is crucial to predict BEPs under changing environmental conditions
67 (Schuldt et al., 2018). The functional diversity of plant traits might be a more
68 meaningful predictor than plant species richness alone (Craven et al., 2018; Xiao et al.,
69 2020), due to the effects of niche partitioning and modification of microenvironmental
70 conditions (Loreau and Hector. 2001; Sanaei et al., 2022). Furthermore, phylogenetic
71 diversity could also be an important indicator of complementarity effects in ecosystem
72 functions (Flynn et al., 2011; Xiao et al., 2020). It is increasingly recognized that
73 evolutionarily distant species are more likely to show niche differentiation and exhibit
74 facilitation (Xiao et al., 2020; Srivastava et al., 2012). Besides, phylogenetic diversity
75 can capture species interactions within communities that affect ecosystem functions

76 (Srivastava et al., 2012), for instance, by representing interactions with higher trophic
77 levels like pathogens and herbivores (Craven et al., 2018). And yet, limited studies have
78 simultaneously evaluated the contributions of taxonomic, functional, and phylogenetic
79 diversity of subtropical tree communities to ecosystem multifunctionality.

80 The presence and abundance of soil organisms are crucial drivers of terrestrial
81 ecosystem multifunctionality (Wagg et al., 2014; Schuldt et al., 2018; Shi et al., 2021;
82 Wang et al., 2023), and a global meta-analysis has shown positive relations between
83 natural and managed tree species diversity and levels of biomass of soil microbes,
84 bacteria, and fungi (Chen et al., 2019), with great implications for soil microbe-driven
85 ecosystem function. However, significant knowledge gaps exist with respect to the
86 relative importance of different groups of soil organisms across trophic levels for
87 driving ecosystem multifunctionality. While the role of soil bacteria and fungi in
88 regulating forest ecosystem functions has been widely documented (Shi et al., 2021;
89 Yuan et al., 2021; Wang et al., 2023), most studies ignore the contribution of higher
90 trophic-level organisms, such as nematodes, to modifying ecosystem functions, despite
91 their key position within complex soil micro-food webs, and interactions with other
92 trophic and functional group types (Wagg et al., 2014; Jiang et al., 2023). It is thus
93 imperative to incorporate different trophic levels into multifunctionality research and
94 explore the extent to which the higher trophic-level organisms affect ecosystem
95 multifunctionality through trophic interactions.

96 The overarching aim of this 3-year manipulated field experiment, therefore, is to
97 understand the patterns and drivers of ecosystem multifunctionality (nutrient cycling,
98 soil carbon stocks, organic matter decomposition, plant productivity) across multiple
99 facets of tree biodiversity (taxonomic, functional, and phylogenetic diversity) in a
100 highly diverse subtropical forest. We hypothesized that (1) increasing levels of tree
101 diversity, particularly functional and phylogenetic diversity, promote ecosystem
102 multifunctionality, due to increased niche complementarity (Hooper et al., 2005;
103 Srivastava et al., 2012; Schuldt et al., 2018), and (2) soil micro-food webs with more
104 representatives of higher trophic levels (Cesarz et al., 2017) directly drive changes in
105 ecosystem multifunctionality, due to greater community coexistence (Xiao et al., 2020)

106 and modulation effects (Schuldt et al., 2018) (Fig. S1).

107

108 **2. Results and Discussion**

109 **2.1 Effects of tree diversity on ecosystem functions**

110 There were no significant effects of tree species richness on nutrient cycling,
111 organic matter decomposition, or plant productivity (Figure 1). In contrast, soil carbon
112 stocks and ecosystem multifunctionality significantly increased with tree species
113 richness. Soil carbon stocks were significantly greater in the 32-species tree mixtures
114 than in the four-species mixtures ($P < 0.05$) (Figure S2). Additionally, there was no
115 change in the impacts of tree species richness on the ecosystem functions between
116 models that included or excluded monocultures, showing that tree diversity effects on
117 ecosystem multifunctionality were also apparent when diversity increased from four to
118 32 species.

119 Losses in biodiversity have triggered studies of relations between measures of
120 diversity and ecosystem function (Tilman et al., 2006; Isbell et al., 2023). Although the
121 positive relationship between biodiversity and ecosystem functioning has been
122 established mostly based on individual functions like primary productivity (Erskine et
123 al., 2006; Liang et al., 2016; Huang et al., 2018), the patterns of ecosystem
124 multifunctionality across tree diversity gradients and underlying drivers are less well
125 studied in subtropical forest ecosystems (Schuldt et al., 2018). In support of our first
126 hypothesis, we found that tree species richness was positively related to ecosystem
127 multifunctionality, where levels of soil carbon stocks, as an indicator of carbon
128 sequestration, were significantly greater with the higher number of tree species. This
129 observation agrees with previous findings that forest ecosystem soil carbon storage was
130 positively affected by plant species richness (Chen et al., 2019; Xu et al., 2020; Augusto
131 and Boča, 2022). Long-term field experiments revealed that root biomass production
132 was significantly enhanced along a plant species richness gradient of 1–16 (Ravenek et
133 al., 2014; Eisenhauer et al., 2018). The positive effect of tree species richness on soil
134 carbon stocks we found may be attributed to a rise in root-derived carbon inputs, such
135 as root exudates (Xu et al., 2020; Lange et al., 2015), due to strengthened vertical root
136 differentiation and resource use complementarity that consequently contributed to
137 belowground overyielding (Mueller et al., 2013).

138 **2.2 Ecosystem properties linked to ecosystem functioning**

139 Linear mixed-effect models indicated that of the three groups of ecosystem
140 properties, soil organisms elicited the greatest relative effects on ecosystem
141 multifunctionality (Figure 2), where there were positive effects of nematodes ($P = 0.004$)
142 and SWC ($P = 0.014$) and negative effects of AMF ($P = 0.011$) (Table 1, Figure 2).
143 Nutrient cycling was positively related to soil microbial biomass ($P = 0.026$) and
144 negatively related to the biomass of soil fungi and AMF ($P < 0.001$) and soil pH ($P =$
145 0.004) (Figure 3, Figure S3 and S5). Soil carbon stocks were positively related to the
146 abundance of soil nematodes ($P = 0.032$). Organic matter decomposition was positively
147 related to SWC ($P = 0.023$; Figure S3). Plant productivity was positively related to the
148 biomass of soil microbes ($P = 0.027$), G⁺ bacteria ($P = 0.016$), fungi ($P = 0.011$), and
149 AMF ($P < 0.001$), and soil pH ($P < 0.001$) and SWC ($P = 0.011$). Ecosystem
150 multifunctionality was positively related to soil nematode abundance ($P = 0.004$) and
151 SWC ($P = 0.005$) (Figure S4).

152 Contrary to our expectation, we found that G⁺ bacteria and fungi were negatively
153 related to all three metrics of tree diversity (taxonomic, functional, and phylogenetic
154 diversity) (Figure 4). Indeed, this finding contrasts with previous studies showing that
155 high levels of diversity among tree communities stimulated microbial growth, due to
156 habitat and plant-derived resource diversity (Chen et al., 2019; Beugnon et al., 2021).
157 Nevertheless, our results align with those reported by Cesarz et al. (2022) and Schittko
158 et al. (2022), who illustrated the weak and negative tree diversity effects on soil
159 microbial biomass, possibly reflecting the context-dependent diversity effects. The
160 observed negative tree diversity impacts might be explained by the resource acquisition
161 strategies of G⁺ bacteria and fungi (stress-tolerant) and their relatively slow growth
162 rates (Denef et al., 2009). Unlike copiotrophic microbes that are associated with recent
163 photosynthetic carbon under increasing tree species richness, growth of G⁺ bacteria and
164 fungi tends to be associated with mature, stabilized organic carbon (Mellado-Vázquez
165 et al., 2016; Wang et al., 2021). Thus, our findings indicate that the magnitude and
166 direction of diversity impacts on belowground organisms may be largely dependent on
167 specific microbial taxa. Moreover, plant diversity effects on soil microbial communities

168 may need a longer time to materialize (Eisenhauer et al., 2012; Thakur et al., 2015;
169 Cesarz et al., 2022).

170 **2.3 Effects of soil multitrophic organisms on ecosystem multifunctionality**

171 Different tree diversity metrics, taxonomic, functional, and phylogenetic diversity
172 significantly decreased the biomass of G⁺ bacteria and fungi ($P < 0.05$; Figure 4).
173 Structural equation models confirmed the direct effects of aforementioned factors on
174 ecosystem multifunctionality. Additionally, it revealed that tree species richness was
175 positively associated with functional and phylogenetic diversity, where functional trait
176 diversity was a negative driver of the biomass of G⁺ bacteria (Figure 5). Meanwhile,
177 the biomass of AMF was positively associated with soil nematode abundance (a
178 bottom-up effect), and the biomass of G⁺ bacteria was negatively associated with soil
179 nematode abundance (a top-down effect). The abundance of soil nematodes, in turn,
180 significantly promoted ecosystem multifunctionality.

181 Soil organisms have been shown to be important drivers of ecosystem
182 multifunctionality (Wagg et al., 2014; Delgado-Baquerizo et al., 2020; Shi et al., 2021).
183 However, much attention has tended to be focused on the role of single microbial
184 groups, such as bacteria and fungi, in the regulation of ecosystem functions (Yuan et
185 al., 2021; Li et al., 2022). Nevertheless, a multitrophic perspective is particularly crucial
186 for low-latitude forests, where trophic interactions of highly diverse communities
187 influence ecosystem functions (Schuldt et al., 2018). In the soil micro-food webs,
188 nematodes are an integral component and are central to the regulation of multiple
189 ecosystem functions (van den Hoogen et al., 2019; Wang et al., 2023) and, in support
190 of our second hypothesis, we found that soil organisms, particularly nematodes, played
191 a predominant role in the regulation of plant productivity and soil carbon stocks. This
192 finding is consistent with previous studies showing that bacterivore nematodes can
193 enhance plant productivity and stabilization of soil organic carbon (Bonkowski, 2004;
194 Martin and Sprunger, 2021). Bottom-up and top-down effects are important regulators
195 of soil microbial communities (Liu et al., 2016; Asiloglu et al., 2021) and in this study,
196 we found a positive association between the biomass of arbuscular mycorrhizal fungi
197 and soil nematode abundance, indicating strong bottom-up effects of arbuscular

198 mycorrhizal fungi on soil nematodes. Bottom-up processes prevail when organisms are
199 resource-limited, leading to the shaping of trophic levels within communities by
200 resource availability (Eisenhauer et al., 2013). In this regard, the positive effect of
201 arbuscular mycorrhizal fungi on nematodes may derive from arbuscular mycorrhizal
202 fungi-mediated reductions in nitrogen losses and increases in soil nutrient availability
203 (Chen et al., 2022; Shi et al., 2023).

204 In addition, we observed top-down effects of soil nematodes on G⁺ bacteria that
205 then led to greater ecosystem multifunctionality, supporting studies that reported the
206 influence on soil bacterial community composition by nematode grazing (Mesel et al.,
207 2004; Flues et al., 2017). While it is considered that the G⁻ bacteria affiliated with
208 Proteobacteria and Bacteroidetes were preferred prey of soil nematodes (Flues et al.,
209 2017; Asiloglu et al., 2021), we found a strong top-down effect of soil nematodes on
210 G⁻ bacteria, possibly reflecting a decrease in nematode predation of G⁻ bacteria, due to
211 higher levels of motility, biofilm formation, and intracellular resistance to digestion
212 reported for G⁻ bacteria (Asiloglu et al., 2021). Given that the predation of bacteria can
213 lead to reductions in pathogen, and enhanced soil fertility, and plant productivity (Gao
214 et al., 2019; Jiang et al., 2023), it is possible that nematode grazing of G⁺ bacteria may
215 have contributed to the increase in ecosystem multifunctionality in this study. It is worth
216 noting that no direct paths between tree species richness and ecosystem
217 multifunctionality were supported by the structural equation models. Thus, our results
218 demonstrated the importance of functional trait diversity and interactions across trophic
219 levels in the regulation of ecosystem multifunctionality. However, the relevance of the
220 suggested bottom-up and top-down effects needs to be tested in future experimental
221 work by manipulating the trophic structure of soil micro-food webs.

222 Our results showed that soil microbial biomass positively affected the function of
223 nutrient cycling and plant productivity, possibly due to the breakdown of complex
224 organic polymers, such as nucleic acids and chitin, that require extracellular enzymes
225 produced by soil microorganisms (Baldrian, 2014), and increases in the mineralization
226 of organic nitrogen monomers (Elrys et al., 2021) that accelerated nutrient cycling and
227 plant growth. However, we found that soil fungal biomass negatively impacted nutrient

228 cycling, likely reflecting the close association of soil fungi-dominated microbial
229 communities with low rates of nutrient cycling (Wardle et al., 2004), such as in acidic
230 soils with high organic matter content and low resource quality (van der Heijden et al.,
231 2008). Likewise, we observed negative impacts of arbuscular mycorrhizal fungi on
232 nutrient cycling, supporting a recent study showing that arbuscular mycorrhizal fungi-
233 mediated decreases in soil nitrification rates in subtropical forests (Shi et al., 2023).

