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Abstract

We consider a ¢°° family of planar vector fields {X ﬁ};}evi/ having a hyperbolic saddle and we study

the Dulac map D(s; /1) and the Dulac time T'(s; /1) from a transverse section at the stable separatrix to
a transverse section at the unstable separatrix, both at arbitrary distance from the saddle. Since the hy-
perbollclty ratio A of the saddle plays an important role, we treat it as an 1ndependent parameter, so that

=(A,n) e W= (0, 400) x W, where W is an open subset of RN For each o € W and L > 0, the
funct1ons D(s; 1) and T (s; 1) have an asymptotic expansion at s = 0 and & ~ (i with the remainder being
uniformly L-flat with respect to the parameters. The principal part of both asymptotic expansions is given in
a monomial scale containing a deformation of the logarithm, the so-called Ecalle-Roussarie compensator.
In this paper we are interested in the coefficients of these monomials, which are functions depending on
i that can be shown to be € in their respective domains and “universally” defined, meaning that their
existence is stablished before fixing the flatness L and the unfolded parameter jig. Each coefficient has
its own domain and it is of the form ((0, +00) \ D) x W, where D a discrete set of rational numbers at
which a resonance of the hyperbolicity ratio A occurs. In our main result, Theorem A, we provide explicit
expressions for some of these coefficients and to this end a fundamental tool is the employment of a sort of
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incomplete Mellin transform. With regard to these coefficients we also prove that they have poles of order at
most two at D x W and we give the corresponding residue, that plays an important role when compensators
appear in the principal part. Furthermore we prove a result, Corollary B, showing that in the analytic setting
each coefficient given in Theorem A is meromorphic on (0, +00) x W and has only poles, of order at most
two, along D x W.

© 2024 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY-NC
license (http://creativecommons.org/licenses/by-nc/4.0/).
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1. Introduction and statements of main results

In this paper we consider ¥*° unfoldings of planar vector fields with a hyperbolic saddle.
The study of the so-called Dulac map of the saddle has attracted the attention of many authors
(see for instance [3-5,12,26,31] and references there in) due, among other reasons, to its close
connection with Hilbert’s 16th problem (see [13,32] for details). If i is the parameter unfolding,
the Dulac map D(-; i1) of the saddle is the transition map from a transverse section X at its
stable separatrix S| to a transverse section X at its unstable separatrix Sy, whereas the Dulac
time T (-; 1) is the time that spends the flow to do this transition, see Fig. 1. In a previous paper
[23] we prove a general result for studying the asymptotic expansions of D(s; i) and T (s; i) at
s =0, where s is the variable parameterizing the transverse section X; and s = 0 corresponds to
the intersection point S; N X;. In short, this general result gives a remainder that behaves well
(i.e., uniformly on the parameters [t) with respect to d; and provides a detailed description of
the monomials appearing in the principal part. A key feature of this principal part is that the
monomials can be ordered as s — 0T. This is a very important result for the theoretical point of
view because it enables to bound the number of limit cycles or critical periodic orbits bifurcating
from a polycycle. However there are specific problems where it is not only interesting to bound
this number but also to determine from which parameters i these bifurcations occur. Having
explicit expressions of the coefficients of the monomials in the principal part is crucial for this
purpose, see for instance [25,34,35] for limit cycles and [18,19,24] for critical periodic orbits.
The present paper is addressed to this issue. There are two features to be noted with regard to
the hypothesis on the unfolding under consideration. On the one hand we suppose that the saddle
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is at the origin and, more significant, that the separatrices lay on the coordinate axis for all fi.
It is important to point out that there is no loss of generality in assuming this since we prove in
[23, Lemma 4.3] that there exists a smooth diffeomorphism, depending on the parameters, that
straightens the two segments of the separatrices joining the points S; N X1 and S N X, with the
saddle. That being said, we suppose on the other hand that the vector field has poles along the
axis. The reason why we permit this “polar” factor is because, when dealing with polynomial
vector fields, a special attention must be paid to the study of those polycycles with vertices at
infinity in the Poincaré disc. The factor can come from the line at infinity in a saddle at infinity
or, more generally, appear in a divisor after desingularizing a non-elementary singular point. We
remark that (by means of a reparametrisation of time) this factor can be neglected to study the
Dulac map but, on the contrary, this cannot be done when dealing with the Dulac time.

The present paper is the continuation of [22] and [23] and concludes our contribution to the
study of the theoretical aspects of the asymptotic expansion of the Dulac map and Dulac time of
an unfolding of a hyperbolic saddle. Naturally the results that we shall obtain in this paper are
strongly related with our previous ones. For reader’s convenience we shall recall in Appendix C
the essential results and definitions from [22,23] in order to ease the legibility. The notation and
hypothesis that we shall use throughout the paper are the following. Setting ji:= (A, u) € W=
(0, +00) x W with W an open set of R", we consider the family of vector fields {X ﬁ}ﬁ oy With

1 . A
Xp(xr, x2):= T (X1 Py(x1, x25 (1) 9y, +x2 Pa(x1, x2; M)3x2>, (1)
)

where

n:=(ny,ny) € Zzzo’

Py and P, belong to €°° (% x W) for some open set % of R? containing the origin,

Py(x1,0; 1) > 0and P»(0, x2; ) <0forall (x1,0),(0,x) e and i e W,

o A= —D200D e hyperbolicity ratio of the saddle at the origin.

Moreover, fori = 1,2, let 0;: (—&,¢€) X W — ¥; be a € transverse section to Xpatx; =0
defined by

0 (s; 1) = (071 (s3 1), 072 (s 1))

such that o1(0; ) € {(0, x2); x2 > 0} and 02(0; /1) € {(x1,0); x; > O} for all i € W. We also
assume that there exist open intervals /; and /> of R containing O such that

01(0; 0) € {0} x I; C % and 02(0; 1) € I x {0} C % forall i € W. )

These conditions on the transverse sections and the open set %/ guarantee that there is a well
defined Dulac map D(-; j1) and a well defined Dulac time T (-; 1) of X from X to X, see
Fig. 1.

Our results in [23] provide the asymptotic expansion of D(s; ) and T (s; ) at s = 0. Al-
though the definitions and notation used in [23] are essential for the correct statement of our
main result in the present paper, to facilitate the reading of the introduction, we defer this more
technical part to Appendix C. In this appendix we state Theorem C.5, which merges Theorems A
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Fig. 1. Definition of T'(-; /i) and D(-; 1), where ¢(z, p; t) is the solution of X, passing through the point p € U at
time t = 0.

and B in [23] and provides both asymptotic expansions at any order. For the time being, we
suffice by giving two examples of application at second and fourth order. Thus, see Theorem 4.1,
for i € Wina neighbourhood of some fixed fig = (A9, o) with A9 # 1, the Dulac map can be
written as

