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Abstract

We consider a C ∞ family of planar vector fields {Xμ̂}
μ̂∈Ŵ

having a hyperbolic saddle and we study 
the Dulac map D(s; μ̂) and the Dulac time T (s; μ̂) from a transverse section at the stable separatrix to 
a transverse section at the unstable separatrix, both at arbitrary distance from the saddle. Since the hy-
perbolicity ratio λ of the saddle plays an important role, we treat it as an independent parameter, so that 
μ̂ = (λ, μ) ∈ Ŵ = (0, +∞) × W , where W is an open subset of RN . For each μ̂0 ∈ Ŵ and L > 0, the 
functions D(s; μ̂) and T (s; μ̂) have an asymptotic expansion at s = 0 and μ̂ ≈ μ̂0 with the remainder being 
uniformly L-flat with respect to the parameters. The principal part of both asymptotic expansions is given in 
a monomial scale containing a deformation of the logarithm, the so-called Ecalle-Roussarie compensator. 
In this paper we are interested in the coefficients of these monomials, which are functions depending on 
μ̂ that can be shown to be C ∞ in their respective domains and “universally” defined, meaning that their 
existence is stablished before fixing the flatness L and the unfolded parameter μ̂0. Each coefficient has 
its own domain and it is of the form ((0, +∞) \ D) × W , where D a discrete set of rational numbers at 
which a resonance of the hyperbolicity ratio λ occurs. In our main result, Theorem A, we provide explicit 
expressions for some of these coefficients and to this end a fundamental tool is the employment of a sort of 
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incomplete Mellin transform. With regard to these coefficients we also prove that they have poles of order at 
most two at D ×W and we give the corresponding residue, that plays an important role when compensators 
appear in the principal part. Furthermore we prove a result, Corollary B, showing that in the analytic setting 
each coefficient given in Theorem A is meromorphic on (0, +∞) × W and has only poles, of order at most 
two, along D × W .
© 2024 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY-NC 
license (http://creativecommons .org /licenses /by -nc /4 .0/).

MSC: 34C07; 34C20; 34C23

Keywords: Dulac map; Dulac time; Asymptotic expansion; Incomplete Mellin transform

Contents

1. Introduction and statements of main results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
2. Proof of Theorem A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
3. Poles and residues of the coefficients . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
4. First monomials in the asymptotic expansions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

Data availability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
Appendix A. Derivatives of regular transition map and transition time . . . . . . . . . . . . . . . . . . . . 89
Appendix B. An incomplete Mellin transform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
Appendix C. Asymptotic expansions at arbitrary order . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

1. Introduction and statements of main results

In this paper we consider C ∞ unfoldings of planar vector fields with a hyperbolic saddle. 
The study of the so-called Dulac map of the saddle has attracted the attention of many authors 
(see for instance [3–5,12,26,31] and references there in) due, among other reasons, to its close 
connection with Hilbert’s 16th problem (see [13,32] for details). If μ̂ is the parameter unfolding, 
the Dulac map D( · ; μ̂) of the saddle is the transition map from a transverse section �1 at its 
stable separatrix S1 to a transverse section �2 at its unstable separatrix S2, whereas the Dulac 
time T ( · ; μ̂) is the time that spends the flow to do this transition, see Fig. 1. In a previous paper 
[23] we prove a general result for studying the asymptotic expansions of D(s; μ̂) and T (s; μ̂) at 
s = 0, where s is the variable parameterizing the transverse section �1 and s = 0 corresponds to 
the intersection point S1 ∩ �1. In short, this general result gives a remainder that behaves well 
(i.e., uniformly on the parameters μ̂) with respect to ∂s and provides a detailed description of 
the monomials appearing in the principal part. A key feature of this principal part is that the 
monomials can be ordered as s → 0+. This is a very important result for the theoretical point of 
view because it enables to bound the number of limit cycles or critical periodic orbits bifurcating 
from a polycycle. However there are specific problems where it is not only interesting to bound 
this number but also to determine from which parameters μ̂ these bifurcations occur. Having 
explicit expressions of the coefficients of the monomials in the principal part is crucial for this 
purpose, see for instance [25,34,35] for limit cycles and [18,19,24] for critical periodic orbits. 
The present paper is addressed to this issue. There are two features to be noted with regard to 
the hypothesis on the unfolding under consideration. On the one hand we suppose that the saddle 
44
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is at the origin and, more significant, that the separatrices lay on the coordinate axis for all μ̂. 
It is important to point out that there is no loss of generality in assuming this since we prove in 
[23, Lemma 4.3] that there exists a smooth diffeomorphism, depending on the parameters, that 
straightens the two segments of the separatrices joining the points S1 ∩ �1 and S2 ∩ �2 with the 
saddle. That being said, we suppose on the other hand that the vector field has poles along the 
axis. The reason why we permit this “polar” factor is because, when dealing with polynomial 
vector fields, a special attention must be paid to the study of those polycycles with vertices at 
infinity in the Poincaré disc. The factor can come from the line at infinity in a saddle at infinity 
or, more generally, appear in a divisor after desingularizing a non-elementary singular point. We 
remark that (by means of a reparametrisation of time) this factor can be neglected to study the 
Dulac map but, on the contrary, this cannot be done when dealing with the Dulac time.

The present paper is the continuation of [22] and [23] and concludes our contribution to the 
study of the theoretical aspects of the asymptotic expansion of the Dulac map and Dulac time of 
an unfolding of a hyperbolic saddle. Naturally the results that we shall obtain in this paper are 
strongly related with our previous ones. For reader’s convenience we shall recall in Appendix C
the essential results and definitions from [22,23] in order to ease the legibility. The notation and 
hypothesis that we shall use throughout the paper are the following. Setting μ̂:= (λ, μ) ∈ Ŵ :=
(0, +∞) × W with W an open set of RN , we consider the family of vector fields {Xμ̂}

μ̂∈Ŵ
with

Xμ̂(x1, x2):= 1

x
n1
1 x

n2
2

(
x1P1(x1, x2; μ̂)∂x1 + x2P2(x1, x2; μ̂)∂x2

)
, (1)

where

• n := (n1, n2) ∈ Z2≥0,

• P1 and P2 belong to C ∞(U ×Ŵ ) for some open set U of R2 containing the origin,
• P1(x1, 0; μ̂) > 0 and P2(0, x2; μ̂) < 0 for all (x1, 0), (0, x2) ∈ U and μ̂ ∈ Ŵ ,
• λ = −P2(0,0;μ̂)

P1(0,0;μ̂)
is the hyperbolicity ratio of the saddle at the origin.

Moreover, for i = 1, 2, let σi : (−ε, ε) × Ŵ −→ �i be a C ∞ transverse section to Xμ̂ at xi = 0
defined by

σi(s; μ̂) = (
σi1(s; μ̂), σi2(s; μ̂)

)
such that σ1(0; μ̂) ∈ {(0, x2); x2 > 0} and σ2(0; μ̂) ∈ {(x1, 0); x1 > 0} for all μ̂ ∈ Ŵ . We also 
assume that there exist open intervals I1 and I2 of R containing 0 such that

σ1(0; μ̂) ∈ {0} × I1 ⊂ U and σ2(0; μ̂) ∈ I2 × {0} ⊂ U for all μ̂ ∈ Ŵ . (2)

These conditions on the transverse sections and the open set U guarantee that there is a well 
defined Dulac map D( · ; μ̂) and a well defined Dulac time T ( · ; μ̂) of Xμ̂ from �1 to �2, see 
Fig. 1.

Our results in [23] provide the asymptotic expansion of D(s; μ̂) and T (s; μ̂) at s = 0. Al-
though the definitions and notation used in [23] are essential for the correct statement of our 
main result in the present paper, to facilitate the reading of the introduction, we defer this more 
technical part to Appendix C. In this appendix we state Theorem C.5, which merges Theorems A 
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Fig. 1. Definition of T ( · ; μ̂) and D( · ; μ̂), where ϕ(t, p; μ̂) is the solution of Xμ̂ passing through the point p ∈ U at 
time t = 0.

and B in [23] and provides both asymptotic expansions at any order. For the time being, we 
suffice by giving two examples of application at second and fourth order. Thus, see Theorem 4.1, 
for μ̂ ∈ Ŵ in a neighbourhood of some fixed μ̂0 = (λ0, μ0) with λ0 
= 1, the Dulac map can be 
written as

D(s; μ̂) = �00(μ̂)sλ +
{

�01(μ̂)s2λ +F∞
L1

if λ0 < 1,

�10(μ̂)sλ+1 +F∞
L2

if λ0 > 1,

where F∞
L stands for the class of flat functions used to express the remainder (see Definition C.2). 

In the present paper (see Theorem A below) we compute explicitly some of these functions 
�ij (μ̂) in the asymptotic expansion of D(s; μ̂) at s = 0, together with its counterparts Tij (μ̂)

for the Dulac time. For convenience, �ij (μ̂) is the coefficient of si+λ(j+1) in D(s; μ̂), whereas 
Tij (μ̂) is the coefficient of si+λj in T (s; μ̂). Each function μ̂ = (λ, μ) �→ �ij (μ̂) is smooth on 
((0, +∞) \ D0

ij ) × W , where D0
ij is a discrete subset of Q>0 in which the monomial resonances 

occur. In the above example this happens when 2λ = λ + 1, and for this reason a different mono-
mial scale for studying the case λ0 = 1 is needed (see Example 4.2). This new monomial scale is 
given by using the so-called Ecalle-Roussarie compensator (see Definition C.3). The polar factor 
x

n1
1 x

n2
2 in (1) can be ignored when studying the Dulac map D(s; μ̂) and so its coefficients do 

not depend on n = (n1, n2). This is not the case for the Dulac time T (s; μ̂) and, in particular, 
the resonant sets Dn

ij for its coefficients Tij depend also on n (see Appendix C). For example 

(see Theorem 4.3), in case that n1 = 0 and n2 � 1, for μ̂ ∈ Ŵ in a neighbourhood of some fixed 

μ̂0 = (λ0, μ0) with λ0 ∈
(

1
n2+1 , 2

n2+1

)
\
{

1
n2

}
, the Dulac time is

T (s; μ̂) = T00(μ̂)+

⎧⎪⎨
⎪⎩

T0n2(μ̂)sλn2 + T10(μ̂)s + T0,n2+1(μ̂)sλ(n2+1) +F∞
L3

if λ0 ∈
(

1
n2+1 , 1

n2

)
,

T10(μ̂)s + T0n2(μ̂)sλn2 + T0,n2+1(μ̂)sλ(n2+1) +F∞
L3

if λ0 ∈
(

1
n2

, 2
n2+1

)
.

In this case it is even more evident the consequences in the monomial order of the resonance at 
λ0n2 = 1, which again forces the introduction of a compensator and explains the reason why the 
coefficient Tij is not well defined at Dn

ij × W .
Next, we proceed with the statement of Theorem A, which gives the expression of �ij for 

(i, j) ∈ {(0, 0), (0, 1), (1, 0), (1, 1)} and Tij for (i, j) ∈ {(n1, 0), (n1 + 1, 0), (0, n2), (0, n2 + 1)}. 
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With this aim in view we next define some functions that depend uniquely on Pi(x1, x2; μ̂), for 
i = 1, 2, and n = (n1, n2), see (1). The latter is fixed, whereas the dependence on μ̂ will be 
omitted for shortness.

L1(u):= exp

u∫
0

(
P1(0, z)

P2(0, z)
+ 1

λ

)
dz

z
L2(u):= exp

u∫
0

(
P2(z,0)

P1(z,0)
+ λ

)
dz

z

M1(u):= L1(u)∂1

(
P1

P2

)
(0, u) M2(u):= L2(u)∂2

(
P2

P1

)
(u,0)

A1(u):= L
n1
1 (u)

P2(0, u)
A2(u):= L

n2
2 (u)

P1(u,0)

B1(u):= n1A1(u)M̂1(1/λ,u) B2(u):= n2A2(u)M̂2(λ,u)

+L
n1+1
1 (u)∂1P

−1
2 (0, u) +L

n2+1
2 (u)∂2P

−1
1 (u,0)

C1(u):= L2
1(u)∂2

1 P −1
2 (0, u) C2(u):= L2

2(u)∂2
2 P −1

1 (u,0)

+2L1(u)M̂1(1/λ,u)∂1P
−1
2 (0, u) +2L2(u)M̂2(λ,u)∂2P

−1
1 (u,0)

(3)
Here, given α ∈R \Z≥0 and a real valued function f (x) that is C ∞ in an open interval containing 
x = 0, f̂ (α, x) is a sort of incomplete Mellin transform that we will introduce in Appendix B. In 
this regard we point out, see Lemma 2.3, that for i = 1, 2 the functions Li(u), Mi(u) and Ai(u)

are C ∞ on the interval Ii considered in (2), which contains u = 0. For shortness as well, in the 
statement of our main result we use the compact notation σijk for the kth derivative at s = 0 of 
the j th component of σi(s; μ̂), i.e.,

σijk(μ̂):= ∂k
s σij (0; μ̂).

In particular we consider the following real values (where once again we omit the dependence 
on μ̂):

S1 := σ112

2σ111
− σ121

σ120

(
P1

P2

)
(0, σ120) − σ111

L1(σ120)
M̂1(1/λ,σ120)

S2 := σ222

2σ221
− σ211

σ210

(
P2

P1

)
(σ210,0) − σ221

L2(σ210)
M̂2(λ,σ210).

(4)

We are now in position to state Theorem A, which is the main result of the present paper and 
provides the explicit expression of the above-mentioned coefficients, see points (b) and (c). In 
addition to that we also establish in point (a) a factorisation property among the coefficients �ij

and Tij that holds for arbitrary (i, j). This factorisation is along the lines of the one given by 
Roussarie (see [30, Theorem F] or [32, §5.1.3]) for the coefficients of the local Dulac map.

Theorem A. Assume n 
= (0, 0) and let D(s; μ̂) and T (s; μ̂) be, respectively, the Dulac map and 
the Dulac time of the hyperbolic saddle (1) from �1 and �2. Consider moreover the coefficients 
�ij and Tij given by Theorem C.5. Then the following assertions hold:
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(a) There exists a sequence {
ij }(i,j)∈Z2≥0
with 
ij ∈ C ∞(

((0, +∞) \ D0
i0) × W

)
such that if 

(i, j) ∈ Z2≥0 then

�ij (μ̂) = 
ij (μ̂)�0j (μ̂) for all μ̂ ∈ Ŵ with λ /∈ D0
ij

and, if additionally j > 0, then

Tij (μ̂) = 
i,j−1(μ̂)T0j (μ̂) for all μ̂ ∈ Ŵ with λ /∈ Dn
ij ∪ D0

i0 ⊂ D0
ij .

(b) The coefficients �ij for (i, j) ∈ {(0, 0), (0, 1), (1, 0), (1, 1)} of the Dulac map are given by

�00(μ̂) = σλ
111σ120

Lλ
1(σ120)

L2(σ210)

σ221σ
λ
210

, �01(μ̂) = −�2
00S2, �10(μ̂) = �00λS1 and

�11(μ̂) = −2�2
00λS1S2,

where each equality is valid for all μ̂ ∈ Ŵ with λ /∈ D0
ij . In particular, 
10(μ̂) = λS1 and 


11(μ̂) = 2λS1.
(c) The coefficients Tij for (i, j) ∈ {(n1, 0), (n1 + 1, 0), (0, n2), (0, n2 + 1)} of the Dulac time 

are given by

Tn1,0(μ̂) = − σ
n1
111σ

n2
120

L
n1
1 (σ120)

Â1(n1/λ − n2, σ120),

T0,n2(μ̂) = �
n2
00

σ
n1
210σ

n2
221

L
n2
2 (σ210)

Â2(n2λ − n1, σ210),

Tn1+1,0(μ̂) = −σ
n1
111σ

n2
120

(
σ121

σ120P2(0, σ120)
+ n1S1

L
n1
1 (σ120)

Â1(n1/λ − n2, σ120)

+ σ111

L
n1+1
1 (σ120)

B̂1
(
(n1 + 1)/λ − n2, σ120

))
,

T0,n2+1(μ̂) = �
n2+1
00 σ

n1
210σ

n2
221

(
σ211

σ210P1(σ210,0)
+ σ221

L
n2+1
2 (σ210)

B̂2
(
λ(n2 + 1) − n1, σ210

))
,

where each equality is valid for all μ̂ ∈ Ŵ with λ /∈ Dn
ij , except for the third one in which 

the values λ = 1
k

, k = 1, 2, . . . , 
 n2
n1+1� − 1, must be excluded as well. Moreover, if n1 = 0

then

T20(μ̂) = −σ
n2
120

(
σ122σ120 + (n2 − 1)σ 2

121

2σ 2
120P2(0, σ120)

+ σ 2
121 ∂2P

−1
2 (0, σ120) + σ121σ111

∂1P
−1
2 (0, σ120)
2σ120 σ120
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+ σ 2
111

2L2
1(σ120)

Ĉ1(2/λ − n2, σ120) + σ111S1

L1(σ120)
B̂1(1/λ − n2, σ120)

)
,

for all μ̂ ∈ Ŵ with λ /∈ Dn
20 ∪ { 1

k
; k = 1,2, . . . , 
n2

2 � − 1
}
. Finally if n2 = 0 then

T02(μ̂) = �2
00σ

n1
210

(
σ212σ210 + (n1 − 1)σ 2

211

2σ 2
210P1(σ210,0)

+ σ 2
211

2σ210
∂1P

−1
1 (σ210,0) + σ211σ221

σ210
∂2P

−1
1 (σ210,0)

+ σ 2
221

2L2
2(σ210)

Ĉ2(2λ − n1, σ210) − σ211S2

2σ210P1(σ210,0)

)

for all μ̂ ∈ Ŵ with λ /∈ Dn
02.

We point out that the coefficients Tij (μ̂) depend on μ̂ but also on n = (n1, n2). We do not 
specify this dependence in the notation for the sake of shortness. This is the reason why, for in-
stance, the expression for Tn1+1,0(μ̂) does not follow by replacing n1 by n1 +1 in the expression 
for Tn1,0(μ̂).

The employment of the incomplete Mellin transform introduced in Appendix B allows us 
to generalise and unify several formulas that we obtained previously in [18,21] under more re-
strictive hypothesis. With regard to the hypothesis, in those papers we restrict ourselves to the 
analytic setting (see Remark 1.2) and, more restraining, we assume that the family of vector 
fields {Xμ̂}

μ̂∈Ŵ
in (1) verifies the family linearisation property (FLP, for short), which means 

that {Xμ̂}
μ̂∈Ŵ

is locally analytically equivalent to its linear part. In the present paper we do not 
require the FLP assumption and we consider the smooth setting instead of the analytic one. Fur-
thermore the expressions for the coefficients that we obtain in those papers are only valid for 
hyperbolicity ratios varying in a specific range. By using the properties of the incomplete Mellin 
transform proved in Theorem B.1 we can get through this constrain as well, see Example 2.10.

Let us at this point say a few words about the proof of Theorem A. The key point is the 
employment of a local normalizing diffeomorphism � that enables to simplify the study of the 
passage through the saddle. In doing so we can decompose the Dulac map as D = R2 ◦ D0 ◦
R1, where D0 is the Dulac map for the normalized vector field between two local transverse 
sections ��

1 and ��
2, whereas R1 and R2 are regular passages from �1 to ��

1 and ��
2 to �2, 

respectively (see Fig. 2). The resulting coefficients depend on �, but only apparently, and the 
crucial contribution of the Mellin transform is precisely to eliminate this fake dependence as we 
shrink the local transverse sections to the saddle. The approach to tackle the Dulac time is similar. 
It is important to remark, and this is very useful in the applications, that the given transverse 
sections �1 and �2 are located at arbitrary distance from the saddle and, consequently, outside 
the domain of definition of the normal form. For instance, we have already used in [24] the 
expressions of Tij in Theorem A to study of the bifurcation diagram of the period function of 
the Loud centres. On the other hand, we have also employed in [25] the expressions of �ij

to determine the stability and compute the cyclicity of Kolmogorov polycycles. This type of 
polycycle has three hyperbolic saddles at the vertices and to obtain the result we compose three 
Dulac maps and determine the first coefficients of the corresponding principal part.
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Remark 1.1. For the reader’s convenience we specify the sets D0
ij and Dn

ij corresponding to 
the coefficients in points (b) and (c) in Theorem A. Taking Definition C.4 into account one can 
readily get that

D0
00 = ∅, D0

01 = N, D0
10 = 1

N
and D0

11 = N ∪ 1

N

for the coefficients of the Dulac map. Similarly, for the coefficients of the Dulac time, we have 
Dn

00 = ∅,

Dn
n1,0 =

n1⋃
i=1

i

N≥n2

, Dn
0,n2

=
{ N≥n1

n2
if n2 � 1,

∅ if n2 = 0,

Dn
n1+1,0 =

n1+1⋃
i=1

i

N≥n2

and Dn
0,n2+1 = N≥n1

n2 + 1
∪N,

together with Dn
20 = 2

N≥n2
for n1 = 0 and Dn

02 = N
2 for n2 = 0.

We know by Theorem C.5 that Tij (λ, μ) is C ∞ on ((0, +∞) \ Dn
ij ) × W for all (i, j) ∈ Z2≥0. 

We will prove, see Lemma 3.1, that for each λ0 ∈ Dn
ij there exists � ∈ Z≥0 such that μ̂ �→

(λ − λ0)
�Tij (μ̂) extends C ∞ to {λ0} × W . Moreover the number �, which depends on (i, j), λ0

and n = (n1, n2), is bounded by i + j . Hence, roughly speaking, the coefficient Tij (λ, μ) has 
poles of order at most i + j along Dn

ij × W . Likewise, by Lemma 3.1 as well, it follows that 

�ij (λ, μ) has poles of order at most i + j along D0
ij × W . In Section 3 we sharpen this upper 

bound for the coefficients given in points (b) and (c) of Theorem A and we also compute the 
corresponding residues. This information is of relevance because these residues are the values at 
λ0 of the leading coefficients of the polynomials �λ0

ij (w; μ̂) and T λ0
ij (w; μ̂) in Theorem 4.1 and 

Theorem 4.3, respectively. We illustrate this in Example 4.2 for the Dulac map.

Remark 1.2. In this paper, foreseeing future applications, we will sometimes consider the ana-
lytic setting. By analytic setting we mean that, for i = 1, 2, the function Pi(x1, x2; μ̂) in (1) is 
analytic on U × Ŵ and that the parametrisation σi(s; μ̂) of the transverse section �i is analytic 
on (−ε, ε) × Ŵ .

In view of the above discussion about the poles of the coefficients, it is reasonable to expect 
that in the analytic setting the coefficients are meromorphic. In the present paper we are able to 
prove that this is the case for the coefficients considered in Theorem A. The following constitutes 
our second main result:

Corollary B. In the analytic setting the following assertions hold:

(a) For each (i, j) ∈ {(0, 0), (1, 0), (0, 1), (1, 1)}, the coefficient �ij of the Dulac map is mero-
morphic on Ŵ = ((0, +∞) × W and has only poles, of order at most two, along D0

ij × W .
(b) For each (i, j) ∈ {(n1, 0), (0, n2), (n1 + 1, 0), (0, n2 + 1)}, the coefficient Tij of the Dulac 

time is meromorphic on Ŵ = (0, +∞) × W and has only poles, of order at most two, along 
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Dn
ij × W . This is also the case for (i, j) = (2, 0) and (i, j) = (0, 2) assuming n1 = 0 and 

n2 = 0, respectively.

On account of this partial result, in the analytic setting we conjecture that for arbitrary (i, j)

the coefficient �ij (λ, μ) of the Dulac map is meromorphic on (0, +∞) × W with poles along 
λ ∈ D0

ij and that the coefficient Tij (λ, μ) of the Dulac time is meromorphic on (0, +∞) × W

with poles along λ ∈ Dn
ij .

The paper is organized in the following way. Section 2 is mainly devoted to prove Theorem A. 
Once this is done, and as an intermediate step towards the proof of Corollary B, at the end of 
Section 2 we show that, in the analytic setting, the coefficients �ij and Tij listed in (a) and 
(b) of Theorem A, respectively, are analytic in their domains (see Proposition 2.9). In Section 3
we study the poles and residues of the coefficients. We begin by proving the above-mentioned 
Lemma 3.1, which constitutes a general result about the order of the poles. Next we prove a bunch 
of propositions that give the order of the pole and the respective residue for each coefficient listed 
in points (a) and (b) of Theorem A. Finally we conclude the section with the proof of Corol-
lary B. Section 4 aims at future applications of the tools developed so far (see [24,25]). The main 
result of this paper, Theorem A, is intended to be applied in combination with Theorem C.5, that 
gathers our main results in [23]. For this reason, and in order to ease the applicability, in Section 4
we particularise Theorem C.5 to specify the first monomials appearing in the asymptotic expan-
sion of the Dulac map D(s; μ̂), see Theorem 4.1, and the Dulac time T (s; μ̂), see Theorem 4.3, 
for arbitrary hyperbolicity ratio λ0. By “first monomials” we mean as s → 0+, more concretely 
with respect to the strict partial order ≺λ0 introduced in [23, Definition 1.7]. It is here, dealing 
with a resonant hyperbolicity ratio λ0 = p/q , where the compensator ω(s; p − λq) comes into 
play and the residues of the poles are needed, see Example 4.2. This paper contains three appen-
dices. In Appendix A we compute the second order Taylor’s expansion of the regular transition 
map and transition time, see Lemma A.3. In Appendix B we introduce the incomplete Mellin 
transform used to express the coefficients and show some of its properties. Finally Appendix C
gathers the fundamental results and definitions from [23] that we shall use in the present paper.