234 We found that biomass of arbuscular mycorrhizal fungi was positively associated
235 with plant productivity, likely due to symbiotic associations with plant roots and greater
236 plant uptake of phosphorus (Smith et al., 2004) that is particularly limiting in
237 subtropical forest (Shi et al., 2020), and increased plant resistance to pathogens and
238 environmental stress (Chen et al., 2022). Furthermore, arbuscular mycorrhizal fungi
239 can potentially improve nutrient use efficiency (van der Heijden et al., 1998) through
240 the inhibition of nitrous oxide emissions (Bender et al., 2014). This might be due to the
241 advantage of arbuscular mycorrhizal fungi over the slow-growing nitrifiers in
242 competing for soil ammonium (Storer et al., 2018).

243 Overall, tree species richness was positively related to ecosystem
244 multifunctionality, as indicated by higher levels of soil carbon stocks, likely as a result
245 of increased root biomass production and rhizodeposition. In contrast to our expectation,
246 the taxonomic, functional, and phylogenetic metrics of tree diversity led to decreased
247 biomass of G⁺ bacteria and fungi, possibly due to their oligotrophic affinity. This result
248 indicates that the magnitude and direction of tree diversity impacts on belowground
249 organisms may be largely dependent on microbial taxonomic composition. Although
250 our results reveal the underlying mechanisms of tree diversity effects on ecosystem
251 multifunctionality by stressing the role of trophic interactions among soil bacteria, fungi,
252 and nematodes, additional research by manipulating the trophic structure of soil micro-
253 food webs is needed to test the suggested bottom-up and top-down effects.

254 **3. Material and methods**

255 **3.1 Experimental design**

256 The study was carried out on the experimental research platform of NaBEF-China

257 (Nutrient addition and Biodiversity Ecosystem Function) located in southeastern China,
258 Baisha Forest Farm, Fujian Province (25°05'N, 116°42'E), where the subtropical
259 climate is characterized by an average annual temperature of 19.8 °C and an average
260 annual precipitation of 1637 mm. Vegetation in a 13-ha area that had previously been
261 planted with *Cunninghamia lanceolata* was slash-burned in 2018, prior to the
262 establishment of 300, 12 × 12 m plots in which 256 one-year-old seedlings were planted
263 in rows 75 cm apart, with a gradient of native tree species richness (1, 4, 8, 16, 32) in
264 March 2019 (Shi et al., 2023). For the tree species richness gradient, we randomly
265 selected 81, 32, 15, 110, and 4 plots, respectively, where each tree species occurred
266 with the same probability (Table S1).

267 **3.2 Metrics of tree biodiversity**

268 We measured seven plant functional traits in monocultures associated with plant
269 resource use strategies, comprising specific leaf area (SLA), leaf dry matter content
270 (LDMC), specific root length (SRL), root tissue density (RTD), specific root surface
271 area (SRA), and leaf and root nitrogen (N) content (Table S2), following the methods
272 described by Pérez-Harguindeguy et al. (2013) and Cornelissen et al. (2003). Briefly,
273 SLA ($\text{m}^2 \text{ kg}^{-1}$) and SRA ($\text{cm}^2 \text{ g}^{-1}$) were measured by scanning leaf and root material
274 using an Epson Expression 10000XL scanner (Epson, Japan). LDMC (mg g^{-1}) was
275 measured following drying fresh leaf material at 60 °C for 48 h. SRL (m g^{-1}) and RTD
276 (g cm^{-3}) of fine roots (< 2 mm) were analyzed using WINRHIZO software (Regents
277 Instrument, Canada). Leaf and root N content of finely ground oven-dried tissue was
278 measured using an Elementar analyzer (Elemental EL MAX, Germany).

279 We quantified the study plot functional diversity using the functional dispersion
280 index (FDis), based on the 'dbFD' function in the FD package (Laliberté et al., 2015).
281 The phylogenetic diversity was calculated using the mean phylogenetic distance, based
282 on the PICANTE package (Kembel et al., 2010). The functional and phylogenetic
283 diversity of the mixed experimental plots were weighed by the initial relative
284 abundance of each tree species (Shi et al., 2023).

285 **3.3 Soil physiochemical properties**

286 Ten samples of soil (0–10 cm) were collected at random points equidistant
287 between saplings to ensure full plot representation (Wan et al., 2022) using a 3.5-cm
288 diameter auger in August 2021. The ten samples were combined to form a single
289 composite sample per plot. Soil samples were passed through a 2-mm sieve to remove
290 roots and stones. Soil water content (SWC) was determined following drying soil
291 samples at 105 °C for 24 h. Bulk density was determined using the core method. Soil
292 pH was determined using a soil-to-water ratio of 1:2.5. Soil content of total C and N
293 was determined using an elemental analyzer (Elemental EL MAX, Germany). Soil
294 mineral N (extractable ammonium and nitrate) was extracted from soil and 1 M KCl (1:
295 5) and determined using an automated ion analyzer (Skalar San++, Netherlands). Soil
296 mineralization and nitrification rates were measured as the changes in total mineral and
297 nitrate N content, respectively, between the start and end of a 28-d period of incubation
298 at 25 °C (Shi et al., 2018). Soil enzyme activity measured as $\mu\text{mol g}^{-1}$ dry soil h^{-1} of
299 β -glucosidase, cellobiohydrolase, peroxidase, phenol oxidase, N-
300 acetylglucosaminidase, and acid phosphatase, was measured using methods described
301 by Saiya-Cork et al. (2002).

302 **3.4 Soil organisms**

303 Soil microbial biomass was estimated following chloroform fumigation, where
304 biomass of total bacteria and fungi, including gram-positive (G⁺) and gram-negative
305 (G⁻) bacteria, and arbuscular mycorrhizal fungi (AMF) was determined using
306 phospholipid fatty acid analysis. We measured G⁺ bacteria on the basis of i14:0, i15:0,
307 a15:0, i16:0, i17:0, and a17:0, and G⁻ bacteria were measured on the basis of 16:1 ω 9,
308 16:1 ω 7, 18:1 ω 7, 18:1 ω 5, cy17:0, and cy19:0 (Tedersoo et al., 2016); the sum of
309 18:2 ω 6,9 and 18:1 ω 9 was used as a fungal marker, and lipid fatty acid 16:1 ω 5 was used
310 as a marker for AMF. Soil nematodes were extracted from 100 g of fresh soil samples
311 using a Baermann funnel and identified using a Motic microscope (Wang et al., 2023).

312 **3.5 Ecosystem multifunctionality**

313 We measured indicators of four ecosystem functions (nutrient cycling, soil carbon
314 stocks, organic matter decomposition, plant productivity) to calculate ecosystem

315 multifunctionality (Table S3). Soil mineralization and nitrification rates, and total and
316 mineral N indicators of nutrient cycling (Wang et al., 2019). Soil total carbon content
317 corrected by soil bulk density indicated carbon stocks (Wang et al., 2019). Soil enzyme
318 activities of β -glucosidase, cellobiohydrolase, peroxidase, phenol oxidase, N-
319 acetylglucosaminidase, and acid phosphatase were indicators of organic matter
320 decomposition (Shi et al., 2021), and tree height, ground basal area, and annual litterfall
321 yield indicated plant productivity (Shi et al., 2021). We measured tree height and
322 ground basal diameter after two experiment years and annual litterfall yield was
323 calculated from monthly litter traps (47 cm \times 47 cm \times 20 cm) every month from April
324 2021 to March 2022. We standardized the four ecosystem functions using min-max
325 normalization (0-1) (Wang et al., 2019) and then calculated the ecosystem
326 multifunctionality index as the average of the four standardized scores (Eisenhauer et
327 al., 2018). We used weighted ecosystem multifunctionality to down-weight highly
328 correlated functions, as described by Manning et al. (2018).

329 **3.6 Statistical analysis**

330 At first, the individual ecosystem functions and ecosystem multifunctionality were
331 analyzed separately using statistical models including linear, log-linear, and
332 exponential models with tree species richness as the explanatory variable. Meanwhile,
333 differences in tree species richness-level means of ecosystem functions were tested
334 using a one-way analysis of variance, with the comparison of means using the Duncan
335 test at $P < 0.05$.

336 Secondly, we used linear mixed-effect models to evaluate the relative importance
337 of ecosystem properties in affecting ecosystem multifunctionality using the lme4
338 package. The models were established with tree species composition as a random factor
339 (Shi et al., 2023). In addition, we classified the ecosystem properties into three groups
340 including tree diversity metrics (taxonomic, functional, and phylogenetic diversity),
341 soil organisms (G^+ bacteria, G^- bacteria, fungi, AMF, nematodes), and environmental
342 factors. The model averaging approach was then performed to quantify the relative
343 importance of the three groups as predictors of ecosystem multifunctionality (Huang et

344 al., 2022). Before this analysis, we controlled the variance inflation factor to < 10, to
345 avoid multicollinearity among variables. The regression analysis was used to
346 investigate the relationship between ecosystem properties and ecosystem functions.

347 Finally, Structural equation models (SEMs) were used to estimate the direct and
348 indirect effects of tree diversity on ecosystem multifunctionality using the
349 piecewiseSEM package (Lefcheck, 2016), and overall fit was examined using the
350 Fisher's C statistic and *P* value. Prior to analysis, all of the variables were standardized
351 by subtracting the mean from observed values and dividing standard deviations. A
352 priori hypotheses including all potential relationships are provided in Figure S1. The
353 statistical analyses were performed using R4.2.0 (R Core Team, 2021).

354

355 **Author contributions**

356 XS led the writing and improvement of the original manuscript. JW contributed
357 ideas to the study and data analysis. NE, JP, YC, SL and MELB greatly improved the
358 manuscript. YF performed data analysis. LH and LW collected the data. ZH conceived
359 the ideas and experimental design, and all authors gave final approval for publication.

360 **Conflict of interest**

361 The authors have no conflict of interest.

362 **Acknowledgements**

363 The authors gratefully appreciate Baisha Forest Farm for the establishment and
364 maintenance of the field tree diversity and ecosystem functioning experiment. The
365 authors sincerely thank Haoyan Xiao, Hui Jia, and Menjuan Wang for their assistance
366 during sample collection and measurement. XS and JW are supported by the National
367 Natural Science Foundation of China (Grant No. 32071631 and 32271679) and the
368 Fujian Natural Science Foundation (Grant No. 2023J06024 and 2023R1002004). ZH is
369 supported by the National Natural Science Foundation of China (Grant No. 31930077).
370 NE acknowledges funding by the Deutsche Forschungsgemeinschaft DFG (German
371 Centre for Integrative Biodiversity Research, FZT118, and Gottfried Wilhelm Leibniz

372 Prize, Ei 862/29-1). JP is supported by the Spanish Government grants PID2022-
373 140808NB-I00 and TED2021-132627 B-I00 funded by MCIN, AEI/10.13039/
374 501100011033 European Union Next Generation EU/PRTR, and the Fundación Ramón
375 Areces grant CIVP20A6621.

376

377

378 **References**

379 Asiloglu, R., Kenya, K., Samuel, S.O., Sevilir, B., Murase, J., Suzuki, K., & Harada N.
380 (2021). Top-down effects of protists are greater than bottom-up effects of
381 fertilisers on the formation of bacterial communities in a paddy field soil. *Soil
382 Biology and Biochemistry*, 156, 108186.

383 Augusto, L., & Boča, A. (2022). Tree functional traits, forest biomass, and tree species
384 diversity interact with site properties to drive forest soil carbon. *Nature
385 Communications*, 13, 1097.

386 Baldrian, P. (2014). Distribution of extracellular enzymes in soils: Spatial heterogeneity
387 and determining factors at various scales. *Soil Science Society of America Journal*,
388 78, 11–18.

389 Bender, S.F., Plantenga, F., Neftel, A., Jocher, M., Oberholzer, H.R., Kohl, L., Giles,
390 M., Daniell, T.J., & van der Heijden, M.G. (2014). Symbiotic relationships
391 between soil fungi and plants reduce N₂O emissions from soil. *The ISME Journal*,
392 8, 1336–1345.

393 Beugnon, R., Du, J., Cesarz, S., Jurburg, S.D., Pang, Z., Singavarapu, B., Wubet, T.,
394 Xue, K., Wang, Y., & Eisenhauer, N. (2021). Tree diversity and soil chemical
395 properties drive the linkages between soil microbial community and ecosystem
396 functioning. *ISME Communications* 1.

397 Bonkowski, M. (2004). Protozoa and plant growth: the microbial loop in soil revisited.
398 *New Phytologist*, 162, 617–631.

399 Cesarz, S., Ciobanu, M., Wright, A.J., Ebeling, A., Vogel, A., Weisser, W.W., &
400 Eisenhauer, N. (2017). Plant species richness sustains higher trophic levels of soil
401 nematode communities after consecutive environmental perturbations. *Oecologia*,
402 184, 715–728.