Ao1()s? + Frs ifrg < 1,

LAY — AN A
Dis; ) = Aoo()s™ + Alo(,&)s}‘_'—l +ff§ if Ag > 1,

where F7° stands for the class of flat functions used to express the remainder (see Definition C.2).
In the present paper (see Theorem A below) we compute explicitly some of these functions
A;j(ft) in the asymptotic expansion of D(s; ji) at s = 0, together with its counterparts T;;(f1)
for the Dulac time. For convenience, A;; () is the coefficient of siT*U+D in D(s; 1), whereas
T;j(f) is the coefficient of siT* in T (s; f1). Each function i = (A, ) — A;j (1) is smooth on
(0, 400) \ D?j) x W, where D?. is a discrete subset of Q. ¢ in which the monomial resonances
occur. In the above example this happens when 2A = A + 1, and for this reason a different mono-
mial scale for studying the case Ao = 1 is needed (see Example 4.2). This new monomial scale is
given by using the so-called Ecalle-Roussarie compensator (see Definition C.3). The polar factor
xi"xé’z in (1) can be ignored when studying the Dulac map D(s; ft) and so its coefficients do
not depend on n = (n1, ny). This is not the case for the Dulac time T (s; {i) and, in particular,
the resonant sets Dflj for its coefficients 7;; depend also on n (see Appendix C). For example

(see Theorem 4.3), in case that ny =0 and ny > 1, for & € Wina neighbourhood of some fixed

fi0 = (Ao, 20) With Ag € (Mlﬁ nﬁ) \ {nl—z} the Dulac time is

Tony (D)2 + Tio (D)8 + To 1 (D™D 4 F it ho € (k. ),

T (s; j1) = Too (1) +

TS + Tony (D™ + Toy 1 (™24 + 732 i € (35, 727).

In this case it is even more evident the consequences in the monomial order of the resonance at

Monz = 1, which again forces the introduction of a compensator and explains the reason why the
coefficient T;; is not well defined at Df’. x W.

Next, we proceed with the statement of Theorem A, which gives the expression of A;; for

(i, ) €{(0,0), (0, 1), (1,0), (1, D} and Tj; for (i, j) € {(n1,0), (n1+1,0), (0, n2), (0, n2 + D}.
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With this aim in view we next define some functions that depend uniquely on P;(x1, x2; [1), for
i =1,2, and n = (ny,ny), see (1). The latter is fixed, whereas the dependence on i will be
omitted for shortness.

(PO 1\dz [ (PO | \dz
Ll(u)._exp()/ <P2(O,z) + )\) s Lz(u)._epr/ <P1(z,0) +A) -
P P
My (u):= Li(u)d; (?) 0, u) My (u):= Lz(u)az(—> (u,0)
p) P
_ Li'w L)
A(u):= Pr0. 1) Ar(u):= Pr(i.0)
By(u):=ny Ay(u)Mi(1/A, u) Ba(u):=na Az (u) Mo (h, 1)
+L ™ )y Py 0, ) +LY @) P (u, 0)
Ci(u):= L3w)d} Py " (0, u) Co(u):= L3w)d3 P " (u, 0)
2L )My (1/A, w)dy Py (0, u) 2L (u) My (o, )2 Py (u, 0)

(3
Here, given « € R\ Z>¢ and a real valued function f (x) thatis 4" in an open interval containing
x=0, f (, x) is a sort of incomplete Mellin transform that we will introduce in Appendix B. In
this regard we point out, see Lemma 2.3, that for i = 1, 2 the functions L;(u), M;(u) and A; (1)
are €°° on the interval I; considered in (2), which contains u = 0. For shortness as well, in the
statement of our main result we use the compact notation o;j for the kth derivative at s = 0 of
the jth component of o; (s; i), i.e.,

oijk () := 850y (0; 1).

In particular we consider the following real values (where once again we omit the dependence
on f):

oz o1 (P o1l A
Sp:= -— (—)(0, 0120) — ———M1(1/X, 0120)
20111 o120 \ P2 Li(o120)
(€Y
0222 o211 (P2 o»nl o~
SHi=———— <—>(0210,0) — ——————M>(X, 0210)-
2021 o210 \ P L>(0210)

We are now in position to state Theorem A, which is the main result of the present paper and
provides the explicit expression of the above-mentioned coefficients, see points () and (c). In
addition to that we also establish in point (a) a factorisation property among the coefficients A;;
and T;; that holds for arbitrary (i, j). This factorisation is along the lines of the one given by
Roussarie (see [30, Theorem F] or [32, §5.1.3]) for the coefficients of the local Dulac map.

Theorem A. Assume n # (0, 0) and let D(s; j1) and T (s; i) be, respectively, the Dulac map and
the Dulac time of the hyperbolic saddle (1) from 21 and ;. Consider moreover the coefficients
A;j and T;; given by Theorem C.5. Then the following assertions hold:
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(a)

(b)

(©)

There exists a sequence {Qij}(i,j)ezzo with Q;j € € (((0, +00) \ D?O) X W) such that if
(i, j) € Z2 , then :

Aij () = Qij (1) Aoj (R) for all fu € W with & ¢ DY
and, if additionally j > 0, then
T;j () = Qi j—1() To; () for all i € W with 1 ¢ D}; U DY, C D).
The coefficients A;j for (i, j) € {(0,0), (0, 1), (1, 0), (1, 1)} of the Dulac map are given by

0110120 L2(0210)
L} (0120) 022103

A11 () = —2A5AS8152,

Aoo(f1) = . Ao (W) =A%, Ap() = AgrS) and

where each equality is valid for all i € W with i ¢ Dloj In particular, Q10(4) = AS) and
Qi1(1) =2181.

The coefficients Tj; for (i, j) € {(n1,0), (n1 + 1,0), (0, n2), (0, n2 + 1)} of the Dulac time
are given by

ni n2
_ %111%120

104,y (g /A — n2, 0120),
L7 (0120)

Ty 0() =

nj ny
A ny 92109221 »
Ton, (1) = AQ— ,——— A2(nah — ny, 0210),
L,*(0210)
o121 niSi

Ay (n1 /1 —na, 0120)
0120P2(0,0120) L' (0120)

~ ny _np
Tn1+1,0(ﬂ) = —=0111%120 (

o111
ni+1
L' (o120)

Bi((n1 +1)/A —na, Guo)) ;

o211 0221
0210 P1 (0210, 0) L32+1 (0210)

A~ 1 D
To.ny+1(Q0) = A8(2)+ 05100251 ( By(A(na+ 1) — ”1»(7210)) ,

where each equality is valid for all [1 € W with A ¢ Dl”j except for the third one in which

the values » = % k=1,2,..., |'n1"i1'| — 1, must be excluded as well. Moreover, if ny =0
then

2
R ny [ 01220120 + (2 — 1oy,
12042V, 0120

01210111

31 P51 (0, 0120)
0120

o2
121 -1
+ 0P, (0,0120) +
20120
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o2 S
_’_%él(z/)\_nz’mzo)_g_&él(l/k—nz,mzo) )
212 (0120) Li(o120)

orallﬁEWwithA DX U l;k=1,2,...,f"—2]—1 . Finally if no =0 then
20 k 2

02120210 + (n1 — Doy,
2030 P1 (0210, 0)

To2 (1) = A(2)002n]l() (

2
0. — 02110221 _
+2L5, P (0210, 0) + ——— & P Y(0210,0)
20310 0210
2
1 A 021152
+—"—C2\A—n1,0210) — ——————
2L3(0210) 20210 P1(0210,0)

for all jx € W with A ¢ Df},.