2. Proof of Theorem A

For the reader’s convenience we state first a result that we proved in a previous paper, see [23, 
Corollary 2.2]. In its statement we follow the notation introduced in Definitions C.1 and C.2.

Lemma 2.1. Consider f (s; μ̂) ∈ EK(U) with K ∈ N and any m ∈ N with m � K . Then the 
following hold:

(a) There exist fi(μ̂) ∈ C K−i (U), i = 0, 1, . . . , m − 1, and g(s; μ̂) ∈ EK−m(U) such that

f (s; μ̂) =
m−1∑
i=0

fi(μ̂)si + smg(s; μ̂).

(b) For any L � 0, EK(U) ⊂ C K ′
(U)[s] +FK ′

L (U) provided that K � K ′ + L.

The previous statement is aimed to study the flatness of the remainder in the asymptotic ex-
pansions that we shall deal with. The proof of (a) shows in fact, see [23], that if f ∈ C K(I ×U)
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with I an open interval of R containing 0 then g ∈ C K−m(I × U). We prove next that this result 
has its obvious analytic and smooth analogues. From now on, for simplicity in the exposition, we 
shall use � ∈ {∞, ω} as a wild card in C � for the smooth class C ∞ and the analytic class C ω.

Lemma 2.2. Let us consider an open interval I of R containing 0, an open subset U of RN and 
m ∈ N . If f (s; ν) ∈ C � (I × U) with � ∈ {∞, ω} then there exists g(s; ν) ∈ C � (I × U) such 
that

f (s;ν) =
m−1∑
i=0

∂i
sf (0;ν)

i! si + smg(s;ν).

Proof. Given � ∈ {∞, ω}, we claim that if f (s; ν) ∈ C � (I × U) verifies f (0; ν) = 0 for all 
ν ∈ U then there exists q(s; ν) ∈ C � (I × U) such that f (s; ν) = sq(s; ν). In order to prove 
the claim note first that the existence of q in a neighbourhood of any (s0, ν0) ∈ I × U with 
s0 
= 0 is clear. Moreover this function is uniquely defined on (I \ {0}) × U . If s0 = 0 then 
there exist C � functions q(s; ν) and r(ν) in a neighbourhood V of (0, ν0) in RN+1 such that 
f (s; ν) = sq(s; ν) + r(ν). Indeed, the case � = ω follows by the Weierstrass Division Theo-
rem (see [11, Theorem 1.8] or [15, Theorem 6.1.3]), whereas the case � = ∞ is a consequence 
of the Malgrange Division Theorem (see [27, Theorem 2] for instance). Furthermore, due to 
r(ν) = f (0; ν) = 0, we get that f (s; ν) = sq(s; ν). Hence for each ν0 ∈ U there exist a neigh-
bourhood Vν0 of (0, ν0) in RN+1 and a function qν0 ∈ C � (Vν0) such that f (s; ν) = sqν0(s; ν). 
Since qν0(s; ν) = f (s;ν)

s
for all (s, ν) ∈ Vν0 with s 
= 0, we conclude that qν1 = qν2 whenever 

Vν1 ∩ Vν2 
= ∅. This proves the claim.
The desired result follows from the claim by using induction on m. More precisely, for the 

base case m = 1 we apply the claim to f (s; ν) − f (0; ν). For the inductive step we apply 
the claim to g(s; ν) − g(0; ν), where g is the remainder for the inductive hypothesis. In this 
way one can prove the existence of functions fi ∈ C � (U) and g ∈ C � (I × U) verifying that 

f (s; ν) = ∑m−1
i=0 fi(ν)si + smg(s; ν). From here one can readily see that fi(ν) = ∂i

sf (0;ν)

i! and 
this completes the proof.

In the next lemma we show that the regularity assumptions on the vector field (1) are trans-
ferred to the functions defined in (3). In the statement, I1 and I2 are the intervals of R containing 
0 as introduced in (2).

Lemma 2.3. Fix � ∈ {∞, ω} and let us assume the following:

(a) P1(u, 0; μ̂) and P2(0, u; μ̂) are non-vanishing functions on I2×Ŵ and I1×Ŵ , respectively.
(b) ∂k

1 Pi(0, u; μ̂) ∈ C � (I1×Ŵ ) and ∂k
2 Pi(u, 0; μ̂) ∈ C � (I2×Ŵ ) for i = 1, 2 and k = 0, 1, 2.

Then, for i = 1, 2, the functions Li(u; μ̂), Mi(u; μ̂) and Ai(u; μ̂) given in (3) are C � on Ii ×Ŵ . 
Moreover,

1. the functions B1(u; μ̂) and C1(u; μ̂) are C � on I1 × ((0, +∞) \ 1
N ) × W , and

2. the functions B2(u; μ̂) and C2(u; μ̂) are C � on I2 × ((0, +∞) \N) × W .
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Proof. Since P2(0,0;μ̂)

P1(0,0;μ̂)
= −λ by definition, the application of Lemma 2.2 with m = 1 implies 

that Li(u; μ̂) is C � (Ii × Ŵ ) for i = 1, 2. In its turn this shows that Ai(u; μ̂) and Mi(u; μ̂)

are C � (Ii × Ŵ ) for i = 1, 2. Then, by Theorem B.1, we can assert that M̂i(α, u; μ̂) is C � on 
(R \Z≥0) × Ii × Ŵ . More precisely, we use assertion (a) for the case � = ∞ and assertion (d)

for the � = ω. This easily implies, see (3), that the assertions 1 and 2 in the statement are true 
and completes the proof of the result.

All the assertions except the last one in the next result are proved in [23, Lemma A.2]. The 
last one follows as a particular case of assertion (c) in [23, Lemma A.3].

Lemma 2.4. Let U and U ′ be open sets of RN and RN ′
respectively and consider W ⊂ U and 

W ′ ⊂ U ′. Then the following holds:

(a) FK
L (W) ⊂ FK

L (Ŵ ) for any Ŵ ⊂ W and 
⋂

n FK
L (Wn) = FK

L

(⋃
n Wn

)
.

(b) FK
L (W) ⊂ FK

L (W × W ′).
(c) C K(U) ⊂ EK(U) ⊂ FK

0 (W).

(d) If K � K ′ and L � L′ then FK
L (W) ⊂ FK ′

L′ (W).
(e) FK

L (W) is closed under addition.

(f ) If f ∈ FK
L (W) and ν ∈ZN+1

≥0 with |ν| � K then ∂νf ∈FK−|ν|
L−ν0

(W).

(g) FK
L (W) ·FK

L′ (W) ⊂ FK
L+L′(W).

(h) Assume that φ : U ′ −→ U is a C K function with φ(W ′) ⊂ W and let us take g ∈ FK
L′ (W ′)

with L′ > 0 and verifying g(s; η) > 0 for all η ∈ W ′ and s > 0 small enough. Consider also 
any f ∈FK

L (W). Then h(s; η) := f (g(s; η); φ(η)) is a well-defined function that belongs to 
FK

LL′(W ′).
(i) If α ∈ C K(U) then sα ∈FK

L ({ν ∈ U : α(ν) > L}).

By applying the previous lemmas we can now prove the following:

Lemma 2.5. Let V an open set of RN and consider a polynomial Q( · ; ν) with coefficients in 
C K(V ) such that Q(0; ν) > 0 for all ν ∈ V . Let us also take L > 0 and L′ � 1 together with 
α ∈ C K(V ) such that α(ν) > 0 for all ν ∈ V . Then the following holds:

(a)
(
sQ(s) +FK

L+1(V )
)α ⊂ sαQα(s) +FK

L (V ), and
(b) FK

L′ (V ) ◦ (
sαQ(s) +FK

L (V )
) ⊂ FK

L

({
ν ∈ V : α(ν) > L/L′}).

Proof. In order to prove (a) note first that

(sQ(s) +FK
L+1(V ))α ⊂ sα(Q(s) +FK

L (V ))α ⊂ sαQα(s)(1 +FK
L (V ))α. (5)

Indeed, this follows by using twice (g) in Lemma 2.4. More concretely, in the first equality 
together with the fact that 1/s ∈ FK−1(V ), whereas in the second one noting also that 1/Q(s) ∈
EK(V ) ⊂ FK

0 (V ). On the other hand, by using Lemmas 2.1 and 2.4,

g(x):= (1 + x)α − 1 ∈ sE∞(V ) ⊂ F∞(V )F∞(V ) ⊂ F∞(V ).
1 0 1
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Thus g ◦ FK
L (V ) ∈ FK

L (V ) by (h) in Lemma 2.4 and, therefore, (1 + FK
L (V ))α ⊂ 1 + FK

L (V ). 
Taking this into account, the assertion in (a) follows from (5) noting that sαQα(s)FK

L (V ) ⊂
FK

0 (V )FK
L (V ) ⊂ FK

L (V ) due to sα ∈FK
0 (V ) by (i) in Lemma 2.4.

We turn next to the assertion in (b). To this end note that sαQ(s) ∈ FK
L/L′(V ∩ {α > L/L′})

by (i) in Lemma 2.4. On the other hand, due to L′ > 1, FK
L (V ) ⊂ FK

L/L′(V ) ⊂ FK
L/L′(V ∩ {α >

L/L′}) by (d) and (a) in Lemma 2.4. Thus, by (e) in Lemma 2.4,

sαQ(s) +FK
L (V ) ⊂ FK

L/L′(V ∩ {α > L/L′}).

On account of this and that, by (a) in Lemma 2.4 again, FK
L′ (V ) ⊂ FK

L′ (V ∩ {α > L/L′}), the 
application of (h) in Lemma 2.4 shows that

FK
L′ (V ) ◦

(
sαQ(s) +FK

L (V )
)

⊂ FK
L′ (V ∩ {α > L/L′}) ◦FK

L/L′(V ∩ {α > L/L′})
⊂ FK

L (V ∩ {α > L/L′}).
This completes the proof of the result.

We only need one more technical result in order to tackle the proof of Theorem A. It will be 
a consequence of the following easy observation.

Remark 2.6. If 
∑m

i=1 aix
λi +ψ(x) = 0 for all x ∈ (0, ε), where λi ∈R with λ1 < λ2 < · · · < λm, 

a1, a2, . . . , am ∈R and ψ(x) = o(xλm) then a1 = a2 = · · · = am = 0.

Lemma 2.7. Consider α, β ∈R \Z with α−β /∈Z and two functions f and g that are C K on the 
interval (−δ, δ) with K > − min(α, β). If there exists c ∈R satisfying that xαf (x) +xβg(x) = c

for all x ∈ (0, δ) then c = 0.

Proof. Suppose that α < β and n := min{i ∈ Z≥0 : α + i > 0}. Hence K � n and by applying 
Taylor’s theorem we can write

f (x) = a0 + a1x + . . . + anx
n + xnR1(x) and g(x) = b0 + b1x + . . . + bnx

n + xnR2(x),

with limx→0 Ri(x) = 0. Let us also set κ := min{i ∈ Z≥0 : β + i > α + n}. Note then that κ ∈
{0, 1 . . . , n}. If we define ψ(x) := (bκxκ +bκ+1x

κ+1 + . . .+bnx
n)xβ +xn(xαR1(x) +xβR2(x))

then, on account of the assumption xαf (x) + xβg(x) = c, we get that

−cx0 + a0x
α + a1x

α+1 + . . . + anx
α+n + b0x

β + b1x
β+1 + . . . + bκ−1x

β+κ−1 + ψ(x) = 0

for all x ∈ (0, δ). Taking the definition of n and κ into account, note that ψ(s) = o(x0), ψ(s) =
o(xα+n) and ψ(s) = o(xβ+κ−1). Moreover all the exponents in x0, xα, xα+1, . . . , xα+n, xβ, xβ+1,

. . . , xβ+κ−1 are different by the hypothesis on α and β , so that they can be ordered. Thus, on 
account of Remark 2.6, we can assert that all their coefficients are equal to zero, in particular 
c = 0.

Proof of Theorem A. Note first that by Theorem C.5 we have two well defined sequences 
{�ij }(i,j)∈� and {Tij }(i,j)∈�n with �ij ∈ C ∞(

((0, +∞) \D0 ) ×W
)

and Tij ∈ C ∞(
((0, +∞) \
0 ij
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Dn
ij ) × W

)
, where �n ⊂ �0 = Z2≥0 as introduced in Definition C.4 and, by applying [23, 

Lemma 3.2], D0
ij and Dn

ij are discrete sets of rational numbers in (0, +∞). In order to prove 

the assertions in (a), for each (i, j) ∈ �0 and μ̂ ∈ ((0, +∞) \ D0
i0) × W we define 
ij (μ̂) by 

means of (
1 +

∞∑
i=1

�i0(μ̂)

�00(μ̂)
si

)j+1

=
∞∑
i=0


ij (μ̂)si , (6)

where the equality must be thought in the ring of formal power series in s. Hence 
ij ∈
Q 

[
�10
�00

,
�20
�00

, . . . ,
�i0
�00

]
for each fixed (i, j) ∈ �0. One can verify, see Definition C.4, that 

D0
i0 = ⋃i

�=1
�
N and thus ∪i

k=1D
0
k0 = D0

i0. Consequently, since �00 > 0 on Ŵ by (a) in The-
orem C.5, we can assert that


ij ∈ C ∞(
((0,+∞) \ D0

i0) × W
)
.

That being said, our first goal is to prove that if (i, j) ∈ �0 then

�ij (μ̂) − 
ij (μ̂)�0j (μ̂) = 0 for all μ̂ ∈ Ŵ with λ /∈ D0
ij , (7)

and that if (i, j) ∈ �n with j > 0 then

Tij (μ̂) − 
i,j−1(μ̂)T0j (μ̂) = 0 for all μ̂ ∈ Ŵ with λ /∈ Dn
ij ∪ D0

i0. (8)

To this aim let us note that the function on the left hand side of the equality in (7), respectively 
(8), is C ∞ in a neighbourhood of any μ̂� = (λ�, μ�) ∈ (0, +∞) ×W with λ� outside the discrete 
set D0

ij ∪ D0
i0 ∪ D0

0j , respectively Dn
ij ∪ D0

i0 ∪ Dn
0j . In this regard observe that Dn

ij ⊂ D0
ij , see 

Definition C.4. It is also easy to show that, for any given any k ∈ Z2≥0, we have Dk
i0 ⊂ Dk

ij and 

Dk
0j ⊂ Dk

ij . Consequently

D0
ij ∪ D0

i0 ∪ D0
0j = D0

ij and Dn
ij ∪ D0

i0 ∪ Dn
0j = Dn

ij ∪ D0
i0 ⊂ D0

ij ,

so that the function in (7) is continuous on ((0, +∞) \ D0
ij ) × W whereas the function in (8) is 

continuous on ((0, +∞) \ (Dn
ij ∪D0

i0)) ×W . Since D0
ij and Dn

ij ∪D0
i0 are discrete sets of rational 

number in (0, +∞), it is clear that both identities will follow by continuity once we prove it for 
any μ̂ = (λ, μ) ∈ Ŵ with λ /∈Q.

The strategy to prove the identities in (b) and (c) will be the same. Indeed, let us write them 
as

�ij (λ,μ) = �̃ij (λ,μ) and Tij (λ,μ) = T̃ij (λ,μ),

i.e., �̃ij and T̃ij are the functions on the right hand side of the equalities in the statement we want 
to prove. As we already mentioned, we know that

�ij ∈ C ∞(
((0,+∞) \ D0 ) × W

)
and Tij ∈ C ∞(

((0,+∞) \ Dn ) × W
)

ij ij
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by Theorem C.5. On the other hand it turns out that there exist D̃0
ij , D̃

n
ij ⊂ Q>0 such that

�̃ij ∈ C ∞(
((0,+∞) \ D̃0

ij ) × W
)

and T̃ij ∈ C ∞(
((0,+∞) \ D̃n

ij ) × W
)
.

The sets D̃0
ij and D̃n

ij will be given explicitly later on but at this moment the relevant property is 
that they are discrete in (0, +∞) as well. That said, for simplicity in the exposition, let us explain 
how the proof goes for the identity T0,n2(λ, μ) = T̃0,n2(λ, μ). Thus, since Dn

0,n2
∪ D̃n

0,n2
is a dis-

crete set of rational numbers in (0, +∞), for any given λ� /∈ Dn
0,n2

∪D̃n
0,n2

there exists a sequence 
of irrational numbers (λk)k∈N such that limk→∞ λk = λ�. Hence, if we take any μ ∈ W then, by 
continuity, limk→∞ T0,n2(λk, μ) = T0,n2(λ�, μ) and limk→∞ T̃0,n2(λk, μ) = T̃0,n2(λ�, μ). So it is 
clear that the validity of the equality T0,n2(λ, μ) = T̃0,n2(λ, μ) at any λ = λ� which is not inside 
Dn

0,n2
∪ D̃n

0,n2
will follow once we prove it for any μ̂ = (λ, μ) ∈ Ŵ with λ /∈ Q. This will be 

precisely our goal to prove each one of the equalities in the statement. As a matter of fact we will 
show that each equality is true in a neighbourhood of any μ̂0 = (λ0, μ0) ∈ Ŵ with λ0 /∈Q.

In addition to the identities in (b) and (c) we shall prove the equality in (7) for (i, j) = (i1, j1)

and the equality in (8) for (i, j) = (i2, j2), where (i1, j1) ∈ �0 and (i2, j2) ∈ �n are arbitrary but 
fixed. To this end, in view of the previous considerations, we fix any μ̂0 = (λ0, μ0) ∈ Ŵ with λ0 /∈
Q. Then by [20, Theorem A] we know that for each K ∈ N there exists a C K diffeomorphism

�(u1, u2, μ̂) = (
u1ψ1(u1, u2; μ̂), u2ψ2(u1, u2; μ̂), μ̂

)
,

defined in an open set U × V with (0, 0) ∈ U ⊂ R2 and μ̂0 ∈ V ⊂ Ŵ , verifying

�∗Xμ̂ = P1(0,0; μ̂)

u
n1
1 u

n2
2

(u1∂u1 − λu2∂u2) (9)

and such that ψi(0, 0; μ̂) = 1, i = 1, 2. Let us point out that in the forthcoming analysis it will 
be crucial that K is larger than some fixed quantity N = N (λ0, n1, n2, i1, i2, j1, j2). We will 
specify at each step of the proof which is the necessary lower bound for K and, at the end, N
will be the maximum of them. This provides us with a specific value for N (that is not relevant 
at all) and in what follows we simply suppose that we take a C K normalising diffeomorphism �
with K � N .

For convenience we assume without lost of generality that

U = {(u1, u2) ∈R2 : |u1| < δ and |u2| < δ} = (−δ, δ)2

for some δ > 0 small enough such that �
(
(−δ, δ)2 ×V ) ⊂ (

U ∩ (I1 × I2)
)×V , where I1 and I2

are the real intervals as introduced in (2), see Fig. 1. Taking ε1, ε2 ∈ (0, δ) we consider auxiliary 
C K transverse sections ��

1 and ��
2 to x1 = 0 and x2 = 0, see Fig. 2, parametrized by

τ1(s; ε1, μ̂):= �(s, ε1; μ̂) and τ2(s; ε2, μ̂):= �(ε2, s; μ̂), (10)

respectively. From now on, in addition to μ̂, we will also consider ε := (ε1, ε2) as parameter. In 
this respect we remark that τi(s; εi, μ̂) is a C K function on U × V for i = 1, 2. Similarly as we 
did with σi , we denote
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Fig. 2. Auxiliary transverse sections in the decomposition of T .

τijk(εi, μ̂):= ∂k
s τij (0; εi, μ̂)

and we will write τijk for the sake of shortness.
The idea now is to decompose the Dulac map D(s; μ̂) and the Dulac time T (s; μ̂) as

D(s) = R2(D0(R1(s))) and T (s) = T 1(s) + T 0(R1(s)) + T 2(D0(R1(s))). (11)

Here R1( · ; ε1, μ̂), D0( · ; ε, μ̂) and R2( · ; ε2, μ̂) are, respectively, the transitions maps from �1
to ��

1, from ��
1 to ��

2, and from ��
2 to �2, whereas T 1( · ; ε1, μ̂), T 0( · ; ε, μ̂) and T 2( · ; ε2, μ̂)

are, respectively, the time that spends the flow to do this transition. It is well known that D0 and 
T 0 are singular at s = 0, whereas the other ones are regular. We study the latter by applying the 
results obtained in Appendix A and to this end, see (43), we rewrite the given vector field as

Xμ̂ = 1

x
n1
1 x

n2
2

(
x1P1(x1, x2)∂x1 + x2P2(x1, x2)∂x2

)
= 1

x
ni2
i2

fi2(xi1, xi2)

(
∂xi1

+ hi2(xi1, xi2)xi2∂xi2

)

where (i1, i2) ∈ {(2, 1), (1, 2)} and

f1(u, v) = un2−1

P2(v,u)
h1(u, v) = P1(v,u)

uP2(v,u)

f2(u, v) = un1−1

P1(u, v)
h2(u, v) = P2(u, v)

uP1(u, v)

(12)

(At this point, and in what follows, we omit the dependence on the parameters for the sake 
of shortness when there is no risk of ambiguity. Moreover although the proof scripts 1 and 2
refer, respectively, to the first and second regular passage.) Setting I := (0, δ), we apply (twice) 
Lemma A.3 with ν = (εi, μ̂) ∈ I × V for i = 1, 2. In doing so, and taking Lemma 2.1 also into 
account, we can assert that
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Ri(s; εi, μ̂) =
Li∑

k=1

Rik(εi, μ̂)sk +F0
Li+1(I ×V ) and

T i(s; εi, μ̂) =
Li∑

k=ni

T i
k (εi, μ̂)sk +F0

Li+1(I ×V ), (13)

with Rik, T i
k ∈ C 0(I × V ) provided that K � Li + 1 for i = 1, 2. We know furthermore 

that Ri1 > 0. Turning to the assumption K � N , let us advance that we will also require 
that Li � N for i = 1, 2, which is neither a problem because, as we explained before, N =
N (λ0, n1, n2, i1, i2, j1, j2) and we can take K large enough from the very beginning.

With regard to the passage from ��
1 to ��

2, taking (9) and (10) into account (see also Fig. 2), 
an easy computation shows that

D0(s) = dsλ with d := ε1ε
−λ
2 (14)

and

T 0(s) =
ε2∫

s

u
n1
1 u

n2
2

P1(0,0)

∣∣∣∣
u2=ε1

(
s

u1

)λ

du1

u1
= T 0

1 sn1 + T 0
2 (dsλ)n2 , (15)

where

T 0
1 := −ε

n2
1

(n1 − λn2)P1(0,0)
and T 0

2 := ε
n1
2

(n1 − λn2)P1(0,0)
.

(Here, on account of λ0 /∈ Q, we reduce V so that n1 − λn2 
= 0 for all μ̂ ∈ V .) Hence D(s) =
R2(dRλ

1 (s)). If we take any strictly positive β(μ̂) ∈ C 0(V ) then, due to R11 > 0,

R
β
1 (s) = sβR

β
11

(
1 +

L1∑
k=2

R1k

R11
sk−1

)β

+F0
L1

(I × V ) = sβR
β
11

L1−1∑
�=0

ϒ
[β]
� s� +F0

L1
(I ×V ), (16)

where in the first equality we apply by (a) in Lemma 2.5 and in the second one we define 
ϒ

[β]
� = ϒ

[β]
� (ε1, μ̂) for � = 0, 1, . . . , L1 − 1 as the C 0(I × V ) functions verifying

(
1 +

L1∑
k=2

R1k

R11
sk−1

)β

=
L1−1∑
�=0

ϒ
[β]
� s� +F0

L1
(I × V ). (17)

(Here we apply Taylor’s theorem at order L1 to the function x �→ (1 + x)β taking a uniform 
estimate of the remainder by means of its integral form.) Note in particular that ϒ[β]

0 = 1. Taking 
(16) with β(μ̂) = λ and applying (b) in Lemma 2.5 we obtain

D(s) = R2(dRλ
1 (s)) =

L2∑
R2kd

kRλk
1 (s) +F0

L1

({
(ε, μ̂) ∈ I 2×V : λ > L1

L2+1

})

k=1
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Now we choose L1 and L2 such that λ0 > L1
L2+1 and we shrink V if necessary in order that 

λ > L1
L2+1 for all μ̂ ∈ V . In doing so we get that

D(s) = R2(dRλ
1 (s)) =

L2∑
k=1

R2kd
kRλk

1 (s) +F0
L1

(I 2×V ).

Next, by taking (16) with β(μ̂) = λk, k = 1, 2, . . . , L2,

D(s) =
L2∑
k=1

L1−1∑
�=0

R2kR
λk
11dkϒ

[λk]
� s�+λk +F0

L1
(I 2×V )

= sλ

L1−1∑
�=0

L2−1∑
k=0

R2,k+1R
λ(k+1)
11 dk+1ϒ

[λ(k+1)]
� s�+λk +F0

L1
(I 2×V ).

Since λ0 /∈Q, assertion (a1) in Theorem C.5 shows that

��k = R2,k+1R
λ(k+1)
11 dk+1ϒ

[λ(k+1)]
� for all (ε, μ̂) ∈ I 2×V . (18)

Here we also take Remark 2.6 into account, shrinking (if necessary) the neighbourhood V of 
μ̂0 = (λ0, μ0) in order that all the exponents � + λk are different for every μ̂ ∈ V . At this point 
it is worth to make the following remarks with regard to the previous equality:

• It gives the expression of �ij provided that 0 � i � L1 −1, 0 � j � L2 −1 and i+λ0j < L1. 
Since we are just interested in (i, j) ∈ {(0, 0), (0, 1), (1, 0), (1, 1), (i1, j1)}, these conditions 
reduce to specific lower bounds for L1 and L2 that depend only on λ0, i1 and j1. For instance, 
in order to prove that the factorisation in (7) holds for (i, j) = (i1, j1) we need that

L1 > max(i1 + λ0j, i1 + 1) and L2 > j2 + 1.