403 Cesarz, S., Craven, D., Auge, H., Bruelheide, H., Castagneyrol, B., Gutknecht, J.,|
404 Hector, A., Jactel, H., et al. (2022). Tree diversity effects on soil microbial biomass
405 and respiration are context dependent across forest diversity experiments. *Global
406 Ecology and Biogeography*, 31, 872–885.

407 Chen, C., Chen, H.Y.H., Chen, X.L., & Huang, Z.Q. (2019). Meta-analysis shows
408 positive effects of plant diversity on microbial biomass and respiration. *Nature
409 Communications*, 10, 1332.

410 Chen, Q.L., Hu, H.W., Zhu, D., Zhu, Y.G., & He, J.Z. (2022). Calling for
411 comprehensive explorations between soil invertebrates and arbuscular
412 mycorrhizas. *Trends in Plant Science*, 27, 793–801.

413 Cornelissen, J.H.C., Lavore, S., Garnier, E., Diaz, S., Buchmann, N., Gurvich, D.E.,
414 Reich, P.B., ter Steege, H., Morgan, H.D., van der Heijden, M.G.A., Pausas, J.G.,
415 & Poorter, H. (2003). A handbook of protocols for standardized and easy
416 measurement of plant functional traits worldwide. *Australian Journal of Botany*,
417 51, 335–380.

418 Delgado-Baquerizo, M., Reich, P. B., Trivedi, C., Eldridge, D.J., Abades, S., Alfaro,
419 F.D., Bastida, F., Berhe, A.A., Cutler, N.A., Gallardo, A., Garcia-Velazquez, L.,
420 Hart, S.C., Hayes, P.E., He, J.Z., Hseu, Z.Y., Hu, H.W., Kirchmair, M., Neuhauser,
421 S., Perez, C.A., et al. (2020). Multiple elements of soil biodiversity drive
422 ecosystem functions across biomes. *Nature Ecology & Evolution*, 4, 210–220.

423 Denef, K., Roobroeck, D., Wadu, M.C.W.M., Lootens, P., & Boeckx, P. (2009).
424 Microbial community composition and rhizodeposit-carbon assimilation in
425 differently managed temperate grassland soils. *Soil Biology and Biochemistry*, 41,
426 144–153.

427 Eisenhauer, N., Dobies, T., Cesarz, S., Hobbied, S.E., Meyerb, R.J., Worm, K., & Reich,
428 P.B. (2013). Plant diversity effects on soil food webs are stronger than those of
429 elevated CO₂ and N deposition in a long-term grassland experiment. *The
430 Proceedings of the National Academy of Sciences*, 110, 6889–6894.

431 Eisenhauer, N., Hines, J., Isbel, F., van der Plas, F., Hobbie, S.E., Kazanski, C.E.,
432 Lehmann, A., Liu, M., Lochner, A., Rillig, M.C., Vogel, A., Worm, K., & Reich,
433 P.B. (2018). Plant diversity maintains multiple soil functions in future
434 environments. *eLife*, 7, e41228.

435 Eisenhauer, N., Reich, P.B., & Scheu, S. (2012). Increasing plant diversity effects on
436 productivity with time due to delayed soil biota effects on plants. *Basic and
437 Applied Ecology*, 13, 571–578.

438 Elrys, A.S., Ali, A., Zhang, H.M., Cheng, Y., Zhang, J.B., Cai, Z.C., Müller, C., &
439 Chang, S.X. (2021). Patterns and drivers of global gross nitrogen mineralization

440 in soils. *Global Change Biology*, 27, 5950–5962.

441 Erskine, P. D., Lamb, D., & Bristow, M. (2006). Tree species diversity and ecosystem
442 function: Can tropical multi-species plantations generate greater productivity?
443 *Forest Ecology and Management*, 233, 205–210.

444 Flues, S., Bass, D., & Bonkowski, M. (2017). Grazing of leaf-associated Cercozoa
445 (Protists: rhizaria: Cercozoa) structures bacterial community composition and
446 function. *Environmental Microbiology*, 19, 3297–3309.

447 Gamfeldt, L., Snäll, T., Bagchi, R., Jonsson, M., Gustafsson, L., Kjellander, P. et al.
448 (2013). Higher levels of multiple ecosystem services are found in forests with
449 more tree species. *Nature Communications*, 4, 1340.

450 Gao, Z.L., Karlsson, I., Geisen, S., Kowalchuk, G., & Jousset, A. (2019). Protists:
451 puppet masters of the rhizosphere microbiome. *Trends in Plant Science*, 24, 165–
452 176.

453 Craven, D., Eisenhauer, N., Pearse, W.D., Hautier, Y., Isbell, F., Roscher, C., Bahn, M.,
454 Beierkuhnlein, C., Bönisch, G., Buchmann, N., et al. (2018). Multiple facets of
455 biodiversity drive the diversity–stability relationship. *Nature Ecology & Evolution*,
456 2, 1579–1587.

457 Hooper, D. U., Chapin, F. S., Ewel, J. J., Hector, A., Inchausti, P., Lavorel, S., Lawton,
458 J. H., Lodge, D. M., Loreau, M., Naeem, S., Schmid, B., Setälä, H., Symstad, A.
459 J., Vandermeer, J., & Wardle, D. A. (2005). Effects of biodiversity on ecosystem
460 functioning, a consensus of current knowledge. *Ecological Monographs*, 75, 3–35.

461 Huang, Y. Y., Chen, Y. X., Castro-Izaguirre, N., et al. (2018). Impacts of species
462 richness on productivity in a large-scale subtropical forest experiment. *Science*,
463 362, 80–83.

464 Huang, Z., Ran, S., Fu, Y., Wan, X., Song, X., Chen, Y., & Yu, Z. (2022). Functionally
465 dissimilar neighbours increase tree water use efficiency through enhancement of
466 leaf phosphorus concentration. *Journal of Ecology*, 110, 2179–2189.

467 Isbell, F., Balvanera, P., Mori, A., He, J.S., Bullock, J.M., Regmi, G.R., Seabloom, E.W.
468 et al. (2023). Expert perspectives on global biodiversity loss and its drivers and
469 impacts on people. *Frontiers in Ecology and the Environment*, 21, 61–108.

470 Jiang, Y., Wang, Z.H., Liu, Y., Han, Y.L., Wang, Y., Wang, Q., & Liu, T. (2023).

471 Nematodes and their bacterial prey improve phosphorus acquisition by wheat.
472 *New Phytologist*, 237, 974–986.

473 Kembel, S.W., Cowan, P.D., Helmus, M.R., Cornwell, W.K., Morlon, H., Ackerly, D.D.,
474 Blomberg, S.P., & Webb, C.O. (2010). Picante: R tools for integrating phylogenies
475 and ecology. *Bioinformatics*, 26, 1463–1464.

476 Laliberté, E., Legendre, P., & Shipley, B. (2015). FD, Measuring functional diversity
477 (FD) from multiple traits, and other tools for functional ecology. [Computer
478 Program]. R package version, 1.0–12.

479 Lange, M., Eisenhauer, N., Sierra, C. A., Bessler, H., Engels, C., Griffiths, R. I.,
480 Mellado-Vázquez, P. G., Malik, A. A., Roy, J., Scheu, S., Steinbeiss, S., Thomson,
481 B. C., Trumbore, S. E., & Gleixner, G. (2015). Plant diversity increases soil
482 microbial activity and soil carbon storage. *Nature Communications*, 6, 6707.

483 Lefcheck, J.S. (2016). piecewiseSEM, piecewise structural equation modelling in r for
484 ecology, evolution, and systematics. *Methods in Ecology and Evolution*, 7, 573–
485 579.

486 Li, Z., Liu, X.W, Zhang, M.H., & Xing, F. (2022). Plant diversity and fungal richness
487 regulate the changes in soil multifunctionality in a semi-arid grassland. *Biology*,
488 11, 870.

489 Liang, J., Crowther, T. W., & Picard, N. (2016). Positive biodiversity-productivity
490 relationship predominant in global forests. *Science*, 354, aaf8957.

491 Liu, S.E., Plaza, C., Ochoa-Hueso, R., Trivedi, C., Wang, J.T., Trivedi, P., Zhou, G.Y.,
492 Piñeiro, J., Martins, C.S.C., Singh, B.K., & Delgado-Baquerizo, M. (2023). Litter
493 and soil biodiversity jointly drive ecosystem functions. *Global Change Biology*,
494 29, 6276–6285.

495 Liu, T., Whalen, J.K.b., Ran, W., Shen, Q.R., & Li, H.X. (2016). Bottom-up control of
496 fertilization on soil nematode communities differs between crop management
497 regimes. *Soil Biology and Biochemistry* 95, 198–201.

498 Loreau, M., & Hector, A. (2001). Partitioning aelection and complementarity in
499 biodiversity experiments. *Nature*, 412, 72–76.

500 Manning, P., van der Plas, F., Soliveres, S., Allan, E., Maestre, F. T., Mace, G.,
501 Whittingham, M. J., & Fischer, M. (2018). Redefining ecosystem

502 multifunctionality. *Nature Ecology & Evolution*, 2, 427–436.

503 Martin, T., & Sprunger, C.D. (2021). A meta-analysis of nematode community
504 composition across soil aggregates: Implications for soil carbon dynamics.
505 *Applied Soil Ecology*, 168, 104143.

506 Mellado-Vázquez, P.G., Lange, M., Bachmann, D., Gockele, A., Karlowsky, S., Milcu,
507 A., Piel, C., Roscher, C., Roy, J., & Gleixner, G. (2016). Plant diversity generates
508 enhanced soil microbial access to recently photosynthesized carbon in the
509 rhizosphere. *Soil Biology and Biochemistry*, 94, 122–132.

510 Mesel, I.D., Derycke, S., Moens, T., Van der Gucht, K., Vincx, M., & Swings, J. (2004).
511 Top-down impact of bacterivorous nematodes on the bacterial community
512 structure: a microcosm study. *Environmental Microbiology*, 6, 733–744.

513 Messier, C., Bauhus, J., Sousa-Silva, R., Auge, H., Baeten, L., Barsoum, N., Bruelheide,
514 H., Caldwell, B. et al. (2022). For the sake of resilience and multifunctionality,
515 let's diversify planted forests! *Conservation Letters*, 15, e12829.

516 Mueller, K.E., Tilman, D., Fornara, D.A., & Hobbie, S.E. (2013). Root depth
517 distribution and the diversity-productivity relationship in a long-term grassland
518 experiment. *Ecology*, 94, 787–793

519 Pérez-Harguindeguy, N.. DíazA, S., Garnier, E., Lavorel, S., Poorter, H., Jaureguiberry,
520 P., Bret-Harte, M.S. et al. (2013). New handbook for standardised measurement of
521 plant functional traits worldwide. *Australian Journal of Botany*, 61, 167–234.

522 Ratcliffe, S., Wirth, C., Jucker, T., van der Plas, F., Scherer-Lorenzen, M., Verheyen, K.,
523 et al. (2017). Biodiversity and ecosystem functioning relations in European forests
524 depend on environmental context. *Ecology Letters*, 20, 1414–1426.

525 Ravenek, J.M., Bessler, H., Engels, C., Scherer-Lorenzen, M. et al. (2014). Long-term
526 study of root biomass in a biodiversity experiment reveals shifts in diversity effects
527 over time. *Oikos*, 123, 1528–1536.

528 Saiya-Cork, K. R., Sinsabaugh, R. L., & Zak, D. R. (2002). The effects of long term
529 nitrogen deposition on extracellular enzyme activity in an Acer saccharum forest
530 soil. *Soil Biology and Biochemistry*, 34, 1309–1315.

531 Sanaei, A., Sayer, E. J., Yuan, Z., Lin, F., Fang, S., Ye, J., Liu, S., Hao, Z., & Wang, X.
532 (2022). Soil stoichiometry mediates links between tree functional diversity and
533 soil microbial diversity in a temperate Forest. *Ecosystems*, 25, 291–307.

534 Schittko, C., Onandia, G., Bernard-Verdier, M., Heger, T., Jeschke, J. M., Kowarik, I.,
535 Maaß, S. & Joshi, J. (2022). Biodiversity maintains soil multifunctionality and soil
536 organic carbon in novel urban ecosystems. *Journal of Ecology*, *110*, 916–934.

537 Schuldt, A., Assmann, T., Brezzi, M., Buscot, F., Eichenberg, D. et al. (2018).
538 Biodiversity across trophic levels drives multifunctionality in highly diverse
539 forests. *Nature Communications*, *9*, 2989.

540 Shi, X.Z., Sun, J.W., Wang, J.Q., Lucas-Borja, M.E., Pandey, A., Wang, T., & Huang,
541 Z.Q. (2023). Tree species richness and functional composition drive soil
542 nitrification through ammonia-oxidizing archaea in subtropical forests. *Soil
543 Biology and Biochemistry*, *187*, 109211.

544 Shi, X.Z., Hu, H. W., Wang, J. Q., He, J. Z., Zheng, C. Y., Wan, X. H., & Huang, Z. Q.
545 (2018). Niche separation of comammox *Nitrospira* and canonical ammonia
546 oxidizers in an acidic subtropical forest soil under long-term nitrogen deposition.
547 *Soil Biology and Biochemistry*, *126*, 114–122.