We point out that the coefficients T;;({) depend on ji but also on n = (11, n2). We do not
specify this dependence in the notation for the sake of shortness. This is the reason why, for in-
stance, the expression for T, +1,0(f1) does not follow by replacing n1 by n + 1 in the expression
for T, 0(/2).

The employment of the incomplete Mellin transform introduced in Appendix B allows us
to generalise and unify several formulas that we obtained previously in [18,21] under more re-
strictive hypothesis. With regard to the hypothesis, in those papers we restrict ourselves to the
analytic setting (see Remark 1.2) and, more restraining, we assume that the family of vector
fields {X ﬂ}ﬂ oy 1n (1) verifies the family linearisation property (FLP, for short), which means
that {X ﬂ}ﬁ 1 18 locally analytically equivalent to its linear part. In the present paper we do not
require the FLP assumption and we consider the smooth setting instead of the analytic one. Fur-
thermore the expressions for the coefficients that we obtain in those papers are only valid for
hyperbolicity ratios varying in a specific range. By using the properties of the incomplete Mellin
transform proved in Theorem B.1 we can get through this constrain as well, see Example 2.10.

Let us at this point say a few words about the proof of Theorem A. The key point is the
employment of a local normalizing diffeomorphism & that enables to simplify the study of the
passage through the saddle. In doing so we can decompose the Dulac map as D = Ry o Dy o
R1, where Dy is the Dulac map for the normalized vector field between two local transverse
sections Ef and Eg, whereas Ry and Rj are regular passages from X; to 2{ and 2’5 to X»,
respectively (see Fig. 2). The resulting coefficients depend on @, but only apparently, and the
crucial contribution of the Mellin transform is precisely to eliminate this fake dependence as we
shrink the local transverse sections to the saddle. The approach to tackle the Dulac time is similar.
It is important to remark, and this is very useful in the applications, that the given transverse
sections X1 and ¥, are located at arbitrary distance from the saddle and, consequently, outside
the domain of definition of the normal form. For instance, we have already used in [24] the
expressions of T;; in Theorem A to study of the bifurcation diagram of the period function of
the Loud centres. On the other hand, we have also employed in [25] the expressions of A;;
to determine the stability and compute the cyclicity of Kolmogorov polycycles. This type of
polycycle has three hyperbolic saddles at the vertices and to obtain the result we compose three
Dulac maps and determine the first coefficients of the corresponding principal part.
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Remark 1.1. For the reader’s convenience we specify the sets D?j and Dl”j corresponding to
the coefficients in points (b) and (¢) in Theorem A. Taking Definition C.4 into account one can
readily get that

1 1
D(())O:@’ D81=N, D(])Ozﬁandl)?l:I\IUﬁ

for the coefficients of the Dulac map. Similarly, for the coefficients of the Dulac time, we have
Dl =0
00 ’

ni . N>y, .
D :Ul_ Dr - - ifny > 1,
ni,0 N ’ 0,n2 .
= Nzna 1) ifnp, =0,
ni+l1
n _ ! n _ NZ”]
ni+1,0 = U VandDo’nzﬂ_mUN,
i=1 ="
together with D, = NL forn; =0and Dg, = % for np = 0.
=ny

We know by Theorem C.5 that T;; (X, ) is € on ((0, +-00) \ D?j) x W forall (i, j) € Zzzo.
We will prove, see Lemma 3.1, that for each Ag € DZL/ there exists £ € Zxp such that i >
(A — ATy (1) extends € to {0} x W. Moreover the number £, which depends on (i, j), Ao
and n = (n1, n2), is bounded by i + j. Hence, roughly speaking, the coefficient 7;; (A, ) has
poles of order at most i + j along Di"j x W. Likewise, by Lemma 3.1 as well, it follows that
A;j(A, n) has poles of order at most i + j along D?j x W. In Section 3 we sharpen this upper
bound for the coefficients given in points (b) and (c) of Theorem A and we also compute the
corresponding residues. This information is of relevance because these residues are the values at
Ao of the leading coefficients of the polynomials Al.kjf’(w; ) and Tl.k;’ (w; &) in Theorem 4.1 and
Theorem 4.3, respectively. We illustrate this in Example 4.2 for the Dulac map.

Remark 1.2. In this paper, foreseeing future applications, we will sometimes consider the ana-
lytic setting. By analytic setting we mean that, for i = 1, 2, the function P;(xy, x2; i) in (1) is
analytic on % X W and that the parametrisation o; (s; [t) of the transverse section ¥; is analytic
on (—e&, &) X w.

In view of the above discussion about the poles of the coefficients, it is reasonable to expect
that in the analytic setting the coefficients are meromorphic. In the present paper we are able to
prove that this is the case for the coefficients considered in Theorem A. The following constitutes
our second main result:

Corollary B. In the analytic setting the following assertions hold:

(a) Foreach (i, j) € {(0,0), (1,0), (0, 1), (1, 1)}, the coefficient A;; of the Dulac map is mero-
morphic on W = ((0, +00) x W and has only poles, of order at most two, along D?j x W.
(b) For each (i, j) € {(n1,0), (0, n2), (n1 + 1,0), (0, n2 + 1)}, the coefficient T;; of the Dulac
time is meromorphic on W= (0, +00) x W and has only poles, of order at most two, along
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D?j x W. This is also the case for (i, j) = (2,0) and (i, j) = (0, 2) assuming n1 =0 and
ny = 0, respectively.

On account of this partial result, in the analytic setting we conjecture that for arbitrary (i, ;)
the coefficient A;;(A, u) of the Dulac map is meromorphic on (0, +00) x W with poles along
A€ D?j and that the coefficient 7;;(A, u) of the Dulac time is meromorphic on (0, +00) x W
with poles along A € DZ’/.

The paper is organized in the following way. Section 2 is mainly devoted to prove Theorem A.
Once this is done, and as an intermediate step towards the proof of Corollary B, at the end of
Section 2 we show that, in the analytic setting, the coefficients A;; and T;; listed in (a) and
(b) of Theorem A, respectively, are analytic in their domains (see Proposition 2.9). In Section 3
we study the poles and residues of the coefficients. We begin by proving the above-mentioned
Lemma 3.1, which constitutes a general result about the order of the poles. Next we prove a bunch
of propositions that give the order of the pole and the respective residue for each coefficient listed
in points (a) and (b) of Theorem A. Finally we conclude the section with the proof of Corol-
lary B. Section 4 aims at future applications of the tools developed so far (see [24,25]). The main
result of this paper, Theorem A, is intended to be applied in combination with Theorem C.5, that
gathers our main results in [23]. For this reason, and in order to ease the applicability, in Section 4
we particularise Theorem C.5 to specify the first monomials appearing in the asymptotic expan-
sion of the Dulac map D(s; ji), see Theorem 4.1, and the Dulac time T (s; 1), see Theorem 4.3,
for arbitrary hyperbolicity ratio Ag. By “first monomials” we mean as s — 0T, more concretely
with respect to the strict partial order <, introduced in [23, Definition 1.7]. It is here, dealing
with a resonant hyperbolicity ratio Ao = p/q, where the compensator w(s; p — Ag) comes into
play and the residues of the poles are needed, see Example 4.2. This paper contains three appen-
dices. In Appendix A we compute the second order Taylor’s expansion of the regular transition
map and transition time, see Lemma A.3. In Appendix B we introduce the incomplete Mellin
transform used to express the coefficients and show some of its properties. Finally Appendix C
gathers the fundamental results and definitions from [23] that we shall use in the present paper.