This does not constitute a problem because we can take K , and therefore L1 and L2, arbi-
trarily large.

• The coefficient ��k is a function that depends only on μ̂, whereas each function on the right 
hand side of (18) depends on μ̂ but also on ε. This constitutes a key point that we will exploit 
in the forthcoming arguments. Particularized to � = 0, from (14) and (18) we get that

�0k = (
R2,k+1ε

−λ(k+1)
2

)(
Rλ

11ε1
)k+1 (19)

does not depend on ε = (ε1, ε2). Since the first factor does not depend on ε1 and the second 
one does not depend on ε2, taking k = 0 and using that �00(μ̂) 
= 0 for all μ̂ ∈ Ŵ , we 
conclude that

R2,1(ε2, μ̂)ε−λ
2 and Rλ

11(ε1, μ̂)ε1 do not depend on ε,

which in its turn, again from (19), implies that

R2,k+1(ε2, μ̂)ε
−λ(k+1) does not depend on ε for all k � 1. (20)
2
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Since ϒ[β]
0 = 1 for any function β , the factorisation in (18) also shows that

��k = ϒ
[λ(k+1)]
� �0k. (21)

Consequently

L1−1∑
�=0

ϒ
[λ(k+1)]
� s� +F0

L1
(I × V ) =

(
1 +

L1∑
�=2

R1�

R11
s�−1

)λ(k+1)

=
(

L1−1∑
�=0

ϒ
[λ]
� s� +F0

L1
(I × V )

)k+1

=
(

L1−1∑
�=0

��0

�00
s� +F0

L1
(I × V )

)k+1

=
(

L1−1∑
�=0

��0

�00
s�

)k+1

+F0
L1

(I × V ) =
L1−1∑
�=0


�ks
� +F0

L1
(I × V ),

where in the first and second equalities we use the definition of ϒ[β]
� in (17) with β(μ̂) = λ(k+1)

and β(μ̂) = λ, respectively, in the third one we use (21) with k = 0, in the fourth one we apply 
the binomial formula and Lemma 2.4 and, finally, the last one follows from the definition in (6). 
Clearly this implies that

ϒ
[λ(k+1)]
� = 
�k for � = 0,1, . . . ,L1 − 1. (22)

Particularized to (�, k) = (i1, j1), from (21) once again we obtain that

�i1j1 = ϒ
[λ(j1+1)]
i1

�0j1 = 
i1j1�0j1 .

This identity holds for all μ̂ ∈ V . On account of the considerations explained in the beginning of 
the proof this shows that the assertion in (7) is true for (i, j) = (i1, j1) as desired.

We turn now to the study of the coefficients of the Dulac time. For convenience we write it as

T (s) = T −(s) + T +(s),

where we define, recall (11) and (15),

T −(s):= T 1(s) + T 0
1 R

n1
1 (s) and T +(s):= (

T 2(u) + T 0
2 un2

)∣∣
u=D0(R1(s))

.

With respect to the first summand we observe that, from (13) and taking (16) with β(μ̂) = n1,

T −(s) =
L1−1∑
k=n1

T −
k0s

k +F0
L1

(I × V ) where T −
k0 := T 1

k + T 0
1 R

n1
11ϒ

[n1]
k−n1

. (23)

On the other hand, from (13), we can write T 2(u) + T 0
2 un2 =

L2∑
T̄ 2

k uk +F0
L2+1(I × V ) where
k=n2

60



D. Marín and J. Villadelprat Journal of Differential Equations 404 (2024) 43–107
T̄ 2
k :=

{
T 2

k + T 0
2 if k = n2,

T 2
k if k > n2.

(24)

Consequently, taking (16) with β(μ̂) = λ and applying (b) in Lemma 2.5 we obtain

T +(s) = (
T 2(u) + T 0

2 un2
)∣∣

u=dRλ
1 (s)

=
L2∑

k=n2

T̄ 2
k dkRλk

1 +F0
L1

(I 2×V )

=
L2∑

k=n2

T̄ 2
k dk

(
sλkRλk

11

L1−1∑
�=0

ϒ
[λk]
� s� +F0

L1
(I × V )

)
+F0

L1
(I 2×V )

=
L2∑

k=n2

L1−1∑
�=0

T +
�k s

�+λk +F0
L1

(I 2×V ). (25)

Here we also use λ > L1
L2+1 for all μ̂ ∈ V in the first equality, in the second one we take (16) with 

β(μ̂) = λk, whereas in the last one we use that d = ε1ε
−λ
2 and define

T +
�k := (T̄ 2

k ε−λk
2 )(ε1R

λ
11)

kϒ
[λk]
� . (26)

Note that T +
�0 = 0 for all � � 1 due to ϒ[0]

� = 0 for all � � 1. Consequently, since T�k is by 
definition the coefficient of s�+λk in T (s) = T −(s) + T +(s), from (23) and (25) we get that

T�k =
{

T +
�k if k > 0.

T −
�0 if k = 0 and � � 1.

(27)

(To be more precise, the above equality follows from Remark 2.6 and by applying (b1) in Theo-
rem C.5 thanks to λ0 /∈ Q and shrinking, if necessary, the neighbourhood V of μ̂0 = (λ0, μ0) in 
order that all the exponents � + λk are different for every μ̂ ∈ V.) Finally, since the coefficient 
T00 only exists in case the that n1n2 = 0 and n 
= (0, 0) by hypothesis, we have that

T00 =
{

T −
00 if n1 = 0,

T +
00 if n2 = 0.

Similarly as we noted previously for �ij , let us remark that since we are only interested in the 
coefficients

Tij with (i, j) ∈ {(n1,0), (n1 + 1,0), (0, n2), (0, n2 + 1), (i2, j2)},
from (23) and (25) we get specific lower bounds for L1 and L2 to be satisfied. Once again, this 
is not a problem because these lower bounds are given in terms of λ0, n1, n2, i2 and j2 and, on 
the other hand, we can take K , and so L1 and L2, arbitrarily large. For instance, in order to show 
that the factorisation in (8) holds for (i, j) = (i2, j2) with j2 > 0 we argue as follows. Precisely 
due to j2 > 0, we get that
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Table 1
Information related with the application of the results in Appendix A. The 
auxiliary sections ��

1 and ��
2 are given by τ1(s; ε1, μ̂) = �(s, ε1; μ̂) and 

τ2(s; ε2, μ̂) = �(ε2, s; μ̂), respectively, see (10).

First regular 
passage

Second regular 
passage

� n1 n2
ν (ε1, μ̂) (ε2, μ̂)

h(x, y)
P1(y,x)
xP2(y,x)

P2(x,y)
xP1(x,y)

H(x, y)
( y
x

) 1
λ L1(x)

L1(y)

( y
x

)λ L2(x)
L2(y)

f (x, y) xn2−1

P2(y,x)
xn1−1

P1(x,y)

ξ(s;ν)
(
σ12(s; μ̂), σ11(s; μ̂)

) (
τ21(s; ε2, μ̂), τ22(s; ε2, μ̂)

)
ζ(s;ν)

(
τ12(s; ε1, μ̂), τ11(s; ε1, μ̂)

) (
σ21(s; μ̂), σ22(s; μ̂)

)

Ti2j2 = T +
i2j2

= T +
0j2

ϒ
[λj2]
i2

= T0j2
i2,j2−1,

where in the first equality we take (27) into account, the second one follows readily from (26)

thanks to ϒ[λj2]
0 = 1, and in the last one we apply the identity in (22). For this to happen, see also 

(25), we need that

L1 > max(i2 + 1, i2 + λ0j2) and L2 > j2.

This shows the validity of the factorisation for all μ̂ ∈ V . As we explained at the beginning of 
the proof, this factorisation extends to all μ̂ = (λ, μ) ∈ Ŵ with λ /∈ Dn

i2j2
∪ D0

i20 by continuity 

and the fact that Dn
i2j2

∪ D0
i20 is a discrete subset of rational numbers in (0, +∞).

So far we have proved (7) and (8), which constitute assertion (a) in the statement. In do-
ing so we have also identified all the elements needed to compute �ij and Tij but recall that 
we must only analyze the cases (i, j) ∈ {(0, 0), (1, 0), (0, 1), (1, 1)} and (i, j) ∈ {(n1, 0), (n1 +
1, 0), (0, n2), (0, n2 + 1)}, respectively. With this aim in view we shall apply Lemma A.3 to ob-
tain the explicit expressions of the coefficients Ri1, Ri2, T i

ni
and T i

ni+1 in (13) for i = 1, 2. Let 
us advance that the formulae for i = 1 and i = 2 are related by switching λ and 1/λ, σ and τ , the 
subscripts 1 and 2 (with the exception of the third subscript k in σijk and τijk) and by exchanging 
the order of the variables in the functions fi and hi .

For the reader’s convenience we sum up in Table 1 the fundamental information for applying 
the results in Appendix A to study the regular passages, see Fig. 2, together with the functions 
Li defined in (3) and the functions fi and hi given in (12). On account of this the application of 
Lemma A.2 yields

ρ11(x) = α11x
−1
λ L1(x) with α11 := σ111σ

1
λ

120

L1(σ120)
(28)

for the first regular passage and

ρ21(x) = α21x
−λL2(x) with α21 := τ221τ

λ
210

L2(τ210)
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for the second one. (Here, to be consistent with the previous notation, the subscript i in ρij

refers to the first or second regular passage, whereas j refers to the derivation’s order.) Next, by 
applying Lemma A.3,

R11 = α11
τ

−1
λ

120L1(τ120)

τ111
and R21 = α21

L2(σ210)

σ221σ
λ
210

. (29)

Observe at this point that α11 does not depend on ε and that, see (20), this is also the case of 

Rλ
11ε1. From the first equality in (29), this implies that 

Lλ
1(τ120)

τλ
111τ120

ε1 does not depend on ε. On the 

other hand, τ120 = ε1ψ2(0, ε1) and τ111 = ψ1(0, ε1), see (10), together with ψi(0, 0) = L1(0) =
1, imply that limε1→0

Lλ
1(τ120)

τλ
111τ120

ε1 = 1. Thus 
Lλ

1(τ120)

τλ
111τ120

ε1 = 1 and, consequently, Rλ
11ε1 = αλ

11. In 

short,

τλ
111τ120

Lλ
1(τ120)

= ε1 and R11 = α11ε
−1/λ
1 = σ111σ

1/λ

120

L1(σ120)
ε
−1/λ
1 . (30)

Furthermore, from (20) again, R21ε
−λ
2 does not depend on ε. This implies, on account of the 

second equality in (29), that α21ε
−λ
2 does not depend on ε neither. Then, taking ε2 → 0 exactly 

as before, we conclude that

α21 = ελ
2 . (31)

Therefore R21 = ελ
2

L2(σ210)

σ221σ
λ
210

and consequently, from (19),

�00(μ̂) = (Rλ
11ε1)(R21ε

−λ
2 ) = σλ

111σ120

Lλ
1(σ120)

L2(σ210)

σ221σ
λ
210

for all μ̂ ∈ V .

On account of the considerations explained in the first paragraph of the proof, this shows the 
validity of the first equality in (b) for all μ̂ = (λ, μ) ∈ (0, +∞) × W . Indeed, following the 
notation introduced there, �̃00 is the function on the right hand side of the above equality, which 
belongs to C ∞(

(0 + ∞) × W
)

by Lemma 2.3, i.e., D̃0
00 = ∅, and we have on the other hand, see 

Remark 1.1, D0
00 = ∅ as well.

Next we proceed with the computation of the second order derivatives in Lemma A.2. Using 
the first column in Table 1, some long but easy computations show that

ρ12(x) = α11

σ111
x

−1
λ L1(x)

(
σ112 − 2σ121σ111

σ120

(
P1

P2

)
(0, σ120)

+ 2σ111α11

x∫
σ120

L1(u) ∂1

(
P1

P2

)
(0, u)︸ ︷︷ ︸

M1(u)

u
−1
λ

du

u

)

= α12x
−1
λ L1(x) + 2α2

11x
−2
λ L1(x)M̂1(1/λ, x), (32)
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for all x ∈ I1 ∩ (0, +∞) with

α12 := α11

σ111

(
σ112 − 2σ121σ111

σ120

(
P1

P2

)
(0, σ120)

)
− 2α2

11σ
−1
λ

120M̂1(1/λ,σ120). (33)

Here we use for the first time the properties of the incomplete Mellin transform introduced in 
Appendix B. More concretely, by Lemma 2.3, M1(u; μ̂) ∈ C ∞(I1 × Ŵ ) with 0 ∈ I1, see Fig. 1. 
Hence, by Theorem B.1 there exists a unique M̂1(α, u; μ̂) ∈ C ∞((R \ Z≥0) × I1 × Ŵ ) such 
that ∂u

(
M̂1(α, u)u−α

) = M1(u)u−α−1 for all u ∈ I1 ∩ (0, +∞). Analogously, taking the second 
column in Table 1, one can also verify that

ρ22(x) = α22x
−λL2(x) + 2α2

21x
−2λL2(x)M̂2(λ, x) for all x ∈ I2 ∩ (0,+∞), (34)

with

α22 := α21

τ221

(
τ222 − 2τ211τ221

τ210

(
P2

P1

)
(τ210,0)

)
− 2α2

21τ
−λ
210M̂2(λ, τ210).

We claim that α22 = ελ
2ϕ1(ε2, μ̂) with ϕ1 ∈ C K

(
(−δ, δ) × V

)
. Indeed, this is so due to the 

following facts:

1. P1(x1, x2; μ̂) and P2(x1, x2; μ̂) are C ∞ and do not vanish on x2 = 0 and x1 = 0, respec-
tively.

2. L2(u; μ̂) and M2(u; μ̂) are C ∞(I2 × Ŵ ) by Lemma 2.3 and the first one does not vanish.
3. The parametrisation τ2(s; ε2, μ̂) of the section ��

2 is defined by means of � ∈ C K(U × V ), 
see (10), where recall that U = (−δ, δ) × (−δ, δ),

4. and therefore, the map (ε2, μ̂) �→ M̂2(λ, τ210; μ̂) belongs to C K
(
(−δ, δ) × V

)
by (a) in 

Theorem B.1 since λ /∈Z≥0 due to λ0 /∈Q and shrinking V if necessary.
5. τ221 = ψ2(ε2, 0) and τ210 = ε2ψ1(ε2, 0) with ψi(0, 0) = 1. Moreover, see (31), α21 = ελ

2 .

The key point for our purposes will be that, for each fixed μ̂, the function ϕ1 is C K in a 
neighbourhood of ε2 = 0. On account of this, for simplicity in the exposition we will say that 
α22 = ελ

2ϕ1(ε2) with ϕ1 ∈ C K . In what follows we will deal several times with this type of sit-
uation and for shortness we will omit the previous details. More generally, for the same reason, 
when we write ϕk(εi) with i = 1, 2 and any subscript k we shall mean that ϕk is some function 
depending only on εi and μ̂ that belongs to C K((−δ, δ) × V

)
.

We are now in position to compute the second order derivatives by means of Lemma A.3. In 
this case, for the sake of convenience in the exposition, we begin with the second regular passage. 
In doing so, and using Table 1 together with the expressions for R21 and ρ22 given in (29) and 
(34), respectively, we get

R22 =
(

σ211

σ210

(
P2

P1

)
(σ210,0) − σ222

2σ221

)
α2

21
σ−2λ

210

σ 2
221

L2
2(σ210) + α22

2

σ−λ
210

σ221
L2(σ210)

+ α2
21

σ−2λ
210

σ
L2(σ210)M̂2(λ,σ210).
221
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This implies that α22ε
−2λ
2 does not depend on ε because this is the case for σ2 and R22ε

−2λ
2 , 

see (20), and moreover α21 = ελ
2 from (31). Hence the previous claim shows that α22ε

−2λ
2 =

ε−λ
2 ϕ1(ε2) = c where c is a constant depending only on μ̂. Therefore ϕ1(ε2) = cελ

2 . Since λ0 /∈ Q, 
we have that λ /∈Z≥0 for all μ̂ ∈ V (shrinking V if necessary) and, consequently, c = 0 because 
ϕ1 is C K in a neighbourhood of ε2 = 0 with K arbitrarily large. (More precisely it suffices to 
take K > λ0 and make smaller V so that K > λ for all μ̂ ∈ V .) Accordingly

α22 = 0 (35)

and, since α21 = ελ
2 on account of (31),

R22 = −ε2λ
2

(
σ222

2σ221
− σ211

σ210

(
P2

P1

)
(σ210,0) − σ221

L2(σ210)
M̂2(λ,σ210)︸ ︷︷ ︸

S2

)(
L2(σ210

σ221σ
λ
210

)2

. (36)

Then, using (19) with k = 1 and the expression of R11 in (30),

�01 = −S2

(
L2(σ210

σ221σ
λ
210

)2 (
σλ

111σ120

Lλ
1(σ120)

)2

= −S2�
2
00 for all μ̂ ∈ V .

By applying Lemma 2.3 and Theorem B.1, the function M̂2(λ, σ210) in S2 is C ∞ in a neighbour-
hood of any (λ�, μ�) ∈ (0, +∞) × W such that λ� /∈ Z≥0. Thus the function on the right hand 
side of the above equality, that we denote by �̃01 in the second paragraph of the proof, is C ∞
on ((0, +∞) \ D̃n

01) × W with D̃n
01 := N . Since we know on the other hand by Theorem C.5 that 

�01 ∈ C ∞(((0, +∞) \ Dn
01) × W) with Dn

01 = N , see Remark 1.1, this implies by continuity 
that the second equality in (b) is true for (λ, μ) ∈ (

(0, +∞) \ D0
01

) × W . Certainly we also use 
here, and it is essential, that the parameter μ̂0 = (λ0, μ0) ∈ Ŵ with λ0 /∈ Q that we fix at the very 
beginning is arbitrary.

Let us begin now with the computation of R21, i.e., the second coefficient of the transition 
map for the first passage, by means of Lemma A.3. In this case, using Table 1 together with (30)

and (32), we get

R12 =
(

τ121

τ120

(
P1

P2

)
(0, τ120) − τ112

2τ111

)
α2

11
τ

−2
λ

120

τ 2
111

L2
1(τ120)︸ ︷︷ ︸

ε
−2/λ
1

+α12

2

τ
−1
λ

120

τ111
L1(τ120)︸ ︷︷ ︸
ε
−1/λ
1

+ α2
11

τ
−2
λ

120

τ111
L1(τ120)M̂1(1/λ, τ120)︸ ︷︷ ︸

ε
−2/λ
1 ϕ2(ε1)

.

Since R11 = ε
−1/λ
1 α11 from (30) once again and, on the other hand, τ120 = ε1ψ2(0, ε1) with 

ψ2(0, 0) = 1, it follows that we can write
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R12

R11
= ϕ3(ε1)ε

−1/λ−1
1 + α12

2α11
.

Observe that the quotient R12
R11

does not depend on ε because, from (17) and (18)

�1k

�0k

= ϒ
[λ(k+1)]
1 = λ(k + 1)

R12

R11
.

Since this is also the case for the quotient α12
α11

, see (28) and (33), we get that ϕ3(ε1)ε
−1/λ−1
1 = c

for some constant depending only on μ̂. Thus ϕ3(ε1) = cε
1/λ+1
1 and, due to λ ≈ λ0 /∈ Q, this 

implies c = 0. Therefore,

R12

R11
= α12

2α11
= σ112

2σ111
− σ121

σ120

(
P1

P2

)
(0, σ120) − σ111

L1(σ120)
M̂1(1/λ,σ120) = S1, (37)

where the second equality follows from (28) and (33) again and the last one from the definition 
in (4). Hence

�10 = �00λS1 and �11 = �012λS1 = −�2
002λS1S2 for all μ̂ ∈ V .

On account of the expression of S2 and S1 given in (36) and (37), respectively, the application 
of Theorem B.1 shows (following the notation introduced in the first paragraph of the proof) 
that D̃0

10 = 1
N and D̃0

11 = N ∪ 1
N . Since these sets coincide with D0

10 and D0
11, respectively, this 

concludes the proof of assertion (b).
Let us show next the validity of the identities in assertion (c), that deal with the coefficients of 

the Dulac time. As before we begin with the study of the regular passages and the computation 
of the first coefficients of their time functions. With regard to T 1(s; ε1, μ̂) it turns out that

T 1
n1

= α
n1
11

τ120∫
σ120

L
n1
1 (x)

P2(0, x)︸ ︷︷ ︸
A1(x)

xn2− n1
λ

dx

x

= α
n1
11

(
τ

n2− n1
λ

120 Â1(n1/λ − n2, τ120)︸ ︷︷ ︸
ε
n2− n1

λ
1 ϕ4(ε1)

−σ
n2− n1

λ

120 Â1(n1/λ − n2, σ120)

)
.

The first equality above follows by Lemma A.3 taking into account the expression of ρ11 in (28)

and Table 1. The second equality follows by applying Theorem B.1 with A1(x; μ̂), that belongs 
to C ∞(I1 × Ŵ ) by Lemma 2.3, and the fact that τ120 = ε1ψ2(0, ε1) with ψ2(0, 0) = 1. Notice 
that it is here the first time that we take the assumption n 
= (0, 0) into account. Then

Tn10 = T −
n10 = T 1

n1
+ T 0

1 R
n1
11

= α
n1
11

(
ε
n2− n1

λ

1

(
ϕ4(ε1) − 1

)
− σ

n2− n1
λ

120 Â1(n1/λ − n2, σ120)

)

(n1 − λn2)P1(0,0)

66



D. Marín and J. Villadelprat Journal of Differential Equations 404 (2024) 43–107
= − σ
n1
111σ

n2
120

L
n1
1 (σ120)

Â1(n1/λ − n2, σ120).

The first and second equalities above follow from (27) and (23), respectively, and the third one 

by using (15) together with (30). In the last equality we use that Tn10, α11 = σ111σ
1/λ
120

L1(σ120)
and σ1 do 

not depend on ε and this, on account of λ ≈ λ0 /∈ Q, implies that ϕ4(ε1) = 1
(n1−λn2)P1(0,0)

. For 
the reader’s convenience let us be more precise in this last implication because we use the same 
argument repeatedly. The point is that there exists c, not depending on ε1, such that

ε
n2− n1

λ

1

(
ϕ4(ε1) − 1

(n1 − λn2)P1(0,0)

)
= c for all ε1

and we know on the other hand that ϕ4 is C K((−δ, δ)) with K arbitrarily large. In this case 
for our purpose we need K > n1

λ0
− n2, so that (by shrinking V ) we have K > n1

λ
− n2 for all 

μ̂ ∈ V . Since λ0 /∈ Q we can also assume that n1
λ

− n2 /∈ Z≥0 for all μ̂ ∈ V . That being said, 
note then that from the above equality it turns out that ϕ4 is a C K function that is written as 

ϕ4(ε1) = cε
n1
λ

−n2

1 + ĉ with the exponent n1
λ

− n2 smaller than K and not being in Z≥0. It is 
evident that this is only possible if c = 0, as we claimed. Hence

Tn10 = σ
n1
111σ

n2
120

L
n1
1 (σ120)

Â1(n1/λ − n2, σ120) for all μ̂ ∈ V .

By Theorem B.1, the function on the right hand side is C ∞ in a neighbourhood of any 
(λ�, μ�) ∈ Ŵ with n1

λ�
− n2 /∈ Z≥0, i.e., λ� /∈ D̃n

n1,0
:= n1

N≥n2
. Thus D̃n

n1,0
⊂ Dn

n1,0
= ⋃n1

i=1
i

N≥n2
, 

see Remark 1.1, and therefore by continuity the above equality is valid provided that λ /∈ Dn
n1,0

. 
This proves the first identity in (c).

Regarding the time function T 2(s; ε2, μ̂) of the second regular passage one can check that

T 2
n2

= ε
n2λ
2

(
σ

n1−n2λ
210 Â2(n2λ − n1, σ210) − τ

n1−λn2
210 Â2(n2λ − n1, τ210)︸ ︷︷ ︸

ε
n1−n2λ

2 ϕ5(ε2)

)

= ε
n2λ
2 σ

n1−n2λ
210 Â2(n2λ − n1, σ210) + ε

n1
2 ϕ5(ε2),

where the first equality follows by Lemma A.3 and on account of ρ21(x) = ελ
2x−λL2(x), and 

the second equality by applying Theorem B.1 with A2(x; μ̂), that belongs to C ∞(I2 × Ŵ ) by 
Lemma 2.3. Hence, taking (15) and (24) into account,

T̄ 2
n2

= T 2
n2

+ T 0
2 = ε

n2λ
2 σ

n1−n2λ
210 Â2(n2λ − n1, σ210) + ε

n1
2

(
ϕ5(ε2) + 1

(n1 − λn2)P1(0,0)

)

and, accordingly,

T0,n2 = T +
0,n2

= (T̄ 2
n2

ε
−n2λ
2 )(Rλ

11ε1)
n2 = σ

n1−n2λ
210 Â2(n2λ − n1, σ210)

(
σλ

111σ120

Lλ(σ )

)n2

,

1 120
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where the first and second equalities follow from (27) and (26), respectively. Finally, in the last 
equality we use that σ1 and σ2 do not depend on ε and that this is also the case for T0,n2 and, see 

(30), R11ε
1/λ
1 = σ111σ

1/λ
120

L1(σ120)
. Since λ ≈ λ0 /∈ Q, this implies ϕ5(ε2) = −1

(n1−λn2)P1(0,0)
and finishes 

the proof of the second identity in (c).
We proceed next with the computation of the coefficient T 1

n1+1. To this end we apply 
Lemma A.3 taking account of Table 1 and the expressions of ρ11, R11 and ρ12 given in (28), 
(30) and (32), respectively. In doing so we obtain

T 1
n1+1 =

(
ε

−1
λ

1 α11

)n1+1 τ121τ
n1
111τ

n2−1
120

P2(0, τ120)︸ ︷︷ ︸
ε
n2− n1+1

λ
1 ϕ6(ε1)

−σ121σ
n1
111σ

n2−1
120

P2(0, σ120)

+ α
n1+1
11

τ120∫
σ120

L
n1+1
1 (x)xn2− n1+1

λ ∂1P
−1
2 (0, x)

dx

x

+ n1

2
α

n1−1
11

τ120∫
σ120

L
n1−1
1 (x)x

−(n1−1)

λ

×
(
α12x

−1
λ L1(x) + 2α2

11x
−2
λ L1(x)M̂1(1/λ, x)

) xn2−1

P2(0, x)
dx.

