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Since the landmark paper by Hicks and Dresselhaus [Phys. Rev. B 47, 16631(R) (1993)], there has been a 
general consensus that one-dimensional nanoscale conductors, i.e. nanowires, provide the long sought paradigm 
to implement the so-called phonon-glass electron-crystal material, which results in large improvements in the 
thermoelectric figure of merit ZT. Despite some encouraging—though isolated—experimental results, this idea 
has never been subjected to a rigorous scrutiny and the effect of the coupled dynamics of electrons and phonons 
has usually been oversimplified. To bypass these limitations, we have calculated the effective thermoelectric 
parameters for silicon nanowires (SiNWs) by iteratively solving the coupled electron-phonon Boltzmann transport 
equation (EPBTE) supplied with first-principles data. This allows for an unprecedented precision in determining 
the correct dependence of the thermoelectric parameters with system size; including, but not limited to, the figure 
of merit and its enhancement or degradation due to nanostructuring. Indeed, we demonstrate that the commonly 
used relaxation time approximation (RTA), or the uncoupled beyond the RTA (iterative) solution fail to describe 
the correct effect of nanostructuring on the thermoelectric properties and efficiency in SiNWs due to the strong 
contribution of phonon drag to the Seebeck coefficient, so that the use of fully coupled solution of the EPBTE 
is essential to obtain the correct effect of nanostructuring. Most importantly, we show that, contrarily to what 
commonly argued, resorting to NWs is not necessarily beneficial for ZT. Indeed, in a wide range of diameters 
nanostructuring diminishes the Seebeck coefficient faster than the decrease in thermal conductivity, due to 
the suppression of very long wavelength phonons responsible for the largest contribution to the phonon drag 
component of the Seebeck coefficient. This penalty to ZT can be mitigated if the NWs have a very rough surface, 
providing additional reduction to the thermal conductivity. Additionally, we demonstrate that our methodology 
provides improved data sets for an accurate determination of doping concentration in NWs through electrical-
based inference and excellent agreement with the available experimental data.
1. Introduction

The growing interest in energy harvesting has led to the research 
for more efficient thermoelectric systems (i.e. systems that can convert 
thermal into electric energy) [1–5]; as they not only allow giving a prac-
tical use to recycle thermal waste but also generating energy for small 
wearable devices, thus removing the necessity of external batteries [6]. 
The efficiency of such systems is usually rated using the thermoelec-
tric figure of merit, 𝑍𝑇 = 𝜎𝑆2𝑇 ∕𝜅 [7], where 𝜎, S, 𝑇 and 𝜅 are the 
electrical conductivity, Seebeck coefficient, temperature, and thermal 
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conductivity, respectively. Unfortunately, traditionally those systems 
offered quite a low efficiency (i.e. 𝑍𝑇 < 1), therefore creating a need to 
enhance their energy conversion ratio [8,9]. This has brought into the 
spotlight the importance of phonon engineering or phononics, namely 
the use of nanostructuring to manipulate the vibrational properties of 
materials to increase 𝑍𝑇 . Indeed, nanostructuring provides an effective 
way of reducing the lattice thermal conductivity without deteriorat-
ing electrical properties (i.e. obtaining a phonon-glass while keeping 
an electron-crystal) [7,6,10–12], thereby obtaining conversion ratios 
unachievable using more classical approaches, such as alloying [7]. A 
Available online 6 March 2024
0017-9310/© 2024 The Author(s). Published by Elsevier Ltd. This is an open access a
nc-nd/4.0/).

1 Currently at Institut für Physik und IRIS Adlershof, Humboldt-Universität zu Ber

https://doi.org/10.1016/j.ijheatmasstransfer.2024.125385
Received 15 October 2023; Received in revised form 23 February 2024; Accepted 25
rticle under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-

lin, Newtonstr. 15, Berlin, 12489, Germany.

 February 2024

http://www.ScienceDirect.com/
http://www.elsevier.com/locate/ijhmt
mailto:Xavier.Cartoixa@uab.es
https://doi.org/10.1016/j.ijheatmasstransfer.2024.125385
https://doi.org/10.1016/j.ijheatmasstransfer.2024.125385
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ijheatmasstransfer.2024.125385&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/


M. Raya-Moreno, R. Rurali and X. Cartoixà

paradigmatic example of such an improvement due to nanostructuring 
can be found in Si nanowires (NWs) [13–18], which despite their sim-
plicity have been found to offer, when heavily doped, a ZT 100 times 
larger than their bulk counterpart [19,20].

The quantities necessary for the computation of 𝑍𝑇 can be read-
ily obtained from the solution of the mesoscopic linearized Boltz-
mann Transport Equation for both electrons and phonons (EPBTE). 
The most common and simple approach is to decouple both systems, 
and then solve them using the so-called relaxation time approxima-
tion (RTA) [21,22], where it is assumed that each phonon mode 
and electronic state relaxes to equilibrium independently. However, 
more recent advances enable an iterative solution beyond that crude 
approximation—henceforth called beyond—for both phonons [23–25]
and electrons [26–29]. Notwithstanding the improvement that the iter-
ative solution offers over the RTA, the former still ignores the coupling 
(or drag terms) existing between both systems due to the electron-
phonon interaction. Indeed, the inclusion of those terms becomes es-
sential for a proper description of the thermoelectric properties, as for 
instance, they can greatly contribute to the Seebeck coefficient value in 
the NWs [30–33]. Consequently, the recent development of an iterative 
solution for the coupled system [34], i.e. one including the drag terms—
henceforth referred as dragged—, has brought a step forward towards 
the more accurate computation of thermoelectric properties. Further-
more, informing the dragged EPBTE solvers with ab initio phonon and 
electron properties (energy, velocities, scattering rates,...) allows for 
an accurate description of these properties, including novel materials 
where simpler models to describe these are lacking [35,36]. Despite 
the utility of such an approach to accurately describe thermoelectric 
properties—recently made available to the community in the form of
elphbolt package [35]—, its practical usage is currently limited to 
bulk, thus preventing its use for high-ZT systems such as nanostruc-
tured materials.

In this work, we extend the elphbolt package to compute the ef-
fective thermoelectric properties for nanosystems, specifically Si NWs, 
by iteratively solving the linearized EPBTE with the appropriate bound-
ary conditions to correctly model the effect of perfectly diffusive physi-
cal boundaries, going for the first time a step beyond the most common 
approach based on the addition of a Casimir boundary scattering term 
through Matthiessen’s rule [37,36,33]. We find that, contrary to the 
common thinking that any nanowire will enhance 𝑍𝑇 because of the re-
duction in the thermal conductivity due to increased phonon boundary 
scattering [38–40], thick SiNWs have a 𝑍𝑇 smaller than bulk Si, and 
that for p-doped (1018–1019 cm−3) smooth SiNWs one must go to small 
NW diameters (≲ 60 nm) in order to observe the enhancement. Addi-
tionally, while we do not find enhancement for n-doped (1018 cm−3) 
smooth NWs at any diameter, it must be pointed out that our results 
do not take into account effects such as the elastic softening, which has 
been shown to strongly suppress the thermal conductivity in ultrathin Si 
nanotubes [41] and nanoribbons [42], and might restore the beneficial 
role of diameter reduction for 𝑍𝑇 in ultra-scaled SiNWs—of course, 
the positive contribution would also be there for p-doped NWs. Also, 
there have been previous reports where, in ultra-scaled SiNWs of 3-12 
nm, electronic confinement had a detrimental effect on the 𝑍𝑇 of the 
SiNWs [43,44] but, as we will show, the reduction in 𝑍𝑇 we observe 
takes place for SiNWs of 100 s of nm, and is due to the initial quenching 
of the phonon drag contribution to the Seebeck coefficient.