2. Proof of Theorem A

For the reader’s convenience we state first a result that we proved in a previous paper, see [23,
Corollary 2.2]. In its statement we follow the notation introduced in Definitions C.1 and C.2.

Lemma 2.1. Consider f(s; 1) € EX(U) with K € N and any m € N with m < K. Then the
following hold:

(a) There exist fi(1) e €X~1(U), i =0,1,...,m—1, and g(s; fr) € EX(U) such that
m—1 -
fs =) fi(s' +s"g(s; ).
i=0

(b) Forany L >0, EK(U) c €X' (U)[s] +]-'£(/(U) provided that K > K' + L.

The previous statement is aimed to study the flatness of the remainder in the asymptotic ex-
pansions that we shall deal with. The proof of (a) shows in fact, see [23], that if f € €X(I x U)
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with I an open interval of R containing 0 then g € €K~ (I x U). We prove next that this result
has its obvious analytic and smooth analogues. From now on, for simplicity in the exposition, we
shall use @ € {co, w} as a wild card in €% for the smooth class ¥ and the analytic class €.

Lemma 2.2. Let us consider an open interval I of R containing 0, an open subset U of RN and
meN.If f(s;v) € €7 (I x U) with w € {00, w} then there exists g(s;v) € €% (I x U) such
that

m—1 4
a! £(0; -
flssn=)" #s’ +s™g(s3v).

i=0

Proof. Given w € {00, w}, we claim that if f(s;v) € €% (I x U) verifies f(0;v) =0 for all
v € U then there exists g(s; v) € €% (I x U) such that f(s; v) = sq(s; v). In order to prove
the claim note first that the existence of ¢ in a neighbourhood of any (sg, vo) € I x U with
so # 0 is clear. Moreover this function is uniquely defined on (I \ {0}) x U. If s9 = O then
there exist €@ functions ¢(s; v) and r(v) in a neighbourhood V of (0, vp) in R¥*! such that
f(s;v) =s5q(s; v) + r(v). Indeed, the case @ = w follows by the Weierstrass Division Theo-
rem (see [11, Theorem 1.8] or [15, Theorem 6.1.3]), whereas the case @ = oo is a consequence
of the Malgrange Division Theorem (see [27, Theorem 2] for instance). Furthermore, due to
r(v) = f(0;v) =0, we get that f(s; v) = sq(s; v). Hence for each vg € U there exist a neigh-
bourhood V,, of (0, vp) in RY*! and a function qvy € €7 (V) such that f(s;v) = 5q,,(s; V).
Since gy, (s; v) = @ for all (s, v) € Vy, with s # 0, we conclude that g,, = q,, whenever
Vi, Ny, # . This proves the claim.

The desired result follows from the claim by using induction on m. More precisely, for the
base case m = 1 we apply the claim to f(s;v) — f(0;v). For the inductive step we apply
the claim to g(s; v) — g(0; v), where g is the remainder for the inductive hypothesis. In this
way one can prove the existence of functions f; € €” (U) and g € €® (I x U) verifying that
f(s;v) = Zlm:_ol fi(v)si + s™g(s; v). From here one can readily see that f;(v) = w and
this completes the proof. M

In the next lemma we show that the regularity assumptions on the vector field (1) are trans-
ferred to the functions defined in (3). In the statement, /1 and I, are the intervals of R containing
0 as introduced in (2).

Lemma 2.3. Fix @ € {00, w} and let us assume the following:

(a) Pi(u,0; 1) and P>(0, u; 1) are non-vanishing functions on I x W and I x W, respectively.
(b) B{CP,'(O, u, 1) € €% (I} x W) and 8§Pi(u,0; ) ECT (I xW) fori=1,2andk=0,1,2.

Then, fori =1, 2, the functions L; (u; (i), M; (u; 1) and A; (u; 1) given in (3) are €% on I; x Ww.
Moreover,

1. the functions By (u; i) and C1(u; i) are € on I x ((0, +00) \ %) x W, and
2. the functions By (u; ) and Ca(u; 1) are €% on Iy x ((0, +00) \ N) x W.
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P2(0,0; )
P1(0,0;)

that L;(u; 1) is €% (I; x W) for i = 1,2. In its turn this shows that A; (u ) and M;(u; i)
are €7 (I; x W) for i =1, 2. Then, by Theorem B.1, we can assert that M;(a,u; 1) is € on
R\ Zso) x I; x W. More precisely, we use assertion (a) for the case @ = oo and assertion (d)
for the @ = w. This easily implies, see (3), that the assertions 1 and 2 in the statement are true
and completes the proof of the result. W

Proof. Since

= —A by definition, the application of Lemma 2.2 with m = 1 implies

All the assertions except the last one in the next result are proved in [23, Lemma A.2]. The
last one follows as a particular case of assertion (c¢) in [23, Lemma A.3].

Lemma 2.4. Let U and U’ be open sets of RN and RN / respectively and consider W C U and
W' C U'. Then the following holds:

(@) FKW)c FEKW) forany W ¢ W and (), FX W) = FE (U, Wa).

(b) FEW)c FEW x w).

() €K W) ceX W) cFEw).

(d) IfK > K'and L > L' then FK (W) c FK'(w).

(e) F LK (W) is closed under addition.

(f) If f € FEW) and v € ZV§" with |v| < K then 8" f € F1_ " (W).

(g) FfW)-FEW)CF, +L/(W)

(h) Assume that ¢p: U’ —> U is a €K function with ¢ (W'Y C W and let us take g € .Fz(/(W/)
with L' > 0 and verifying g(s; n) > 0 for all n € W' and s > 0 small enough. Consider also
any f € ff(W). Then h(s; n):= f(g(s;n); ®(n)) is a well-defined function that belongs to
FE.w).

(i) Ifa € €K (U) thens* e FX({v e U :a(v) > L}).

By applying the previous lemmas we can now prove the following:
Lemma 2.5. Let V an open set of RN and consider a polynomial Q(-; v) with coefficients in
€K (V) such that Q(0;v) > 0 for all v € V. Let us also take L > 0 and L' > 1 together with
o € €% (V) such that a(v) > 0 for all v € V. Then the following holds:

(@ (sQ(s)+FE (V)" Cs*0%(s) + FK(V), and
(b) Ff(V)o(s* Q(s)+ff(V))cff({ueV:a(u)>L/L’}).