548 Shi, X.Z., Wang, J. Q., Lucas-Borja, M. E., Wang, Z., Li, X., & Huang, Z. Q. (2021).
549 Microbial diversity regulates ecosystem multifunctionality during natural
550 secondary succession. *Journal of Applied Ecology*, *58*, 2833–2842.

551 Smith, S.E., Smith, F.A., & Jakobsen, I. (2004). Functional diversity in arbuscular
552 mycorrhizal (AM) symbioses: the contribution of the mycorrhizal P uptake
553 pathway is not correlated with mycorrhizal responses in growth or total P uptake.
554 *New Phytologist*, *162*, 511–524.

555 Srivastava, D.S., Cadotte, M.W., MacDonald, A.M., Marushia, R.G., & Mirochnick,
556 N. (2012). Phylogenetic diversity and the functioning of ecosystems. *Ecology
557 Letters*, *15*, 637–648.

558 Storer, K., Coggan, A., Ineson, P., & Hodge, A. (2018). Arbuscular mycorrhizal fungi
559 reduce nitrous oxide emissions from N₂O hotspots. *New Phytologist*, *220*, 1285–
560 1295.

561 Tedersoo, L., Bahram, M., Cajthaml, T., Polme, S., Hiiesalu, I., Anslan, S., Harend, H.,
562 Buegger, F., Pritsch, K., Koricheva, J., & Abarenkov, K. (2016). Tree diversity and
563 species identity effects on soil fungi, protists and animals are context dependent.

564 *The ISME Journal*, 10, 346–362.

565 Thakur, M.P., Milcu, A., Manning, P., Niklaus, P.A., Roscher, C., Power, S., Reich, P.B.,
566 Scheu, S., et al. (2015). Plant diversity drives soil microbial biomass carbon in
567 grasslands irrespective of global environmental change factors. *Global Change
568 Biology*, 21, 4076–4085.

569 Tilman, D., Hill, J., & Lehman, C. (2006). Carbon-negative biofuels from low-input
570 high-diversity grassland biomass. *Science*, 314, 1598–1600.

571 van den Hoogen, J., Geisen, S., Routh, D., Ferris, H., Traunspurger, W., Wardle, D.A., et
572 al. (2019). Soil nematode abundance and functional group composition at a global
573 scale. *Nature*, 572, 194–198.

574 van den Hoogen, J., Geisen, S., Routh, D., Ferris, H., Traunspurger, W., Wardle, D.A.,
575 de Goede, R.G., Adams, B.J., Ahmad, W., Andriuzzi, W.S. et al. (2019). Soil
576 nematode abundance and functional group composition at a global scale. *Nature*,
577 572, 194–198.

578 van der Heijden, Bardgett, M.G., R. D., & van Straalen, N.M. (2008). The unseen
579 majority, soil microbes as drivers of plant diversity and productivity in terrestrial
580 ecosystems. *Ecology Letters*, 11, 296–310.

581 van der Heijden, M.G.A.. Klironomos, J.N., Ursic, M., Moutoglis, P., Streitwolf-Engel,
582 R., Boller, T., Wiemken, A., & Sanders, I.R. (1998). Mycorrhizal fungal diversity
583 determines plant biodiversity, ecosystem variability and productivity. *Nature*, 396,
584 69–72.

585 van der Plas, F., Manning, P., Allan, E., Scherer-Lorenzen, M., Verheyen, K., Wirth, C.,
586 et al. (2016). Jack-of-all-trades effects drive biodiversity–ecosystem
587 multifunctionality relationships in European forests. *Nature Communications*, 7,
588 11109.

589 van der Plas, F., Ratcliffe, S., Ruiz-Benito, P., Scherer-Lorenzen, M., Verheyen, K.,
590 Wirth, C., et al. (2018). Continental mapping of forest ecosystem functions reveals
591 a high but unrealised potential for forest multifunctionality. *Ecology Letters*, 21,
592 31–42.

593 Wagg, C., Bender, S.F., Widmer, F., & van der Heijdena, M.G.A. (2014). Soil

594 biodiversity and soil community composition determine ecosystem
595 multifunctionality. *The Proceedings of the National Academy of Sciences*, *111*,
596 5266–5270.

597 Wan, X., Yu, Z., Wang, M., Zhang, Y., Lucas-Borja, M.E., & Huang, Z. (2022).
598 Functional trait variation and community-weighted means of tree traits can alter
599 soil microbial biomass and community composition. *Soil Biology and*
600 *Biochemistry*, *170*, 108715.

601 Wang, J.Q., Shi, X.Z., Zheng, C.Y., Suter, H., & Huang, Z.Q. (2021). Different
602 responses of soil bacterial and fungal communities to nitrogen deposition in a
603 subtropical forest. *Science of the Total Environment*, *755*, 142449.

604 Wang, J.Q., Shi, X.Z., Lucas-Borja, M.E., Guo, Q.L., Mao, J.Y., Tan, Y.Y., & Zhang,
605 G.Y. (2023). Soil nematode abundances drive agroecosystem multifunctionality
606 under short-term elevated CO₂ and O₃. *Global Change Biology*, *29*, 1618–1627.

607 Wang, L., Delgado-Baquerizo, M., Wang, D., Isbell, F., Liu, J., Feng, C., Liu, J., Zhong,
608 Z., Zhu, H., Yuan, X., Chang, Q., & Liu, C. (2019). Diversifying livestock
609 promotes multidiversity and multifunctionality in managed grasslands. *The*
610 *Proceedings of the National Academy of Sciences*, *116*, 6187–6192.

611 Wardle, D.A., Bardgett, R.D., Klironomos, J.N., Setala, H., Van der Putten, W.H., &
612 Wall, D.H. (2004). Ecological linkages between aboveground and belowground
613 biota. *Science*, *304*, 1625–1633.

614 Xiao, W., Chen, C., Chen, X., Huang, Z., Chen, H. Y. H. & Soininen, J. (2020).
615 Functional and phylogenetic diversity promote litter decomposition across
616 terrestrial ecosystems. *Global Ecology and Biogeography*, *29*, 2261–2272.

617 Xu, S., Eisenhauer, N., Ferlian, O., Zhang, J.L., Zhou, G.U., Lu, X.K., Liu, C.S., &
618 Zhang, D.P. (2020). Species richness promotes ecosystem carbon storage:
619 evidence from biodiversity-ecosystem functioning experiments. *Proceedings of*
620 *the Royal Society B*, *287*, 20202063.

621 Yuan, Z.Q., Ali, A., Loreau, M., Ding, F., Liu, S.F., Sanaei, A., Zhou, W.M., Ye, J., Lin,
622 F., Fang, S., Hao, Z., Wang, X., & Bagousse-Pinguet, Y.L. (2021). Divergent
623 above- and below-ground biodiversity pathways mediate disturbance impacts on

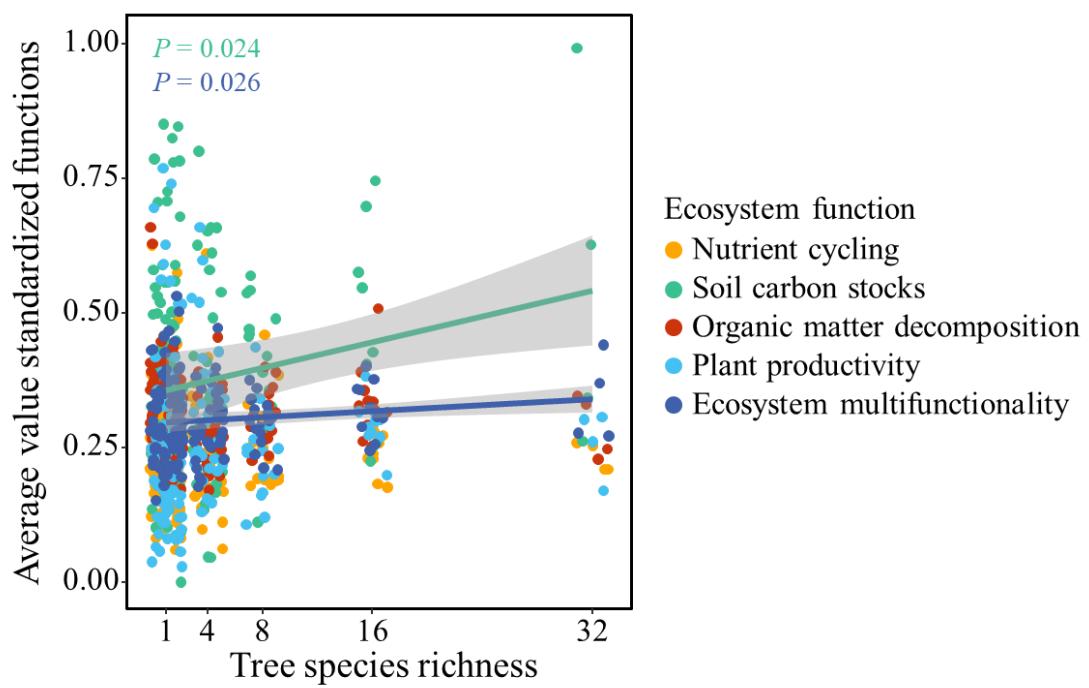
624 temperate forest multifunctionality. *Global Change Biology*, 27, 2883–2894.
625

626 **Table 1** Linear mixed-effect models evaluating the relative importance of ecosystem
 627 properties in affecting ecosystem multifunctionality.

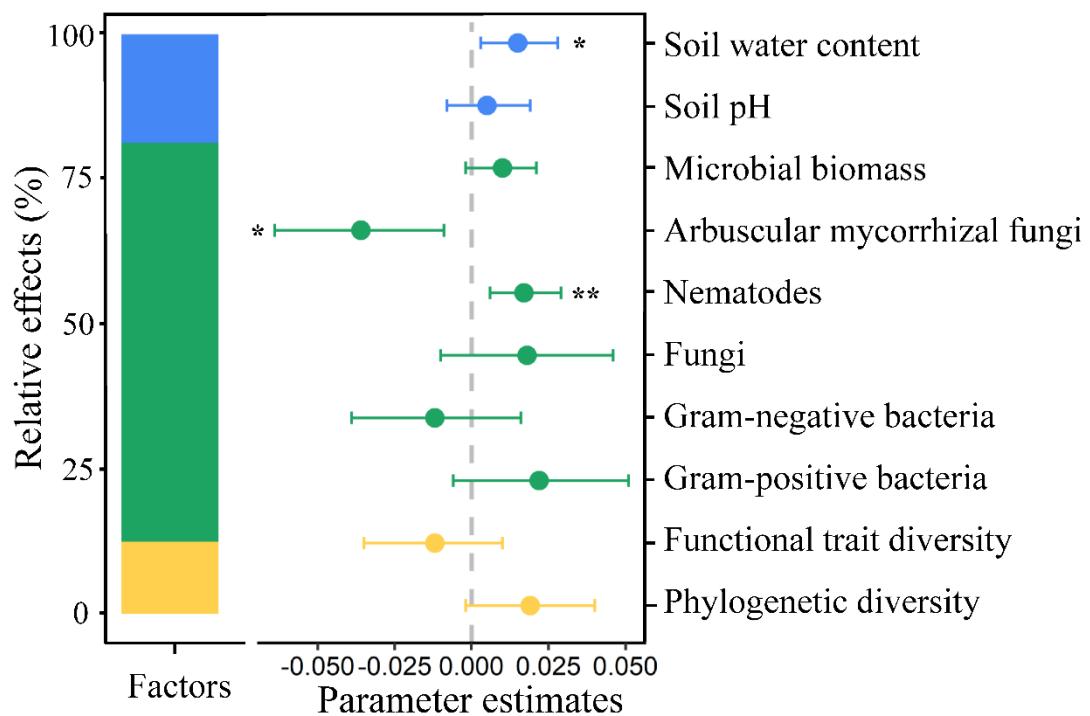
Predictors	Estimates	F value	P value
Tree diversity			
Functional trait diversity	-0.01	1.18	0.280
Phylogenetic diversity	0.02	3.03	0.084
Soil organisms			
Microbial biomass	0.01	2.64	0.107
AMF	-0.04	6.65	0.011
Nematodes	0.02	8.61	0.004
Fungi	0.02	1.52	0.220
Gram-negative bacteria	-0.01	0.70	0.405
Gram-positive bacteria	0.02	2.33	0.129
Soil properties			
Soil water content	0.02	6.18	0.014
Soil pH	0.01	0.63	0.428

628 The marginal R^2 and conditional R^2 were 0.162 and 0.316, respectively. Tree species
 629 richness was removed from the final model to reduce collinearity. AMF: arbuscular
 630 mycorrhizal fungi.

631 **Figure 1** Effects of tree species richness on indicators of nutrient cycling, carbon stocks,
632 organic matter decomposition, plant productivity, and ecosystem multifunctionality.
633 The line and shaded area represent the fitted regression and the 95% confidence interval
634 of the fit, respectively.