Here we also use that τ1 does not depend on ε2 and that τ120 and τ121 vanish at ε1 = 0. Then 
some easy manipulations first, on account of the definitions of A1 and B1 given in (3), and next 
the application of Theorem B.1 yields to

T 1
n1+1 = ε

n2− n1+1
λ

1 ϕ6(ε1) − σ121σ
n1
111σ

n2−1
120

P2(0, σ120)

+ α
n1+1
11

τ120∫
σ120

B1(x)xn2− n1+1
λ

dx

x
+ n1α12α

n1−1
11

2

τ120∫
σ120

A1(x)xn2− n1
λ

dx

x

= −σ121σ
n1
111σ

n2−1
120

P2(0, σ120)
+ ε

n2− n1+1
λ

1 ϕ7(ε1) + ε
n2− n1

λ

1 ϕ8(ε1)

− α
n1+1
11 σ

n2− n1+1
λ

120 B̂1

(
n1 + 1

λ
− n2, σ120

)
− n1α12α

n1−1
11

2
σ

n2− n1
λ

120 Â1

(n1

λ
− n2, σ120

)
,

where in the second equality we also use that α11 and α12 do not depend on ε, see (28) and (33), 
respectively. Notice that

Tn1+1,0 = T −
n1+1,0 = T 1

n1+1 + T 0
1 R

n1
11ϒ

[n1]
1 = T 1

n1+1 + n1T
0
1 R

n1
11

R12 = T 1
n1+1 + n1T

0
1 R

n1
11S1,
R11
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where in the first equality we use (27), in the second one (23) with k = n1 + 1, in the third one 
the fact that ϒ[n1]

1 = n1
R12
R11

from (17), and in the last one that S1 = R12
R11

= α12
2α11

from (37). On 

account of this and using also that, from (15) and (30), T 0
1 R

n1
11 = −ε

n2− n1
λ

1
α

n1
11

(n1−λn2)P1(0,0)
we get

Tn1+1,0 = − σ121σ
n1
111σ

n2−1
120

P2(0, σ120)
+ ε

n2− n1+1
λ

1 ϕ7(ε1) + ε
n2− n1

λ

1 ϕ9(ε1)

− α
n1+1
11 σ

n2− n1+1
λ

120 B̂1

(
n1 + 1

λ
− n2, σ120

)
− n1S1α

n1
11σ

n2− n1
λ

120 Â1

(n1

λ
− n2, σ120

)

= − σ121σ
n1
111σ

n2−1
120

P2(0, σ120)
− α

n1
11σ

n2− n1
λ

120

(
α11σ

−1
λ

120B̂1

(
n1 + 1

λ
− n2, σ120

)

+n1S1Â1

(n1

λ
− n2, σ120

))
.

Here we also use that σ1, α11, Tn1+1,0 and S1 do not depend on ε and apply Lemma 2.7 to 
conclude that

ε
n2− n1+1

λ

1 ϕ7(ε1) + ε
n2− n1

λ

1 ϕ9(ε1) = 0.

Then by using the expression of α11 in (28) and an easy manipulation we get that

Tn1+1,0(μ̂) = −σ
n1
111σ

n2
120

(
σ121

σ120P2(0, σ120)
+ n1S1

L
n1
1 (σ120)

Â1(n1/λ − n2, σ120)

+ σ111

L
n1+1
1 (σ120)

B̂1
(
(n1 + 1)/λ − n2, σ120

))

for all μ̂ ∈ V . The application of Lemma 2.3 and Theorem B.1 shows that the func-
tion on the right hand side is C ∞ in a neighbourhood of any (λ�, μ�) ∈ Ŵ such that {

1
λ�

, n1
λ�

− n2,
n1+1
λ�

− n2

}
∩Z≥0 = ∅, i.e.,

λ� /∈ D̃n
n1+1,0 := 1

N
∪ n1

N≥n2

∪ n1 + 1

N≥n2

.

Since Dn
n1+1,0 = ⋃n1+1

i=1
i

N≥n2
, see Remark 1.1, by continuity we can assert that the third 

identity in (c) is true at any μ̂ = (λ, μ) ∈ Ŵ with λ /∈ Dn
n1+1,0 ∪ D̃n

n1+1,0 = Dn
n1+1,0 ∪{

1
k
; k = 1,2, . . . , 
 n2

n1+1� − 1
}

.

We begin at this point the computation of the coefficient Tn2+1. To this aim we apply 
Lemma A.3 using in this case the second column in Table 1 and the expressions of R21, ρ21

and ρ22. We thus obtain
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T 2
n2+1 = α

n2+1
21︸ ︷︷ ︸

ε
λ(n2+1)

2

σ211σ
n2
221

(
L2(σ210)

σ221σ
λ
210

)n2+1
σ

n1−1
210

P1(σ210,0)
− τ211τ

n2
221τ

n1−1
210

P1(τ210,0)︸ ︷︷ ︸
ε
n1
2 ϕ10(ε2)

+ 1

2
α

n2+1
21︸ ︷︷ ︸

ε
λ(n2+1)

2

σ210∫
τ210

x−λ(n2−1)L
n2−1
2 (x)

×
(

n2

(
α−2

21 α22︸︷︷︸
0

x−λL2(x) + 2x−2λL2(x)M̂2(λ, x)

)
xn1−1

P1(x,0)

+ 2x−2λL2
2(x)xn1−1∂2P

−1
1 (x,0)

)
dx,

where we use that α21 = ελ
2 from (31), α22 = 0 from (35) and the fact that τ210 and τ211 vanish 

at ε2 = 0. Notice on the other hand that, by using (24), (26) and (27),

T0,n2+1 = T +
0,n2+1 =

(
T 2

n2+1ε
−λ(n2+1)
2

)
(ε1R

λ
11)

n2+1,

which in particular shows that T 2
n2+1ε

−λ(n2+1)
2 does not depend on ε. Having said this, note that

T 2
n2+1ε

−λ(n2+1)
2 = σ211σ

n1−1−λ(n2+1)
210

σ221

L
n2+1
2 (σ210)

P1(σ210,0)
+ ε

n1−λ(n2+1)
2 ϕ10(ε2)

+
σ210∫

τ210

(
n2

L
n2
2 (x)

P1(x,0)
M̂2(λ, x) + L

n2+1
2 (x)∂2P

−1
1 (x,0)︸ ︷︷ ︸

B2(x)

)
xn1−λ(n2+1) dx

x

= σ211σ
n1−1−λ(n2+1)
210

σ221

L
n2+1
2 (σ210)

P1(σ210,0)
+ ε

n1−λ(n2+1)
2 ϕ10(ε2)

+ σ
n1−λ(n2+1)
210 B̂2(λ(n2 + 1) − n1, σ210)

− τ
n1−λ(n2+1)
210 B̂2(λ(n2 + 1) − n1, τ210)︸ ︷︷ ︸

ε
n1−λ(n2+1)

2 ϕ11(ε2)

= σ211σ
n1−1−λ(n2+1)
210

σ221

L
n2+1
2 (σ210)

P1(σ210,0)
+ σ

n1−λ(n2+1)
210 B̂2(λ(n2 + 1) − n1, σ210),

where in the second equality we apply Theorem B.1 and in the third one we take advantage of 
the fact that T 2

n2+1ε
−λ(n2+1)
2 and σ2 do not depend on ε to conclude, thanks to λ ≈ λ0 /∈ Q, that 

ϕ10 = ϕ11. Hence, due to ε1R
λ
11 = σλ

111σ120
λ by the second equality in (30), we get that
L1(σ120)
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T0,n2+1 =
(
T 2

n2+1ε
−λ(n2+1)
2

)
(ε1R

λ
11)

n2+1

=
(

σλ
111σ120

Lλ
1(σ120)

)n2+1

×
(

σ211σ
n1−1−λ(n2+1)
210

σ221

L
n2+1
2 (σ210)

P1(σ210,0)
+ σ

n1−λ(n2+1)
210 B̂2(λ(n2 + 1) − n1, σ210)

)
.

From here, taking the expression of �00 into account, we can assert that

T0,n2+1(μ̂) = �
n2+1
00 σ

n1
210σ

n2
221

(
σ211

σ210P1(σ210,0)
+ σ221

L
n2+1
2 (σ210)

B̂2
(
λ(n2 + 1) − n1, σ210

))

for all μ̂ ∈ V . Exactly as in the previous cases, by applying Lemma 2.3 and Theorem B.1 it 
turns out that the function on the right hand side is C ∞ on 

(
(0, +∞) \ D̃n

0,n2+1

) × W with 

D̃n
0,n2+1 := N≥n1

n2+1 . Furthermore, by Theorem C.5 we know that the function on the left hand side 

is C ∞ on 
(
(0, +∞) \Dn

0,n2+1

)×W where, see Remark 1.1, Dn
0,n2+1 = N≥n1

n2+1 ∪N . Accordingly, 

due to D̃n
0,n2+1 ⊂ Dn

0,n2+1, by continuity we can conclude that the fourth equality in (c) is true 
on the given domain.

It only remains to compute T20 and T02 in the case that n1 = 0 and n2 = 0, respectively. Let us 
consider first the case n1 = 0. To this end we begin by computing the coefficient of s2 in the time 
function T 1 of the first regular passage. By applying (b) in Lemma A.3 for the case � = 0 and 

taking f (x1, x2) = x
n2−1
1

P2(x2,x1)
, see Table 1, we know that it is written as T 1

2 = 1
2 (U1 − V1 + W1)

with

U1 = (τ122R
2
11 + τ121R12)f (τ120,0) + τ 2

121R
2
11∂1f (τ120,0) + 2τ121τ111R

2
11∂2f (τ120,0)

= ε
n2−1/λ

1 ϕ12(ε1) + ε
n2−2/λ

1 ϕ13(ε1),

V1 = σ122f (σ120,0) + σ 2
121∂1f (σ120,0) + 2σ121σ111∂2f (σ120,0)

= σ122σ
n2−1
120

2P2(0, σ120)
+ σ 2

121σ
n2−2
120

2

(
n2 − 1

P2(0, σ120)
+ σ120∂2P

−1
2 (0, σ120)

)
+ σ121σ111σ

n2−1
120 ∂1P

−1
2 (0, σ120)

and

W1 =
τ120∫

σ120

(
(α11x

−1
λ L1(x))2∂2

2 f (x,0)

+(
α12x

−1
λ L1(x) + 2α2

11x
−2
λ L1(x)M̂1(1/λ, x)

)
∂2f (x,0)

)
dx

= α2
11

τ120∫
C1(x)xn2− 2

λ
dx

x
+ α12

τ120∫
B1(x)xn2− 1

λ
dx

x

σ120 σ120
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= α2
11

(
τ

n2− 2
λ

120 Ĉ1(2/λ − n2, τ120)︸ ︷︷ ︸
ε
n2−2/λ

1 ϕ14(ε1)

−σ
n2− 2

λ

120 Ĉ1(2/λ − n2, σ120)

)

+ α12

(
τ

n2− 1
λ

120 B̂1(1/λ − n2, τ120)︸ ︷︷ ︸
ε
n2−1/λ

1 ϕ15(ε1)

−σ
n2− 1

λ

120 B̂1(1/λ − n2, σ120)

)
.

Let us note that to rearrange U1 we use that R11 = α11ε
−1/λ

1 and R12 = 1
2α12ε

−1/λ

1 from (30)

and (37), respectively, and moreover that τ122, τ120 and τ121 vanish at ε1 = 0. On the other hand, 
to simplify W1 we apply Theorem B.1 and use that, in this case, B1(x) = L1(x)∂1P

−1
2 (0, x) due 

to n1 = 0. By the same reason, using also (23) and (27), we get that

T20 = T −
20 = T 1

2 + T 0
1 ϒ

[0]
2 = T 1

2 = 1

2
(U1 − V1 + W1)

since ϒ[0]
2 = 0. This shows in particular that U1 − V1 + W1 does not depend on ε and, since this 

is also the case for α11 and α12, we can assert that

ε
n2−1/λ

1 (ϕ12(ε1) + α12ϕ15(ε1)) + ε
n2−2/λ

1 (ϕ13(ε1) + α2
11ϕ14(ε1)) = 0

by applying Lemma 2.7 and using that λ ≈ λ0 /∈ Q. Finally, since α11 = σ111σ
1/λ
120

L1(σ120)
and α12 =

2α11S1 by (28) and (37), respectively, we obtain that

T20(μ̂) = − σ122σ
n2−1
120

2P2(0, σ120)
− σ 2

121σ
n2−2
120

2

(
n2 − 1

P2(0, σ120)
+ σ120∂2P

−1
2 (0, σ120)

)

− σ121σ111σ
n2−1
120 ∂1P

−1
2 (0, σ120)

− σ 2
111σ

n2
120

2L2
1(σ120)

Ĉ1(2/λ − n2, σ120) − S1
σ111σ

n2
120

L1(σ120)
B̂1(1/λ − n2, σ120)

for all μ̂ ∈ V . By applying Lemma 2.3 and Theorem B.1 we have that Ĉ1(2/λ − n2, σ120) is 
C ∞ in a neighbourhood of any (λ�, μ�) ∈ Ŵ such that {1/λ�,2/λ� − n2} ∩ Z≥0 = ∅. The con-
dition for the function S1, see (4), and B̂1(1/λ − n2, σ120) is 1/λ� /∈ Z≥0 and 1/λ� − n2 /∈ Z≥0, 
respectively. Therefore the function on the right hand side in the above equality is C∞ on (
(0, +∞) \ D̃n

20

) × W with D̃n
20 := 1

N ∪ 2
N≥n2

. Due to Dn
20 = 2

N≥n2
from Remark 1.1, we get 

that Dn
20 ∪ D̃n

20 = Dn
20 ∪ { 1

k
; k = 1,2, . . . , 
n2

2 � − 1
}

and, on account of the considerations in the 
second paragraph of the proof, this shows that the above equality is true in the domain given in 
the statement.

Let us turn finally to the computation of T02 for the case n2 = 0. Similarly as before we apply 

(b) in Lemma A.3 with f (x1, x2) = x
n1−1
1

P1(x1,x2)
to get that T 2

2 = 1
2 (U2 − V2 + W2). In this case 

some long but easy computations taking account of Table 1 give
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U2 = (σ212R
2
21 + σ211R22)f (σ210,0) + σ 2

211R
2
21∂1f (σ210,0) + 2σ211σ221R

2
21∂2f (σ210,0)

= ε2λ
2 σ

n1
210

(
L2(σ210)

σ221σ
λ
210

)2 (
2Z − σ211S2

σ210P1(σ210,0)

)
,

where we use that R21 = ελ
2

L2(σ210)

σ221σ
λ
210

from (29) and (31) and that R22 = −ε2λ
2 S2

(
L2(σ210)

σ221σ
λ
210

)2

from 

(36) and, for the sake of shortness, we denote

Z := σ212σ210 + (n1 − 1)σ 2
211

2σ 2
210P1(σ210,0)

+ σ 2
211

2σ210
∂1P

−1
1 (σ210,0) + σ211σ221

σ210
∂2P

−1
1 (σ210,0).

Since τ210, τ211 and τ212 vanish at ε2 = 0, one can also verify that

V2 = τ212f2(τ210,0) + τ 2
211∂1f2(τ210,0) + 2τ211τ221∂2f2(τ210,0) = ε

n1
2 ϕ16(ε2).

Furthermore, on account of the definition of the function C2 given in (3) and applying Theo-
rem B.1,

W2 =
σ210∫

τ210

(
(ελ

2x−λL2(x))2xn1∂2
2 P −1

1 (x,0) + 2ε2λ
2 xn1−2λL2(x)M̂2(λ, x)∂2P

−1
1 (x,0)

) dx

x

= ε2λ
2

σ210∫
τ210

C2(x)xn1−2λ dx

x
= ε2λ

2

(
σ

n1−2λ
210 Ĉ2(2λ − n1, σ210) − τ

n1−2λ
210 Ĉ2(2λ − n1, τ210)︸ ︷︷ ︸

ε
n1−2λ

2 ϕ17(ε2)

)
.

Notice at this point that, from (24), (26) and (27), T02 = T +
02 = (T 2

2 ε−2λ
2 )(ε1R

λ
11)

2, which shows 
in particular that T 2

2 ε−2λ
2 does not depend on ε because this is the case for T02 and, see (30), 

ε1R
λ
11 = α11. Consequently U2 − V2 + W2 does not depend on ε and so εn1−2λ

2 (ϕ16(ε2) −
ϕ17(ε2)) = c. Since λ ≈ λ0 /∈Q, this implies that ϕ16 = ϕ17 and therefore

T02 =
(

σλ
111σ120

Lλ
1(σ210)

)2
⎛
⎝σ

n1
210

(
L2(σ210)

σ221σ
λ
210

)2 (
Z − σ211S2

2σ210P1(σ210,0)

)

+1

2
σ

n1−2λ
210 Ĉ2(2λ − n1, σ210)

⎞
⎠

= �2
00σ

n1
210

(
Z − σ211S2

2σ210P1(σ210,0)
+ σ 2

221

2L2
2(σ210)

Ĉ2(2λ − n1, σ210)

)
,

for all μ̂ ∈ V . Exactly as before, by applying Lemma 2.3 and Theorem B.1 we can assert that 
Ĉ2(2λ − n1, σ210) is C ∞ in a neighbourhood of any (λ�, μ�) ∈ Ŵ such that {λ�,2λ� − n1} ∩
Z≥0 = ∅. The corresponding condition for the function S2, see (4), is λ� /∈ Z≥0. Thus the 
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function on the right hand side in the above equality is C ∞ on 
(
(0, +∞) \ D̃n

02

) × W with 

D̃n
02 := N ∪ N≥n1

2 . Due to Dn
02 = N

2 from Remark 1.1, it turns out that Dn
20 ∪ D̃n

20 = Dn
20 and, 

on account of the considerations in the second paragraph of the proof, this shows that the above 
equality is true in the domain given in the statement. This concludes the proof of the result.

Lemma 2.8. Let �(x, y), with x = (x1, x2, . . . , xn) ∈ RN and y ∈ R, be a continuous function in 
a neighbourhood of (0, 0) ∈ RN × R. If y�(x, y) is analytic in a neighbourhood of (0, 0) then 
�(x, y) is analytic in a neighbourhood of (0, 0).

Proof. By the Weierstrass Division Theorem (see [11, Theorem 1.8] or [15, Theorem 6.1.3]) 
there exist a neighbourhood U of 0 ∈ RN and an open interval I containing y = 0 such that 
y�(x, y) = yg(x, y) + r(x) with g ∈ C ω(U × I ) and r ∈ C ω(I ). The evaluation of this equality 
at y = 0 yields r ≡ 0. Consequently �(x, y) = g(x, y) for all (x, y) ∈ U × (I \ {0}) and, by the 
continuity of � in a neighbourhood of (0, 0), we easily get � ≡ g on U × I . This proves the 
result because g ∈ C ω(U × I ).

Proposition 2.9. In the analytic setting (see Remark 1.2), the following assertions hold:

(a) The coefficient �ij of the Dulac map is C ω on ((0, +∞) \ D0
ij ) × W for (i, j) ∈

{(0, 0), (1, 0), (0, 1), (1, 1)}.
(b) For each (i, j) ∈ {(n1, 0), (0, n2), (n1 + 1, 0), (0, n2 + 1)}, the coefficient Tij of the Dulac 

time is analytic on ((0, +∞) \Dn
ij ) ×W . This is also the case for (i, j) = (2, 0) and (i, j) =

(0, 2) assuming n1 = 0 and n2 = 0, respectively.

Proof. By applying Lemma 2.3 we know that, for i = 1, 2, the functions Li(u; μ̂), Mi(u; μ̂) and 
Ai(u; μ̂) given in (3) are analytic on Ii × Ŵ . Let us recall here that I1 and I2 are the intervals of 
R containing 0 as introduced in (2). In addition,

• the functions B1(u; μ̂) and C1(u; μ̂) are analytic on I1 × ((0, +∞) \ 1
N ) × W , and

• the functions B2(u; μ̂) and C2(u; μ̂) are analytic on I2 × ((0, +∞) \N) × W .

Moreover, since the parametrisation σi(s; μ̂) of the transverse section �i is analytic by assump-
tion for i = 1, 2, from (4) we get that S1(λ, μ) and S2(λ, μ) are analytic on ((0, +∞) \ 1

N ) × W

and ((0, +∞) \N) × W , respectively.
The fact that each coefficient �ij (λ, μ) in assertion (b) of Theorem A is analytic on 

((0, +∞) \ D0
ij ) × W follows readily from regularity properties stated in the previous paragraph 

because, see Remark 1.1,

D0
00 = ∅, D0

01 = N, D0
10 = 1

N
and D0

11 = N ∪ 1

N
.

This proves assertion (a).
By the first assertion in (d) of Theorem B.1, the regularity properties established in the first 

paragraph also imply that each coefficient Tij (λ, μ) listed in (c) of Theorem A is analytic on 
((0, +∞) \ Dn

ij ) × W , with the exception of the special values

• λ = 1 with k ∈ {
1, 2, . . . , 
 n2 � − 1

}
for Tn +1,0(λ, μ), and
k n1+1 1
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• λ = 1
k

with k ∈ {
1, 2, . . . , 
n2

2 � − 1
}

for T20(λ, μ),

where the respective formula does not hold. Indeed this follows using that, see Remark 1.1 again, 
Dn

00 = ∅,

Dn
n1,0 =

n1⋃
i=1

i

N≥n2

, Dn
0,n2

=
{ N≥n1

n2
if n2 � 1,

∅ if n2 = 0,

Dn
n1+1,0 =

n1+1⋃
i=1

i

N≥n2

and Dn
0,n2+1 = N≥n1

n2 + 1
∪N,

together with Dn
20 = 2

N≥n2
for n1 = 0 and Dn

02 = N
2 for n2 = 0. For instance, due to A2(u; μ̂) ∈

C ω(I2 × Ŵ ), the first assertion in (d) of Theorem B.1 implies that Â2(α, u; μ̂) is analytic on 
(R \Z≥0) × I2 × Ŵ and hence

T0,n2(μ̂) = �
n2
00

σ
n1
210σ

n2
221

L
n2
2 (σ210)

Â2(n2λ − n1, σ210)

is analytic at λ = λ0 provided that n2λ0 − n1 /∈ Z≥0, i.e., λ0 /∈ Dn
0,n2

. The analysis of the other 
coefficients follows similarly and the details are omitted for the sake of brevity.

So let us focus on the analyticity of Tn1+1,0 and T20 at the special values listed above. In order 
to study the first case let us fix λ0 = 1

k
with k ∈ {1, . . . , 
 n2

n1+1� − 1}. Note that we can write, see 
(c) in Theorem A,

Tn1+1,0 = f0 + f1S1Â1(n1/λ − n2, σ120) + f2B̂1
(
(n1 + 1)/λ − n2, σ120

)
(38)

where, see (3), B1(u) = g1(u)M̂1(1/λ, u) + g2(u) and S1 = f3 + f4M̂1(1/λ, σ120) with 
gi(u; μ̂) ∈ C ω(I1 × Ŵ ) and fi(μ̂) ∈ C ω(Ŵ ). That being said we argue as follows:

1. Â1(n1/λ − n2, σ120) is analytic at λ = λ0 due to n1
λ0

− n2 = n1k − n2 ∈ Z<0 by the first 
assertion in (d) of Theorem B.1.

2. (λ − λ0)M̂1(1/λ, u; μ̂), and consequently (λ − λ0)B1(u; μ̂) and (λ − λ0)S1(μ̂), extends 
analytically at λ = λ0 by the second assertion in (d) of Theorem B.1 since 1/λ0 = k ∈ Z≥0,

3. and this implies (in this case by applying the first assertion) that (λ − λ0)B̂1((n1 + 1)/λ −
n2, σ120) extends analytically at λ = λ0 because n1+1

λ0
− n2 = (n1 + 1)k − n2 ∈Z<0.

Taking this into account, from (38) it follows readily that (λ −λ0)Tn1+1,0(μ̂) extends analytically 
at λ = λ0. On the other hand, since λ0 /∈ Dn

n1+1,0, note that Tn1+1,0(μ̂) is smooth at λ = λ0 by (b)

in Theorem C.5. Accordingly, in view of Lemma 2.8, we can assert that Tn1+1,0(μ̂) is analytic at 
λ = λ0 as desired.