Proof. In order to prove (a) note first that
($Q(5) + FLy (V) Cs¥(Q(s) + FL (V) Cs* Q%) (1 +FF (V). )
Indeed, this follows by using twice (g) in Lemma 2.4. More concretely, in the first equality

together with the fact that 1/s € F, 51 (V), whereas in the second one noting also that 1/Q(s) €
EXW) c .7-'({( (V). On the other hand, by using Lemmas 2.1 and 2.4,

gx)=(1+x)*—1e€sEX(V) C FP(V)F (V) C Fo(V).
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Thus g o FX (V) € FX(V) by (h) in Lemma 2.4 and, therefore, (1 + FX(V)* C 1+ FK (V).
Taking this into account, the assertion in (a) follows from (5) noting that s* Q% (s)F f V) C
FEWFEW) c FE(V) due to s* € FE (V) by (i) in Lemma 2.4.

We turn next to the assertion in (b). To this end note that s* Q(s) € fLK/L,(V N{a > L/L'})
by (i) in Lemma 2.4. On the other hand, due to L' > 1, FX(V) C ff/L,(V) C ff/L,(V Nfa >
L/L’}) by (d) and (a) in Lemma 2.4. Thus, by (e) in Lemma 2.4,

Q) + FL (V) CFL (VN> L/L'Y).

On account of this and that, by (@) in Lemma 2.4 again, ff/(V) - ]—'f,(V N{a > L/L'}), the
application of (h) in Lemma 2.4 shows that

FEW o (s*0w) + FE W) c FEV 0> L/ILY o F (v N> L/LY
cFEWVNn{a>L/LY).
This completes the proof of the result. W

We only need one more technical result in order to tackle the proof of Theorem A. It will be
a consequence of the following easy observation.

Remark 2.6. If )" | aix* +y(x) =0forall x € (0, &), where ,; € RwithA| <Ay <--- < Ap,
ai,as, ..., am €Rand ¢ (x) =o(x*) thena; =ar = --- =a,, =0.

Lemma 2.7. Consider a, f € R\ Z with o — B ¢ Z and two functions f and g that are €% on the
interval (=8, 8) with K > —min(a, B). If there exists ¢ € R satisfying that x® f (x) +xPg(x) = c
forall x € (0,8) then ¢ =0.

Proof. Suppose that « < B and n:=min{i € Z>¢ : « + i > 0}. Hence K > n and by applying
Taylor’s theorem we can write

fX)=ap+ax+...+a,x" +x"Ri(x)and g(x) =by +bix + ...+ b, x" +x"Ry(x),

with lim,_,0 R; (x) = 0. Let us also set k :=min{i € Z>o : B +i > o + n}. Note then that x €
{0,1...,n}. If we define ¥ (x):= (b x* + b1 x4 .+ bx™)xP +x"(x* Ry (x) + xP Ry (x))
then, on account of the assumption x¢ f(x) + xPg(x) =c, we get that

—exP+apx® +aix® T+ ax T+ boxP + b b P () =0

for all x € (0, §). Taking the definition of n and « into account, note that i (s) = o(x9), Y(s) =
o(x**) and ¥ (s) = o(x#+*~1). Moreover all the exponents in x°, x®, x*+1 xotn xB xP+1
..., xPT=1 are different by the hypothesis on « and S, so that they can be ordered. Thus, on
account of Remark 2.6, we can assert that all their coefficients are equal to zero, in particular
c=0. 1

Proof of Theorem A. Note first that by Theorem C.5 we have two well defined sequences
{Aij}i. peno and {Tij}, jrea, with Ayj € €°°(((0, +00)\ D) x W) and T;; € € (((0, +00) \
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D;‘j) X W), where A, C Ag = Z2>o as introduced in Definition C.4 and, by applying [23,
Lemma 3.2], D?j and D;‘j are discrete sets of rational numbers in (0, +00). In order to prove

the assertions in (a), for each (i, j) € Ag and [t € ((0, +00) \ DIQO) x W we define Q;;(j1) by
means of

= a0 )8
0 : .
1+ St =) Qi()s', (6)
(Eie) e
where the equality must be thought in the ring of formal power series in s. Hence €;; €
Q [ﬁ—(‘)g, 2_33’ 2—(”)2] for each fixed (i, j) € Ag. One can verify, see Definition C.4, that

D?O = UZ:l é and thus Uf{legO = D?O. Consequently, since Agy > 0 on W by (a) in The-
orem C.5, we can assert that

Qij € €°°(((0, +00) \ DY) x W).
That being said, our first goal is to prove that if (i, j) € Ag then
Aij(f1) — Q4 () Agj (1) = 0 for all i € W with A ¢ D?/., (7

and that if (i, j) € A, with j > 0 then
T;j () — Qi,j-1(A)Toj(2) =0 forall 2 € W with A ¢ DI}, U Dfy. (8)

To this aim let us note that the function on the left hand side of the equality in (7), respectively
(8), s €°° in a neighbourhood of any ji, = (A, i+) € (0, +00) x W with X, outside the discrete
set D?j u D?O U Dg ;» Tespectively D?j U D?O U Dy ;- In this regard observe that D;’j C D?j, see
Definition C.4. It is also easy to show that, for any given any k € Zio, we have Dfo C ij and

DS i C lej Consequently

DY, U Dy U DY; = DY; and D}, U DY, U Dj; = D}, U DY, C DY},
so that the function in (7) is continuous on ((0, +00) \ D?j) x W whereas the function in (8) is

continuous on ((0, +00) \ (ij U D?O)) x W. Since D?. and Df] U D?O are discrete sets of rational
number in (0, 4-00), it is clear that both identities will follow by continuity once we prove it for
any = (A, u) € W with A ¢ Q.

The strategy to prove the identities in (b) and (c) will be the same. Indeed, let us write them
as

Aij(h, ) = Agj O, ) and Ty (0, ) = Ti (h, ),

ie., A; j and T ; are the functions on the right hand side of the equalities in the statement we want
to prove. As we already mentioned, we know that

Aij € €%°(((0, +00) \ D?j) x W) and T;; € €°°(((0, +00) \ D} x W)
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by Theorem C.5. On the other hand it turns out that there exist D?j, D;’j C Q-9 such that

Aij € €°°(((0, +00) \ D?j) x W) and T;; € €™ (((0, +00) \ D;lj) x W).
The sets D? and El" will be given explicitly later on but at this moment the relevant property is
that they are discrete in (0, +00) as well. That said, for simplicity in the exposition, let us explain
how the proof goes for the identity 7o ,, (A, 1) = Ton, (A, ). Thus, since D ny Y Dy nz is a dis-

crete set of rational numbers in (0, +00), for any given A, ¢ Dg’nz U ﬁg’nz there exists a sequence
of irrational numbers (Ax)ren such that limg—, oo Ax = A.. Hence, if we take any u € W then, by
continuity, limg_s o0 70,1, (Aks ) = T0, 5y (Ax, ) and limy_, o0 T, 5, (Ak, ) = T,y (As, (). SO it is
clear that the validity of the equality Tp ,, (A, ) = Tom (A, n) at any A = A, which is not inside
Dy ny Y l~)g’n2 will follow once we prove it for any i = (A, ) € W with A ¢ Q. This will be
precisely our goal to prove each one of the equalities in the statement. As a matter of fact we will
show that each equality is true in a neighbourhood of any ft9 = (Ao, o) € W with M ¢ Q.