2. Results

2.1. Casimir-Matthiessen’s approach vs “suppressed” treatment of the 
boundary scattering

Quantum, dielectric, and phonon confinement alter the electronic 
and thermal properties of NWs [45]. However, such confinement ef-
fects in Si are important only for diameters of at most 10 nm [46,45]
2

and thus can be normally disregarded in NWs routinely grown and 
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used in thermoelectric devices, whose diameters are typically of the 
order of 50-150 nm (see e.g. Ref. [15]). Confinement effects aside, the 
most prominent, distinctive feature of a NW, compared to the bulk, 
is electron and phonon boundary scattering. For this reason, the way 
boundary scattering is computed is crucial when it comes to the predic-
tive power of calculations of the thermoelectric properties.

As detailed in the Methods section below, the widespread Casimir-
Matthiessen (CM)-based approach to take into account size effects 
within the framework of the homogeneous PBTE suffers, in principle, 
from several theoretical shortcomings. For instance, it incorrectly af-
fects carriers propagating along the growth direction in the case of NW, 
not only through the interaction with non-parallel modes—i.e. those af-
fected by surface scattering—but directly. A more elaborated approach 
based on the initial work by Chambers [47] for electrons and later ex-
tended to phonons by Li [24,48] derives directly from averaging the 
non-homogeneous PBTE, and thus does not suffer from that and other 
flaws. In fact, Mingo et al. [49] have not only proven differences be-
tween both approaches but also the breakdown of the former rule in 
nanoribbons. Further details on both approaches (theory, limitations,...) 
can be found in Section 4.1.

Consequently, it is interesting to compare the results of CM with our 
methodology for the computation of effective thermoelectric quantities 
over a wider range of limiting sizes (i.e. radii) to investigate if such 
flaws translate to any physical incongruency with our approach, as this 
latter should in principle provide a more exact and physically grounded 
treatment of boundary effects, excluding surface states, donor/acceptor 
deactivation due to dielectric mismatch, surface-induced elastic soften-
ing and/or quantization effects.

In Fig. 1, we can see the different effective thermoelectric quanti-
ties—phonon and electronic (at zero field) thermal conductivity, See-
beck coefficient, electrical conductivity, the phonon (𝛼ph) and electronic 
(𝛼el) thermal response to an electric field—at 300K for Si NWs with 
a B-doping of 1 × 1018 cm−3 computed with our approach and those 
obtained through the use of the CM one. There is a good agreement 
of suppressed- and CM-computed thermoelectric properties for large 
radii—i.e. relative differences lower than 5%, which is an acceptable 
experimental error for thermal conductivity [50]—. On the other hand, 
for thin NWs (R <100 nm) the relative error for all quantities except the 
Seebeck coefficient is larger. We note that for the thinnest radii under 
the scope of this work there is an indication that the phonon thermal 
response to an electric field (𝛼ph) might change sign; in other words, 
an opposite effect of the drag of electrons on phonons under the action 
of a homogeneous electric field. This effect might be larger in other 
materials, thus deserving further investigation.

Such a disagreement can be considered of little importance in our 
case, as the total thermal response to an electric field is dominated by 
the electronic component at small radii, which does not suffer from such 
qualitative discrepancy. On the other hand, this disagreement might be 
more appreciable in the description of the Peltier effect for the thinnest 
NWs, given a phonon dominance of the response.

Finally, we also point out that the values we obtain for the bulk 
(B-doped, 1018 cm∕3) electrical conductivity 𝜎 (30 S/cm) and phonon 
thermal conductivity 𝜅ph (126 W/m⋅K) are in excellent agreement with 
their respective experimental (B-doped, 1.8 × 1018 cm∕3) [51] counter-
parts of 31 S/cm and 124 W/m⋅K. On the other hand, the calculations 
slightly overestimate the Seebeck coefficient 𝑆 , obtaining 960 μV/K 
against the measurement [51] of 600 μV/K. Notwithstanding this, it 
should be noted that Sen et al. computed [33] and Geballe and Hull 
measured [52] an 𝑆 close to 1000 μV/K for B-doping at 1018 cm−3

(sample 141), but that value seems to be quite high when compared to 
more recent measurements [53].

2.2. Size effect on the thermoelectric effective magnitudes

Fig. 2 displays the main result of our study: the dependence of the 

thermoelectric efficiency 𝑍𝑇 of a Si NW as function of its radius. Sur-



International Journal of Heat and Mass Transfer 225 (2024) 125385M. Raya-Moreno, R. Rurali and X. Cartoixà

Fig. 1. Left-axis: Electronic (at zero field; 𝜅el,0) and phonon (𝜅ph) thermal conductivity, electrical conductivity, Seebeck coefficient, the electronic (𝛼el) and phonon 
(𝛼ph) thermal response to an electric field as a function of NW radius at 300 K and acceptor concentration (B) of 1.0 × 1018 cm−3 obtained through the suppressed 
dragged EPBTE (red solid) and dragged EPBTE with CM (blue dashed); bulk values (gray dotted) are given as reference. Right-axis: Relative error of CM with respect 
to suppressed solution (orange dot-dash) as function of NW radii; we indicate the 5% relative error as reference (green loosely dashed). Inset: Zoom at small radii 
for 𝛼ph. (For interpretation of the colors in the figure(s), the reader is referred to the web version of this article.)
Fig. 2. Left-axis: Thermoelectric figure of merit as a function of NW radius 
at 300 K and acceptor concentration (B) of 1.0 × 1018 cm−3 obtained through 
the suppressed dragged EPBTE (red solid) and dragged EPBTE with CM (blue 
dashed); bulk values (gray dotted) are given as reference. Right-axis: Relative 
error of CM with respect to suppressed solution (orange dot-dash) as function of 
NW radii; we indicate the 5% relative error as reference (green loosely dashed).

prisingly, we found that, contrarily to what commonly argued, once 
drag effects are included (cf. Fig. 3), downscaling the NW diameter does 
not necessarily result in an increased 𝑍𝑇 . Indeed, when one starts to 
reduce the thickness of the NW 𝑍𝑇 at first decreases. Reducing the ra-
dius of the NW translates into an increase of 𝑍𝑇 only for values smaller 
that 200-300 nm, where the curve exhibits a minimum. Nevertheless, it 
is only for radii smaller than ∼ 30 nm that nanostructuring pays off and 
yields 𝑍𝑇 s larger than the bulk values. This is a very important result 
because Si NWs that are normally integrated in thermoelectric modules 
have typically larger diameters than this threshold value [13,15,11,12]. 
Therefore, while the one-dimensional nature of NWs can be beneficial 
3

for other reasons, the quest of a large thermoelectric figure of merit per 
se does not justify nanostructuring in smooth crystalline NWs, unless ul-
trascaled radii can be achieved (see e.g. Refs. [19,20], though in those 
cases other factors such as extremely rough surfaces are believed to play 
a role as well).

We find it also interesting to investigate the evolution of the pre-
dicted thermoelectric properties and the figure of merit of NWs as 
the rigor in the treatment (and the computational cost) is reduced, in 
the sequence Suppressed dragged → Suppressed uncoupled Beyond-RTA →
Suppressed uncoupled RTA.

In Figs. 3 and 4 we present several effective thermoelectric proper-
ties as a function of the radius for p-type B-doped and n-type P-doped ⟨111⟩ SiNWs, with a doping concentration of 1.0 × 1018 cm−3 . Common 
to all cases, we observe that both RTA and beyond provide always lower 
values (in absolute value) than the dragged solution for the thermoelec-
tric properties at all radii. Remarkably here is the Seebeck coefficient, 
which greatly differs in its behavior with radii decrease between the 
dragged and the other approaches, which translates into the 𝑍𝑇 (𝑅)
minimum present in the dragged solution, which is also qualitatively 
different from its non-dragged counterparts. The dependence of S on 
the NW radius is rooted in the fact that phonon distribution can keep 
its inertia longer than the electronic one and is thus more affected by 
boundary effects, so that its phonon (dragged) component is more sen-
sitive to size than the electronic (diffusive) component.