Let us turn next to the second case. So let us fix λ0 = 1
k

with k ∈ {1, . . . , 
n2
2 � −1} and observe 

that from (c) in Theorem A we get that if n1 = 0 then we can write

T20 = f0 + f1Ĉ1(2/λ − n2, σ120) + f2S1B̂1(1/λ − n2, σ120) (39)
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with, see (3), C1(u) = B1(u)
(
L1(u) + 2M̂1(1/λ, u)

)
and S1 = f3 + f4M̂1(1/λ, σ120) for some 

fi ∈ C ω(Ŵ ). We point out that in this case, since n1 = 0, B1(u) = L1(u)∂1P
−1
2 (0, u) is analytic 

on I1 × Ŵ . Then we proceed as follows:

1. B̂1(1/λ − n2, σ120) is analytic at λ = λ0 due to 1/λ0 − n2 = k − n2 ∈ Z<0 by the first 
assertion in (d) of Theorem B.1.

2. (λ − λ0)M̂1(1/λ, u; μ̂) extends analytically at λ = λ0 by the second assertion in (d) of 
Theorem B.1 because 1/λ0 = k ∈Z≥0 and,

3. consequently, this is so for (λ − λ0)S1(μ̂) and (λ − λ0)Ĉ1(2/λ − n2, σ120), the latter by the 
first assertion in (d) of Theorem B.1 since 2/λ0 − n2 = 2k − n2 ∈Z<0.

On account of this, from (39) we get that (λ − λ0)T20(μ̂) extends analytically at λ = λ0. Exactly 
as before, it happens that T20(μ̂) is smooth at λ = λ0 by (b) in Theorem C.5 due to λ0 /∈ Dn

20. 
Therefore, by Lemma 2.8 again, we can assert that T20(μ̂) is analytic at λ = λ0 as desired. This 
proves the validity of (b).

Example 2.10. Let us illustrate the application of Theorem A with the computation of two coef-
ficients for a specific range of hyperbolicity ratios. For instance, if n1 = 0 and n2 > 0 then

T0n2(μ̂) =
(

σ221�00

L2(σ210)

)n2

Â2(n2λ,σ210)

=
(

σ221�00

L2(σ210)

)n2

⎛
⎝−A2(0)

n2λ
+ σ

n2λ
210

σ210∫
0

(A2(u) − A2(0)) u−n2λ
du

u

⎞
⎠ .

Here the first equality follows by (c) in Theorem A (and it is valid for all λ /∈ Dn
0n2

= N
n2

, see 
Remark 1.1), whereas the second one follows by applying (b) in Theorem B.1 with k = 1 and 
assuming n2λ < 1 additionally. In [18] we study the case {n1 = 0, n2 > 0} and the integral ex-
pression for T0n2 obtained after the second equality is precisely the one that we give in that 
paper, which only holds for λ ∈ (0, 1

n2
) because the integrand has a pole of order n2λ + 1 at 

u = 0. Similarly, if n1 = 0 and n2 > 0 then

T10(μ̂) = −σ
n2
120

(
σ121

σ120P2(0, σ120)
+ σ111

L1(σ120)
B̂1(1/λ − n2, σ120)

)

= −σ
n2
120

⎛
⎝ σ121

σ120P2(0, σ120)
+ σ111

L1(σ120)
σ

1/λ−n2
120

σ120∫
0

B1(u)un2−1/λ du

u

⎞
⎠ .

In this case the first equality follows by (c) in Theorem A (and it is valid as long as λ /∈ Dn
10 =

1
N≥n2

, see Remark 1.1) and the second one follows by applying (b) in Theorem B.1 with k = 0

provided that 1/λ − n2 < 0. The integral expression for T10 obtained after the second equality 
is precisely the one that we give in [18], which only converges for λ ∈ ( 1

n2
, +∞). In [21] we 

extend the results in [18] to arbitrary n = (n1, n2) but still in the analytic setting and assuming 
the family linearisation property (FLP). The coefficient formulas given in that paper are also 
particular cases of the ones in Theorem A.
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3. Poles and residues of the coefficients

Let us recall, see Theorem C.5, that the coefficient �ij (λ, μ) of the Dulac map is C ∞ on 
((0, +∞) \ D0

ij ) × W for each (i, j) ∈ �0 and the coefficient Tij (λ, μ) of the Dulac time is C ∞
on ((0, +∞) \ Dn

ij ) × W for each (i, j) ∈ �n. The next result is addressed to the behaviour of 
these coefficients at the boundaries of their respective domains of definition.

Lemma 3.1. Consider the coefficients �ij and Tij of the Dulac map and the Dulac time, respec-
tively, given by Theorem C.5. The following assertions hold:

(a) If (i, j) ∈ �0 and λ0 ∈ D0
ij then there exists � ∈Z≥0 such that μ̂ �→ (λ −λ0)

��ij (μ̂) extends 
C ∞ to {λ0} × W .

(b) If (i, j) ∈ �n and λ0 ∈ Dn
ij then there exists � ∈Z≥0 such that μ̂ �→ (λ −λ0)

�Tij (μ̂) extends 
C ∞ to {λ0} × W .

Moreover, setting λ0 = p/q with gcd(p, q) = 1, the estimates � � i
p

+ j
q

� i + j hold in both 
cases.

Proof. For convenience we prove (b) first. Due to λ0 ∈ Dn
ij , we have λ0 ∈ Q and we write 

λ0 = p/q with gcd(p, q) = 1. Setting rn := max{r ∈ Z≥0 : (i, j) + r(p, −q) ∈ �n}, we define 
(in, jn) = (i, j) + rn(p, −q). Then λ0 ∈ Dn

in,jn
, A n

injnλ0

= ∅, see Definition C.4, and we take 

� := maxA n
injnλ0

. By (b2) in Theorem C.5 we know that T λ0
in,jn

(w; μ̂) ∈ C ∞(Û )[w], where Û is 
an open neighbourhood of {λ0} × W , and

T
λ0
injn

(w; μ̂) =
∑

r∈A n
injnλ0

Tin−rp,jn+rq(μ̂)(1 + αw)r for λ 
= λ0,

where α = p − λq . Let us write T
λ0
injn

(w; μ̂) = ∑�
k=0 Ak(μ̂)wk with Ak ∈ C ∞(Û). For 

convenience we define u := 1 + αw, so that w = α−1(u − 1) for α 
= 0. Thus wk =
α−k

∑k
r=0

(
k
r

)
(−1)k−rur and, for λ 
= λ0,

T
λ0
injn

(w; μ̂) =
�∑

r=0

(
�∑

k=r

Ak(μ̂)α−k

(
k

r

)
(−1)k−r

)
(1 + αw)r .

Accordingly this shows that Tin−rp,jn+rq(μ̂) = ∑�
k=r Ak(μ̂)α−k

(
k
r

)
(−1)k−r provided that r ∈

A n
injnλ0

and λ 
= λ0. With regard to the first condition let us observe that rn ∈ A n
injnλ0

by con-

struction. Hence Ti,j (μ̂) = ∑�
k=rn

Ak(μ̂)α−k
(

k
rn

)
(−1)k−rn and, due to α = q(λ0 − λ),

(λ − λ0)
�Ti,j (μ̂) = (−1)rn

�∑
k=rn

q−kAk(μ̂)(λ − λ0)
�−k

(
k

rn

)
for λ 
= λ0.

Since Ak ∈ C ∞(Û), this shows that μ̂ �→ (λ − λ0)
�Tij (μ̂) extends C ∞ to {λ0} × W and 

proves (b).
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The proof of (a) follows verbatim replacing n = (n1, n2) by 0 = (0, 0) and is omitted for the 
sake of shortness. Let us turn now to the proof of the last assertion in the statement. The estimate 
for the case in (a), i.e., (i, j) ∈ �0 and λ0 ∈ D0

ij , is clear because

maxA 0
i0j0λ0

� i0

p
= i

p
+ r0 � i

p
+ j

q
� i + j.

Here the first inequality follows using that A 0
i0j0λ0


= ∅ and (i0 − rp, j0 + rq) ∈ �0 = Z≥0 ×Z≥0

for all r ∈ A 0
i0j0λ0

, see Definition C.4, the equality is due to (i0, j0) := (i, j) + r0(p, −q), the 
second inequality is a consequence of j − r0q = j0 � 0 and the third inequality is evident since 
p, q ∈ N . Finally, the estimate for the case in (b), i.e., (i, j) ∈ �n and λ0 ∈ Dn

ij , is a consequence 
of the previous discussion and the fact that, by construction, A n

injnλ0

= ∅ and maxA n

injnλ0
�

maxA 0
i0j0λ0

. This completes the proof of the result.

By Lemma 3.1 the coefficients �ij and Tij have poles at D0
ij ×W and Dn

ij ×W , respectively, 
of order at most i + j . This is a general result, meaning that it holds for any (i, j). Theorem A
provides the explicit expression of some of these coefficients and the rest of the present section 
is devoted to give sharps bounds for the order of their poles. We will also compute the residues 
of these coefficients at their poles, which determine the values of the leading terms of the poly-
nomials �λ0

ij (ω; μ̂) at λ0 ∈ D0
ij and T λ0

ij (ω; μ̂) at λ0 ∈ Dn
ij (see Theorem 4.1 and Theorem 4.3, 

respectively, in Section 4). We illustrate the use of the residues for this purpose in Example 4.2. 
Let us also advance that at the end of the section we will finish the proof of Corollary B, which 
shows that in the analytic setting these coefficients are meromorphic on Ŵ = (0, +∞) × W .

With regard to the next statement we recall that D0
01 = N , D0

10 = 1
N and D0

11 = N ∪ 1
N (see 

Remark 1.1).

Proposition 3.2. The following assertions hold:

(a) For any μ̂0 = (λ0, μ0) ∈ D0
10 × W , the function μ̂ �→ (λ − λ0)�10(μ̂) extends C ∞ at μ̂ =

μ̂0, and if λ0 = 1
i

with i ∈N then lim
μ̂→μ̂0

(λ − λ0)�10(μ̂) = −�00σ111σ
i
120

L1(σ120)i
3

M
(i)
1 (0)

i!
∣∣
μ̂=μ̂0

.

(b) For any μ̂0 = (λ0, μ0) ∈ D0
01 × W , the function μ̂ �→ (λ − λ0)�01(μ̂) extends C ∞ at μ̂ =

μ̂0, and if λ0 = i ∈ N then lim
μ̂→μ̂0

(λ − λ0)�01(μ̂) = −�2
00σ221σ

i
210

L2(σ210)

M
(i)
2 (0)

i!
∣∣
μ̂=μ̂0

.

(c) For any μ̂0 = (λ0, μ0) ∈ (D0
11 \ {1}) × W , the function μ̂ �→ (λ − λ0)�11(μ̂) extends C ∞

at μ̂ = μ̂0 and

(c1) if λ0 = 1
i

with i ∈N≥2 then lim
μ̂→μ̂0

(λ − λ0)�11(μ̂) = 2�2
00σ111σ

i
120

L1(σ120)i
3

M
(i)
1 (0)

i! S2
∣∣
μ̂=μ̂0

,

(c2) if λ0 = i ∈ N≥2 then lim
μ̂→μ̂0

(λ − λ0)�11(μ̂) = − 2i�2
00σ221σ

i
210

L2(σ210)

M
(i)
2 (0)

i! S1
∣∣
μ̂=μ̂0

.

Finally, for any μ̂0 = (λ0, μ0) ∈ {1} × W , the function μ̂ �→ (λ − λ0)
2�11(μ̂) extends C ∞

at μ̂ = μ̂0 and lim (λ − λ0)
2�11(μ̂) = 2�2

00
σ111σ120M

′
1(0)

L1(σ120))

σ221σ210M
′
2(0)

L2(σ210)

∣∣
μ̂=μ̂0

.

μ̂→μ̂0
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Proof. In order to show (a) we fix μ̂0 = (1/i, μ0) ∈ D0
10 ×W with i ∈N and note that, by (b) in 

Theorem A, �10 = �00λS1 where �00 ∈ C ∞(Ŵ ) and, see (4), S1 = f1 − σ111
L1(σ120)

M̂1(1/λ, σ120)

with f1 ∈ C ∞(Ŵ ). On account of this and (c) in Theorem B.1, the function (λ − 1/i)�10(μ̂)

extends C ∞ at μ̂ = μ̂0 and

lim
μ̂→μ̂0

(λ − 1/i)S1 = −σ111

L1(σ120)

∣∣∣
μ̂=μ̂0

lim
μ̂→μ̂0

i − 1/λ

i/λ
M̂1(1/λ,σ120)

= −σ111

L1(σ120)i2

M
(i)
1 (0)

i! σ i
120

∣∣∣
μ̂=μ̂0

. (40)

Therefore limμ̂→μ̂0(λ − 1/i)�10(μ̂) = −�00σ111σ
i
120

L1(σ120)i
3

M
(i)
1 (0)

i!
∣∣
μ̂=μ̂0

.

To prove (b) we fix μ̂0 = (i, μ0) ∈ D0
01 × W with i ∈ N and note that, by (b) in Theorem A, 

�01 = −�2
00S2 where S2 = f2 − σ221

L2(σ210)
M̂2(λ, σ210) with f2 ∈ C ∞(Ŵ ). Exactly as before, (c)

in Theorem B.1 implies that the function (λ − i)�01(μ̂) extends C ∞ at μ̂ = μ̂0 and, moreover, 
that

lim
μ̂→μ̂0

(λ− i)S2 = σ221

L2(σ210)

∣∣∣
μ̂=μ̂0

lim
μ̂→μ̂0

(i −λ)M̂2(λ,σ210) = σ221

L2(σ210)

M
(i)
2 (0)

i! σ i
210

∣∣∣
μ̂=μ̂0

(41)

and, consequently, limμ̂→μ̂0(λ − i)�01(μ̂) = −�2
00σ221σ

i
210

L2(σ210)

M
(i)
2 (0)

i!
∣∣
μ̂=μ̂0

.
Let us turn to the proof of (c). To this end we note that, by (b) in Theorem A, �11 =

−2�2
00λS1S2. If μ̂0 = (1/i, μ̂0) ∈ D0

11 × W with i ∈N≥2 then S2 is smooth at μ̂ = μ̂0 by (a) in 
Theorem B.1 and therefore from (40) it follows that

lim
μ̂→μ̂0

(λ − 1/i)�11(μ̂) = 2�2
00σ111σ

i
120

L1(σ120)i3

M
(i)
1 (0)

i! S2

∣∣∣
μ̂=μ̂0

.

Exactly as before, the fact that (λ − 1/i)�11(μ̂) extends C ∞ at μ̂ = μ̂0 follows by (c) in The-
orem B.1. This shows the assertion in (c1). Similarly if μ̂0 = (i, μ̂0) ∈ D0

11 × W with i ∈ N≥2
then S1 is smooth at μ̂ = μ̂0 by (a) in Theorem B.1 and, from (41),

lim
μ̂→μ̂0

(λ − i)�11(μ̂) = −2i�2
00σ221σ

i
210

L2(σ210)

M
(i)
2 (0)

i! S1

∣∣∣
μ̂=μ̂0

which proves (c2). Finally, if μ̂0 = (1, μ0) with μ0 ∈ W , the combination of (40) and (41) easily 
implies that

lim
μ̂→μ̂0

(λ − 1)2�11(μ̂) = 2�2
00

∣∣∣
μ̂=μ̂0

lim
μ̂→μ̂0

(λ − 1)S1 lim
μ̂→μ̂0

(λ − 1)S2

= 2�2
00σ111σ120σ221σ210

L1(σ120)L2(σ210)
M ′

1(0)M ′
2(0)

∣∣∣
μ̂=μ̂0
79
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and, on the other hand, (c) in Theorem B.1 shows that (λ − 1)2�11(μ̂) extends C ∞ at μ̂ = μ̂0. 
This proves the last assertion in (c) and concludes the proof of the result.

We omit the proof of the next result for the sake of brevity since it is very similar to the 

previous one. With regard to its statement we recall that Dn
0,n2

= N≥n1
n2

and Dn
n1,0

= ⋃n1
i=1

i
N≥n2

(see Remark 1.1).

Proposition 3.3. The following assertions hold:

(a) For any μ̂0 = (λ0, μ0) ∈ Dn
0n2

× W with n2 > 0, the function μ̂ �→ (λ − λ0)T0n2(μ̂)

extends C ∞ at μ̂ = μ̂0, and if λ0 = n1+i
n2

with i ∈ Z≥0 then lim
μ̂→μ̂0

(λ − λ0)T0n2(μ̂) =

−�
n2
00

n2

σ
n1+i

210 σ
n2
221

L
n2
2 (σ210)

A
(i)
2 (0)

i!
∣∣
μ̂=μ̂0

.

(b) For any μ̂0 = (λ0, μ0) ∈ Dn
n10 × W with λ0 /∈ n1

N≥n2
, the function Tn10(μ̂) extends C ∞ at 

μ̂ = μ̂0. In the case that λ0 = n1
n2+i

with i ∈ Z≥0, then the function μ̂ �→ (λ − λ0)Tn10(μ̂)

extends C ∞ at μ̂ = μ̂0 and lim
μ̂→μ̂0

(λ − λ0)Tn10(μ̂) = − n1
(n2+i)2

σ
n1
111σ

n2+i

120

L
n1
1 (σ210)

A
(i)
1 (0)

i!
∣∣
μ̂=μ̂0

.

Let us recall in regard to the next statement that Dn
0,n2+1 = N≥n1

n2+1 ∪N , see Remark 1.1.

Proposition 3.4. The following assertions hold:

(a) For any μ̂0 = (λ0, μ0) ∈ Dn
0,n2+1 ×W with λ0 ∈N≥ n1

n2
, the function μ̂ �→ (λ −λ0)

2T0,n2+1(μ̂)

extends C ∞ at μ̂ = μ̂0, and if λ0 = i ∈N≥ n1
n2

then

lim
μ̂→μ̂0

(λ − λ0)
2T0,n2+1(μ̂) = n2�

n2+1
00 σ

(n2+1)i
210 σ

n2+1
221

(n2 + 1)L
n2+1
2 (σ210)

M
(i)
2 (0)

i!
A

(n2i−n1)
2 (0)

(n2i − n1)!
∣∣∣
μ̂=μ̂0

.

(b) For any μ̂0 = (λ0, μ0) ∈ Dn
0,n2+1 ×W with λ0 /∈N≥ n1

n2
, the function μ̂ �→ (λ −λ0)T0,n2+1(μ̂)

extends C ∞ at μ̂ = μ̂0, and
(b1) if λ0 = i ∈ N<

n1
n2

then, setting i1 := (n2 + 1)i − n1,

lim
μ̂→μ̂0

(λ − λ0)T0,n2+1(μ̂) = −�
n2+1
00 σ

n2+1
221 σ

n1
210

L
n2+1
2 (σ210)

(
n2

M
(i)
2 (0)

i! σ i
210Â2(in2 − n1, σ210)

+ n2σ
i1
210

(n2 + 1)i0!
i1∑

j=0

(
i1

j

)
M

(j)

2 (0)A
(i1−j)

2 (0)

j − i
+ R

)∣∣∣∣∣
μ̂=μ̂0

,

where R = σ
i1
210 ∂

i1
u

(
L

n2+1
(u)∂2P

−1(u,0)
) ∣∣ for i1 � 0 and R = 0 otherwise,
(n2+1)i1! 2 1 u=0
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(b2) if λ0 = n1+i
n2+1 /∈ N with i ∈ Z≥0, then lim

μ̂→μ̂0

(λ − λ0)T0,n2+1(μ̂) =

− �
n2+1
00 σ

n2+1
221 σ

n1+i

210

(n2+1)L
n2+1
2 (σ210)

B
(i)
2 (0)

i!
∣∣
μ̂=μ̂0

.

Proof. For the sake of convenience we write T0,n2+1, see (c) in Theorem A, as

T0,n2+1 = f0

(
f1 + f2B̂2((n2 + 1)λ − n1, σ210)

)
(42)

with f0 := �
n2+1
00 σ

n1
210σ

n2
221, f1 := σ211

σ210P1(σ210,0)
, f2 := σ221

L
n2+1
2 (σ221)

and where, recall (3),

B2(u) = n2A2(u)M̂2(λ,u) + f3(u) with f3(u):= L
n2+1
2 (u)∂2P

−1
1 (u,0).

That being said we begin with the proof of (b2). With this aim we note first that B2(u; λ, μ) is 
smooth along λ = λ0 /∈ Z≥0 because so is M̂2(λ, u; μ̂) by (a) in Theorem B.1. For this reason, 
since n1+i

n2+1 /∈ Z≥0 by assumption, we can apply Corollary B.4 taking α = λ, ν = (λ, μ), α0 =
n1+i
n2+1 , ν0 = ( n1+i

n2+1 , μ0), κ1 = n2 + 1 and κ2 = −n1 to conclude that

lim
μ̂→μ̂0

(
n1 + i

n2 + 1
− λ

)
B̂2

(
(n2 + 1)λ − n1, σ210

) = B
(i)
2 (0)

(n2 + 1)i!σ
i
210

∣∣∣
μ̂=μ̂0

Hence, on account of (42) and by applying Corollary B.4, the function μ̂ �→ (
λ − n1+i

n2+1

)
T0,n2+1(μ̂)

extends C ∞ at μ̂ = μ̂0 and tends to − �
n2+1
00 σ

n2+1
221 σ

n1+i

210

(n2+1)L
n2+1
2 (σ210)

B
(i)
2 (0)

i!
∣∣
μ̂=μ̂0

as μ̂ → μ̂0 and this shows 

(b2).
Let us turn now to the proof of assertion (a). So assume that λ0 = i ∈ N with n2i − n1 � 0

and observe that, by Corollary B.4, the function μ̂ �→ (λ − i)2f̂3((n2 + 1)λ − n1, σ210) extends 
C ∞ at μ̂ = μ̂0 and tends to 0 as μ̂ → μ̂0. Thus, by applying firstly (a) in Corollary B.3 and 
secondly (a) in Lemma B.5 with {α = λ, ν = (λ, μ), p = n1, q = n2}, from (42) we can assert 
that μ̂ �→ (λ − i)2T0,n2+1(μ̂) extends C ∞ at μ̂ = μ̂0 and, moreover,

lim
μ̂→μ̂0

(λ − i)2T0,n2+1(μ̂) = n2f0f2
∣∣
μ̂=μ̂0

σ
n2i−n1
210

n2 + 1

M
(i)
2 (0)

i!
A

(n2i−n1)
2 (0)

(n2i − n1)!
∣∣∣
μ̂=μ̂0

,

which proves (a). In order to show (b1) we consider λ0 = i ∈N with n2i − n1 < 0. In this case, 

if i1 := (n2 + 1)i − n1 � 0 then limμ̂→μ̂0(λ − i)f̂3((n2 + 1)λ − n1, σ210) = −σ
i1
210

n2+1
f

(i1)

3 (0)

i1!
∣∣
μ̂=μ̂0

by Corollary B.4, whereas if i1 < 0 then limμ̂→μ̂0(λ − i)f̂3((n2 + 1)λ − n1, σ210) = 0 by (a)

in Theorem B.1. Taking this into account the assertion in (b1) follows by applying firstly (a) in 
Corollary B.3 and secondly (b) in Lemma B.5 with {α = λ, ν = (λ, μ), p = n1, q = n2}. This 
concludes the proof of the result.

Regarding the next statement let us recall, see Remark 1.1, that Dn
n +1,0 = ⋃n1+1

i=1
i .
1 N≥n2
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Proposition 3.5. Let us consider any μ̂0 = (λ0, μ0) ∈ Dn
n1+1,0 × W . Then the following asser-

tions hold:

(a) Case λ0 ∈ 1
N .

(a1) If λ0 = 1
i

with i ∈ N≥ n2
n1

then the function μ̂ �→ (λ − λ0)
2Tn1+1,0(μ̂) extends C ∞ at 

μ̂ = μ̂0 and

lim
μ̂→μ̂0

(λ − λ0)
2Tn1+1,0(μ̂) = − σ

n1+1
111 σ

(n1+1)i
120

(n1 + 1)i2L
n1+1
1 (σ120)

M
(i)
1 (0)

i!
A

(n1i−n2)
1 (0)

(n1i − n2)!

∣∣∣∣∣
μ̂=μ̂0

.

(a2) If λ0 = 1
i

with i ∈ N ∩ [ n2
n1+1 , n2

n1
) then the function μ̂ �→ (λ − λ0)Tn1+1,0(μ̂) ex-

tends C ∞ at μ̂ = μ̂0 and, setting i0 = (n1 + 1)i − n2,

lim
μ̂→μ̂0

(λ − λ0)Tn1+1,0(μ̂) = − σ
n1+1
111 σ

i(n1+1)
120

(n1 + 1)i2i0!Ln1+1
1 (σ120)

(
n1

i0∑
j=0

(
i0

j

)
M

(j)

1 (0)A
(i0−j)

1 (0)

j − i

+ ∂i0
u

(
L

n1+1
1 (u)∂1P

−1
2 (u,0)

) ∣∣
u=0

)∣∣∣∣∣
μ̂=μ̂0

.

(a3) If λ0 = 1
i

with i ∈N<
n2

n1+1
then Tn1+1,0(μ̂) extends C ∞ to {λ0} × W .

(b) Case λ0 ∈
(

n1
N≥n2

∪ n1+1
N≥n2

)
\ 1
N .

(b1) If λ0 = n1
n2+i

/∈ n1+1
N≥n2

with i ∈ Z≥0 then the function μ̂ �→ (λ − λ0)Tn1+1,0(μ̂) ex-

tends C ∞ at μ̂ = μ̂0 and lim
μ̂→μ̂0

(λ − λ0)Tn1+1,0(μ̂) = − n1λ0σ
n1
111σ

n2+i

120

(n2+i)L
n1
1 (σ120)

A
(i)
1 (0)

i! S1

∣∣∣
μ̂=μ̂0

.