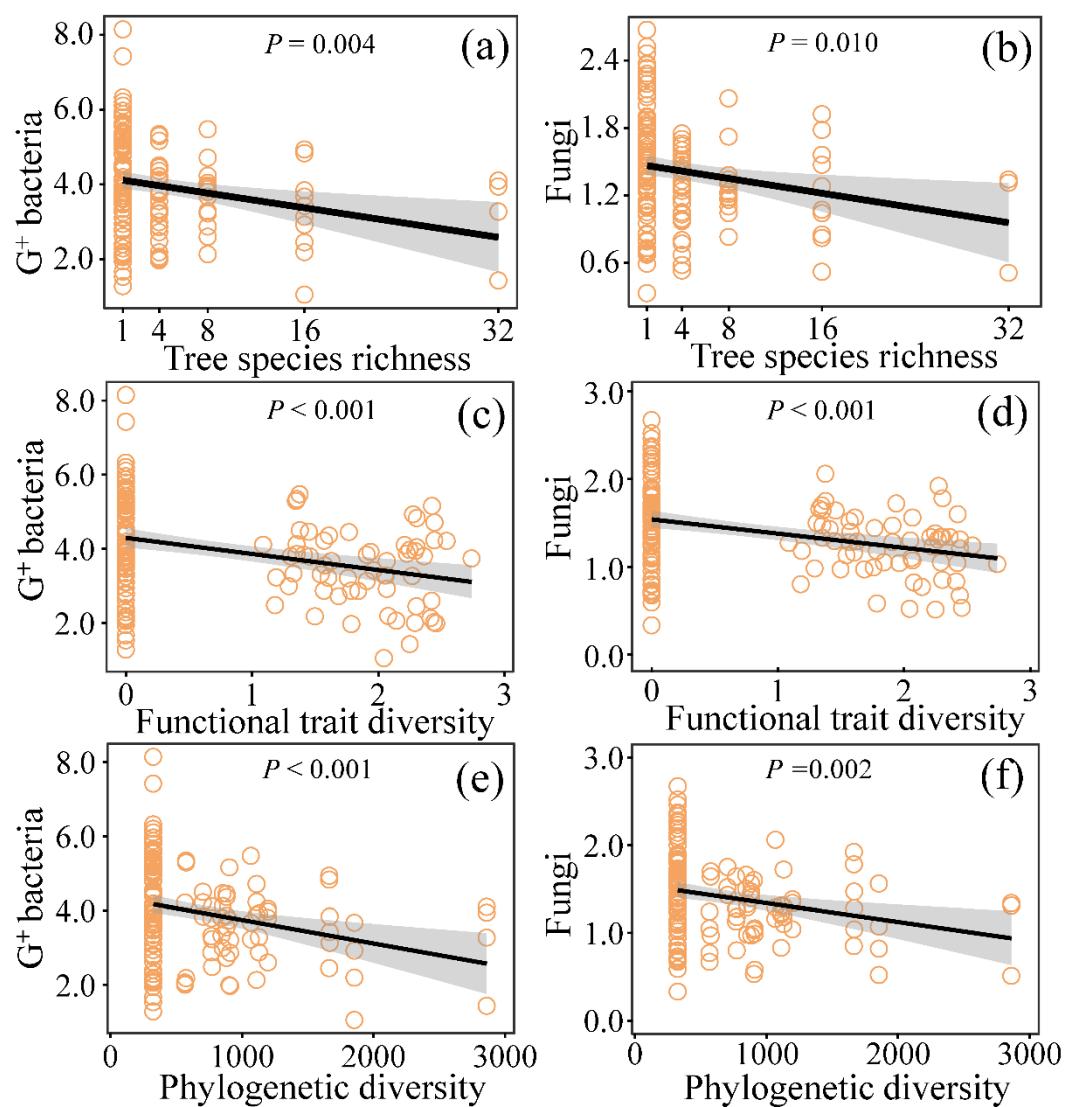

635 **Figure 2** The relative effects of indicators of tree diversity metrics (yellow), soil
636 organisms (green), and soil physiochemical properties (blue) on ecosystem
637 multifunctionality. The model averaging shows the relative importance of the three
638 groups of explanatory variables (left panel) and linear mixed-effect model parameter
639 estimates (right panel) were standardized regression coefficients \pm 95% CIs, with $*P <$
640 0.05 , $**P < 0.01$, $***P < 0.001$.

641 **Figure 3** Linear regression analyses of the relationship between soil organisms and
642 individual ecosystem functions. The fitted relationship (solid line) was shown with 95%
643 CIs (shaded area). AMF: arbuscular mycorrhizal fungi.

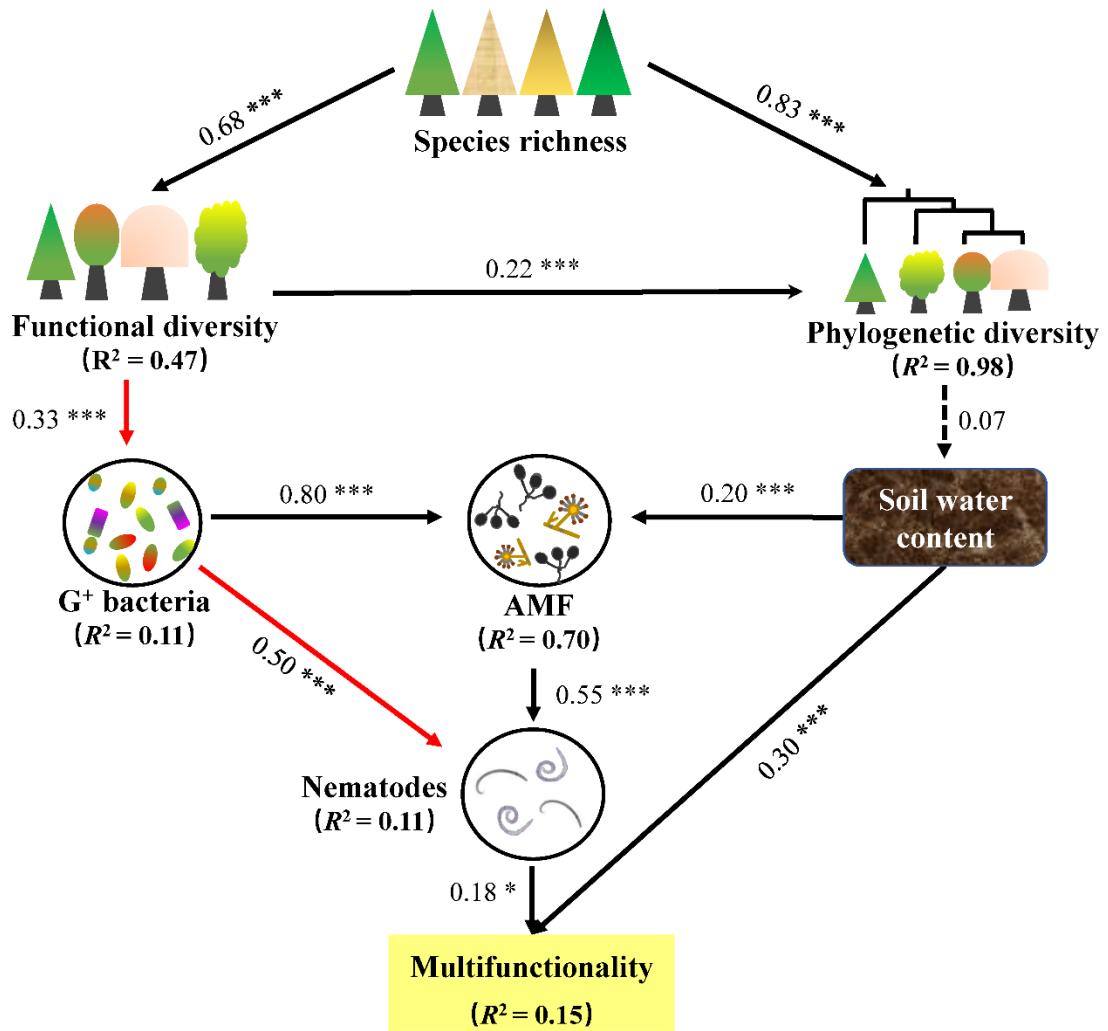

644 **Figure 4** Linear regression analyses of relationships between tree diversity metrics and
645 soil organisms. The fitted relationship (solid line) was shown with 95% CIs (shaded
646 area).

647 **Figure 5** Structural equation model estimates of direct and indirect effects of tree
648 diversity on ecosystem multifunctionality. Standardized path coefficients are shown
649 against arrows, where black and red arrows indicate positive and negative relationships,
650 respectively, at $*P < 0.05$, $**P < 0.01$, and $***P < 0.001$; R^2 -values indicate the
651 contribution of explanatory variables to the relationship; Fisher's C = 39.43, $P = 0.17$,
652 AIC = 1227.12. AMF: arbuscular mycorrhizal fungi.


653


Figure 1

656 **Figure 2**



657

Figure 3

Figure 4

665 **Figure 5**

666

667

668 *Supplementary Information*

669 **Trophic interactions in soil micro-food webs drive ecosystem multifunctionality**
670 **along tree species richness**

671 Xiuzhen Shi ^{1,2}, Nico Eisenhauer ^{3,4}, Josep Peñuelas ^{5,6}, Yanrong Fu ^{1,2}, Jianqing Wang
672 ^{1,2*}, Yuxin Chen ⁷, Lulu He ^{1,2}, Shengen Liu ⁸, Liyan Wang ^{1,2}, Manuel Esteban Lucas-
673 Borja ⁹, Zhiqun Huang ^{1,2*}

674 *¹Key Laboratory for Humid Subtropical Eco-geographical Processes of the Ministry of
675 Education, Institute of Geography, Fujian Normal University, Fuzhou 350117, China*

676 *²Fujian Provincial Key Laboratory for Subtropical Resources and Environment, School
677 of Geographical Sciences, Fujian Normal University, Fuzhou 350117, China*

678 *³German Center for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig,
679 Leipzig, Germany*

680 *⁴Institute of Biology, Leipzig University, Leipzig, Germany*

681 *⁵CREAF, Centre de Recerca Ecològica i Aplicacions Forestals, Cerdanyola del Vallès,
682 Catalonia, Spain*

683 *⁶Global Ecology Unit, CREAF-CSIC-UAB, Bellaterra, Catalonia, Spain*

684 *⁷Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems,
685 College of the Environment & Ecology, Xiamen University, 361102 Xiamen, China*

686 *⁸College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, China*

687 *⁹Higher Technical School of Agricultural and Forestry Engineering, Castilla-La
688 Mancha University, Albacete, Spain*

689 *Author for correspondence: Jianqing Wang and Zhiqun Huang

690 E-mail address: jianqingwang@aliyun.com; zhiqunhuang@hotmail.com

691 **Running title:** Soil micro-food webs regulate ecosystem multifunctionality

692

693 The supplementary information includes three tables and five figures.

694

695

Table S1 Tree species composition of study plots, ranked by species richness.

Species richness	Study plot	Tree species composition
1	27	<i>Cunninghamia lanceolata</i>
1	248	<i>Cunninghamia lanceolata</i>
1	258	<i>Cunninghamia lanceolata</i>
1	259	<i>Cunninghamia lanceolata</i>
1	28	<i>Pinus massoniana</i>
1	50	<i>Pinus massoniana</i>
1	51	<i>Pinus massoniana</i>
1	134	<i>Pinus massoniana</i>
1	108	<i>Cyclocarya paliurus</i>
1	220	<i>Cyclocarya paliurus</i>
1	88	<i>Fokienia hodginsii</i>
1	89	<i>Fokienia hodginsii</i>
1	107	<i>Fokienia hodginsii</i>
1	136	<i>Fokienia hodginsii</i>
1	235	<i>Taxus wallichiana</i>
1	236	<i>Taxus wallichiana</i>
1	237	<i>Taxus wallichiana</i>
1	91	<i>Cryptomeria japonica</i>
1	142	<i>Cryptomeria japonica</i>
1	143	<i>Cryptomeria japonica</i>
1	166	<i>Cryptomeria japonica</i>
1	96	<i>Alnus trabeculosa</i>
1	144	<i>Alnus trabeculosa</i>
1	23	<i>Castanopsis carlesii</i>
1	247	<i>Castanopsis carlesii</i>
1	274	<i>Castanopsis carlesii</i>
1	275	<i>Castanopsis carlesii</i>
1	120	<i>Castanopsis fissa</i>
1	185	<i>Castanopsis fissa</i>
1	186	<i>Castanopsis hystrix</i>
1	187	<i>Castanopsis hystrix</i>
1	270	<i>Castanopsis hystrix</i>
1	8	<i>Castanopsis sclerophylla</i>
1	9	<i>Castanopsis sclerophylla</i>
1	62	<i>Castanopsis sclerophylla</i>
1	170	<i>Castanopsis sclerophylla</i>
1	44	<i>Cinnamomum camphora</i>
1	86	<i>Cinnamomum camphora</i>
1	160	<i>Elaeocarpus sylvestris</i>