This behavior is well captured by Fig. 5, which shows that while the 
electronic component is almost unaffected by size effects, the phonon 
contribution to S—which amounts to 40-45% of the total value of S, see 
right panel in Fig. 5—is highly suppressed by boundaries up to middle 
range radius values. In other words, for small radii the phonon distribu-
tion is highly damped by boundaries reducing its drag capacity over the 
less-damped electronic distribution—this translates into a similar slope 
of RTA, beyond and dragged for small radii; whereas, for higher radii, 
the phonon distribution becomes less damped and starts contributing to 
the Seebeck coefficient, originating the change of slope of the dragged 
case. Indeed, the Seffph (R)∕S

bulk
ph results are in line with those of Zhou et 
al. [39] for the cumulative Sph with the mean free path (see Figure 2B of 
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Fig. 3. Electrical conductivity, Seebeck coefficient, total thermal conductivity at zero electric current, and figure of merit as function of NW radius at 300 K and 
an acceptor concentration (B) of 1.0 × 1018 cm−3 for several approaches to collision operator; namely, RTA (green), uncoupled beyond the RTA (blue), and dragged 
(red). Bulk values (dashed) are given as reference.

Fig. 4. Electrical conductivity, Seebeck coefficient, total thermal conductivity at zero electric current, and figure of merit as function of NW radius at 300 K and a 
donor concentration (P) of 1.0 × 1018 cm−3 for several approaches to collision operator; namely, RTA (green), uncoupled beyond the RTA (blue), and dragged (red). 
Bulk values (dashed) are given as reference.
Ref. [39]) though with a smoother behavior, typical of the suppressed 
quantities in comparison with the mean free path cumulative ones (see 
Figure 2 of Ref. [24]), thus further substantiating the great suppression 
caused by boundaries to the phonon drag.

Once again we stress that the main role of the drag effect is 
that—contrary to the other simplified approaches that provide always 
an improvement of the 𝑍𝑇 for all radii—there is a wide diameter 
range where nanostructuring, rather than enhancing thermoelectric ef-
ficiency, deteriorates it. In this sense the case of smooth n-type NWs, for 
which no radius would provide an enhancement of the thermoelectric 
efficiency and the 𝑍𝑇 of bulk would always be larger, is paradig-
matic. However, it must be pointed out that our calculations assume 
bulk dispersions for electron and phonon bands and thus, as previously 
4

mentioned, do not take into account surface effects such as the elas-
tic softening, which has been shown to strongly suppress the thermal 
conductivity beyond the Casimir limit in ultrathin Si nanotubes [41]
and nanoribbons [42], and might restore 𝑍𝑇 to above-bulk values in 
ultra-scaled SiNWs.

To summarize, as the SiNW radius is decreased, the sequence of the 
evolution of the magnitudes entering 𝑍𝑇 is the following: Seffph ↓ (𝑍𝑇 ↓)
→ 𝜅ph ↓ (𝑍𝑇 ↑) → 𝜎 ↓ (𝑍𝑇 ↓), explaining the behavior of 𝑍𝑇 . For the 
n-type 1.0 × 1018 cm−3 SiNWs, Fig. 4 shows how the stronger reduction 
in 𝜎 causes their 𝑍𝑇 value never to go above the bulk values within 
our treatment.

Building on findings, we can now determine the region where nanos-
tructuring results in an enhancement of the thermoelectric efficiency. In 
Fig. 6 we depict the thermoelectric figure of merit and the power fac-

tor as a function of both radius and doping concentration for a p-type Si 
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Fig. 5. Left: Ratio between the effective phonon component of the total Seebeck coefficient with respect to its bulk value as a function of the NW radius. Blue 
crosses indicate the cumulative contribution to 𝑆drag

ph as a function of half of the MFP of the corresponding phonons (data from Ref. [39]). Middle: Ratio between the 
effective electron component of the total Seebeck coefficient with respect to its bulk value as a function of the NW radius. Right: Ratio between the drag (phonon) 
component and the total Seebeck coefficient for different radii.

Fig. 6. Top-left: Figure of merit as a function of the radius and the acceptor concentration (B) for Si NWs at 300 K. Whitish area indicate 𝑍𝑇 values lower than bulk 
at given doping concentration. Top-right: Difference between the NW and the bulk figure of merit as a function of the NW radius and the acceptor concentration (B) 
for Si NWs at 300 K. Whitish area indicate 𝑍𝑇 values lower than bulk at given doping concentration. Bottom-left: Power factor as a function of the radius and the 
acceptor concentration (B) for Si NWs at 300 K. Bottom-right: Difference between the NW and the bulk power factor as a function of the NW radius and the acceptor 

concentration (B) for Si NWs at 300 K.

NW: this plot provides the guidelines to follow when synthesizing a Si 
NW for thermoelectric applications and, conversely, indicates the fab-
rication parameters to be avoided. Yet, we recall that our calculations 
should be taken as a limiting case, i.e. perfectly diffusive infinite NWs, 
and that increased surface roughness will improve the behavior of 𝑍𝑇 .

2.3. Assessment of suppressed EPBTE for the prediction of effective 
thermoelectric quantities in Si NWs against experiments

We now assess the accuracy of our approach by comparing with the 
available experimental results of similar systems, that is extremely long 
NWs (i.e. with a length much longer than any RTA mean free path) 
with rough boundaries. To detail, we compare the results obtained with 
our methodology within the framework of the dragged collision opera-
tor, to the experimental values of Gadea et al. [11] (see Table 1); i.e. Si 
NWs with radii ranging 45-50 nm and B-doping of (2.0-5.0)×1019cm−3 . 
Before proceeding with the comparison it is worth noting that the exper-
imental NWs of Ref. [11] have an extremely rough surface. This would 
5

severely hinder the phonon distribution [54,55], and to a lesser extent 
the electronic one as this same rough shell partially shields the NW core 
from possible surface charges [56,57].

Indeed, while we observe a very good agreement for the electric con-
ductivity, the obtained thermal conductivity within both approaches is 
higher than the experimental result; however, it is in line with experi-
mental data for NWs with smoother surfaces [11,12]. As for the Seebeck 
coefficient, we observe similar predictions of the suppressed and CM 
methods, as expected, as the divergence is mostly contained in the 
non-dominant (i.e. ∼8-11% of S) drag or phononic contribution to the 
Seebeck coefficient. Furthermore, our results for 𝜎 agree with those of 
Ref. [11], assuming a doping in the low end of the range extracted from 
𝜎 quoted in that work—i.e. (2.0-3.0)×1019cm−3—. The doping range es-
timated in Ref. [11] from the 𝑆 measurements is (2.0-5.0)×1019cm−3 , 
and the measured 𝑆 agrees with our prediction at 5.0×1019cm−3 . This 
further substantiates the accuracy of our results, and also proves our 
calculations useful as a method to accurately determine the doping 
concentration in nanosystems taking into account boundary scattering; 
an improvement over other doping-determination methodologies which 

are solely based on bulk quantities [58,59]. Additionally, we also com-
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Table 1

Calculated thermal conductivity (𝜅), electrical conductivity (𝜎), Seebeck coefficient (S) and thermoelectric figure 
of merit (𝑍𝑇 ) at 300 K, for NWs of radii ranging 45-50 nm and B-dopings of 2.0 × 1019 and 5.0 × 1019 cm−3 using 
the suppressed dragged EPBTE and dragged EPBTE with Matthiessen’s plus a Casimir scattering term (CM) to model 
the NW boundary effect. Results from Ref. [11] are provided as reference.

𝑁𝐴[
cm−3] 𝜅[

W
m⋅K

] 𝜎[
S
cm

] S[
μV
K

] 𝑍𝑇 × 102

Experimental 2.00 × 1019 - 5.00 × 1019 18.3±4.6 (13-25†) 270 (247-290†) 207±19 1.4-2.5†

Suppressed dragged EPBTE‡ 2.00 × 1019 39.8-41.5 304-306 289-290 1.9-1.9
5.00 × 1019 37.8-39.4 684-687 210-212 2.4-2.3

CM dragged EPBTE‡ 2.00 × 1019 38.2-40.0 288-291 282-284 1.8-1.8
5.00 × 1019 36.6-38.3 651-657 208-209 2.3-2.3

† These values correspond to the minimum and the maximum of the value for the given temperature of all mea-
surements, including errors.
‡ These results correspond to the values for NWs of radius 45 (left) and 50 (right) nm.