(b2) If λ0 = n1+1
n2+i

/∈ n1
N≥n2

with i ∈ Z≥0 then μ̂ �→ (λ − λ0)Tn1+1,0(μ̂) extends C ∞ at μ̂ =
μ̂0 and

lim
μ̂→μ̂0

(λ − λ0)Tn1+1,0(μ̂) = n1λ0σ
n1+1
111 σ

n2+i
120

(n2 + i)L
n1+1
1 (σ120)

(A1M̂1(
1
λ0

, ·))(i)(0)

i!

∣∣∣∣∣
μ̂=μ̂0

.

(b3) If λ0 = n1
n2+i1

= n1+1
n2+i2

for some i1, i2 ∈ Z≥0 then the function μ̂ �→ (λ −λ0)Tn1+1,0(μ̂)

extends C ∞ at μ̂ = μ̂0 and

lim
μ̂→μ̂0

(λ − λ0)Tn1+1,0(μ̂)

= n1λ0σ
n1
111

L
n1
1 (σ120)

(
− σ

n2+i1
120

n2 + i1

A
(i1)
1 (0)

i1! S1 + σ
n2+i2
120

n2 + i2

(A1M̂1(
1
λ0

, ·))(i2)(0)

i2!

)∣∣∣∣∣
μ̂=μ̂0

.

(c) Finally, if λ0 /∈ 1 ∪ n1 ∪ n1+1 then Tn1+1,0(μ̂) extends C ∞ at μ̂ = μ̂0.
N N≥n2 N≥n2
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For the sake of brevity we omit the proof of Proposition 3.5. Let us only mention for reader’s 
convenience that, by (c) in Theorem A,

Tn1+1,0 = f0

(
f1 + f2B̂1((n1 + 1)/λ − n2, σ120) + f3S1Â1(n1/λ − n2, σ120)

)

with fi ∈ C ∞(Ŵ ). This expression is similar to the one in (42) for T0,n2+1 that we analysed in 
the proof of Proposition 3.4, but with the additional summand f3S1Â1. This extra term increases 
the number of cases to be studied in terms of λ0 but they follow using exactly the same arguments 
as those explained in the proofs of Propositions 3.2 and 3.4.

Lastly we state a result concerning the poles of the coefficients T20 and T02 in the cases n1 = 0
and n2 = 0, respectively. For the sake of shortness we do not specify the value of the residues, 
which can be computed using the same techniques as in the previous results. For the same reason 
we neither include the proof. With regard to its statement let us recall that Dn

20 = 2
N≥n2

and 

Dn
02 = N

2 , see Remark 1.1.

Proposition 3.6. The following assertions hold:

(a) Assume that n1 = 0 and consider any μ̂0 = (λ0, μ0) ∈ Dn
20 × W .

(a1) If λ0 ∈ 1
N≥n2

then the function μ̂ �→ (λ − λ0)
2T20(μ̂) extends C ∞ at μ̂0.

(a2) If λ0 /∈ 1
N≥n2

then the function μ̂ �→ (λ − λ0)T20(μ̂) extends C ∞ at μ̂0.

(b) Assume that n2 = 0 and consider any μ̂0 = (λ0, μ0) ∈ Dn
02 × W .

(b1) If λ0 ∈ N≥n1 then the function μ̂ �→ (λ − λ0)
2T02(μ̂) extends C ∞ at μ̂0.

(b2) If λ0 ∈N<n1 ∪
(
N≥n1

2 \N
)

then the function μ̂ �→ (λ −λ0)T02(μ̂) extends C ∞ at μ̂0.

(b3) If λ0 ∈ N<n1
2 \N then T0n2(μ̂) extends C ∞ at μ̂0.

We are now in position to conclude the proof of Corollary B.

Proof of Corollary B. In the analytic setting (see Remark 1.2) we know by Proposition 2.9
that the coefficients �ij and Tij listed in Theorem A are analytic on ((0, +∞) \ D0

ij ) × W and 

((0, +∞) \D0
ij ) ×W , respectively. The fact that each �ij is meromorphic on Ŵ = (0, +∞) ×W

with poles of order at most two along D0
ij × W follows by realising that in the analytic setting 

the statement of Proposition 3.2 is true replacing C ∞ by C ω, i.e., that the extensions are ana-
lytic. Indeed, the proof of this analytic version is literally the same but appealing to the analytic 
assertions in Theorem B.1 instead of the smooth counterparts. More specifically, using (d) in the 
place of (a) and (c). Similarly, the fact that each Tij is meromorphic on Ŵ = (0, +∞) ×W with 
poles of order at most two along Dn

ij × W follows by noting that in the analytic setting the state-
ments of Propositions 3.3, 3.4, 3.5 and 3.6 are true replacing C ∞ by C ω. In this case, besides 
appealing to (d) in Theorem B.1 in the place of (a) and (c), we apply the analytic versions of 
Corollary B.4 and Lemma B.5, i.e., taking � = ω instead of � = ∞. This completes the proof 
of the result.
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4. First monomials in the asymptotic expansions

Theorem A is the main result of the present paper and it is intended to be applied in com-
bination with Theorem C.5 (which in fact gathers our main results in [23]). Because of this, in 
order to ease the applicability, we next particularise Theorem C.5 to specify the first monomials 
appearing in the asymptotic expansion of the Dulac map, see Theorem 4.1, and the Dulac time, 
see Theorem 4.3, for arbitrary hyperbolicity ratio λ0. In both statements, the order L ranges in a 
certain interval depending on λ0. The left endpoint of this interval is only given for completeness 
to guarantee that none of the monomials in the principal part can be included in the remainder.

Theorem 4.1. Let D(s; μ̂) be the Dulac map of the hyperbolic saddle (1) from �1 and �2.

(1) If λ0 < 1 then D(s; μ̂) = �00(μ̂)sλ + �01(μ̂)s2λ + F∞
L ({λ0} × W) for any L ∈ [

2λ0,

min(3λ0, 1 + λ0)
)
.

(2) If λ0 = 1 then D(s; μ̂) = �00(μ̂)sλ + �
λ0
10(ω; μ̂)s1+λ +F∞

L ({λ0} × W) for any L ∈ [2, 3), 
where

�
λ0
10(ω; μ̂) = �10(μ̂) + �01(μ̂)(1 + αω),

α = 1 − λ and ω = ω(s; α).
(3) If λ0 > 1 then D(s; μ̂) = �00(μ̂)sλ + �10(μ̂)sλ+1 + F∞

L ({λ0} × W) for any L ∈ [
λ0 +

1, min(2 + λ0, 2λ0)
)
.

Proof.

(1) We begin by showing that the assumptions on λ0 and L imply B0
λ0,L−λ0

= {(0, 0), (0, 1)}. 
Let us prove first that L < min(3λ0, 1 + λ0) implies B0

λ0,L−λ0
⊂ {(0, 0), (0, 1)}. Indeed, we 

claim that if (i, j) ∈ �0 \ {(0, 0), (0, 1)} then (i, j) /∈ B0
λ0,L−λ0

, i.e., i + λ0j > L − λ0. It 
is clear that the claim will follow once we prove its validity for (i, j) = (0, 2) and (i, j) =
(1, 0). For the first case observe that 2λ0 > L −λ0 holds because L < 3λ0 and, for the second 
one, 1 > L − λ0 holds due to L < 1 + λ0. One can verify similarly that the reverse inclusion 
B0

λ0,L−λ0
⊃ {(0, 0), (0, 1)} is guaranteed by 2λ0 � L.

Let us show next that λ0 < 1 implies λ0 /∈ D0
L−λ0

. To prove this we use firstly that D0
00 ∪

D0
01 = N by Remark 1.1, so that λ0 /∈ D0

00 ∪ D0
01. Secondly, see Definition C.4, we use that 

λ0 ∈ D0
L−λ0

if and only if there exists (i, j) ∈ B0
λ0,L−λ0

such that λ0 ∈ D0
ij , which is not 

possible since B0
λ0,L−λ0

= {(0, 0), (0, 1)} and λ0 /∈ D0
00 ∪ D0

01. Hence λ0 /∈ D0
L−λ0

and the 
asymptotic expansion follows by (a1) in Theorem C.5.

(2) Exactly as we did in the previous case, λ0 = 1 and L ∈ [2, 3) yields B0
λ0,L−λ0

=
{(0, 0), (1, 0), (0, 1)}. This implies, due to λ0 = 1 ∈ D0

10 = N by Remark 1.1, that λ0 ∈
D0

L−λ0
. Then, by (a2) in Theorem C.5,

D(s; μ̂) = �00(μ̂)sλ + �
λ0
10(ω; μ̂)s1+λ +F∞

L ({λ0} × W)

with ω = ω(s; α), α = 1 − λ and �λ0
10(ω; μ̂) = ∑1

r=0 �1−rp,0+rq(μ̂)(1 + αω)r = �10(μ̂) +
�01(μ̂)(1 + αω) because, see Definition C.4, A 0 = {0, 1}, A 0 = ∅ and A 0 = {0}.
01λ0 10λ0 00λ0
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(3) Similarly as we argue in (1), in this case the assumptions on λ0 and L imply B0
λ0,L−λ0

=
{(0, 0), (1, 0)}. Then, since D0

00 ∪ D0
10 = 1

N and λ0 > 1, it turns out that λ0 /∈ D0
L−λ0

and 
thus the asymptotic expansion in the statement follows by (a1) of Theorem C.5.

This proves the validity of the result.

Example 4.2. By Theorem 4.1, if λ0 = 1 then D(s; μ̂) = �00(μ̂)sλ + �
λ0
10(ω; μ̂)s1+λ +

F∞
L ({λ0} × W) for any L ∈ [2, 3), where

�
λ0
10(ω; μ̂) = �10(μ̂) + �01(μ̂)(1 + αω),

α = 1 − λ and ω = ω(s; α). The order of monomials in the principal part as s → 0+ is sλ ≺λ0

s1+λω ≺λ0 s1+λ, see [23, Definition 1.7] for details. The coefficient of sλ at μ̂0 = (1, μ0) follows 
directly by evaluating the expression of �00 given in assertion (b) of Theorem A. The subsequent 
coefficient is the one of s1+λω and, by applying (b) in Proposition 3.2 with i = 1, its expression 
at μ̂0 = (1, μ0) is equal to

lim
μ̂→μ̂0

(1 − λ)�01(μ̂) = �2
00σ221σ210

L2(σ210)
M ′

2(0)
∣∣
μ̂=μ̂0

.

Moreover some easy computations on account of the definitions given in (3) show that

M ′
2(0) = ∂1

(
P2

P1

)
(0,0)∂2

(
P2

P1

)
(0,0) + ∂12

(
P2

P1

)
(0,0).

Let us also remark that, more generally, one can compute all the derivatives of Li(u), Mi(u), 
Ai(u), Bi(u) and Ci(u) at u = 0, for i = 1, 2, in terms of the derivatives of P1(x, y) and P2(x, y)

at (x, y) = (0, 0).

The second part of Theorem C.5 provides the asymptotic expansion of the Dulac time asso-
ciated to a vector field (1) having poles of arbitrary order n = (n1, n2) ∈ Z2≥0. In Theorem 4.3
we restrict ourselves to the case n1 = 0 and n2 � 1 for several reasons. Firstly, for the sake of 
simplicity in the exposition, since dealing with the general situation will increase very much the 
number of cases to consider. Secondly because the study of the Dulac time of a hyperbolic saddle 
at infinity of any polynomial vector field of degree d yields to the case n1 = 0 and n2 = d − 1. 
Thirdly, and more important for us, because it allows to tackle the conjectural bifurcation dia-
gram of the period function of the quadratic centres that we undertook in [19].

Theorem 4.3. Assuming n1 = 0 and n2 � 1, let T (s; μ̂) be the Dulac time of the hyperbolic 
saddle (1) from �1 and �2.

(1) If λ0 ∈ (0, 1
n2+1 ) then T (s; μ̂) = T00(μ̂) + T0n2(μ̂)sλn2 + T0,n2+1(μ̂)sλ(n2+1) +F∞

L ({λ0} ×
W) for any L ∈ [

λ0(n2 + 1), min(1, λ0(n2 + 2))
)
.

(2) If λ0 ∈ ( 1
n2+1 , 2

n2+1 ) \ { 1
n2

} then

T (s; μ̂) = T00(μ̂) + T0n (μ̂)sλn2 + T10(μ̂)s + T0,n +1(μ̂)sλ(n2+1) +F∞({λ0} × W)
2 2 L
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for any L ∈ [
max(1, λ0(n2 + 1), min(2, λ0n2 + 1, λ0(n2 + 2))

)
.

(3) If λ0 ∈ ( 2
n2+1 , 2

n2
) then T (s; μ̂) = T00(μ̂) +T10(μ̂)s +T0n2(μ̂)sλn2 +T20(μ̂)s2 +F∞

L ({λ0} ×
W) for any L ∈ [

max(2, λ0n2), λ0n2 + min(1, λ0)
)
.

(4) If λ0 > 2
n2

then T (s; μ̂) = T00(μ̂) + T10(μ̂)s + T20(μ̂)s2 + F∞
L ({λ0} × W) for any L ∈[

2, min(3, λ0n2)
)
.

(5) If λ0 = 1
n2+1 then T (s; μ̂) = T00(μ̂) + T0n2(μ̂)sλn2 + sT

λ0
10(ω; μ̂) +F∞

L ({λ0} × W) for any 

L ∈ [1, n2+2
n2+1 ), where

T
λ0
10(ω; μ̂) = T10(μ̂) + T0,n2+1(μ̂)(1 + αω),

α = 1 − λ(n2 + 1) and ω = ω(s; α).
(6) If λ0 = 1

n2
with n2 > 1 then T (s; μ̂) = T00(μ̂) + sT

λ0
10(ω; μ̂) + T0,n2+1(μ̂)sλ(n2+1) +

F∞
L ({λ0} × W) for any L ∈ [n2+1

n2
, n2+2

n2
), where

T
λ0
10(ω; μ̂) = T10(μ̂) + T0n2(μ̂)(1 + αω),

α = 1 − λn2 and ω = ω(s; α).
(7) If λ0 = 2

n2+1 with n2 > 1 then T (s; μ̂) = T00(μ̂) + T10(μ̂)s + T0n2(μ̂)sλn2 + s2T
λ0
20(ω; μ̂) +

F∞
L ({λ0} × W) for any L ∈ [

2, min
( 2n2+4

n2+1 , 3n2+1
n2+1

))
, where

T
λ0
20(ω; μ̂) = T20(μ̂) + T0,n2+1(μ̂) (1 + αω)d ,

d = gcd(2, n2 + 1), α = 2−λ(n2+1)
d

and ω = ω(s; α).

(8) If λ0 = 1 and n2 = 1 then T (s; μ̂) = T00(μ̂) + sT
λ0
10(ω; μ̂) + s2T

λ0
20(ω; μ̂) +F∞

L ({λ0} ×W)

for any L ∈ [2, 3), where

T
λ0
r0(ω; μ̂) =

r∑
i=0

Tr−i,i (μ̂)(1 + αω)i , for r = 1,2,

α = 1 − λ and ω = ω(s; α).
(9) If λ0 = 2

n2
then T (s; μ̂) = T00(μ̂) + T10(μ̂)s + s2T

λ0
20(ω; μ̂) +F∞

L ({λ0} × W) for any L ∈[
2, min

(
3, 2 + 2

n2

))
, where

T
λ0
20(ω; μ̂) = T20(μ̂) + T0n2(μ̂) (1 + αω)d ,

d = gcd(2, n2), α = 2−λn2
d

and ω = ω(s; α).

Proof. The asymptotic expansions in (1), (2), (3) and (4) will follow by applying (b1) in Theo-
rem C.5 once we determine the grids Bn

λ0,L
and show that, under the respective assumptions on 

λ0 and L, we have λ0 /∈ Dn . Next we particularise the arguments leading to this in each case:
L
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. 
(1) In this case the hypothesis λ0(n2 + 1) � L < min(1, λ0(n2 + 2)) yield Bn
λ0,L

= {(0, 0),

(0, n2), (0, n2 + 1)}. For instance let us show that L < min(1, λ0(n2 + 2)) implies Bn
λ0,L

⊂
{(0, 0), (0, n2), (0, n2 +1)}. To prove this it suffices to check that (1, 0) and (0, n2 +2) do not 
belong to Bn

λ0,L
, which is indeed a consequence of L < 1 and L < λ0(n2 + 2), respectively. 

The reverse inclusion ⊃ follows similarly taking λ0(n2 + 1) � L into account. Since the 
assumption λ0 ∈ (0, 1

n2+1 ) and Remark 1.1 imply that λ0 /∈ Dn
00 ∪ Dn

0n2
∪ Dn

0,n2+1 = ∅ ∪
N
n2

∪ ( N
n2+1 ∪N

)
, we can assert that λ0 /∈ Dn

L.
(2) In this case it turns out that max(1, λ0(n2 + 1) � L < min(2, λ0n2 + 1, λ0(n2 + 2)) implies 

that the grid is given by Bn
λ0,L

= {(0, 0), (0, n2), (1, 0), (0, n2 + 1)}. For instance, to show 
the inclusion ⊂ is enough to verify that (2, 0), (1, n2) and (0, n2 +2) do not belong to Bn

λ0,L
, 

which is a consequence of L < 2, L < 1 +λ0n2 and L < λ0(n2 +2), respectively. That being 
said, we know by Remark 1.1 that Dn

0n2
= N

n2
, Dn

10 = 1
N≥n2

and Dn
0,n2+1 = N

n2+1 ∪N . Thus, 

on account of the assumption λ0 ∈ ( 1
n2+1 , 2

n2+1 ) \ { 1
n2

}, we get λ0 /∈ Dn
00 ∪ Dn

0n2
∪ Dn

10 ∪
Dn

0,n2+1. Hence, see Definition C.4, λ0 /∈ Dn
L.

(3) If max(2, n2λ0) � L < min(λ0n2 +1, λ0(n2 +1)) then Bn
λ0,L

= {(0, 0), (1, 0), (2, 0), (0, n2)}
Indeed, the lower bound gives the inclusion ⊃. To prove the inclusion ⊂ it suffices to check 
that (3, 0), (1, n2) and (0, n2 + 1) do not belong to Bn

λ0,L
, which is a consequence of 

L < 3, L < 1 + λ0n2 and L < λ0(n2 + 1), respectively. These three inequalities follow 
by the assumption L < min(λ0n2 + 1, λ0(n2 + 1)) together with the fact that λ0n2 < 2
due to λ0 ∈ ( 2

n2+1 , 2
n2

). This last condition, taking Remark 1.1 also into account, implies 

λ0 /∈ Dn
00 ∪ Dn

10 ∪ Dn
0,n2

∪ Dn
20 = ∅ ∪ 1

N≥n2
∪ N

n2
and then λ0 /∈ Dn

L.

(4) Similarly as in the previous cases, if 2 � L < min(3, λ0n2) then Bn
λ0,L

= {(0, 0), (1, 0),

(2, 0)}. Moreover, by Remark 1.1 and the hypothesis λ0 > 2
n2

, we get λ0 /∈ Dn
00 ∪ Dn

10 ∪
Dn

20 = ∅ ∪ 1
N≥n2

∪ 2
N≥n2

. Therefore λ0 /∈ Dn
L.

The remaining assertions follow by applying (b2) in Theorem C.5. To this end we need to verify 
that λ0 ∈ Dn

L and determine the grid Bn
λ0,L

together with the corresponding sets A n
ijλ0

. As before 
we next particularise this in each case:

(5) If λ0 = 1
n2+1 and 1 � L < 1 + 1

n2+1 then Bn
λ0,L

= {(0, 0), (0, n2), (0, n2 +1), (1, 0)}. Indeed, 
to show the inclusion ⊂ it suffices to check that (1, n2), (0, n2 + 2) and (2, 0) do not belong 
to Bn

λ0,L
, which is equivalent to L < 1 + λ0n2 = 1 + n2

n2+1 , L < λ0(n2 + 2) = 1 + 1
n2+1

and L < 2, respectively. These three conditions are a consequence of the assumption L <
1 + 1

n2+1 . With regard to the inclusion ⊃, the fact that (0, 0), (0, n2), (0, n2 + 1) and (1, 0)

belong to Bn
λ0,L

is written as L � 0, L � λ0n2 = n2
n2+1 , L � λ0(n2 + 1) = 1 and L � 1, 

respectively, which are guaranteed by the assumption L � 1. Since, on the other hand, λ0 =
1

n2+1 ∈ Dn
0,n2+1 = N

n2+1 by Remark 1.1, it turns out that λ0 ∈ Dn
L, see Definition C.4.

Finally the result follows, see Definition C.4 again, using that A n
10λ0

= {0, 1}, A n
00λ0

=
A n

0n2λ0
= {0} and A n

0,n2+1,λ0
= ∅, together with p = 1 and q = n2 + 1, so that α =

1 − λ(n2 + 1).
(6) If λ0 = 1

n2
with n2 > 1 and n2+1

n2
� L < n2+2

n2
then, just as we argue in the previous cases, 

we get that Bn
λ0,L

= {(0, 0), (1, 0), (0, n2), (0, n2 +1)}. Furthermore, since λ0 = 1
n2

∈ Dn
10 =

1 by Remark 1.1, it turns out that λ0 ∈ Dn
L. On account of this the result follows using 
N≥n2
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that A n
10λ0

= {0, 1}, A n
00λ0

= A n
0,n2+1,λ0

= {0} and A n
0n2λ0

= ∅, together with the fact that 
α = 1 − λn2, which in turn follows due to p = 1 and q = n2.

(7) If λ0 = 2
n2+1 with n2 > 1 and 2 � L < min

( 2n2+4
n2+1 , 3n2+1

n2+1

)
then

Bn
λ0,L

= {(0,0), (1,0), (0, n2), (2,0), (0, n2 + 1)}.

As usual, the inequality L < min
( 2n2+4

n2+1 , 3n2+1
n2+1

)
gives the inclusion ⊂, in this case by show-

ing that (3, 0), (1, n2), (0, n2 + 2) /∈ Bn
λ0,L

, whereas the inequality 2 � L implies the reverse 

inclusion ⊃. Hence, since λ0 = 2
n2+1 ∈ Dn

02 = 2
N≥n2

by Remark 1.1, we conclude that λ0 ∈
Dn

L. On the other hand, due to n2 > 1, one can verify that A n
00λ0

= A n
10λ0

= A n
0n2λ0

= {0}, 
A n

0,n2+1,λ0
= ∅ and A n

02λ0
= {0, d}, where d = gcd(2, n2 + 1). Since p = 2

d
and q = n2+1

d
, 

the last equality yields

T
λ0
20(ω; μ̂) =

∑
r∈{0,d}

T
2− 2

d
r,

n2+1
d

r
(μ̂) (1 + αω)r = T20(μ̂) + T0,n2+1(μ̂) (1 + αω)d ,

where ω = ω(s; α) and α = 2−λ(n2+1)
d

. This proves the validity of the statement.
(8) If λ0 = 1, n2 = 1 and 2 � L < 3 then one can readily show that

Bn
λ0,L

= {(0,0), (1,0), (0,1), (2,0), (1,1), (0,2)}.

On account of this, since λ0 = 1 ∈ Dn
01 = N by Remark 1.1 due to n = (0, 1), we can as-

sert that λ0 ∈ Dn
L. In this case one can easily verify that A n

00λ0
= {0}, A n

01λ0
= A n

02λ0
=

A n
11λ0

= ∅, A n
10λ0

= {0, 1} and A n
20λ0

= {0, 1, 2}. Since p = q = 1, the two last equalities 
show, respectively,

T
λ0
r0(ω; μ̂) =

r∑
i=0

Tr−i,i (μ̂)(1 + αω)i , for r = 1,2,

where α = 1 − λ and ω = ω(s; α).
(9) If λ0 = 2

n2
and 2 � L < min(3, 2 + 2

n2
) then Bn

λ0,L
= {(0, 0), (1, 0), (2, 0), (0, n2)}. Con-

sequently, due to λ0 = 2
n2

∈ Dn
0n2

= N
n2

by Remark 1.1, we have λ0 ∈ Dn
L. Moreover 

A n
00λ0

= A n
10λ0

= {0}, A n
0n2λ0

= ∅ and A n
20λ0

= {0, d} with d = gcd(2, n2). Since p = 2
d

and q = n2
d

, from the last equality it follows that

T
λ0
20(ω; μ̂) =

∑
r∈{0,d}

T2− 2
d
r,

n2
d

r
(μ̂) (1 + αω)r = T20(μ̂) + T0,n2(μ̂) (1 + αω)d ,

where ω = ω(s; α) and α = 2−λn2
d

.

This concludes the proof of the result.