1	218	<i>Elaeocarpus sylvestris</i>
1	52	<i>Euscaphis japonica</i>
1	224	<i>Euscaphis japonica</i>
1	17	<i>Hovenia acerba</i>
1	18	<i>Hovenia acerba</i>
1	241	<i>Hovenia acerba</i>
1	35	<i>Liquidambar formosana</i>
1	146	<i>Liquidambar formosana</i>
1	266	<i>Liquidambar formosana</i>
1	267	<i>Liquidambar formosana</i>
1	99	<i>Lithocarpus glaber</i>
1	121	<i>Lithocarpus glaber</i>
1	80	<i>Manglietia yuyuanensis</i>
1	296	<i>Manglietia yuyuanensis</i>
1	182	<i>Michelia macclurei</i>
1	211	<i>Michelia macclurei</i>
1	31	<i>Michelia maudiae</i>
1	162	<i>Michelia maudiae</i>
1	36	<i>Mytilaria laosensis</i>
1	169	<i>Mytilaria laosensis</i>
1	228	<i>Mytilaria laosensis</i>
1	229	<i>Mytilaria laosensis</i>
1	292	<i>Ormosia hosiei</i>
1	90	<i>Ormosia hosiei</i>
1	22	<i>Osmanthus fragrans</i>
1	126	<i>Osmanthus fragrans</i>
1	74	<i>Phoebe bournei</i>
1	161	<i>Phoebe bournei</i>
1	176	<i>Phoebe bournei</i>
1	177	<i>Phoebe bournei</i>
1	7	<i>Phoebe chekiangensis</i>
1	207	<i>Phoebe chekiangensis</i>
1	153	<i>Quercus variabilis</i>
1	225	<i>Quercus variabilis</i>
1	226	<i>Quercus variabilis</i>
1	284	<i>Quercus variabilis</i>
1	114	<i>Sapindus saponaria</i>
1	299	<i>Sapindus saponaria</i>
1	171	<i>Schima superba</i>
1	281	<i>Schima superba</i>
1	46	<i>Schima superba</i>
1	1	<i>Schima superba</i>

4	2	<i>Castanopsis sclerophylla</i> , <i>Mytilaria laosensis</i> , <i>Acer palmatum</i> , <i>Lithocarpus glaber</i>
4	55	<i>Castanopsis sclerophylla</i> , <i>Mytilaria laosensis</i> , <i>Acer palmatum</i> , <i>Lithocarpus glaber</i>
4	56	<i>Castanopsis sclerophylla</i> , <i>Mytilaria laosensis</i> , <i>Acer palmatum</i> , <i>Lithocarpus glaber</i>
4	5	<i>Fokienia hodginsii</i> , <i>Taxus wallichiana</i> , <i>Phoebe bournei</i> , <i>Schima superba</i>
4	6	<i>Fokienia hodginsii</i> , <i>Taxus wallichiana</i> , <i>Phoebe bournei</i> , <i>Schima superba</i>
4	16	<i>Fokienia hodginsii</i> , <i>Taxus wallichiana</i> , <i>Phoebe bournei</i> , <i>Schima superba</i>
4	14	<i>Celtis sinensis</i> , <i>Quercus variabilis</i> , <i>Acer palmatum</i> , <i>Lithocarpus glaber</i>
4	154	<i>Celtis sinensis</i> , <i>Quercus variabilis</i> , <i>Acer palmatum</i> , <i>Lithocarpus glaber</i>
4	41	<i>Castanopsis hystrix</i> , <i>Cunninghamia lanceolata</i> , <i>Cryptomeria japonica</i> , <i>Castanopsis carlesii</i>
4	42	<i>Castanopsis hystrix</i> , <i>Cunninghamia lanceolata</i> , <i>Cryptomeria japonica</i> , <i>Castanopsis carlesii</i>
4	105	<i>Castanopsis hystrix</i> , <i>Cunninghamia lanceolata</i> , <i>Cryptomeria japonica</i> , <i>Castanopsis carlesii</i>
4	69	<i>Cunninghamia lanceolata</i> , <i>Pinus massoniana</i> , <i>Taxus wallichiana</i> , <i>Mytilaria laosensis</i>
4	116	<i>Cunninghamia lanceolata</i> , <i>Pinus massoniana</i> , <i>Taxus wallichiana</i> , <i>Mytilaria laosensis</i>
4	103	<i>Liquidambar formosana</i> , <i>Pinus massoniana</i> , <i>Celtis sinensis</i> , <i>Quercus variabilis</i>
4	104	<i>Liquidambar formosana</i> , <i>Pinus massoniana</i> , <i>Celtis sinensis</i> , <i>Quercus variabilis</i>
4	109	<i>Celtis sinensis</i> , <i>Quercus variabilis</i> , <i>Acer palmatum</i> , <i>Lithocarpus glaber</i>
4	110	<i>Celtis sinensis</i> , <i>Quercus variabilis</i> , <i>Acer palmatum</i> , <i>Lithocarpus glaber</i>
4	12	<i>Cryptomeria japonica</i> , <i>Celtis sinensis</i> , <i>Phoebe bournei</i> , <i>Acer palmatum</i>
4	112	<i>Cryptomeria japonica</i> , <i>Celtis sinensis</i> , <i>Phoebe bournei</i> , <i>Acer palmatum</i>
4	113	<i>Cryptomeria japonica</i> , <i>Celtis sinensis</i> , <i>Phoebe bournei</i> , <i>Acer palmatum</i>
4	117	<i>Cryptomeria japonica</i> , <i>Castanopsis carlesii</i> , <i>Phoebe bournei</i> , <i>Schima superba</i>

4	118	<i>Cryptomeria japonica</i> , <i>Castanopsis carlesii</i> , <i>Phoebe bournei</i> , <i>Schima superba</i>
4	139	<i>Cryptomeria japonica</i> , <i>Castanopsis carlesii</i> , <i>Phoebe bournei</i> , <i>Schima superba</i>
4	122	<i>Castanopsis hystrix</i> , <i>Liquidambar formosana</i> , <i>Fokienia hodginsii</i> , <i>Castanopsis sclerophylla</i>
4	130	<i>Castanopsis hystrix</i> , <i>Liquidambar formosana</i> , <i>Fokienia hodginsii</i> , <i>Castanopsis sclerophylla</i>
4	131	<i>Castanopsis hystrix</i> , <i>Liquidambar formosana</i> , <i>Fokienia hodginsii</i> , <i>Castanopsis sclerophylla</i>
4	132	<i>Castanopsis hystrix</i> , <i>Cunninghamia lanceolata</i> , <i>Fokienia hodginsii</i> , <i>Taxus wallichiana</i>
4	25	<i>Castanopsis hystrix</i> , <i>Cunninghamia lanceolata</i> , <i>Fokienia hodginsii</i> , <i>Taxus wallichiana</i>
4	194	<i>Castanopsis hystrix</i> , <i>Cunninghamia lanceolata</i> , <i>Fokienia hodginsii</i> , <i>Taxus wallichiana</i>
4	137	<i>Liquidambar formosana</i> , <i>Pinus massoniana</i> , <i>Celtis sinensis</i> , <i>Quercus variabilis</i>
4	155	<i>Liquidambar formosana</i> , <i>Pinus massoniana</i> , <i>Celtis sinensis</i> , <i>Quercus variabilis</i>
4	217	<i>Liquidambar formosana</i> , <i>Pinus massoniana</i> , <i>Celtis sinensis</i> , <i>Quercus variabilis</i>
8	3	<i>Castanopsis hystrix</i> , <i>Cunninghamia lanceolata</i> , <i>Cryptomeria japonica</i> , <i>Castanopsis carlesii</i> , <i>Michelia macclurei</i> , <i>Euscaphis japonica</i> , <i>Manglietia yuyuanensis</i> , <i>Alnus trabeculosa</i>
8	58	<i>Castanopsis hystrix</i> , <i>Cunninghamia lanceolata</i> , <i>Cryptomeria japonica</i> , <i>Castanopsis carlesii</i> , <i>Michelia macclurei</i> , <i>Euscaphis japonica</i> , <i>Manglietia yuyuanensis</i> , <i>Alnus trabeculosa</i> ,
8	223	<i>Castanopsis hystrix</i> , <i>Cunninghamia lanceolata</i> , <i>Cryptomeria japonica</i> , <i>Castanopsis carlesii</i> , <i>Michelia macclurei</i> , <i>Euscaphis japonica</i> , <i>Manglietia yuyuanensis</i> , <i>Alnus trabeculosa</i> ,
8	150	<i>Castanopsis hystrix</i> , <i>Cunninghamia lanceolata</i> , <i>Cryptomeria japonica</i> , <i>Castanopsis carlesii</i> , <i>Michelia macclurei</i> , <i>Euscaphis japonica</i> , <i>Manglietia yuyuanensis</i> , <i>Alnus trabeculosa</i>
8	11	<i>Castanopsis sclerophylla</i> , <i>Mytilaria laosensis</i> , <i>Acer palmatum</i> , <i>Lithocarpus glaber</i> , <i>Cinnamomum camphora</i> , <i>Elaeocarpus sylvestris</i> , <i>Lagerstroemia indica</i> , <i>Osmanthus fragrans</i>

8	269	<i>Castanopsis sclerophylla, Mytilaria laosensis, Acer palmatum, Lithocarpus glaber, Cinnamomum camphora, Elaeocarpus sylvestris, Lagerstroemia indica, Osmanthus fragrans</i>
8	141	<i>Castanopsis sclerophylla, Mytilaria laosensis, Acer palmatum, Lithocarpus glaber, Cinnamomum camphora, Elaeocarpus sylvestris, Lagerstroemia indica, Osmanthus fragrans</i>
8	75	<i>Fokienia hodginsii, Taxus wallichiana, Phoebe bournei, Schima superba, Ormosia hosiei, Michelia maudiae, Machilus pauhoi, Phoebe chekiangensis</i>
8	147	<i>Fokienia hodginsii, Taxus wallichiana, Phoebe bournei, Schima superba, Ormosia hosiei, Michelia maudiae, Machilus pauhoi, Phoebe chekiangensis</i>
8	289	<i>Fokienia hodginsii, Taxus wallichiana, Phoebe bournei, Schima superba, Ormosia hosiei, Michelia maudiae, Machilus pauhoi, Phoebe chekiangensis</i>
8	101	<i>Fokienia hodginsii, Taxus wallichiana, Phoebe bournei, Schima superba, Ormosia hosiei, Michelia maudiae, Machilus pauhoi, Phoebe chekiangensis</i>
8	174	<i>Liquidambar formosana, Pinus massoniana, Celtis sinensis, Quercus variabilis, Hovenia acerba, Castanopsis fissa, Cyclocarya paliurus, Sapindus saponaria</i>
8	214	<i>Liquidambar formosana, Pinus massoniana, Celtis sinensis, Quercus variabilis, Hovenia acerba, Castanopsis fissa, Cyclocarya paliurus, Sapindus saponaria</i>
8	79	<i>Liquidambar formosana, Pinus massoniana, Celtis sinensis, Quercus variabilis, Hovenia acerba, Castanopsis fissa, Cyclocarya paliurus, Sapindus saponaria</i>
8	239	<i>Liquidambar formosana, Pinus massoniana, Celtis sinensis, Quercus variabilis, Hovenia acerba, Castanopsis fissa, Cyclocarya paliurus, Sapindus saponaria</i>
16	24	<i>Castanopsis hystric, Cunninghamia lanceolata, Cryptomeria japonica, Castanopsis carlesii, Michelia macclurei, Euscaphis japonica, Manglietia yuyuanensis, Alnus trabeculosa, Fokienia hodginsii, Taxus wallichiana, Phoebe bournei, Schima superba, Ormosia hosiei, Michelia maudiae, Machilus pauhoi, Phoebe chekiangensis</i>