Fig. 7. Left: Seebeck coefficient as function of doping for B-doped NW of radius 30 (red dotted) and 45 (red dashed)nm at 300 K, and the associated bulk value 
obtained using logarithmic fitting of Ref. [53] (dashed black line). Black (gray) squares (diamonds) provide experimental values for NWs of similar characteristics 
at 300 K(308.15 K) [31,11,61,12] as reference. Right: Dragged Seebeck coefficient as a function of B-doping and NW radius at 300 K.
pare the results of our methodology against the experimental data of 
Ref. [12] for extremely rough Si NWs (see Table 2), obtaining a similar 
agreement level than in the former case.

Finally, we also provide the results using the classical CM approach 
to model boundary effects for the same case (see Table. 1), obtain-
ing similar values for thermoelectric properties as with the suppressed 
model. These results agree with the previous discussion of Fig. 1 and 
2, where we concluded that CM approach predicts essentially the same 
behavior as the more rigorous suppressed framework for the studied Si 
NWs with 𝑅 ≳ 30 nm.

2.4. Doping concentration and Seebeck coefficient

Accurately determining the doping concentration of nanowires 
presents a significant challenge from an experimental standpoint. Whilst 
secondary ion mass spectrometry provides the most accurate measure-
ment for dopant concentrations [31], this is not only an expensive 
technique, but it also degrades the sample. Consequently, electrical-
based inferences are usually preferred, despite all their associated 
problems about their reliability [57,31]. This type of electrical determi-
nation involves comparing the obtained results with bulk-experimental 
data [60] and/or bulk-based theoretical fitting models (i.e., models 
with size-independent thermoelectric properties) [58,59,57]; see for in-
stance Refs. [11] and [12]. However, in view of our simulations (see 
Fig. 1-4), it becomes challenging to justify the use of bulk values and/or 
bulk-based models to determine the doping of NWs since these values 
differ significantly from those found in NWs.

While the extension of simple theoretical models to account for 
finite-size effects can be considered, in light of our results any con-
sidered modification must accurately model both boundary effects and 
drag simultaneously. Therefore, we provide the Seebeck coefficient 
6

computed using the suppressed EPBTE as a function of doping for B-
doped Si NWs, for several doping levels and radii in Fig. 7 left. The 
comparison against bulk experimental fittings using logarithmic fit-
ting of Ref. [62,53]—a common methodology used, for instance, in 
Refs. [11,12]—reveals that our method provides significantly lower val-
ues of 𝑆 than those expected for bulk Si, yielding results more in line 
with experimental results [11,12], i.e. a Seebeck coefficient between 
402-103 μVK−1 . Moreover, Sojo et al. [12] suggest that the origin of 
these discrepancies is to be found in the interplay of phonon drag 
and boundary effects; something that is, indeed, proven and properly 
captured by our approach. Consequently, our results are expected to 
provide an improved dataset for the inference of doping concentration 
in B-doped Si NWs, including an improved logarithmic fitting formula 
including the NW radius R:

S(NA,R) = a(R) ln(NA) + b(R), (1)

a(R) = −75.7714
1 + e−1.1640ln(R)+8.9839

− 86.7513, (2)

b(R) = 3586.7
1 + e−1.1248ln(R)+8.6242

+ 4133.6, (3)

where B-doping concentration (NA) is given in cm−3 , radius (R) in nm, 
and S in μVK−1 .

Interestingly, the use of the doping concentrations from the inver-
sion of Eqs. (1)-(3) from measured S and R instead of the bulk-fitted 
ones, considerably improves the agreement between the computed 
properties and the experimental ones (see interpolated properties in Ta-
ble 3). In fact, this showcases the utility of our methodology for the 
systematic generation of accurate data sets for an improved determina-

tion of doping concentration in NWs for any material.
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Table 2

Calculated thermal conductivity (𝜅), electrical conductivity (𝜎), Seebeck coefficient (S) and 
thermoelectric figure of merit (𝑍𝑇 ) at 300 K, for NWs of radii ranging 30-45 nm and differ-
ent B-dopings using the suppressed dragged EPBTE. Results from Ref. [12] are provided as a 
reference.

𝑁𝐴[
cm−3] 𝜅[

W
m⋅K

] 𝜎[
S
cm

] S[
μV
K

] 𝑍𝑇 × 102

Experimental† 1.0 × 1019
5.0 × 1019

17.2±1.4
17.2±1.4

200
425

331
225.1

4.0
3.0

Suppressed dragged EPBTE† 1.0 × 1019
5.0 × 1019

34.3-40.8
32.0-37.8

161-166
668-684

345-351
204-210

1.7-1.5
2.6-2.4

† These results correspond to the values for NWs of radius 30 (left) and 45 (right) nm, with a 
B-doping of 1.0 × 1019 cm−3 (top) and 5.0 × 1019 cm−3 (bottom).

Table 3

Interpolated thermal conductivity (𝜅), electrical conductivity (𝜎), Seebeck coefficient (S) and 
thermoelectric figure of merit (𝑍𝑇 ) at 300 K, for NWs with B-doping concentration computed 
using the experimental Seebeck coefficient by inversion of Eqs. (1)-(3) using experimental 
obtained radius limits, i.e. 30 and 45 nm. Interpolated quantities are obtained through a 
Clough-Tocher interpolator to our whole data set.

NA
[cm−3]

𝜅[
W
m⋅K

] 𝜎[
S
cm

] S[
μV
K

] 𝑍𝑇 × 102

Sexp =331 μVK−1† 1.19 × 1019 - 1.24 × 1019 34.1-40.5 187-199 329-332 1.8-1.6
Sexp =225.1 μVK−1† 4.00 × 1019 - 4.15 × 1019 32.4-38.3 550-583 222-225 2.5-2.3

† These results correspond to the values for NWs of radius 30 (left) and 45 (right) nm.

Fig. 8. Electrical conductivity, Seebeck coefficient, total thermal conductivity at zero electric current, and figure of merit as function of NW radius at 300 and 570 K
and for several acceptor concentrations (B), without and with the inclusion of extreme surface roughness effects. Bulk values (dashed) are given as reference.
2.5. Effects of surface roughness

All the results we have presented so far correspond to smooth dif-
fusive SiNWs, meaning that the surface roughness is not large enough 
to feature localized surface states, but large enough so that phonons 
hitting the surface boundary are diffusively scattered. As already men-
tioned, the SiNWs of Ref. [11] present extremely rough surfaces, which 
introduces additional phonon surface scattering and thus reduces 𝜅.

We have added a model of extreme surface roughness in our calcu-
lations, according to the methodology described in Sec. 4.2. The results 
are shown in Fig. 8. We observe there that the effect of a large sur-
face roughness is to decrease the phonon thermal conductivity, while 
7

keeping 𝜎 and S basically unaffected. Consequently, at 300 K the NW 
radius for which 𝑍𝑇 becomes larger than the bulk value is increased to 
around 200 nm, thus reconciling our calculations with the qualitative 
experimental observations that 𝑍𝑇 is above the bulk value for rough 
NWs [11]. At a higher temperature of 570 K there would barely be any 
reduction of 𝑍𝑇 with respect to bulk in rough NWs. We also note that, 
at 570 K, the extent and amount of 𝑍𝑇 reduction with respect to bulk 
is less than at 300 K.

3. Discussion

In this work, we have presented ab initio calculations of effective 
thermoelectric properties for Si nanowires of several radii and dop-

ing concentrations, using density functional theory data to iteratively 
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solve a suppressed coupled electron-phonon Boltzmann transport equa-
tion taking boundaries into account through the appropriate constraints 
on the non-homogeneous EPBTE. This is further simplified to a tractable 
problem by the use of cross-sectional averages (i.e. suppressed EPBTE). 
In fact, we have extended the elphbolt package by implementing such 
an approach, so that it can provide effective quantities for NWs. This 
allows unprecedented precision in the obtaining of dragged effective 
thermoelectric quantities.