In addition to the identities in (b) and (c) we shall prove the equality in (7) for (i, j) = (i1, j1)
and the equality in (8) for (i, j) = (i2, j2), where (i1, j1) € Ao and (i2, j2) € A, are arbitrary but
fixed. To this end, in view of the previous considerations, we fix any 1o = (Ao, o) € W with Ao ¢
Q. Then by [20, Theorem A] we know that for each K € N there exists a ¢k diffeomorphism

D, uz, 1) = (i i, uz; ), uaya(ur, ua; ), i),
defined in an open set U x V with (0,0) e U c R?and fig € V C W, verifying

P1(0,0; v)
A=y W10y, — Au20y,) 9)
Uy iy

D*X

and such that ¥;(0,0; 1) =1, i = 1, 2. Let us point out that in the forthcoming analysis it will
be crucial that K is larger than some fixed quantity N' = N (Ao, n1, n2, i1, i2, j1, j2). We will
specify at each step of the proof which is the necessary lower bound for K and, at the end, N’
will be the maximum of them. This provides us with a specific value for N (that is not relevant
at all) and in what follows we simply suppose that we take a €’X normalising diffeomorphism ®
with K > N.

For convenience we assume without lost of generality that

U={(ui,uz) €R?:ui| <8 and |uz| < 8} = (=3, §)*
for some § > 0 small enough such that CI>((—6, 6)2 x V) C (?/ NI x Iz)) x V,where I1 and I

are the real intervals as introduced in (2), see Fig. 1. Taking €1, &2 € (0, §) we consider auxiliary
€K transverse sections Ef and Eg to x; =0 and x, =0, see Fig. 2, parametrized by

T1(s; €1, 1):= (s, £1; 1) and 12(s; &2, 1) 1= P (g2, 53 1), (10
respectively. From now on, in addition to /i, we will also consider ¢:= (g1, &3) as parameter. In
this respect we remark that 7; (s; &;, 1) is a &K functionon U x V fori =1, 2. Similarly as we

did with o;, we denote
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T2

Fig. 2. Auxiliary transverse sections in the decomposition of 7'.

Tk (i, )= 971 (0; &7, f1)

and we will write 7;j; for the sake of shortness.
The idea now is to decompose the Dulac map D(s; 1) and the Dulac time T (s; 1) as

D(s) = Ra(Do(Ri () and T (s) = T (s) + TO(R1(s)) + T*(Do(R1(5))). 1L

Here Ri(-; &1, 1), Do(-; ¢, i) and Ry(-; &2, [1) are, respectively, the transitions maps from X
to Zf, from Ef to Eg, and from Eg to ¥, whereas T!(-;e1, ), TO(-; ¢, 1) and T2(-; &2, [1)
are, respectively, the time that spends the flow to do this transition. It is well known that Dy and
T9 are singular at s = 0, whereas the other ones are regular. We study the latter by applying the
results obtained in Appendix A and to this end, see (43), we rewrite the given vector field as

1
Xp= =z (x1 P1(x1, x2)0y, + X2 Pa(x1, X2)0y,)
X X

- (
=— (0, +h (.X' , Xj )X' Oy )
nj Xi 1\ 12/ VX
xizzfiz(-xilv-xiz) ! 2

where (i1,i2) € {(2, 1), (1,2)} and

w21 Pi(v,u)

Sfilu,v) = Py (v, 1) hl(”vv)Zm 1)
b Py(u,v)

folu,v)= Pi(n.v) hz(u,v)zm

(At this point, and in what follows, we omit the dependence on the parameters for the sake
of shortness when there is no risk of ambiguity. Moreover although the proof scripts 1 and 2
refer, respectively, to the first and second regular passage.) Setting 7:= (0, §), we apply (twice)
Lemma A.3 with v = (g;, 1) € I x V fori =1, 2. In doing so, and taking Lemma 2.1 also into
account, we can assert that
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L;
Ri(siei, ) =Y Ri(ei, f)s* + ) (Ix V) and
k=1
L;
T'(s; e, Q)= ) T (i, )s* + FL, (I x V), (13)
k:n,-

with Rjj, Tki e €% x V) provided that K > L; + 1 for i = 1,2. We know furthermore
that R;; > 0. Turning to the assumption K > N, let us advance that we will also require
that L; > N for i = 1,2, which is neither a problem because, as we explained before, N =
N(ho,n1,n2,i1, 12, j1, j2) and we can take K large enough from the very beginning.

With regard to the passage from Ef to Eg, taking (9) and (10) into account (see also Fig. 2),
an easy computation shows that

Do(s) =ds” with d:= 8182_)‘ (14)
and
€ ny_ np
U u du
To(s) =/ 1 72 — = Tosnl + TO(dS)»)nz’ (15)
P1(0,0) uz:gl(i)l uy 1 2
s Uy
where
0. il &'

nd 7y := .
(n1 — An2) P1(0,0)

17 = a
(n1 — Anz) P1(0,0)

(Here, on account of Ay ¢ Q, we reduce V so that n; — Any # 0 for all 1 € V.) Hence D(s) =
Ry (dR’l\ (5)). If we take any strictly positive 8(/1) € €°(V) then, due to Ry > 0,

; _
Ly Li—1
R
RP(s)=sPRY, <1+ ) R—i’js"‘l) +F (U xV)y=sPRY ST YPE 4+ D (< vy, (16)
k=2 £=0

where in the first equality we apply by (a) in Lemma 2.5 and in the second one we define
Tgm = Tyﬂ(sl, Q) for€=0,1,...,L; — 1 as the °(I x V) functions verifying

Li—1

B
L,

Rik j—1 (8] ¢
1+) —s = st + F0 (1 x v). 17)

(Here we apply Taylor’s theorem at order L to the function x > (1 4 x)# taking a uniform
estimate of the remainder by means of its integral form.) Note in particular that T([)ﬁ T=1. Taking
(16) with B(/1) = A and applying (b) in Lemma 2.5 we obtain

Ly
D) = Ra(dR} () = 3 Rud R () + 7, ([ ey e Pxvin> 725 ])
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Now we choose L and Ly such that Ay > ﬁ and we shrink V if necessary in order that

A> ijrl for all & € V. In doing so we get that

L
D(s) = R2(dR}(s)) = 22 Roxd*Ri*(s) + F (I* x V).
k=1

Next, by taking (16) with (@) = Ak, k=1,2,..., Ly,

Ly L1—1
D(S) — Z Z RZkRi»{cdkTE)»k]SI«F)\.k +]:21(12X V)
k=1 ¢=0

Li—1Ly—1
Alk+1 Ak+1
:sk Z Z R2,k+1le + )dk-‘r]T% (k+ )Jsf-‘r)»k +]:21([2XV)
=0 k=0

Since Ag ¢ Q, assertion (a1) in Theorem C.5 shows that
Agg = Ry ot RPEFD@HIYPEDT for all (6, 0) e 1P x V. (18)