Let us finish this section by pointing out that the formula of every coefficient Tij appearing in 
Theorem 4.3 is given in assertion (c) of Theorem A, except for T11 in point (8), that corresponds 
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Fig. 3. Going upward from each abscissa λ0 ∈ (0, +∞), order of monomials si+λj as s → 0+ and λ ≈ λ0 for (i, j) ∈
{(0, 0), (1, 0), (2, 0), (0, n2), (0, n2 + 1)}.

to λ0 = n2 = 1. The formula of this coefficient follows by applying also assertions (a) and (b), 
which show that T11 = 
10T01 and 
10 = λS1. Also with regard to this statement, it is worth 
noting that the order as s → 0+ of the monomials in points from (1) to (4) follows readily from 
Fig. 3. For instance, 1 ≺λ0 sλn2 ≺λ0 sλ(n2+1) ≺λ0 s ≺λ0 s2 for λ0 ∈ (0, 1

n2+1 ) and 1 ≺λ0 sλn2 ≺λ0

s ≺λ0 sλ(n2+1) ≺λ0 s2 for λ0 ∈ ( 1
n2+1 , 1

n2
), see [23, Definition 1.7] for details. For λ ≈ λ0 = 1

n2+1 , 
which corresponds to an intersection between two straight-lines in Fig. 3, the compensators come 
into play and we have 1 ≺λ0 sλn2 ≺λ0 sω(s; α) ≺λ0 s ≺λ0 s2 with α = 1 − λ(n2 + 1), see point 
(5) in Theorem 4.3. This type of information is very relevant in order to apply [23, Theorem C]
to bound the number of critical periods or limit cycles that bifurcate from a hyperbolic polycycle.
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Appendix A. Derivatives of regular transition map and transition time

In this section we consider a family of vector fields of the form

Yν = 1

y�f (x, y;ν)

(
∂x + yh(x, y;ν)∂y

)
, (43)

where

• � ∈ Z and ν ∈ U , where U is some open set of RN ,
• f, h ∈ C K(V ×U) with V := (a, b) ×(−c, c) ⊂ R2, a < b and c > 0,
• f (x, 0; ν) 
= 0 for all x ∈ (a, b) and ν ∈ U .

We also consider two C K families of transverse sections ξ( · ;ν): (−ε, ε) −→ �1 and
ζ( · ;ν): (−ε, ε) −→ �2 to the straight line {y = 0}, i.e., verifying ξ2(0) = ζ2(0) = 0 together 
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with ξ ′
2(0) 
= 0 and ζ ′

2(0) 
= 0. Our goal is to give the first non-trivial terms of the transition 
map P( · ; ν) and the transition time T ( · ; ν) between �1 and �2. More precisely, denoting by 
ϕ(t, p0; ν) the solution of Yν with initial condition p0 ∈ V , we define P(s; ν) and T (s; ν) by 
means of ϕ(T (s), ξ(s)) = ζ(P (s)). The smoothness assumption for the results in this appendix 
is K � 3.

In what follows φ(t, p0; ν) denotes the solution of Zν := ∂x + yh(x, y; ν)∂y with initial con-
dition at p0 = (x, y). It is clear that φ(t, p0; ν) = (

x + t, φ2(t, p0; ν)). With regard to the second 
component we prove the next result:

Lemma A.1. Let us define H(x, y; ν) = exp

⎛
⎝ x∫

y

h(u,0;ν)du

⎞
⎠. Then the following hold:

(a) ∂xφ2(t, (x, 0)) = 0 and ∂2
xxφ2(t, (x, 0)) = 0,

(b) ∂yφ2(t, (x, 0)) = H(x + t, x) and ∂2
xyφ2(t, (x, 0)) = H(x + t, x)

(
h(x + t, 0) − h(x, 0)

)
,

(c) ∂2
yyφ2(t, (x, 0)) = 2H(x + t, x) 

∫ t

0 H(x + v, x)∂2h(x + v, 0)dv.

Proof. On account of ∂tφ2(t, (x, y)) = φ2(t, (x, y))h
(
x + t, φ2(t, (x, y))

)
and φ2(t, (x, 0)) = 0

we obtain

∂t ∂xφ2(t, (x,0)) = h(x + t,0)∂xφ2(t, (x,0)).

Since ∂xφ2(0, (x, 0)) = 0 due to φ2(0, (x, y)) = y, we get ∂xφ2(t, (x, 0)) = 0. Accord-
ingly ∂2

xxφ2(t, (x, 0)) = 0 and this shows (a). Similarly we obtain ∂t∂yφ2(t, (x, 0)) = h(x +
t, 0)∂yφ2(t, (x, 0)) and ∂yφ2(0, (x, 0)) = 1. Consequently

∂yφ2(t, (x,0)) = exp

⎛
⎝ t∫

0

h(x + u,0)du

⎞
⎠ = H(x + t, x) (44)

and

∂2
xyφ2(t, (x,0)) = exp

⎛
⎝ t∫

0

h(x + u,0)du

⎞
⎠ t∫

0

∂1h(x + u,0)du

= H(x + t, x)
(
h(x + t,0) − h(x,0)

)
,

which shows the validity of (b). Finally, using that

∂t ∂
2
yyφ2(t, (x,0)) = ∂2

yy

(
h(x + t, φ2(t, (x, y)))φ2(t, (x, y))

)∣∣∣
y=0

= 2∂2h(x + t,0)(∂yφ2(t, (x,0)))2 + h(x + t,0)∂2
yyφ2(t, (x,0)),

together with ∂2 φ2(0, (x, 0)) = 0 and (44), we get
yy

90



D. Marín and J. Villadelprat Journal of Differential Equations 404 (2024) 43–107
∂2
yyφ2(t, (x,0)) = 2 exp

⎛
⎝ t∫

0

h(x + u,0)du

⎞
⎠ t∫

0

exp

⎛
⎝ v∫

0

h(x + u,0)du

⎞
⎠ ∂2h(x + v,0)dv.

Taking (44) into account once again, the above equality shows (c) and concludes the proof of 
the result.

Let us remark that in the previous result (and in what follows when there is no risk of ambigu-
ity) we omit the dependence with respect to the parameter ν for the sake of shortness. Note on the 
other hand that the solution ϕ(t, ξ(s)) of Yν is inside {y = φ2(x − ξ1(s), ξ(s))}. Thus, in order to 
obtain the first coefficients of the Taylor expansion of T (s) and P(s) at s = 0, we compute first 
the ones of

s �−→ 
(x, s;ν):= φ2
(
x − ξ1(s;ν), ξ(s;ν);ν).

This is done in the next result, where H(x, y) = exp
(∫ x

y
h(u,0)du

)
, see Lemma A.1, and we 

use the compact notation ξik = ξ
(k)
i (0) for i = 1, 2.

Lemma A.2. The function 
(x, s; ν) is C K on (a, b) × (−ε, ε) × U . Moreover it verifies 

(x, 0; ν) = 0, ρ1(x; ν) := ∂s
(x, 0; ν) = ξ21H(x, ξ10) and

ρ2(x;ν):= ∂2
ss
(x,0;ν) = H(x, ξ10)

⎛
⎜⎝ξ22 − 2ξ11ξ21h(ξ10,0) + 2ξ2

21

x∫
ξ10

H(u, ξ10)∂2h(u,0)du

⎞
⎟⎠.

Proof. The fact that 
 is C K on (a, b) ×(−ε, ε) ×U follows from the smooth dependence of 
solutions with respect to initial conditions and parameters (see for instance [9, Theorem 1.1]) 
and that 
(x, 0; ν) = 0 is due to the invariance of the straight line {y = 0}.

Since φ(t, (x, y)) is the solution of Zν with initial condition at (x, y), in order to avoid any 
ambiguity we consider 
(z, s) = φ2(z − ξ1(s), ξ(s)) and so we keep the notation ∂t , ∂x and ∂y

for the partial derivatives of φ2(t, (x, y)). In doing so we obtain

ρ1(z) = ∂sφ2
(
z − ξ1(s), ξ(s)

)∣∣
s=0

= − ∂tφ2(z − ξ1(s), ξ(s))ξ ′
1(s)

+ ∂xφ2(z − ξ1(s), ξ(s))ξ ′
1(s) + ∂yφ2(z − ξ1(s), ξ(s))ξ ′

2(s)
∣∣
s=0

= − φ2(z − ξ1(s), ξ(s))h
(
z,φ2(z − ξ1(s), ξ(s))

)
ξ ′

1(s)

+∂xφ2(z − ξ1(s), ξ(s))ξ ′
1(s) + ∂yφ2(z − ξ1(s), ξ(s))ξ ′

2(s)
∣∣
s=0 (45)

= ξ21H(z, ξ1s),

where in the third equality we use that φ is the flow of Zν = ∂x + yh(x, y; ν)∂y and in the 
fourth one that φ2(x − ξ1(0), ξ(0)) = 0 due to ξ2(0) = 0, together with ∂xφ2(t, (x, 0)) = 0 and 
∂yφ2(t, (x, 0)) = H(x + t, x), as established by Lemma A.1.
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Next we proceed with the computation of ρ2(z). With this aim in view note that, from (45),

ρ2(z) = ∂2
ssφ2(z − ξ1(s), ξ(s))

∣∣∣
s=0

= − ξ11h(z,0)∂sφ2
(
z − ξ1(s), ξ(s)

) + ξ11∂s∂xφ2(z − ξ1(s), ξ(s))

+ ∂s

(
∂yφ2(z − ξ1(s), ξ(s))ξ ′

2(s)
)∣∣∣

s=0
. (46)

By applying Lemma A.1, some computations show that

∂s∂xφ2(z − ξ1(s), ξ(s))|s=0 = ξ11

(
− ∂t ∂xφ2 + ∂2

xxφ2

)
(z − ξ10, (ξ10,0))

+ ξ21∂
2
xyφ2(z − ξ10, (ξ10,0))

= ξ21H(z, ξ10)
(
h(z,0) − h(ξ10,0)

)
,

and

∂s∂yφ2(z − ξ1(s), ξ(s))
∣∣
s=0 = ξ11

(
− ∂t ∂yφ2 + ∂2

xyφ2

)
(z − ξ10, (ξ10,0))

+ ξ21∂
2
yyφ2(z − ξ10, (ξ10,0))

= H(z, ξ10)

⎛
⎜⎝−ξ11h(ξ10,0) + 2ξ21

z∫
ξ10

H(u, ξ10)∂2h(u,0)du

⎞
⎟⎠ .

Since ∂sφ2
(
z − ξ1(s), ξ(s)

)∣∣
s=0 = ∂yφ2

(
z − ξ1(0), ξ(0)

)
ξ ′

2(0) = ξ21H(z, ξ10) by Lemma A.1
once again, the substitution of the two previous identities in (46) yields

ρ2(z) = H(z, ξ10)

⎛
⎜⎝ξ22 − 2ξ11ξ21h(ξ10,0) + 2ξ2

21

z∫
ξ10

H(u, ξ10)∂2h(u,0)du

⎞
⎟⎠ ,

as desired. Hence the result is proved.

We are now in position to give the two first non-trivial coefficients of the transition map 
P( · ; ν) and the transition time T ( · ; ν) between �1 and �2. In this regard it is to be quoted a 
previous result by Chicone (see [8, Theorem 2.2]), where it is given the expression of ∂sP (0; ν)

for vector fields in general position, i.e., not assuming that the straight line {y = 0} is invariant. 
He also gives the formula of ∂sT (0; ν) in the case that � = 0. More recently, explicit formulas 
of ∂sP (0; ν) and also ∂ssP (0; ν) for vector fields in general position are given in [16, Theorem 
4.2]. The proofs in [8,16] are based on Diliberto’s theorem on the integration of the homogeneous 
variational equations of a plane autonomous differential system in terms of geometric quantities 
along a given trajectory. (Similar results for the transition map can be found in the book of 
Andronov et al. [1].) In our next lemma, besides these coefficients, we also give the second 
coefficient of the transition time, which to the best of our knowledge constitutes a new result. The 
lemma is in fact an upgrade of [23, Lemma 2.4], where we study the regularity properties of these 
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maps without giving the expression of the coefficients. In the statement for the sake of shortness 
we use the compact notation ξik = ξ

(k)
i (0) and ζik = ζ

(k)
i (0), i = 1, 2, for the derivatives of the 

parametrisation of the transverse sections. We also remark that the functions ρ1 and ρ2 appearing 
in these coefficients are the ones given in Lemma A.2.

Lemma A.3. Let P(s; ν) and T (s; ν) be respectively the transition map and transition 
time of the flow given by (43) between the transverse sections ξ( · ;ν): (−ε, ε) −→ �1 and 
ζ( · ;ν): (−ε, ε) −→ �2 to {y = 0}. Then the following hold:

(a) The function P(s; ν) is C K on 
(
(−ε, ε) × U

)
. Moreover P(0; ν) = 0,

p1(ν):= ∂sP (0;ν) = ξ21

ζ21
exp

⎛
⎜⎝

ζ10∫
ξ10

h(u,0)du

⎞
⎟⎠

and

p2(ν):= ∂2
ssP (0;ν) =

(
2ζ11ζ21h(ζ10,0) − ζ22

)
p2

1 + ρ2(ζ10)

ζ21
.

(b) T (s; ν) = s�T̃ (s; ν) with T̃ ∈ C K−1
(
(−ε, ε) × U

)
verifying T̃ (0; ν) =

ζ10∫
ξ10

ρ�
1(x)f (x, 0)dx

and

∂sT̃ (0;ν) = ζ11ζ
�
21p

�+1
1 f (ζ10,0) − ξ11ξ

�
21f (ξ10,0)

+ 1

2

ζ10∫
ξ10

ρ�−1
1 (x)

(
�ρ2(x)f (x,0) + 2ρ2

1(x)∂2f (x,0)
)
dx.

Moreover if � = 0 then T ∈ C K
(
(−ε, ε) × U

)
and

∂2
ssT (0;ν) = (

ζ12p
2
1 + ζ11p2

)
f (ζ10,0) + ζ 2

11p
2
1∂1f (ζ10,0) + 2ζ11ζ21p

2
1∂2f (ζ10,0)

− ξ12f (ξ10,0) − ξ2
11∂1f (ξ10,0) − 2ξ11ξ21∂2f (ξ10,0)

+
ζ10∫

ξ10

(
ρ2

1(x)∂2
22f (x,0) + ρ2(x)∂2f (x,0)

)
dx.

Proof. The assertion concerning the smoothness of P(s; ν) follows by the smooth dependence 
of solutions with respect to initial conditions and parameters and the application of the implicit 
function theorem (see for instance [9, Theorem 1.1]). Note on the other hand that, by definition, 
ϕ(T (s), ξ(s)) = ζ(P (s)) where ϕ(t, p0) is solution of Yν with initial condition p0 ∈ V . Since 
Zν = y�f (x, y; ν)Yν = ∂x + yh(x, y)∂y , it follows that
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ζ2(P (s)) = φ2
(
ζ1(P (s)) − ξ1(s), ξ(s)

) = 

(
ζ1(P (s)), s

)
,

where φ(t, (x, y)) = (t + x, φ2(t, (x, y)) is the flow of Zν and, by definition, 
(x, s) = φ2(x −
ξ1(s), ξ(s)). Accordingly

ζ ′
2(P (s))P ′(s) = ∂1


(
ζ1(P (s)), s

)
ζ ′

1(P (s))P ′(s) + ∂2

(
ζ1(P (s)), s

)
,

which, evaluated at s = 0 and applying Lemma A.2, gives ζ21P
′(0) = ∂2
(ζ10, 0) = ρ1(ζ10) =

ξ21H(ζ10, ξ10). Therefore p1 = P ′(0) = ξ21
ζ21

H(ζ10, ξ10), as desired. By computing an additional 
derivative with respect to s in the above equality and evaluating at s = 0 afterwards we get

ζ22p
2
1 + ζ21P

′′(0) = 2∂2
12
(ζ10,0)ζ11p1 + ∂2

22
(ζ10,0) = 2ρ1(ζ10)h(ζ10,0)ζ11p1 + ρ2(ζ10),

where we apply Lemma A.2 and take ρ′
1(ζ10) = ξ21∂1H(ζ10, ξ10) = ξ21H(ζ10, ξ10)h(ζ10, 0) =

ζ21p1h(ζ10, 0) into account. Consequently,

P ′′(0) = p2 =
(
2ζ11ζ21h(ζ10,0) − ζ22

)
p2

1 + ρ2(ζ10)

ζ21

and this proves (a). Let us turn now to the proof of the assertions in (b). With this aim we note 
first that the transition time between �1 and �2 has the following integral expression

T (s) =
ζ1(P (s))∫
ξ1(s)


(x, s)�f (x,
(x, s))dx.

By Lemma A.2 we know that 
 is a C K function such that 
(x, 0) = 0 and ∂2
(x, 0) = ρ1(x). 
Hence, the application of Lemma 2.1 shows that 
(x, s) = s(ρ1(x) + R(x, s)) for some C K−1

function R with R(x, 0) = 0. Accordingly T (s) = s�T̃ (s) with

T̃ (s):=
ζ1(P (s))∫
ξ1(s)

(ρ1(x) + R(x, s))�f (x,
(x, s))dx.

Then, since ρ1 does not vanish, by a well-known result on the regularity properties of integrals 
depending on parameters (see [36, page 411]) it follows that T̃ is C K−1 as well. Let us com-
pute now T̃ (0) and T̃ ′(0). This is easy for the first one because T̃ (0) = ∫ ζ10

ξ10
ρ�

1(x)f (x, 0)dx. 
Concerning the second one we note that

T̃ ′(0) = ρ�
1(ζ10)f (ζ10,0)ζ11p1 − ρ�

1(ξ10)f (ξ10,0)ξ11

+
ζ10∫

ξ10

ρ�−1
1 (x)

(
1

2
�ρ2(x)f (x,0) + ∂2f (x,0)ρ2

1(x)

)
dx.

Here we use that, thanks to Lemma A.2, ∂sR(x, 0) = 1
2∂2

22
(x, 0) = 1
2ρ2(x). Now, taking 

ρ1(ξ10) = ξ21 and ρ1(ζ10) = ζ21p1 into account, one can verify that the above expression is 
94



D. Marín and J. Villadelprat Journal of Differential Equations 404 (2024) 43–107
equal to the one given in the statement. Hence it only remains to prove the assertions concerning 
the case � = 0. The fact that if � = 0 then T is C K follows from the regularity properties of in-
tegrals depending on parameters that we mention above. With regard to the expression of T ′′(0)

we note that if � = 0 then

T ′(s) =f
(
ζ1(P (s)),
(ζ1(P (s)), s)

)
ζ ′

1(P (s))P ′(s) − f
(
ξ1(s),
(ξ1(s), s)

)
ξ ′

1(s)

+
ζ1(P (s))∫
ξ1(s)

∂2f (x,
(x, s))∂2
(x, s)dx.

Accordingly, since ∂1
(x, 0) = 0, ∂2
(x, 0) = ρ1(x) and ∂2
22
(x, 0) = ρ2(x), some easy com-

putations give

T ′′(0) = ∂1f (ζ10,0)ζ 2
11p

2
1 + 2∂2f (ζ10,0)ρ1(ζ10)ζ11p1 + f (ζ10,0)

(
ζ12p

2
1 + 2ζ11p2

)
− ∂1f (ξ10,0)ξ2

11 − 2∂2f (ξ10,0)ρ1(ξ10)ξ11 − f (ξ10,0)ξ12

+
ζ10∫

ξ10

(
∂2

22f (x,0)ρ2
1(x) + ρ2(x)∂2f (x,0)

)
dx.

Finally the substitution of ρ1(ξ10) = ξ21 and ρ1(ζ10) = ζ21p1 yields to the expression of T ′′(0)

given in the statement. This concludes the proof of the result.

Appendix B. An incomplete Mellin transform

In this appendix we introduce a sort of incomplete Mellin transform that is a key tool for 
giving a closed expression for the coefficients of the first monomials in the asymptotic expansion 
of the Dulac map and Dulac time. In short, given α ∈ R \Z≥0 and a smooth function f (x) on an 
open interval I that contains x = 0, we consider the singular scalar differential equation

xy′ − αy = f (x).

It turns out that this differential equation has for each α a unique solution y = f̂ (α, x) which is 
smooth on I . As we will see, the fact that 0 ∈ I turns out to be crucial for the uniqueness. The 
idea is to relate this particular solution with the trajectories of the autonomous planar differential 
system

{
ẋ = x,

ẏ = αy + f (x),

that has a hyperbolic critical point at (0, −f (0)/α) being a saddle for α < 0 and a focus for 
α > 0. In the saddle case, which is the simplest one, y = f̂ (α, x) is no more than the graph of 
the stable separatrix. This is in fact the idea in the proof of our next result, which is a little more 
complicated than it should be because in our applications f depends on parameters and we need 
good regularity properties of the solution with respect to α and these parameters as well. For that 
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purpose we apply the so-called centre-stable manifold theorem (see for instance [14, Theorem 
1]) but instead one may use the parametrisation method for invariant manifolds (see [6,7]).

Theorem B.1. Let us consider an open interval I of R containing x = 0 and an open subset U
of RN .

(a) Given f (x; ν) ∈ C ∞(I × U), there exists a unique f̂ (α, x; ν) ∈ C ∞((R \ Z≥0) × I × U)

such that

x∂xf̂ (α, x;ν) − αf̂ (α, x;ν) = f (x;ν). (47)

(b) If x ∈ I \ {0} then ∂x(f̂ (α, x; ν)|x|−α) = f (x; ν)
|x|−α

x
and, taking any k ∈ Z≥0 with k > α,

f̂ (α, x;ν) =
k−1∑
i=0

∂i
xf (0;ν)

i!(i − α)
xi + |x|α

x∫
0

(
f (s;ν) − T k−1

0 f (s;ν)
)

|s|−α ds

s
, (48)

where T k
0 f (x; ν) = ∑k

i=0
1
i!∂

i
xf (0; ν)xi is the k-th degree Taylor polynomial of f (x; ν) at 

x = 0.
(c) For each (i0, x0, ν0) ∈ Z≥0 ×I ×W the function (α, x, ν) �→ (i0 −α)f̂ (α, x; ν) extends C ∞

at (i0, x0, ν0) and, moreover, it tends to 1
i0!∂

i0
x f (0; ν0)x

i0
0 as (α, x, ν) → (i0, x0, ν0).

(d) If f (x; ν) is analytic on I × U then f̂ (α, x; ν) is analytic on (R \ Z≥0) × I × U . Finally, 
for each (α0, x0, ν0) ∈ Z≥0 × I × U the function (α, x, ν) �→ (α0 − α)f̂ (α, x; ν) extends 
analytically to (α0, x0, ν0).

Proof. The plan to prove (a) is the following. The uniqueness will be proved firstly. We will 
show, secondly, the existence for α < 0 and, thirdly, the existence for α > 0.

To prove the uniqueness let us suppose that, for some α /∈ Z≥0, the differential equation 
xy′ − αy = f (x; ν) has two solutions, y = f̂1(α, x; ν) and y = f̂2(α, x; ν), that are C ∞ on 
(R \ Z≥0) × I × U . Then f̂1 − f̂2 is a smooth function that verifies the homogeneous linear 
differential equation xy′ − αy = 0 which, in the case that α /∈ Z≥0, has y = 0 as unique C ∞
solution passing through x = 0. Consequently f̂1 = f̂2, as desired.

Let us prove now the existence for the case α < 0. To this end, related with the scalar differen-
tial equation in (47), note that the planar vector field x∂x + (αy + f (x; ν))∂y has, for each fixed 
α < 0 and ν ∈ U , a hyperbolic saddle at (0, −f (0; ν)/α) with a non-vertical stable separatrix. In 
order to study its regularity with respect to the parameters we consider the augmented system

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ẋ = x,

ẏ = αy + f (x;ν),

α̇ = 0,

ν̇ = 0.

For each fixed α0 ∈ (−∞, 0) and ν0 ∈ U , the application of [14, Theorem 1] shows that for 
every k ∈ N there exists a local centre-stable manifold W at (0, −f (0; ν0)/α0, α0, ν0) that is 
written as y = f̂loc(α, x; ν) where f̂loc is a C k function in a neighbourhood V of (α0, 0, ν0). In 
96



D. Marín and J. Villadelprat Journal of Differential Equations 404 (2024) 43–107
this context, contrary to what happens in general, it turns out that the centre-stable manifold is 
unique, which implies that f̂loc is C ∞ (see [29, p. 165]). That being said, we assume without 
lost of generality that V is a cube with centre (α0, 0, ν0) and edge length 4ε. Then for the points 
in the strip S = {(α, x, ν) : x ∈ I and (α, 0, ν) ∈ V } we define

f̂ (α, x;ν):=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

xα

⎛
⎝f̂loc(α, ε;ν)ε−α +

x∫
ε

f (s;ν)s−α ds

s

⎞
⎠ if x ∈ I ∩ (0,+∞),

f̂loc(α,0;ν) if x = 0,

(−x)α

⎛
⎝f̂loc(α,−ε;ν)ε−α +

x∫
−ε

f (s;ν)(−s)−α ds

s

⎞
⎠ if x ∈ I ∩ (−∞,0),

(49)
which is clearly C ∞ on S \ {x = 0}. An easy computation shows that the above function verifies 
the scalar differential equation (47) for all (α, x, ν) ∈ S with x 
= 0. Hence, due to f̂ (α, ±ε; ν) =
f̂loc(α, ±ε; ν), by the existence and uniqueness theorem for solutions of differential equations 
(see [9, Theorem 1.1] for instance) we have that f̂ |V = f̂loc and, consequently, f̂ ∈ C ∞(S). 
On account of the uniqueness of f̂ proved firstly, the arbitrariness of α0 ∈ (−∞, 0) and ν0 ∈ U

shows that (49) provides a well defined C ∞ function f̂ (α, x; ν) on (−∞, 0) × I × U . This 
proves the existence for the case α < 0.

Let us show next the existence for the case α > 0. In what follows we shall use the more 
compact notation �̂α(x; ν) = �̂(α, x; ν) omitting also the dependence on x and ν when there is 
no risk of ambiguity. Following this notation, some easy computations show that

1. If � = g + h then �̂α = ĝα + ĥα , provided that ĝα and ĥα exist.
2. If �(x; ν) = ∑k

i=0 di(ν)xi and α /∈ {0, 1, 2, . . . , k} then �̂α(x; ν) = ∑k
i=0

di (ν)
i−α

xi .