Furthermore, we also provide a detailed explanation for the be-
havior of effective thermoelectric parameters and figure of merit as a 
function of the NW radius, showing the interplay of the different scales 
for phonons and electrons. Additionally, we show that there is a limited 
range of radii and doping concentration (B) in which the thermoelec-
tric properties are enhanced by nanostructuring. In fact, outside that 
range the suppression of the drag contribution to 𝑆 reduces thermo-
electric efficiency below the bulk level, hence indicating that arbitrary 
nanostructuring does not necessarily ensure better thermoelectric effi-
ciency. This leads to the observation that, in systems where there is a 
strong contribution of phonon drag to the Seebeck coefficient, nanos-
tructuring may be detrimental to the thermoelectric performance of the 
material, by reducing 𝑆 faster than the lattice thermal conductivity. We 
have also seen that the presence of extremely rough surfaces introduces 
a factor further reducing the thermal conductivity, while leaving other 
magnitudes practically unaffected, which mitigates the reduction of 𝑍𝑇

for large NW diameters.
Finally, we provide a data set and a fitting equation for the compu-

tation of the Seebeck coefficient in NWs as a function of both acceptor 
concentration and radius. We show that such a fit can be used for the 
electrical determination of the doping concentration in Si NWs based on 
S, offering an improved accuracy when compared to standard methods.

4. Methods

4.1. Including boundary effects in the EPBTE beyond Matthiessen’s rule

The customary approach to include boundary effects coming from 
the nanostructuring is through the introduction of a Casimir boundary 
scattering term [63],

[𝜏Boundary
𝐼

]−1 =
(1 − 𝑝)||𝐯𝐼 ||
(1 + 𝑝)𝐿

, (4)

where 𝜏Boundary
𝐼

is the boundary scattering of the 𝐼 -th mode/state (from 
now on we make use of lower case Latin alphabet letters for electronic 
states, lower case Greek alphabet letters for phonon modes, and upper 
case Latin alphabet letters for cases in which the same equation ap-
plies to both systems), 𝑝 ∈ [0, 1] is the specularity parameter, 𝐯𝐼 is the 
group velocity of the 𝐼 -th mode/state, and 𝐿 is the limiting length of 
the system. This boundary scattering term is included via Matthiessen’s 
rule [63,35,36]; hence we dub this approach as Casimir-Matthiessen’s 
(CM). However, we note that this formalism does not consider the sys-
tem’s geometry, breaks energy conservation of the linearized scattering 
operator, and –what is more important– has been demonstrated to break 
down for some systems such as nanoribbons [49], thus making this solu-
tion potentially inadequate for an accurate description of thermoelectric 
properties in nanostructures. In principle, a more rigorous way to ac-
count for boundaries of the nanostructured systems, such as those of 
interest for thermoelectric applications, consists in going beyond the 
homogeneity approximation.

To this end, one needs to resort to the linearized non-homogeneous 
time-independent EPBTE [63,64]:

⎧⎪⎪⎨⎪
∇𝑇ref ⋅ 𝐯𝑖

𝜕𝑓0
𝑖

𝜕𝑇ref
+ 𝑒𝐄 ⋅ 𝐯𝑖

𝜕𝑓0
𝑖

𝜕𝜀𝑖
+ 𝐯𝑖 ⋅∇𝑓𝑑

𝑖
(𝐫)

=
∑

𝛽 𝑀𝑖𝛽𝑛𝑑
𝛽
(𝐫) +∑

𝑗 𝐷𝑖𝑗𝑓
𝑑
𝑗
(𝐫)

𝜕𝑛0 ∑ ∑
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⎪⎩∇𝑇ref ⋅ 𝐯𝜆
𝜆

𝜕𝑇ref
+ 𝐯𝜆 ⋅∇𝑛𝑑

𝜆
(𝐫) = 𝛽 (𝐴𝜆𝛽 +𝐵𝜆𝛽 )𝑛𝑑

𝛽
(𝐫) + 𝑗 𝐶𝜆𝑗𝑓

𝑑
𝑗
(𝐫)
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(5)

where the phonon (𝑛) and electron (𝑓 ) distributions have been ex-
panded as an equilibrium contribution –𝑛0 and 𝑓 0, which are well 
described by Bose-Einstein and Fermi-Dirac distributions at a given ref-
erence temperature, 𝑇ref , and electrochemical potential, 𝜇ref – and small 
deviation from these (𝑛𝑑 and 𝑓𝑑 ) so that the linearization of the scat-
tering operator holds; 𝜀𝑖 is the energy of the 𝑖-th electronic state, 𝑒 is 
the electron charge, 𝐄 is a homogeneous electric field, and 𝑀 , 𝐷, 𝐴, 𝐵, 
and 𝐶 are the linearized scattering operator terms [see Eqs. (A.1)-(A.5)
below], being 𝑀 and 𝐶 the terms responsible for the coupling between 
electronic and phononic systems (i.e. drag).

Not only that, but one needs also to define an appropriate set of 
boundary conditions for phonons and electrons arriving at a boundary 
at 𝐫𝐵 :

𝑓𝑑
𝑗
(𝐫𝐵) =

1
𝑁k

∑
{𝑖∶𝐯𝑖⋅𝐞̂𝑖𝑛⟂>0}

𝑃
Boundary
𝑖→𝑗

𝑓𝑑
𝑖
(𝐫𝐵) ∶ 𝐯𝑗 ⋅ 𝐞̂𝑖𝑛

⟂ < 0, (6)

𝑛𝑑
𝛽
(𝐫𝐵) =

1
𝑁q

∑
{𝜆∶𝐯𝜆⋅𝐞̂𝑖𝑛⟂>0}

𝑃
Boundary
𝜆→𝛽

𝑛𝑑
𝜆
(𝐫𝐵) ∶ 𝐯𝛽 ⋅ 𝐞̂𝑖𝑛

⟂ < 0. (7)

Here, 𝑁k (𝑁q) is the number of points in the electronic 𝑘-mesh 
(phononic 𝑞-mesh), 𝑃Boundary

𝑗→𝑖
(𝑃Boundary

𝜆→𝛽
) is the probability of an elec-

tron (phonon) in the 𝑖-th state (𝜆-th mode) to be scattered to 𝑗 state 
(𝛽 mode) and 𝐞̂𝑖𝑛

⟂ is the normal vector to boundary pointing into the 
material. This last equation can be further simplified by noting that 
from all phonons and electrons arriving at the boundary, only a frac-
tion 𝑝 is specularly reflected whilst the rest are diffusively scattered, 
so that in the steady-state they will only contribute to the equilibrium 
distribution [63]. In other words, a perfect diffuse boundary absorbs 
all phonons and electrons arriving at it, which are then reemitted from 
such a boundary at a rate and distribution depending on the boundary 
temperature [65]. This allows simplifying boundary scattering to

𝑓𝑑
𝑗
(𝐫𝐵) = 𝑝𝑓𝑑

𝑖
(𝐫𝐵) ∶ 𝐯𝑗 ⋅ 𝐞̂𝑖𝑛

⟂ < 0 and 𝐯𝑗 = 𝐯𝑖 − 2(𝐯𝑖 ⋅ 𝐞̂𝑖𝑛
⟂ )𝐞̂

𝑖𝑛
⟂ , (8)

𝑛𝑑
𝛽
(𝐫𝐵) = 𝑝𝑛𝑑

𝜆
(𝐫𝐵) ∶ 𝐯𝛽 ⋅ 𝐞̂𝑖𝑛

⟂ < 0 and 𝐯𝛽 = 𝐯𝜆 − 2(𝐯𝜆 ⋅ 𝐞̂𝑖𝑛
⟂ )𝐞̂

𝑖𝑛
⟂ . (9)