Here we also take Remark 2.6 into account, shrinking (if necessary) the neighbourhood V of
o = (Ao, o) in order that all the exponents £ 4+ Ak are different for every [t € V. At this point
it is worth to make the following remarks with regard to the previous equality:

o It gives the expression of A;; providedthat 0 <i < L1 —1,0<j < Lz—1landi+Aoj < L.
Since we are just interested in (i, j) € {(0, 0), (0, 1), (1,0), (1, 1), (i1, j1)}, these conditions
reduce to specific lower bounds for L and L, that depend only on Aq, i1 and j;. For instance,
in order to prove that the factorisation in (7) holds for (i, j) = (i1, j1) we need that

L >max(i;+Xioj,i;1 +1)and Ly > jo + 1.
This does not constitute a problem because we can take K, and therefore L and L, arbi-
trarily large.
e The coefficient Ay is a function that depends only on ji, whereas each function on the right

hand side of (18) depends on [i but also on ¢. This constitutes a key point that we will exploit
in the forthcoming arguments. Particularized to £ = 0, from (14) and (18) we get that

—r(k k+1
Aok = (Rok+18, M +l))(le]t?l) * (19)
does not depend on & = (1, £2). Since the first factor does not depend on & and the second
one does not depend on &, taking k = 0 and using that Ago(it) # 0 for all & € W, we
conclude that
Ry.1(e2, ,&)82_)‘ and Ri‘] (g1, )€1 do not depend on ¢,
which in its turn, again from (19), implies that

R ky1(&2, /l)ez_k(kH) does not depend on ¢ for all k > 1. (20)

59



D. Marin and J. Villadelprat Journal of Differential Equations 404 (2024) 43—107

Since T([)ﬁ F=1 for any function g, the factorisation in (18) also shows that
A(k+1
Ay = TE e )]A()k. 21

Consequently

Li—1 R Ak+1)
Z T?(kﬂ)]sz +]-—21(I x V)= (1 +Z 1t st 1)
=0

k+1

Li—1 k-1 Li—1 Au
A F-()
:( E T[J (1XV)) :( E A—OOSK-F Ll(IXV))

£=0

Liml o k-1 Li—1
( 3 A—“#) FOUxV)= Z Qs + F (I x V),
00

£=0
where in the first and second equalities we use the definition of Ty Vin (17) with B(1) = A(k+1)
and B(f) = A, respectively, in the third one we use (21) with k = 0, in the fourth one we apply

the binomial formula and Lemma 2.4 and, finally, the last one follows from the definition in (6).
Clearly this implies that

YT — @y for €=0,1,..., Ly — 1. (22)
Particularized to (¢, k) = (i1, ji), from (21) once again we obtain that

A

[A(G1+D]
itj1 = Til : Aojy = iy j1 Aojy -

This identity holds for all i € V. On account of the considerations explained in the beginning of

the proof this shows that the assertion in (7) is true for (i, j) = (i1, ji) as desired.
We turn now to the study of the coefficients of the Dulac time. For convenience we write it as

T(s)=T (s)+ T (s),
where we define, recall (11) and (15),

T~ (s):=T"(s) + TR} (s) and TT (5):= (T*(u) + Tzou”2)|u=D0(Rl(s)).

With respect to the first summand we observe that, from (13) and taking (16) with 8(i1) = ny,

Li—1
T ()= Y Teos* + F, (I x V) where Tyg =T + TR [ (23)
k= =ni
Ly _
On the other hand, from (13), we can write 72 (u) + Tzou”z =y Tkzuk + f{L)zﬂ (I x V) where
k=ny
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_ T2+ T ifk=no,
e (24)
T; if k > ns.
Consequently, taking (16) with 8({i) = A and applying (b) in Lemma 2.5 we obtain
(o) — (T2 0
THs)=(T*w) + T, unz)’uzdR{‘(s)
Ly
2 1k pak 2
=Y TR} + F) (P xV)
k=ny
Li-1
— Z T%ﬂ‘( MRS Mt D ax V)) +F) (1P xV)
k=n» =0
L, Li—1
=Y Y ThTHR LR P xv). (25)
k=ny £=0

Here we also use A > for all i € V in the first equallty, in the second one we take (16) with

L, +1
B(f1) = Ak, whereas in the last one we use that d = ¢1&, * and define

Tyt = (T2e; ™) (1 Ry DAYV, (26)

Note that TZS =0 for all £ > 1 due to TEO] =0 for all £ > 1. Consequently, since Ty is by
definition the coefficient of s*** in T'(s) = T~ (s) + Tt (s), from (23) and (25) we get that

|1t ifk>o.
T“C‘{T[O ifk=0and £>1 @7)

(To be more precise, the above equality follows from Remark 2.6 and by applying (b1) in Theo-
rem C.5 thanks to Ag ¢ Q and shrinking, if necessary, the neighbourhood V of 19 = (Ao, (o) in
order that all the exponents £ + Ak are different for every (i € V.) Finally, since the coefficient
Too only exists in case the that nyny =0 and n # (0, 0) by hypothesis, we have that

Ty ifn; =0,
Toh ifnp=0.

Similarly as we noted previously for A;;, let us remark that since we are only interested in the
coefficients

Tl] with (lv ]) € {(nlv O)? (l’ll + ]9 O)s (07 n2)’ (07 np + 1)7 (izs jZ)}s

from (23) and (25) we get specific lower bounds for L1 and L, to be satisfied. Once again, this
is not a problem because these lower bounds are given in terms of Ag, ny, nz, i> and j, and, on
the other hand, we can take K, and so L and L», arbitrarily large. For instance, in order to show
that the factorisation in (8) holds for (i, j) = (i2, j») with j, > 0 we argue as follows. Precisely
due to jr, > 0, we get that
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Table 1

Information related with the application of the results in Appendix A. The
auxiliary sections Ee and El are given by t(s;ep, ) = D(s,€1; 1) and
o (s; &2, 1) = (e, 55 1), respectively, see (10).

First regular Second regular
passage passage
V4 ni np
v (ilkﬂ)) (i)za(ﬂ))
) (y,x ) (x,y
hix, ) XP2(])'~X) xPi(x.y)
Yyx Lix) Y\A Lo (x)
Hey (37 )" Bo
: npy—1 an—]
R e Py
£(s;v) (o12(s: D), 011 (s: ) (21 (55 82, 1), T2 (53 €2, 1))
Z(s;v) (t126ss 81, ), 711 (53 €1, 1)) (021 (53 ), 022 (55 1))

_ 7+ + ~rlAj2]
Tnj =Ty, =To, 15" = Toj Ry jp-1-
where in the first equality we take (27) into account, the second one follows readily from (26)

thanks to T([)M 2] - 1, and in the last one we apply the identity in (22). For this to happen, see also
(25), we need that

Ly > max(io +1,ip + Agj2) and Ly > jo.

This shows the validity of the factorisation for all i € V. As we explained at the beginning of

the proof, this factorisation extends to all L = (A, u) € W with A ¢ Dl”2 WY Dzozo by continuity

and the fact that D;‘z WY Dgo is a discrete subset of rational numbers in (0, +00).