16	33	<i>Castanopsis hystrix, Cunninghamia lanceolata, Cryptomeria japonica, Castanopsis carlesii, Michelia macclurei, Euscaphis japonica, Manglietia yuyuanensis, Alnus trabeculosa, Fokienia hodginsii, Taxus wallichiana, Phoebe bournei, Schima superba, Ormosia hosiei, Michelia maudiae, Machilus pauhoi, Phoebe chekiangensis</i>
16	48	<i>Castanopsis hystrix, Cunninghamia lanceolata, Cryptomeria japonica, Castanopsis carlesii, Michelia macclurei, Euscaphis japonica, Manglietia yuyuanensis, Alnus trabeculosa, Fokienia hodginsii, Taxus wallichiana, Phoebe bournei, Schima superba, Ormosia hosiei, Michelia maudiae, Machilus pauhoi, Phoebe chekiangensis</i>
16	179	<i>Liquidambar formosana, Pinus massoniana, Celtis sinensis, Quercus variabilis, Hovenia acerba, Castanopsis fissa, Cyclocarya paliurus, Sapindus saponaria, Castanopsis sclerophylla, Mytilaria laosensis, Acer palmatum, Lithocarpus glaber, Cinnamomum camphora, Elaeocarpus sylvestris, Lagerstroemia indica, Osmanthus fragrans</i>
16	181	<i>Liquidambar formosana, Pinus massoniana, Celtis sinensis, Quercus variabilis, Hovenia acerba, Castanopsis fissa, Cyclocarya paliurus, Sapindus saponaria, Castanopsis sclerophylla, Mytilaria laosensis, Acer palmatum, Lithocarpus glaber, Cinnamomum camphora, Elaeocarpus sylvestris, Lagerstroemia indica, Osmanthus fragrans</i>
16	193	<i>Liquidambar formosana, Pinus massoniana, Celtis sinensis, Quercus variabilis, Hovenia acerba, Castanopsis fissa, Cyclocarya paliurus, Sapindus saponaria, Castanopsis sclerophylla, Mytilaria laosensis, Acer palmatum, Lithocarpus glaber, Cinnamomum camphora, Elaeocarpus sylvestris, Lagerstroemia indica, Osmanthus fragrans</i>
16	277	<i>Liquidambar formosana, Pinus massoniana, Celtis sinensis, Quercus variabilis, Hovenia acerba, Castanopsis fissa, Cyclocarya paliurus, Sapindus saponaria, Castanopsis sclerophylla, Mytilaria laosensis, Acer palmatum, Lithocarpus glaber, Cinnamomum camphora, Elaeocarpus sylvestris, Lagerstroemia indica, Osmanthus fragrans</i>
16	250	<i>Castanopsis hystrix, Cunninghamia lanceolata, Cryptomeria japonica, Castanopsis carlesii, Liquidambar formosana, Pinus massoniana, Celtis sinensis, Quercus variabilis, Fokienia hodginsii, Taxus wallichiana, Phoebe bournei, Schima superba, Castanopsis sclerophylla, Mytilaria laosensis, Acer palmatum, Lithocarpus glaber</i>

16	198	<i>Castanopsis hystrix, Cunninghamia lanceolata, Cryptomeria japonica, Castanopsis carlesii, Liquidambar formosana, Pinus massoniana, Celtis sinensis, Quercus variabilis, Fokienia hodginsii, Taxus wallichiana, Phoebe bournei, Schima superba, Castanopsis sclerophylla, Mytilaria laosensis, Acer palmatum, Lithocarpus glaber</i>
16	199	<i>Castanopsis hystrix, Cunninghamia lanceolata, Cryptomeria japonica, Castanopsis carlesii, Liquidambar formosana, Pinus massoniana, Celtis sinensis, Quercus variabilis, Fokienia hodginsii, Taxus wallichiana, Phoebe bournei, Schima superba, Castanopsis sclerophylla, Mytilaria laosensis, Acer palmatum, Lithocarpus glaber</i>
32	57	<i>Castanopsis hystrix, Cunninghamia lanceolata, Cryptomeria japonica, Castanopsis carlesii, Michelia macclurei, Euscaphis japonica, Manglietia yuyuanensis, Alnus trabeculosa, Fokienia hodginsii, Taxus wallichiana, Phoebe bournei, Schima superba, Ormosia hosiei, Michelia maudiae, Machilus pauhoi, Phoebe chekiangensis, Liquidambar formosana, Pinus massoniana, Celtis sinensis, Quercus variabilis, Hovenia acerba, Castanopsis fissa, Cyclocarya paliurus, Sapindus saponaria, Castanopsis sclerophylla, Mytilaria laosensis, Acer palmatum, Lithocarpus glaber, Cinnamomum camphora, Elaeocarpus sylvestris, Lagerstroemia indica, Osmanthus fragrans</i>
32	157	<i>Castanopsis hystrix, Cunninghamia lanceolata, Cryptomeria japonica, Castanopsis carlesii, Michelia macclurei, Euscaphis japonica, Manglietia yuyuanensis, Alnus trabeculosa, Fokienia hodginsii, Taxus wallichiana, Phoebe bournei, Schima superba, Ormosia hosiei, Michelia maudiae, Machilus pauhoi, Phoebe chekiangensis, Liquidambar formosana, Pinus massoniana, Celtis sinensis, Quercus variabilis, Hovenia acerba, Castanopsis fissa, Cyclocarya paliurus, Sapindus saponaria, Castanopsis sclerophylla, Mytilaria laosensis, Acer palmatum, Lithocarpus glaber, Cinnamomum camphora, Elaeocarpus sylvestris, Lagerstroemia indica, Osmanthus fragrans</i>

32 175 *Castanopsis hystrix, Cunninghamia lanceolata, Cryptomeria japonica, Castanopsis carlesii, Michelia macclurei, Euscaphis japonica, Manglietia yuyuanensis, Alnus trabeculosa, Fokienia hodginsii, Taxus wallichiana, Phoebe bournei, Schima superba, Ormosia hosiei, Michelia maudiae, Machilus pauhoi, Phoebe chekiangensis, Liquidambar formosana, Pinus massoniana, Celtis sinensis, Quercus variabilis, Hovenia acerba, Castanopsis fissa, Cyclocarya paliurus, Sapindus saponaria, Castanopsis sclerophylla, Mytilaria laosensis, Acer palmatum, Lithocarpus glaber, Cinnamomum camphora, Elaeocarpus sylvestris, Lagerstroemia indica, Osmanthus fragrans*

32 238 *Castanopsis hystrix, Cunninghamia lanceolata, Cryptomeria japonica, Castanopsis carlesii, Michelia macclurei, Euscaphis japonica, Manglietia yuyuanensis, Alnus trabeculosa, Fokienia hodginsii, Taxus wallichiana, Phoebe bournei, Schima superba, Ormosia hosiei, Michelia maudiae, Machilus pauhoi, Phoebe chekiangensis, Liquidambar formosana, Pinus massoniana, Celtis sinensis, Quercus variabilis, Hovenia acerba, Castanopsis fissa, Cyclocarya paliurus, Sapindus saponaria, Castanopsis sclerophylla, Mytilaria laosensis, Acer palmatum, Lithocarpus glaber, Cinnamomum camphora, Elaeocarpus sylvestris, Lagerstroemia indica, Osmanthus fragrans*

697

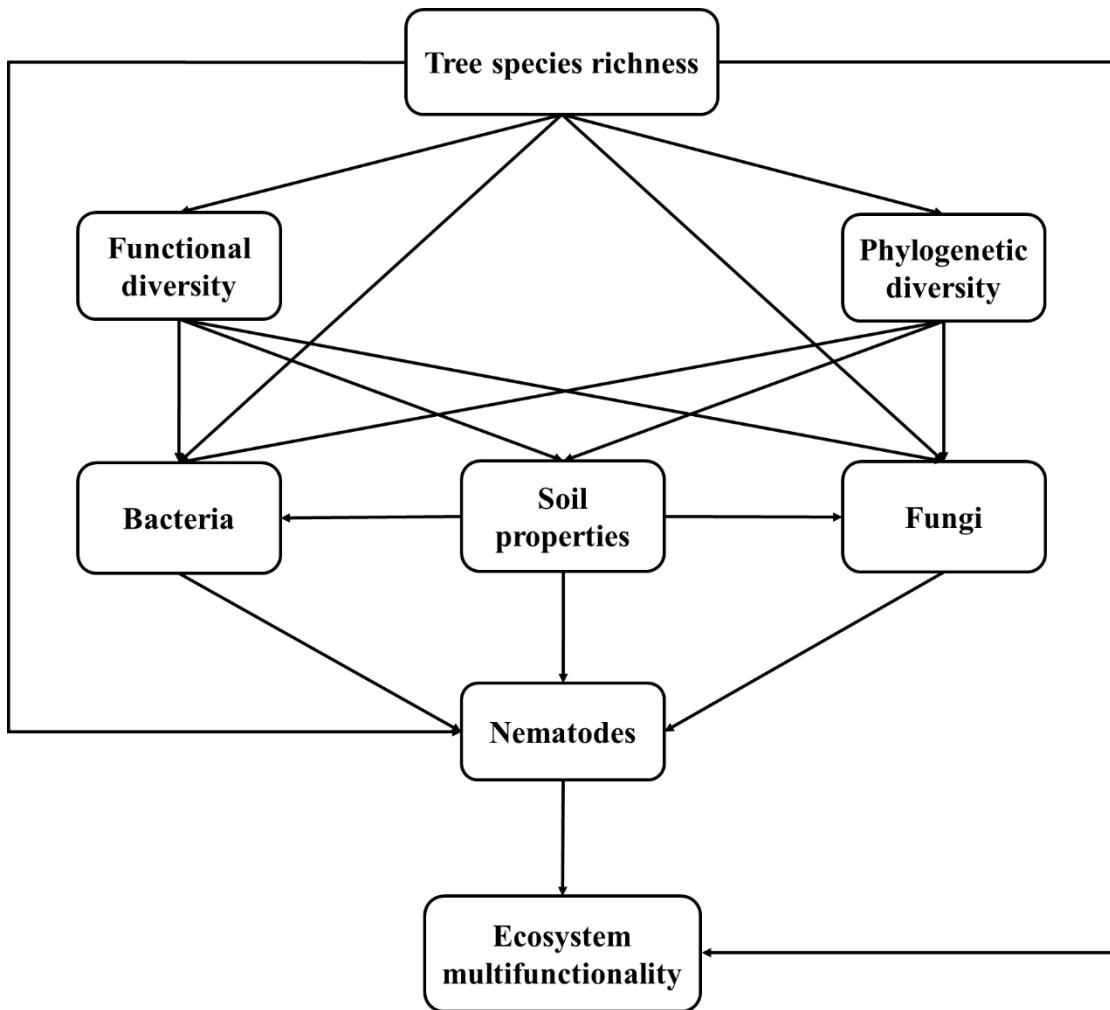
698

Table S2 Definition and justification for measurement of plant functional traits.

Functional trait	Definition and measurement
Specific leaf area (SLA)	<p>SLA ($\text{m}^2 \text{ kg}^{-1}$) is the area of one side of a fresh leaf divided by its oven-dried mass.</p> <p>SLA is positively related to an acquisitive resource use strategy, and reflects a positive relation with growth rate (Cornelissen et al., 2003; Shi et al., 2020).</p> <p>In May 2021, fully developed leaves without herbivore or pathogen damage were cut from the stem and assayed following the methods described by Cornelissen et al. (2003). Leaves were scanned using a scanner (Epson Expression 10000XL scanner) and then oven-dried at 60 °C for 48 h.</p>
Leaf dry matter content (LDMC)	<p>LDMC (mg g^{-1}) is the oven-dried mass of a leaf divided by its water-saturated fresh mass.</p> <p>Leaves with high LDMC tend to be tough, and negatively correlate with growth rate. LDMC tends to scale with 1/SLA.</p> <p>Fully developed leaves without herbivore or pathogen damage were cut from the stem and assayed for LDMC, as described by Cornelissen et al. (2003). Briefly, water-saturated fresh mass was measured and then dry mass was measured after oven-drying at 60 °C for 48 h.</p>
Leaf N content	<p>Leaf N content (mg g^{-1}) is the total amount of N per unit of dry leaf mass.</p> <p>Leaf N content tends to be closely associated with high nutritional quality to the consumers in food webs (Cornelissen et al., 2003).</p> <p>Leaf N content was measured from finely ground oven-dried leaf using an Elementar analyzer (Elementar Analysensysteme Co., Hanau, Germany).</p>
Specific root length (SRL)	<p>SRL (m g^{-1}) is the ratio of root length to mass.</p> <p>High SRL usually refers to faster root elongation rates and higher rates of nutrient and water uptake capacity, and is therefore positively related to relative growth rates (Cornelissen et al., 2003; Weemstra et al., 2020).</p>