Although in principle, one can iteratively solve Eq. (5) under the 
constraints of Eqs. (8) and (9), its solution would require a discretiza-
tion in space. Even for the simplest case of fully diffusive boundaries 
(𝑝 = 0), this is from a computational point of view impractical, owing 
to the enormous required memory resources and computational time 
for its solution. Indeed, for the case in which there is no other spatial 
dependence other than that coming from the mode/state itself, as it 
would be the case for an RTA collision operator, there exists an analytic 
solution developed by Chambers [47,63]. Therefore, a starting point to 
simplify Eq. (5) to a more bearable form is to approximate the coupling 
with other modes/states—that is the RTA deviations—by their cross-
sectional average along the direction of interest (i.e. the unbounded 
direction) [24,66]; thus arriving to:

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

𝑓𝑑
𝑖
(𝐫) = 𝜏𝑖

[
−∇𝑇ref ⋅ 𝐯𝑖

𝜕𝑓0
𝑖

𝜕𝑇ref
− 𝑒𝐄 ⋅ 𝐯𝑖

𝜕𝑓0
𝑖

𝜕𝜀𝑖
+
∑

𝑗≠𝑖 𝐷𝑖𝑗𝑓
𝑑
𝑗
+
∑

𝛽 𝑀𝑖𝛽 𝑛̄𝑑
𝛽

]
×

(
1 +𝐾𝑖(𝐫, 𝐫𝐵)𝑒

−
|𝐫−𝐫′

𝐵
|

𝜏𝑖|𝐯𝑖|
)

𝑛𝑑
𝜆
(𝐫) = 𝜏𝜆

[
−∇𝑇ref ⋅ 𝐯𝜆

𝜕𝑛0
𝜆

𝜕𝑇ref
+
∑

𝛽≠𝜆(𝐴𝜆𝛽 +𝐵𝜆𝛽 )𝑛̄𝑑
𝛽
+
∑

𝑗 𝐶𝜆𝑗𝑓
𝑑
𝑗

]
×

(
1 +𝐾𝜆(𝐫, 𝐫′𝐵)𝑒

−
|𝐫−𝐫′

𝐵
|

𝜏𝜆|𝐯𝜆|
)

,

(10)

where 𝑟′
𝐵

is the boundary position the particle will ballistically intercept 
by moving backwards in time, so that 𝐯𝐼 ∥ |𝐫 − 𝐫′

𝐵
|; 𝐾𝐼 (𝐫, 𝐫′𝐵) is an in-
tricate function determined by boundary conditions; 𝑓𝑑
𝑖

and 𝑛̄𝑑
𝜆

are the 
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cross-sectional averages of the deviational distribution; and 𝜏𝑖 = − 1
𝐷𝑖𝑖

and 𝜏𝜆 = − 1
𝐴𝜆𝜆+𝐵𝜆𝜆

are the electronic and phononic RTA lifetimes. For 
fully diffusive boundaries, 𝐾𝐼 (𝐫, 𝐫′𝐵) reduces to −1, and thus the cross-
sectional deviational distributions necessary to compute the effective 
thermoelectric properties can be computed as

⎧⎪⎪⎨⎪⎪⎩
𝑓𝑑

𝑖
= 𝜏nano

𝑖

[
−∇𝑇ref ⋅ 𝐯𝑖

𝜕𝑓0
𝑖

𝜕𝑇ref
− 𝑒𝐄 ⋅ 𝐯𝑖

𝜕𝑓0
𝑖

𝜕𝜀𝑖
+
∑

𝑗≠𝑖 𝐷𝑖𝑗𝑓
𝑑
𝑗
+
∑

𝛽 𝑀𝑖𝛽 𝑛̄𝑑
𝛽

]
𝑛̄𝑑

𝜆
= 𝜏nano

𝜆

[
−∇𝑇ref ⋅ 𝐯𝜆

𝜕𝑛0
𝜆

𝜕𝑇ref
+
∑

𝛽≠𝜆(𝐴𝜆𝛽 +𝐵𝜆𝛽 )𝑛̄𝑑
𝛽
+
∑

𝑗 𝐶𝜆𝑗𝑓
𝑑
𝑗

] ,

(11)

with

𝜏nano
𝐼

= 𝜏𝐼𝑆nano
𝐼

= 𝜏𝐼 ∫
𝐴𝑐

(
1 − 𝑒

−
|𝐫−𝐫′

𝐵
|

𝜏𝐼 |𝐯𝐼 |
)

𝑑𝐴; (12)

here 𝐴𝑐 refers to the cross-section, and 𝑆nano
𝐼

is a suppression factor 
∈ [0, 1] which accounts for the effect of the surface over the deviational 
distribution with respect to the bulk one.

Therefore, the effective solution of the EPBTE for highly symmet-
ric systems, henceforth referred as suppressed, is rather similar to the 
bulk solution, with the exception that lifetimes are suppressed by ge-
ometrical factors, which break the crystalline symmetry. Indeed, it is 
straightforward to demonstrate that this last statement holds for the 
usual expansion of deviations in terms of the leading fields (i.e. thermal 
gradient and electric field) [34,67,35], and thus the solution can be ob-
tained by replacing the lifetimes by their suppressed counterparts [66]. 
In particular, for the case of cylindrical NWs, the suppression factors 
(𝑆NW

𝐼
) can be analytically calculated, by evaluating the integral in mod-

ified cylindrical coordinates with the 𝑧-axis pointing to the periodic 
direction defined by the unitary vector 𝐮̂, yielding:

𝑆NW
𝐼

= 1 −
2𝑀NW

𝐼

𝜋𝑅
−

𝑀NW
𝐼

𝑅

[
1

(
2𝑅

𝑀NW
𝐼

)
−−1

(
2𝑅

𝑀NW
𝐼

)]
=

1 −
2𝑀NW

𝐼

𝜋𝑅
+

2𝑀NW
𝐼

𝜋𝑅2

𝑅

∫
0

exp

(
−2

√
𝑅2 − 𝑥2

𝑀NW
𝐼

)
𝑑𝑥 (13)

𝑀NW
𝐼

= ‖𝐯𝐼 − (𝐯𝐼 ⋅ 𝐮̂)𝐮̂‖𝜏𝐼 , (14)

where 𝑅 is the NW radius, and 1 and −1 are the modified Bessel and 
Struve functions of order 1 and -1, respectively. The integral form in-
cluded in Eq. (13) is written for computational reasons; as the enormous 
floating point error coming from a direct subtraction between modified 
Bessel and Struve functions makes its direct solution computationally 
unfeasible, so that one needs to rely on the numerical solution of the 
integral form by the trapezoidal rule to obtain reliable results of the 
suppression factor.

Although some of the approximations –such as the replacement of 
the RTA deviations by their cross-sectional average– can seem rather 
crude, it is worth noting that this approach has not only proven to pro-
vide results in excellent agreement with more accurate Monte Carlo 
based solutions of the phonon BTE [68], but to accurately reproduce 
experimental results [11,12] for thermal transport (see the discussion 
below). At the same time, however, we stress that while this approach 
is in principle much more accurate than CM, it still relies on the use 
of bulk properties and of 3D periodic formulas (e.g. 3D non-analytic 
correction for phonons in polar materials); so that the effect of surface 
effects is disregarded. Moreover, our approach ignores any quantization 
or confinement effect over electrons and/or phonons for extremely thin 
NWs—which is expected to be important for diameters smaller than 
10 nm [46,45]—, which combined with the lack of surface states and 
9

donor/acceptor deactivation due to dielectric mismatch [57], makes 
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our approach unsuited for very thin and/or low-doped-uncoated NWs 
where such effects might be important. As mentioned above, nonethe-
less, this is not an important limitation for the NWs used in practical 
devices, as they usually have significantly larger diameters.

To summarize, the CM solves the linearized homogeneous PBTE, 
does not take into account the system’s geometry (i.e. it directly scatters 
phonons traveling parallel to periodic direction, something unphysical), 
it is introduced at the RTA-level (it does not conserve energy), and it has 
been proven to breakdown for some nanosystems (e.g. nanoribbons). In 
contrast, the suppressed approach derives directly from averaging the 
non-homogeneous PBTE in the full-linearized approach (i.e. beyond the 
RTA) and, consequently, does not suffer from such flaws. The latter is, 
as the former, still excluding several effects that might be important, es-
pecially for thin and/or extremely rough nanowires, namely it does not 
consider surface states (bulk properties are used), possible donor/accep-
tor deactivation due to dielectric mismatch, and/or quantization effects.