3. If �(x; ν) = xmg(x; ν) with m > α then �̂α(x; ν) = xmĝα−m(x; ν).

That being said, let us fix an arbitrary m ∈N and note that, by applying Lemma 2.2, we can write

f (x;ν) =
m−1∑
i=0

di(ν)xi + xmg(x;ν),

with di ∈ C ∞(U) and g ∈ C ∞(I × U). On account of this, since we have already proved 
the existence of f̂α for α < 0, the three properties above imply the existence of f̂ (α, x; ν) ∈
C ∞(

((−∞, m) \ Z≥0) × I × U
)

satisfying (47). Finally the arbitrariness of m ∈ N and 
the uniqueness of f̂ proved firstly imply that f̂ (α, x; ν) is a well defined C ∞ function on 
(R \Z≥0) × I × U verifying (47). This concludes the proof of (a).

Let us prove next the assertions in (b). The fact that the equality ∂x(f̂ (α, x; ν)|x|−α) =
f (x; ν)

|x|−α

x
holds for all x ∈ I \ {0} follows easily from (47) by considering the cases x > 0

and x < 0 separately. In order to prove (48) we note first that, thanks to Lemma 2.2, we can 
write f (x; ν) − T k−1

0 f (x; ν) = xkg(x; ν) with g ∈ C ∞(I × U). Taking this into account and 
performing the coordinate change s = tx we get
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|x|α
x∫

0

(f (s;ν) − T k−1
0 f (s;ν))|s|−α ds

s
= |x|α

x∫
0

skg(s;ν)|s|−α ds

s
= xk

1∫
0

tk−αg(tx;ν)
dt

t
.

We claim that this is a C ∞ function of (α, x, ν) ∈ (−∞, k) × I × U . To prove this we apply 
assertions (i), (c) and (g) in Lemma 2.4 to conclude that (t; α, x, ν) �→ tk−α−1g(tx; ν) belongs 
to F∞

L ((−∞, k − 1 −L) × I ×U) for any L ∈R. Consequently, if we fix any α0 ∈ (−∞, k) and 
take L = k−α0

2 − 1 then for any x0 ∈ I , ν0 ∈ U , K ∈Z≥0 and ν ∈ZN+2
≥0 with |ν| � K there exist 

a compact neighbourhood Q of (α0, x0, ν0) and constants C, t0 > 0 such that the absolute value 
of

∂ν
(
tk−α−1g(tx;ν)

) = ∂ |ν|(tk−α−1g(tx;ν))

∂ν1ν1 · · · ∂νN νN∂νN+1α∂νN+2x

is bounded by CtL for all (α, x, ν) ∈ Q and t ∈ (0, t0). It is clear on the other hand that there 
exists C′ > 0 such that |∂ν(tk−α−1g(tx; ν))| � C′ for all (α, x, ν) ∈ Q and t ∈ [t0, 1]. Accord-
ingly |∂ν(tk−α−1g(tx; ν))| is bounded by an integrable function of t ∈ [0, 1] not depending on 
(α, x, ν). Hence, by applying the Dominated Convergence Theorem (see [33, Theorem 11.30]
and also [36, pp. 409–410]) we can assert that the function (α, x, ν) �→ ∫ 1

0 tk−αg(tx; ν)dt
t

is 
C ∞ on a neighbourhood of (α0, x0, ν0). This proves the claim and shows in particular that the 
function on the right hand side of the equality in (48) is written as

ψ(α,x;ν):=
k−1∑
i=0

∂i
xf (0;ν)

i!(i − α)
xi + xk

1∫
0

tk−αg(tx;ν)
dt

t
for all x ∈ I \ {0}.

Furthermore, on account of the claim, ψ ∈ C ∞(
((−∞, k) \Z≥0) × I × U

)
. On the other hand, 

by applying the integration by parts formula it follows easily that x∂xψ −αψ = f . Consequently

f̂ (α, x;ν) =
k−1∑
i=0

∂i
xf (0;ν)

i!(i − α)
xi + xk

1∫
0

tk−αg(tx;ν)
dt

t
(50)

=
k−1∑
i=0

∂i
xf (0;ν)

i!(i − α)
xi + |x|α

x∫
0

(
f (s;ν) − T k−1

0 f (s;ν)
)

|s|−α ds

s
,

where the first equality is true for all (α, x, ν) ∈ ((−∞, k) \Z≥0) × I × U by the uniqueness of 
f̂ and the second one holds only for x 
= 0 by the variable change s = tx. This completes the 
proof of (b).

In order to prove (c) let us fix (i0, x0, ν0) ∈ Z≥0 ×I ×U and take any k ∈ Z≥0 such that k > i0. 
Then the equality in (50) shows that (α, x, ν) �→ (i0 − α)f̂ (α, x; ν) extends C ∞ at (i0, x0, ν0)

and, moreover, that it tends to 1
i0!∂

i0
x f (0; ν0)x

i0
0 as (α, x, ν) → (i0, x0, ν0).

Let us turn finally to the proof of (d), so we assume henceforth that f (x; ν) is analytic on 
I × U . Fix any α0 ∈R \Z≥0 and ν0 ∈ U . We claim that the singular differential equation xy′ −
αy = f (x; ν) has a solution y = f̂loc(α, x; ν) with f̂loc(α, 0; ν) = − 1

α
f (0; ν) that is analytic in 

a neighbourhood of (α0, 0, ν0) inside (R \Z≥0) × I × U .
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To prove the claim we consider the holomorphic extension F(x, ν) of f (x; ν) in a neighbour-

hood 
 of (0, ν0) ∈ CN+1 and for each i ∈ Z≥0 we define Gi(α, x, ν) := ∂i
xF (0,ν)

i!(i−α)
xi , which is 

clearly a holomorphic function on (C \Z≥0) × 
. We will see that

S(α, x, ν):=
∞∑
i=0

Gi(α, x, ν) (51)

is a holomorphic function in a neighbourhood of (α0, 0, ν0) ∈ (C \ Z≥0) × 
. To this end we 
observe that:

(i) By Cauchy’s Estimates, see for instance [33], if |F(x, ν)| � M for all (x, ν) ∈ 
 with |x| <
R and |ν − ν0| < ε then |∂i

xF (0, ν)| � i!M
Ri .

(ii) There exist δ1, δ2 > 0 small enough such that if |α − α0| < δ1 then |i − α| > δ2 for all 
i ∈Z≥0.

Consequently |Gi(α, x, ν)| < M
δ2

(
L
R

)i
for all (α, x, ν) ∈ CN+2 with |x| < L < R, |ν − ν0| < ε

and |α −α0| < δ1. This shows that (51) converges uniformly in a neighbourhood of (α0, 0, ν0) ∈
(C \Z≥0) ×
. On account of this, and the fact that Gi(α, x, ν) is holomorphic on (C \Z≥0) ×


for all i � 0, we can assert (see for instance [17, Proposition 2]) that S(α, x, ν) is holomorphic 
on (C \ Z≥0) × 
. We have on the other hand that x∂xS − αS = F because, by the uniform 
convergence again,

x∂xS(α, x, ν) − αS(α, x, ν) = x

∞∑
i=0

∂i
xF (0, ν)

i!(i − α)
ixi−1 − α

∞∑
i=0

∂i
xF (0, ν)

i!(i − α)
xi

=
∞∑
i=0

∂i
xF (0, ν)

i! xi = F(x;ν).

Therefore the claim follows taking f̂loc(α, x; ν) to be the restriction of S(α, x; ν) to the real 
domain.

Suppose that f̂loc(α, x; ν) is analytic in some open cube V with centre (α0, 0, ν0) and edge 
length 4ε. Then from here we follow exactly the same approach as in the proof of (a), i.e., we 
define f̂ (α, x; ν) in S = {(α, x, ν) : x ∈ I and (α, 0, ν) ∈ V } by means of (49) and it turns out 
that f̂ (α, x; ν) is analytic on S \ {x = 0}. Indeed, this follows from the analyticity of f (x; ν)

and that, on account of the previous claim, (α, ν) �→ f̂loc(α, ±ε; ν) is analytic at (α0, ν0). Then, 
exactly as for the regularity assertion in (a), by the existence and uniqueness theorem for solu-
tions of differential equations we have that f̂ is an analytic function on S . By the arbitrariness 
of ν0 ∈ U and α0 ∈R \Z≥0, this shows that f̂ (α, x; ν) is analytic on (R \Z≥0) × I × U .

In order to prove the second assertion in (d) we fix α0 ∈ Z≥0 and ν0 ∈ U . Then the proof 
of the previous claim shows that (α, x, ν) �−→ (α − α0)f̂ (α, x, ν) is analytic at (α0, x0, ν0) for 
x0 = 0. To prove that this is also true for any x0 ∈ I we argue exactly as before by using the 
extension defined in (49) and, for the sake of shortness, it is left to the reader. This concludes the 
proof of the result.
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Remark B.2. There are some previous results related with the function f̂ (α, x; ν) defined in 
Theorem B.1 that should be referred here:

(i) Bénoit uses in [2, p. 106] a transformation Mα : C[[t]] → C[[t]] for every fixed α ∈
R>0 \ Z defined, for each formal series f ∈ C[[t]], by means of the differential equa-
tion −t d

dt
Mα(f ) + αMα(f ) = f . Hence, by assertion (a) in Theorem B.1, if f ∈ R[[t]]

is convergent then Mα(f ) = −f̂ (α, t).
(ii) If α < 0 then we can take k = 0 in (48) and get that

f̂ (α, x) = xα

x∫
0

f (s)s−α ds

s
for x > 0.

Therefore if α > 0 then limx→+∞ xαf̂ (−α, x) coincides with the usual Mellin transform 
(see [10])

Mf (α) =
∞∫

0

f (s)sα ds

s
.

(iii) Novikov introduces in [28] a truncated (the author calls it one-sided) Mellin transform as

u ∈ L1
loc

(
(0,1]) �−→ M1u(α):=

1∫
0

sα−1u(s)ds

and observe in this regard that M1u(α) = û(−α, 1) for α > 0.

The formula in (48) enables to interpret f̂ (α, x; ν) as a sort of incomplete (and parametric) 
version of the Mellin transform of f (x; ν). As we have seen in the proof of Theorem B.1, 
(48) extends C ∞ to x = 0 by means of the expression (50) taking the C ∞ function g(x; ν) =
f (x;ν)−T k−1

0 f (x;ν)

xk , see Lemma 2.2.

The proof of the following two results is omitted because it is an easy application of Theo-
rem B.1.

Corollary B.3. Consider an open interval I of R containing x = 0, an open subset U of RN and 
α ∈ R \Z≥0. Then the following hold:

(a) If f (x; ν) = g(x; ν) + h(x; ν) with g, h ∈ C ∞(I × U) then f̂ (α, x; ν) = ĝ(α, x; ν) +
ĥ(α, x; ν).

(b) If f (x; ν) = c(ν)g(x; ν) with g ∈ C ∞(I × U) and c ∈ C ∞(U) then f̂ (α, x; ν) =
c(ν)ĝ(α, x; ν).

(c) If f (x; ν) = xng(x; ν) with g ∈ C ∞(I × U) and n ∈N then f̂ (α, x; ν) = xnĝ(α − n, x; ν).
(d) If f (x; ν) ≡ 1 then f̂ (α, x; ν) ≡ − 1 .
α
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The next two results are equally valid in the smooth category C ∞ and the analytic category 
C ω. For simplicity in the exposition we write C � with the wild card � ∈ {∞, ω}.

Corollary B.4. Let us fix � ∈ {∞, ω} and consider an open interval I of R containing x = 0
and an open subset U of RN . If f (x; ν) ∈ C � (I × U) and κ1, κ2, α0 ∈ R verify κ1 
= 0 and 
i0 := κ1α0 + κ2 ∈Z≥0 then, for any (x0, ν0) ∈ I × U , the function (α, x, ν) �→ (α0 − α)f̂ (κ1α +
κ2, x; ν) extends C � at (α0, x0, ν0) and it tends to 1

κ1i0!∂
i0
x f (0; ν0)x

i0
0 as (α, x, ν) → (α0, x0, ν0).

We conclude the present appendix by proving a technical lemma to be applied for studying 
the poles of the coefficients obtained in Theorem A.

Lemma B.5. Let us fix � ∈ {∞, ω} and consider an open interval I of R containing x = 0, an 
open subset U of RN and α ∈R \Z≥0. Let M(x; ν) and A(x; ν) be C � functions on I ×U and 
define

B(x;α, ν):= A(x;ν)M̂(α, x;ν),

which is a C � function on I ×(R \ Z≥0) ×U by Theorem B.1. Finally let us take i0, p, q ∈ Z, 
with i0 � 0 and q 
= −1, and set i1 := qi0 − p and i2 := (q + 1)i0 − p. The following assertions 
hold:

(a) If i1 � 0 then, for any (x0, ν0) ∈ I × U , the function (α, x, ν) �→ (i0 − α)2B̂((q + 1)α −
p, x; α, ν) extends C � at (i0, x0, ν0) and it tends to

x
i2
0

q + 1

M(i0)(0;ν0)

i0!
A(i1)(0;ν0)

i1! as (α, x, ν) → (i0, x0, ν0).

(b) If i1 < 0 then, for any (x0, ν0) ∈ I × U , the function (α, x, ν) �→ (i0 − α)B̂((q + 1)α −
p, x; α, ν) extends C � at (i0, x0, ν0) and it tends to

x
i2
0

(q + 1) i2!
i2∑

j=0

(
i2

j

)
M(j)(0;ν0)A

(i2−j)(0;ν0)

j − i0
+ x

i0
0

M(i0)(0;ν0)

i0! Â(i1, x0;ν0)

as (α, x, ν) → (i0, x0, ν0),

where the summation is zero in the case that i2 < 0.

Proof. By Lemma 2.2 we can write M(x; ν) = ∑i0
j=0

M(j)(0;ν)
j ! xj + xi0+1g(x; ν) with g ∈

C � (I ×U). Then, by Corollary B.3, M̂(α, x; ν) = ∑i0
j=0

M(j)(0;ν)
j !(j−α)

xj +xi0+1ĝ(α − i0 −1, x; ν). 

Consequently, on account of B(x; α, ν) := A(x; ν)M̂(α, x; ν), we get that

B(x;α, ν) =
i0∑ M(j)(0;ν)

j !(j − α)
xjA(x;ν) + xi0+1N(x;α, ν),
j=0
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where we set N(x; α, ν) := A(x; ν)ĝ(α − i0 − 1, x; ν) for shortness. Observe that, since 
ĝ(α − i0 − 1, x; ν) is C � along α = i0 by Theorem B.1, so is N(x; α, ν). Hence, by apply-
ing Corollary B.3 again with α′ = (q + 1)α − p and ν′ = (α, ν),

B̂
(
(q + 1)α − p,x;α, ν

)
=

i0∑
j=0

M(j)(0;ν)

j !(j − α)
xj Â

(
(q + 1)α − p − j, x;ν)+ xi0+1N̂

(
(q + 1)α − p − i0 − 1, x;α, ν

)
.

Thus multiplying by (i0 − α)k on both sides of the above equality we get

(i0 − α)kB̂
(
(q + 1)α − p,x;α, ν

) =
i0∑

j=0

M(j)(0;ν)

j !
(i0 − α)k

j − α
Â
(
(q + 1)α − p − j, x;ν)xj

+ (i0 − α)kxi0+1N̂
(
(q + 1)α − p − i0 − 1, x;α, ν

)
.

(52)

In order to prove (a) we set k = 2 above, so that

(i0 − α)2B̂
(
(q + 1)α − p,x;α, ν

) = M(i0)(0;ν)

i0! (i0 − α)Â
(
(q + 1)α − p − i0, x;ν)xi

+
i0−1∑
j=0

M(j)(0;ν)

j !
(i0 − α)2

j − α
Â
(
(q + 1)α − p − j, x;ν)xj

+ (i0 − α)2xi0+1N̂
(
(q + 1)α − p − i0 − 1, x;α, ν

)
.

By Corollary B.4 this expression shows that (α, x, ν) �→ (i0 − α)2B̂((q + 1)α − p, x; α, ν) ex-
tends C � at (i0, x0, ν0) for any (x0, ν0) ∈ I × U . Furthermore, since all the summands except 
the first one tend to zero as (α, x, ν) → (i0, x0, ν0) by Corollary B.4 again,

lim
(α,x,ν)→(i0,x0,ν0)

(i0 − α)2B̂((q + 1)α − p,x;ν) (53)

= M(i0)(0;ν0)

i0! x
i0
0 lim

(α,x,ν)→(i0,x0,ν0)
(i0 − α)Â

(
(q + 1)α − p − i0, x;ν)

provided that the limit on the right hand side exists. In order to compute it we apply Corollary B.4
once again, with κ1 = q + 1 and κ2 = −p − i0, to conclude that

lim
(α,x,ν)→(i0,x0,νo)

Â
(
(q + 1)α − p − i0, x;ν) = x

i1
0

q + 1

A(i1)(0;ν0)

i1! ,

where we also take the assumption i1 = qi0 − p = κ1i0 + κ2 ∈ Z≥0 into account. Consequently, 
from (53),
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lim
(α,x,ν)→(i0,x0,ν0)

(i0 − α)2B̂((q + 1)α − p,x;ν) = x
i0+i1
0

q + 1

M(i0)(0;ν0)

i0!
A(i1)(0;ν0)

i1!
and this proves (a). Let us turn next to the assertion in (b). In this case we set k = 1 in (52) to 
obtain

(i0 − α)B̂
(
(q + 1)α − p,x;α, ν

) = M(i0)(0;ν)

i0! Â
(
(q + 1)α − p − i0, x;ν)xi0

+
i0−1∑
j=0

M(j)(0;ν)

j !
i0 − α

j − α
Â
(
(q + 1)α − p − j, x;ν)xj

+ (i0 − α)xi0+1N̂
(
(q + 1)α − p − i0 − 1, x;α, ν

)
.

Note that the last summand on the right hand side is C � at (i0, x0, ν0) by applying Theorem B.1
because (q + 1)α − p − i0 − 1|α=i0 = i1 − 1 < 0 due to the hypothesis i1 := qi0 − p < 0. It 
shows furthermore that it tends to zero as (α, x, ν) → (i0, x0, ν0). Exactly the same reason shows 

that the first summand is C � at (i0, x0, ν0) and that it tends to M(i0)(0;ν0)
i0! Â

(
qi0 − p, x0; ν0

)
as 

(α, x, ν) → (i0, x0, ν0). Then, by applying Corollary B.4 with κ1 = q + 1 and κ2 = −p − j , the 
remaining summands on the right hand side also extend C � at (i0, x0, ν0) and

lim
(α,x,ν)→(i0,x0,ν0)

(i0 − α)B̂((q + 1)α − p,x;ν)

= 1

q + 1

i2∑
j=0

x
i2
0

j − i0

M(j)(0;ν0)

j !
A(i2−j)(0;ν0)

(i2 − j)! + x
i0
0

M(i0)(0;ν0)

i0! Â(qi0 − p,x0;ν0).

Here we also use that κ1i0 + κ2 = (q + 1)i0 − p − j � 0 if and only if j � (q + 1)i0 − p =:i2. 
This proves (b) and concludes the proof of the result.

Appendix C. Asymptotic expansions at arbitrary order

In this last appendix we recap for reader’s convenience the definitions, notation and results 
from [23] that we use in the present paper.

Definition C.1. Consider K ∈ Z≥0 ∪ {+∞} and an open subset U ⊂ Ŵ ⊂ RN+1. We say that 
a function ψ(s; μ̂) belongs to the class C K

s>0(U), respectively EK(U), if there exist an open 
neighbourhood 
 of

{(s, μ̂) ∈RN+2; s = 0, μ̂ ∈ U} = {0} × U

in RN+2 such that (s, μ̂) �→ ψ(s; μ̂) is C K on 
 ∩ (
(0, +∞) × U

)
, respectively 
. Finally we 

denote

EK+ (U):= {ψ(s; μ̂) ∈ EK(U); ψ(0; μ̂) > 0 for all μ̂ ∈ U }.

Here the letter E stands for functions in C K (U) having extension to s = 0.
s>0
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Fig. 4. The filled dots are points (i, j) ∈Z2≥0 in the set �k for k = (k1, k2).

More formally, the definition of C K
s>0(U) and EK(U) must be thought in terms of germs with 

respect to relative neighbourhoods of {0} × U in (0, +∞) × U . In doing so these sets become 
rings and we have the inclusions C K(U) ⊂ EK(U) ⊂ C K

s>0(U).
We can now introduce the notion of (finitely) flatness that we shall use in the sequel.

Definition C.2. Consider K ∈ Z≥0 ∪ {+∞} and an open subset U ⊂ Ŵ ⊂ RN+1. Given L ∈ R
and μ̂0 ∈ U , we say that ψ(s; μ̂) ∈ C K

s>0(U) is (L, K)-flat with respect to s at μ̂0, and we write 
ψ ∈FK

L (μ̂0), if for each ν = (ν0, . . . , νN+1) ∈ ZN+2
≥0 with |ν| = ν0 +· · ·+ νN+1 � K there exist 

a neighbourhood V of μ̂0 and C, s0 > 0 such that∣∣∣∣∣ ∂ |ν|ψ(s; μ̂)

∂sν0∂μ̂
ν1
1 · · · ∂μ̂

νN+1
N+1

∣∣∣∣∣ � CsL−ν0 for all s ∈ (0, s0) and μ̂ ∈ V .

If W is a (not necessarily open) subset of U then define FK
L (W) := ⋂

μ̂0∈W FK
L (μ̂0).

The principal part of the Dulac map and Dulac time will be expressed in terms of the following 
deformation of the logarithm.

Definition C.3. The function defined for s > 0 and α ∈ R by means of

ω(s;α) =
{

s−α−1
α

if α 
= 0,

− log s if α = 0,

is called the Ecalle-Roussarie compensator.

Definition C.4. Given any k = (k1, k2) ∈ Z2≥0, throughout the paper we shall use the following 
notation:

• �k := (Z≥k × {0}) ∪ (Z≥0×Z≥k ), see Fig. 4.
1 2
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• Dk
ij := {

λ > 0 : there exists (i′, j ′) ∈ �k \ {(i, j)} such that i + λj = i′ + λj ′}.

• Bk
λ,L := {

(i, j) ∈ �k : i + λj � L
}

for each L ∈R and λ > 0.

• Dk
L := {

λ > 0 : there exists (i, j) ∈ Bk
λ,L such that λ ∈ Dk

ij

}
.

• For λ = p/q ∈Q>0 with gcd(p, q) = 1 and (i, j) ∈ �k ,

A k
ijλ :=

{ ∅ if (i + rp, j − rq) ∈ �k for some r ∈N,{
r ∈ Z≥0 : (i − rp, j + rq) ∈ �k

}
otherwise.

Observe that if k2 = 0 then �k = Z2≥0 = �0 regardless of the value of k1. One can prove on the 
other hand, see [23, Remark 3.3], that Dk

ij and Dk
L are discrete subsets of Q>0.

Let us point out that in the previous definition k stands always for a two-dimensional vector 
with components in Z≥0. That being said, if k = (0, 0) then we write �0, D0

ij , B0
λ,L, D0

L and 

A 0
ijλ for shortness.
For the reader’s convenience we merge Theorems A and B of [23] in the following result. In 

its statement we use the notation introduced so far and denote

T0(μ̂) =
{

0 if n 
= (0,0),

−1
P(0,0;μ̂)

if n = (0,0),

where recall that the components of n = (n1, n2) ∈ Z2≥0 are the orders of the poles of Xμ̂ along 
the axis.

Theorem C.5. Let D(s; μ̂) and T (s; μ̂) be, respectively, the Dulac map and the Dulac time of 
the hyperbolic saddle (1) from �1 and �2.

(a) For each (i, j) ∈ �0 there exists �ij ∈ C ∞(
((0, +∞) \D0

ij ) ×W
)

such that, for every L > 0
and λ0 > 0, the following hold:
(a1) If λ0 /∈ D0

L−λ0
then

D(s; μ̂) = sλ
∑

(i,j)∈B0
λ0,L−λ0

�ij (μ̂)si+λj +F∞
L ({λ0} × W).

(a2) If λ0 ∈ D0
L−λ0

then there exists a neighbourhood Û of {λ0} × W such that

D(s; μ̂) = sλ
∑

(i,j)∈B0
λ0,L−λ0

�
λ0
ij

(
ω(s;α); μ̂)

si+λj +F∞
L ({λ0} × W),

where λ0 = p/q with gcd(p, q) = 1, α(μ̂) = p − λq and �λ0
ij (w; μ̂) ∈ C ∞(Û)[w]

with

�
λ0
ij (w; μ̂) =

∑
r∈A 0

�i−rp,j+rq(μ̂)(1 + αw)r for λ 
= λ0.
ijλ0
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Moreover �00(μ̂) > 0 for all μ̂ ∈ Ŵ .
(b) For each (i, j) ∈ �n there exists Tij ∈ C ∞(

((0, +∞) \Dn
ij ) ×W

)
such that, for every L > 0

and λ0 > 0, the following hold:
(b1) If λ0 /∈ Dn

L then

T (s; μ̂) = T0(μ̂) log s +
∑

(i,j)∈Bn
λ0,L

Tij (μ̂)si+λj +F∞
L ({λ0} × W).

(b2) If λ0 ∈ Dn
L then there exists a neighbourhood Û of {λ0} × W such that

T (s; μ̂) = T0(μ̂) log s +
∑

(i,j)∈Bn
λ0,L

T
λ0
ij

(
ω(s;α); μ̂)

si+λj +F∞
L ({λ0} × W),

where λ0 = p/q with gcd(p, q) = 1, α(μ̂) = p − λq and T λ0
ij (w; μ̂) ∈ C ∞(Û)[w]

with

T
λ0
ij (w; μ̂) =

∑
r∈A n

ijλ0

Ti−rp,j+rq(μ̂)(1 + αw)r for λ 
= λ0.
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