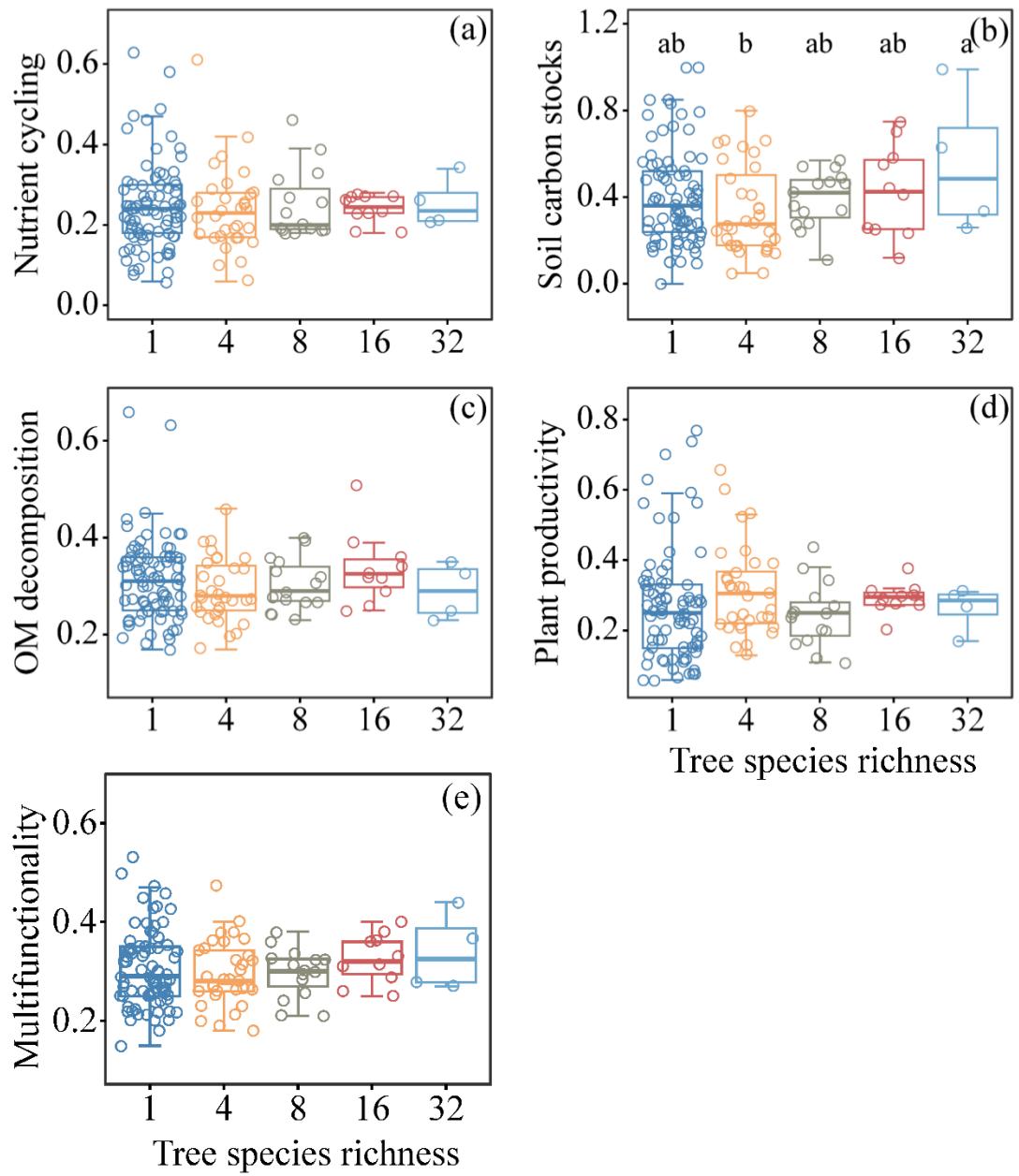
Surface soil (0–20 cm) at the base of the trees was carefully excavated to expose the main lateral roots, and roots (< 2 mm) were gently washed in deionized water to remove adhered soil. Total length of roots was analyzed using WINRHIZO software (Regents Instrument, Canada), and dry mass was measured following oven-drying at 60 °C for 48 h.

Root tissue density (RTD)	RTD (g cm^{-3}) is the root dry mass over volume. RTD is positively related to root longevity and negatively associated with nutrient uptake.
Specific root surface area (SRA)	Total length and diameter of roots were analyzed using WINRHIZO software (Regents Instrument, Canada). Dry mass was measured following oven-drying at 60 °C for 48 h. SRA ($\text{cm}^2 \text{ g}^{-1}$) is the amount of root surface per gram of root. SRA is a surrogate of plant nutrient uptake strategy (Hodge et al., 2009). High SRA is related to greater contact with soil nutrient, and higher N uptake potential (Cornelissen et al., 2003).
Root N content	SRA was assayed by scanning washed roots using a scanner (Epson Expression 10000XL scanner) after oven-drying at 60 °C for 48 h. Root N content (mg g^{-1}) is the total amount of N per unit of dry leaf mass. Root N content tends to be closely associated with high nutritional quality to the consumers in food webs (Cornelissen et al., 2003). Root N content was measured from finely ground oven-dried leaf using an elementar analyzer (Elementar Analysensysteme Co., Hanau, Germany).

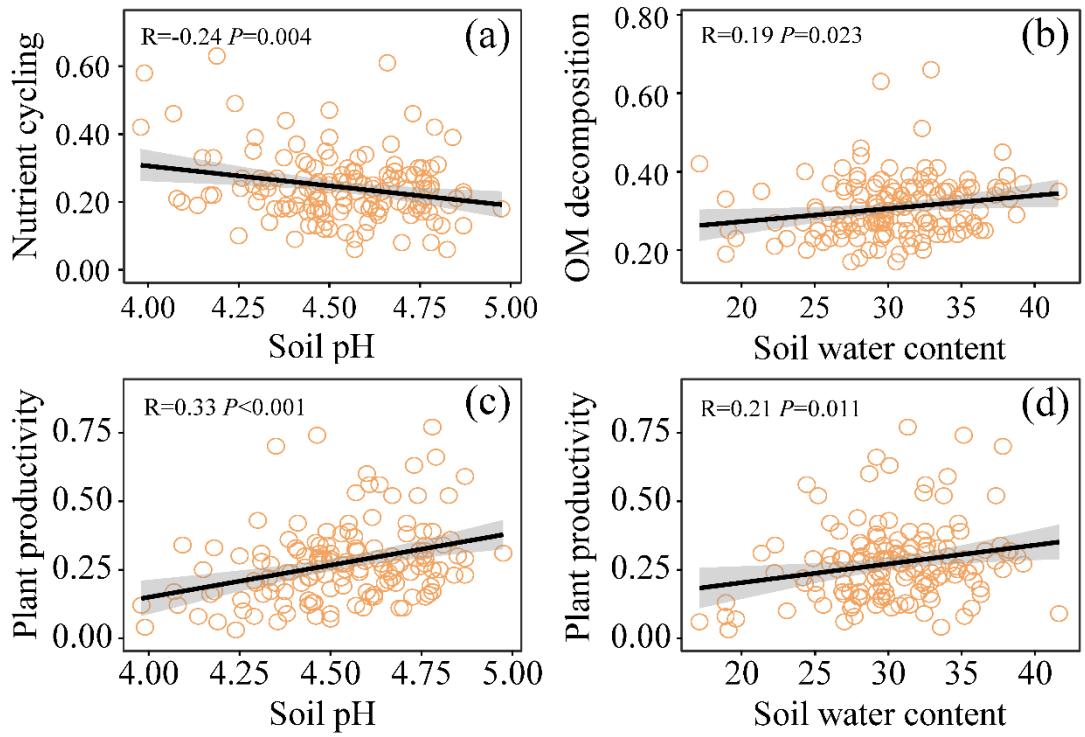

700

701

702 **Table S3** Indicators of ecosystem function.


Ecosystem function	Indicator
Soil carbon stocks	Soil total carbon corrected by bulk density
Nutrient cycling	Soil mineralization and nitrification rates, total N, mineral N
Organic matter decomposition	Enzyme activities of β -glucosidase, cellobiohydrolase, peroxidase, phenol oxidase, N-acetylglucosaminidase, acid phosphatase
Plant productivity	Tree height, ground basal area, annual litterfall yield

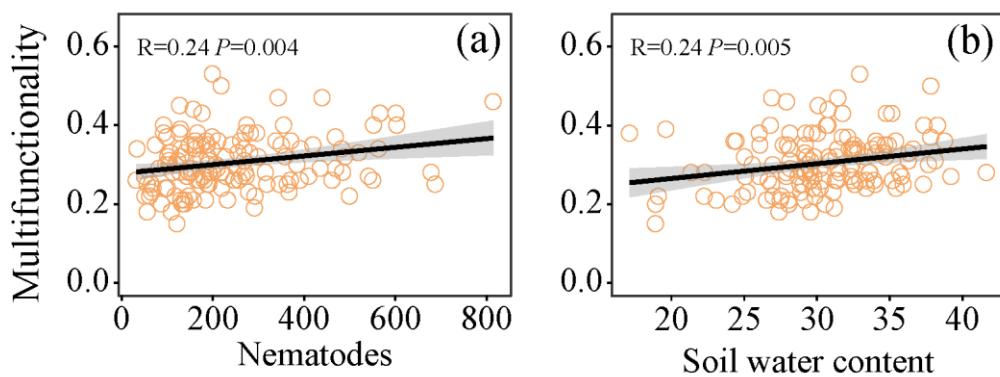
703


704

705 **Figure S1** A priori structural equation model assumptions of direct and indirect effects
 706 of tree diversity on ecosystem multifunctionality.

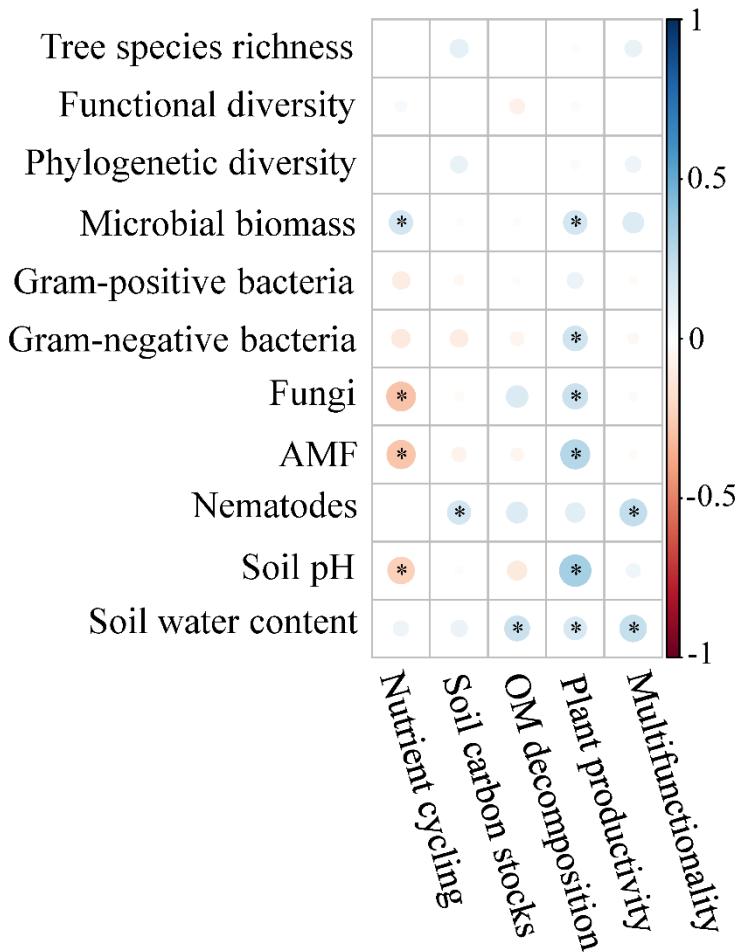
707

708 **Figure S2** Effects of tree species richness on indicators of nutrient cycling (a), soil
 709 carbon stocks (b), organic matter decomposition (c), plant productivity (d) and
 710 ecosystem multifunctionality (e). Values for boxplots are medians, with 75% of
 711 observations in the boxes, and whiskers above and below the boxes indicating the 95th
 712 and 5th percentiles. Different letters indicate statistical differences at $P < 0.05$ using the
 713 one-way analysis of variance based on the Duncan test.



714

715 **Figure S3** Linear regression analysis of the relationship between soil properties and
 716 ecosystem function. The fitted relationship (solid line) is shown with 95% CIs (shaded
 717 area). OM decomposition: organic matter decomposition.


718

719

720

721 **Figure S4** Linear regression analysis of the relationships between soil nematode
722 abundance and soil water content with ecosystem multifunctionality. The fitted
723 relationship (solid line) is shown with 95% CIs (shaded area).

724

725 **Figure S5** Correlation between ecosystem properties and ecosystem functions. Blue
 726 and red circles with asterisks indicate significant ($P < 0.05$) positive and negative
 727 effects, respectively. Circle size scales with the predictors' correlation estimate. AMF:
 728 arbuscular mycorrhizal fungi, OM decomposition: organic matter decomposition.

729

730

731 **References**

732 Cornelissen, J.H.C., S. Lavorel, E. Garnier, S. Diaz, N. Buchmann, D. E. Gurvich, P. B.
733 Reich, H. ter Steege, H. D. Morgan, M. G. A. van der Heijden, J. G. Pausas,
734 and H. Poorter. 2003. A handbook of protocols for standardised and easy
735 measurement of plant functional traits worldwide. *Australian Journal of Botany*
736 51:335–380.

737 Hodge, A., G. Berta, C. Doussan, F. Merchan, and M. Crespi. 2009. Plant root growth,
738 architecture and function. *Plant and Soil* 321:153–187.

739 Pérez-Harguindeguy, N., S. Díaz, E. Garnier, S. Lavorel, H. Poorter, P. Jaureguiberry,
740 M. S. Bret-Harte, W. K. Cornwell, J. M. Craine, D. E. Gurvich, et al. 2013. New
741 handbook for standardised measurement of plant functional traits worldwide.
742 *Australian Journal of Botany* 61:167–234.

743 Weemstra, M., N. Kiorapostolou, J. van Ruijven, L. Mommer, J. de Vries, and F. Sterck.
744 2020. The role of fine-root mass, specific root length and life span in tree
745 performance: a whole-tree exploration. *Functional Ecology* 34:575–585.

746