4.2. Roughness treatment

As mentioned in the previous section, none of the detailed ap-
proaches account for surface states. Therefore, for the modeling of 
extremely rough NWs, such as those of Refs. [11] and [12], an addi-
tional scattering channel for phonons accounting for such surface states 
should be considered. Unfortunately, the addition of these terms within 
the suppressed approach, albeit theoretically possible, would require 
to solve Eq. (12) not only in the plane normal to the transport direc-
tion, but along a relative large representative section over it—i.e. a 
surface profile sample with the equivalent root mean square average 
(𝛿) and correlation length (𝜂)—, further complicating the solution. Al-
ternatively, in the homogeneous approach, that is CM, it is possible to 
introduce the effect of surface state scattering through an additional 
scattering rate based on an semi-empirical approximation derived from 
a bond-order model as [69,55]:

𝜏−1Roughness,𝜆 = 𝐴 ⋅ SVR ⋅𝜔4
𝜆
, (15)

where 𝐴 is 1.86 × 10−51 s−1 for Si [55], and SVR is the surface-to-volume 
ratio, which is defined as:

SVR =
2 ∫ 𝐿

0 𝑦(𝑥)
√
1 + 𝑦′(𝑥)2𝑑𝑥

𝐿𝑅2 . (16)

Here, 𝐿 is the length of the NW (i.e. the length of the computational 
profile used to represent the infinite NW), and 𝑦(𝑥) is the surface profile, 
which can be computed from the Gaussian correlation function (𝐶(𝑥) =
𝛿2𝑒−𝑥2∕𝜂2 ) following [70,69]:

𝑦(𝑥) =ℱ−1
𝑥

[
√
ℱ𝑥[𝐶(𝑥)](𝑞)𝑒𝜙𝑞 ](𝑥) +𝑅, (17)

where ℱ𝑥[𝑓 (𝑥)](𝑞)[ℱ−1
𝑥

[𝑓 (𝑞)](𝑥)] is the [inverse] Fourier transform of 
the given function 𝑓 , and is 𝑒𝜙𝑞 a random odd phase (i.e. 𝑒𝜙−𝑞 = −𝑒𝜙𝑞 , 
with 𝜙 uniformly sampled between [−𝜋, 𝜋]). We find it worth to men-
tion that this model is derived from perturbation theory, and will thus 
break extremely rough surfaces for thin NWs.

4.3. Density-functional calculations and solution of the coupled EPBTE

The calculation of all the quantities needed to solve the EPBTE was 
done within the framework of Density Functional Theory (DFT). The 
unit cell used as a basis for the whole set of calculations was optimized 
until strict limits for stress (3 × 10−3 GPa) and forces (5 × 10−4 eVÅ

−1
) 

were attained. These optimizations were conducted using the plane-
wave Quantum Espresso [71,72] code with a norm-conserving pseu-
dopotential [73], using a cutoff of 45 Ry, and a 12 × 12 × 12 Γ-
centered 𝑘-mesh. Local Density Approximation (LDA) for the exchange-
correlation as parametrized by Perdew and Zunger [74] to Ceperley-

Alder [75] data was used. Harmonic interatomic force constants (IFCs) 
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and the first-derivative of the potential with respect to phonon pertur-
bations were obtained using Density Perturbation Functional Theory 
(DPFT), as implemented in PHonon package included within Quantum 
Espresso suit [71,72], using a 6 ×6 ×6 Γ-centered 𝑘-mesh and a strict 
convergence limit of 1.0 × 10−13 Ry. Anharmonic IFCs were computed 
using the supercell method as implemented thirdorder.py [66], using
Quantum Espresso as force calculator, with a 5 × 5 × 5 supercell and 
a cutoff for the interactions up to the 6𝑡ℎ nearest neighbor. The com-
putation of electron-phonon matrix elements and Hamiltonian in the 
real space was done using EPW package [76], through the wannierisa-
tion up to the 8𝑡ℎ band, using 8 𝑠𝑝3 Si-centered orbitals for the initial 
projection, and a disentanglement window up to 17.5 eV with states be-
low 9.5 eV frozen. Electronic-charged impurity matrix elements were 
obtained using the first Born approximation, by considering the impu-
rity potential to be described by a static screened Coulomb potential, 
namely a Yukawa potential, as implemented in the elphbolt code (see 
Eqs. (9)-(11) of Ref. [35]). Electron-electron interaction has not been 
considered on our calculations, something that for high-concentrations 
(i.e. ≳ 1 × 1020 cm−3) renders an overestimated bulk electrical conduc-
tivity to 2 to 4 times the experimental results [35]).

To compute the effective thermoelectric properties, we have used a 
modified version of elphbolt version, in which we have implemented 
the computation of effective thermoelectric properties for NWs, by iter-
atively solving the suppressed EPBTE. Consequently, effective thermo-
electric properties—electrical conductivity (𝜎), the Seebeck coefficient 
(𝑆), the electronic thermal response to an electric field (𝛼el), the elec-
tronic thermal conductivity without applied electric field (𝜅el,0), the 
phonon thermal response to an electric field (𝛼ph), the phonon thermal 
conductivity (𝜅ph), and the total thermal conductivity at zero-current 
(𝜅)—are obtained as:

𝜎eff = 2𝑒
𝑁k𝑉uc𝑘𝐵𝑇ref

∑
𝑖

𝑓 0
𝑖
(1 − 𝑓 0

𝑖
)𝑣𝑛

𝑖
𝐽𝑖, (18)

(𝜎𝑆)eff = − 2𝑒
𝑁k𝑉uc𝑘𝐵𝑇ref

∑
𝑖

𝑓 0
𝑖
(1 − 𝑓 0

𝑖
)𝑣𝑛

𝑖
𝐻̄𝑖, (19)

𝛼eff
el = − 2

𝑁k𝑉uc𝑘𝐵𝑇ref

∑
𝑖

(𝜀𝑖 − 𝜇ref )𝑓 0
𝑖
(1 − 𝑓 0

𝑖
)𝑣𝑛

𝑖
𝐽𝑖, (20)

𝜅eff
el,0 =

2
𝑁k𝑉uc𝑘𝐵𝑇ref

∑
𝑖

(𝜀𝑖 − 𝜇ref )𝑓 0
𝑖
(1 − 𝑓 0

𝑖
)𝑣𝑛

𝑖
𝐻̄𝑖, (21)

𝛼eff
ph = − 1

𝑁q𝑉uc𝑘𝐵𝑇ref

∑
𝜆

ℏ𝜔𝜆𝑛0
𝜆
(𝑛0

𝜆
+ 1)𝑣𝑛

𝜆
𝐺̄𝜆, (22)

𝜅eff
ph = 1

𝑁q𝑉uc𝑘𝐵𝑇ref

∑
𝜆

ℏ𝜔𝜆𝑛0
𝜆
(𝑛0

𝜆
+ 1)𝑣𝑛

𝜆
𝐹𝜆, (23)

𝜅eff = 𝜅eff
ph + 𝜅eff

el,0 − 𝛼eff
el 𝑆eff (24)

where 𝑉uc is the volume of the unit cell, 𝑘𝐵 is the Boltzmann constant, 
𝑣𝑛

𝐼
= 𝐯𝐼 ⋅ 𝐮̂, ℏ is the reduced Planck constant, 𝜔𝜆 is the phonon fre-

quency, and 𝐻̄𝑖(𝐹𝜆) and 𝐽𝑖(𝐺̄𝜆) are the cross-sectional average of the 
suppressed electron (phonon) deviation functions due to applied ther-
mal gradient and electric fields, respectively. These deviation functions 
are related to cross-sectional averages defined in Eq. (11) as:

𝑓𝑑
𝑖
= −

𝑓 0
𝑖
(1 − 𝑓 0

𝑖
)

𝑘𝐵𝑇ref
(∇𝑇 𝑛

ref 𝐻̄𝑖 +𝐸𝑛𝐽𝑖), (25)

𝑛̄𝑑
𝜆
= −

𝑛0
𝜆
(𝑛0

𝜆
+ 1)

𝑘𝐵𝑇ref
(∇𝑇 𝑛

ref𝐹𝜆 +𝐸𝑛𝐺̄𝜆), (26)

where ∇𝑇 𝑛
ref and 𝐸𝑛 are the thermal gradient and electric field applied 

along the transport (unbounded) direction, respectively.
Regarding the details on the EPBTE resolution, this last was solved 

using a Γ-centered 50 × 50 × 50 (150 × 150 × 150) 𝑞-mesh (𝑘-mesh) 
for phonons (electrons), with an active window for electronic states of 
±0.45 eV around the computed chemical potential for the given temper-
10

ature and doping concentration (see below for the chemical potential 
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as function of the doping). The beyond and dragged solutions were 
iteratively converged until the relative change in all the transport coef-
ficients was less than 1.0 × 10−4. Furthermore, owing to the inability of 
DFT to provide a reliable band gap we have modified the code, imple-
menting a scissor operator for conduction bands. We have set the value 
of such a scissor operator to the value that makes the gap (𝐸𝑔) to match 
its experimental value at a given temperature (𝑇 ), as given by Varshni’s 
formula for Si [77]:

𝐸𝑔(𝑇 ) = 1.1557 − 7.021𝑇 2

𝑇 + 1108
, (27)

where energy is given in eV and temperature in K. This last, provides at 
300K a gap value of approximately 1.110 eV, so that a scissor operator 
of ≈0.615 eV is applied for the DFT gap of ≈0.496 eV to match such a 
value.

Finally, we note that through all the manuscript, we have supposed 
fully ionized charged impurities, together with the assumption that 
the intrinsic concentration is much smaller than the one coming from 
these impurities. The former is justified as we are assuming shallow 
impurities—B and P—, which are almost fully ionized at the tempera-
ture of our simulations, namely room temperature; while the latter is 
true as the intrinsic carrier concentration of silicon at room tempera-
ture is 9.65 × 109 cm−3 [78]. Therefore, the carrier concentration can 
be approximated by the doping one in our case, which is relatively high 
B (acceptor) and P (donor) dopant concentrations at room temperature.
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Appendix A. Linearized scattering operator terms

The linearized collision operator terms for a spin-degenerate elec-

trophononic system are:
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𝐴𝜆𝛽 =
∑
𝛼𝛾𝜉

𝑃
3ph
𝛼+𝛾→𝜉

[
(𝑛0

𝜉
− 𝑛0

𝛼
)𝛿𝜆𝛼𝛿𝛽𝛾 + (𝑛0

𝛼
+ 𝑛0

𝛾
+ 1)𝛿𝜆𝛼𝛿𝛽𝜉

+ (𝑛0
𝜉
− 𝑛0

𝛾
)𝛿𝜆𝛼𝛿𝛽𝜆

]
+ 1

2
∑
𝛼𝛾𝜉

𝑃
3ph
𝛼→𝛾+𝜉

[
(𝑛0

𝜉
− 𝑛0

𝛼
)𝛿𝜆𝛼𝛿𝛽𝛾 + (𝑛0

𝛾
− 𝑛0

𝛼
)𝛿𝜆𝛼𝛿𝛽𝜉

− (𝑛0
𝜉
+ 𝑛0

𝛾
+ 1)𝛿𝜆𝛼𝛿𝛽𝜆

]
+
∑
𝛼𝛾

(𝑃 iso
𝛼→𝛾

+ 𝑃 subs
𝛼→𝛾

)
[
𝛿𝜆𝛼𝛿𝛽𝛾 − 𝛿𝜆𝛼𝛿𝛽𝜆

]
.

(A.1)

𝐵𝜆𝛽 = 2
∑
𝑖𝛼𝑗

𝑃
e−ph
𝑖+𝛼→𝑗

(𝑓 0
𝑗
− 𝑓 0

𝑖
)𝛿𝜆𝛼𝛿𝛽𝜆, (A.2)

𝐶𝜆𝑗 = 2
∑
𝑖𝛼𝑘

𝑃
e−ph
𝑖+𝛼→𝑘

[(−𝑓 0
𝑘
− 𝑛0

𝛼
)𝛿𝜆𝛼𝛿𝑗𝑖 + (−𝑓 0

𝑖
+ 𝑛0

𝛼
+ 1)𝛿𝜆𝛼𝛿𝑗𝑘], (A.3)

𝐷𝑖𝑗 =
∑
𝑘𝛼𝑙

𝑃
e−ph
𝑘→𝑙+𝛼

[(𝑓 0
𝑙
− 𝑛0

𝛼
− 1)𝛿𝑘𝑖𝛿𝑗𝑖

+ (𝑓 0
𝑘
+ 𝑛0

𝛼
)𝛿𝑘𝑖𝛿𝑗𝑙] +

∑
𝑘𝛼𝑙

𝑃
e−ph
𝑘+𝛼→𝑙

[−(𝑓 0
𝑙
+ 𝑛0

𝛼
)𝛿𝑘𝑖𝛿𝑗𝑖

+ (−𝑓 0
𝑘
+ 𝑛0

𝛼
+ 1)𝛿𝑘𝑖𝛿𝑗𝑙] +

∑
𝑠𝑚

𝑃
e−chimp
𝑠→𝑚

[
𝛿𝑖𝑠𝛿𝑗𝑚 − 𝛿𝑖𝑠𝛿𝑗𝑖

]
, (A.4)

and

𝑀𝑖𝛽 =
∑
𝑘𝛼𝑙

𝑃
e−ph
𝑘→𝑙+𝛼

(𝑓 0
𝑙
− 𝑓 0

𝑘
)𝛿𝑖𝑘𝛿𝛽𝛼 +

∑
𝑘𝛼𝑙

𝑃
e−ph
𝑘+𝛼→𝑙

(𝑓 0
𝑙
− 𝑓 0

𝑘
)𝛿𝑖𝑘𝛿𝛽𝛼, (A.5)

where 𝑃 3ph
𝛼+𝛾→𝜉

(𝑃 3ph
𝛼→𝛾+𝜉

) is the three-phonon intrinsic (i.e. scattering rate 
without occupation weights) transition rate due to three-phonon ab-
sorption (emission) processes (see Eqs. (7) and (8) of Ref. [66] for the 
definition of such terms), 𝑃 iso

𝛼→𝛾
and 𝑃 subs

𝛼→𝛾
are the intrinsic transition 

rate due to isotopic and mass substitutional scattering, respectively, 
computed using Tamura’s model [79] (see Eq. (10) of Ref. [66] for 
the definition of such a term), 𝑃 e−ph

𝑖+𝛼→𝑘
(𝑃 e−ph

𝑖→𝛼+𝑘
) is the intrinsic transi-

tion rate due to electron-phonon interaction (see Eqs. (8) and (12) of 
Ref. [35] for the definition of such terms), and 𝑃 e−chimp

𝑖→𝑗
is the intrin-

sic transition rate due to charged impurity scattering (see Eq. (11) of 
Ref. [35] for the definition of such a term). We note that on the original 
implementation of elphbolt, as well on our modified version, out-of-
diagonal terms for isotopic, mass substitutional, and charged impurity 
scattering are deprecated; nonetheless the introduction of such terms 
introduces an error no higher than a 3% for phonon and electron ther-
mal response to an electric field, while providing much lower errors for 
the rest of quantities.

Appendix B. Chemical potential as function of the doping

Here (see Fig. 9) we provide the chemical potential as function of 
donor/acceptor concentration for bulk Si at 300 K with an applied scis-
sor operator such that band-gap is set at ∼1.11 eV, for the case of fully 
ionized B and P impurities, and assuming that the intrinsic contribution 
is negligible.
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