So far we have proved (7) and (8), which constitute assertion (a) in the statement. In do-
ing so we have also identified all the elements needed to compute A;; and T;; but recall that
we must only analyze the cases (i, j) € {(0,0), (1,0), (0, 1), (1, 1)} and (i, j) € {(n1,0), (n1 +
1,0), (0, n2), (0, ny 4+ 1)}, respectively. With this aim in View we shall apply Lemma A.3 to ob-
tain the explicit expressions of the coefficients R;1, R;2, T and T’ 41 in (13) fori =1,2. Let
us advance that the formulae for i = 1 and i =2 are related by sw1tch1ng Aand 1/A, o and 7, the
subscripts 1 and 2 (with the exception of the third subscript & in o; jx and 7;;¢) and by exchanging
the order of the variables in the functions f; and A;.

For the reader’s convenience we sum up in Table | the fundamental information for applying
the results in Appendix A to study the regular passages, see Fig. 2, together with the functions
L; defined in (3) and the functions f; and A; given in (12). On account of this the application of
Lemma A.2 yields

1

-1 . o110}
p11(x) = arix * Ly (x) withayy:= ———2 (28)
Li(o120)
for the first regular passage and
Y . T22172)L10
p21(x) = az1x™ " La(x) with oy := ———
La(7210)
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for the second one. (Here, to be consistent with the previous notation, the subscript i in p;;
refers to the first or second regular passage, whereas j refers to the derivation’s order.) Next, by
applying Lemma A 3,

;l
5 L1(T L
120L1(T120) and Ry = ot 2(0210). 29)

Ryt =ain n
T111 02210319

Observe at this point that 17 does not depend on ¢ and that, see (20), this is also the case of

R1151 From the first equality in (29), this implies that Ms does not depend on €. On the
1|1

120
other hand, 719 = 811//2(0 e1) and 7111 = ¥1(0, €1), see (10), together with v; (0,0) = L1 (0) =

L} L
1, imply that limg, ¢ (1'12;0) = 1. Thus Ti(;rllz;o)gl =1 and, consequently, R},&; = of;. In
111
short,
T} 7120 s 1101y 1/
—1/\11 =¢yand Rjj =18, A 130 g / (30)
L7 (T120) Li(o120) !

Furthermore, from (20) again, Ryie, * does not depend on ¢. This implies, on account of the
second equality in (29), that a1&, * does not depend on ¢ neither. Then, taking ¢ — 0 exactly
as before, we conclude that

o] 283. (€2))

A L2(02|0)

Therefore Ry = S By and consequently, from (19),
103210

A
01119120 L2(0210)
L} (0120) 02210370

Aoo () = (R} €1)(Ra16; ") = forall L e V.

On account of the considerations explained in the first paragraph of the proof, this shows the
validity of the first equality in (b) for all ot = (A, ) € (0, +00) x W. Indeed, following the
notation introduced there, Aoo is the function on the right hand side of the above equality, which
belongs to ‘KOO((O + 00) x W) by Lemma 2.3, i.e., D(())o = (J, and we have on the other hand, see
Remark 1.1, D(())O = as well.

Next we proceed with the computation of the second order derivatives in Lemma A.2. Using
the first column in Table 1, some long but easy computations show that

aqq 201210111 ( P1
pr2(x) = —x7 Ll(x)(tmz - <—>(0, 0120)
o111 P

0120
r i d
u
+201110l11/L1(u)31< )(0 u)u u)
0120
My ()
= apx & Ly (x) + 2035 7 Li(x)Mi(1/x, x), (32)
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for all x € I1 N (0, +00) with

a1l 201210111 ( P1 SIS
A= —— <0112 - ( )(0 0120)) — 20710 30M 1 (1/X, 0120).  (33)
o111 0120 P>

Here we use for the first time the properties of the incomplete Melhn transform introduced in
Appendix B. More concretely, by Lemma 2.3, M) (u; A € € x W) with 0 € I, see Fig. 1.
Hence, by Theorem B.1 there exists a unique M1 (a,u; ) € €°(R\ Zso) x I x W) such
that 9, (M1 (o, w)u™) = My (w)u=*"" for all u € I N (0, +00). Analogously, taking the second
column in Table 1, one can also verify that

022(x) = a2x Lo (x) 4 203, x " La(x) Ma (A, x) for all x € I, N (0, +00), (34)

with

o] 2numn (P 5 A
apn=—|1nn—-—" (1210, 0) | — 205, 75, M2 (X, T210).
21 210 Py

We claim that oy = 8%(,01 (&2, 1) with ¢ € %K((—(S, 8) X V). Indeed, this is so due to the
following facts:

1. Pi(xy,x2; ) and Pa(xq, xp; 1) are € and do not vanish on x, = 0 and x; = 0, respec-
tively.

2. Lyo(u; 1) and My(u; i) are €°° (I x W) by Lemma 2.3 and the first one does not vanish.

3. The parametrisation 1, (s; &2, i) of the section EZ is defined by means of ® € €K (U x V),
see (10), where recall that U = (-, 8) X (=46, 6)

4. and therefore, the map (g2, 1) — Mz(k 7210; (1) belongs to %K(( 8,8) x V) by (a) in
Theorem B.1 since A ¢ Z>o due to Ag ¢ Q and shrinking V if necessary.

5. 121 = ¥a(e2,0) and 1219 = &291 (62, 0) with ¥; (0, 0) = 1. Moreover, see (31), a1 = 8%.

The key point for our purposes will be that, for each fixed /i, the function ¢; is €X in a
neighbourhood of &3 = 0. On account of this, for simplicity in the exposition we will say that
az = &5¢1(e2) with 1 € €K In what follows we will deal several times with this type of sit-
uation and for shortness we will omit the previous details. More generally, for the same reason,
when we write ¢ (g;) with i = 1, 2 and any subscript k we shall mean that ¢ is some function
depending only on &; and /i that belongs to €% (=8, 8) x V).

We are now in position to compute the second order derivatives by means of Lemma A.3. In
this case, for the sake of convenience in the exposition, we begin with the second regular passage.
In doing so, and using Table 1 together with the expressions for Ry and pp; given in (29) and
(34), respectively, we get

—2A —A

0211 0222 2 210 22 210

R22 = (— ( >(0210, O) ) CYZ] LZ(G ]0) + LZ(O-ZIO)
0210 2021 05 2 o

—2k

+ a21 L2(0“210)M2()» 0210)-
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This implies that ey 2% does not depend on ¢ because this is the case for op and Rype; 2)‘,

see (20), and moreover ay| = 8% from (31). Hence the previous claim shows that azze; 2 —

&y A(pl (£2) = ¢ where c is a constant depending only on fi. Therefore ¢ (g7) = cs%. Since Ag ¢ Q,
we have that A ¢ Zxg for all i € V (shrinking V if necessary) and, consequently, c = 0 because
@1 is €K in a neighbourhood of &, = 0 with K arbitrarily large. (More precisely it suffices to
take K > Ao and make smaller V so that K > A for all i € V.) Accordingly

axp =0 (35)

and, since ap| = 8%‘ on account of (31),

2
0 o1 (P2 o201~ L (0210
Ry = —& ——\ 5 )©0210,0) = —————=M>r(A,0210) || ——— ] - (36)
2021 o210\ P L (0210) 0221031

S

Then, using (19) with k = 1 and the expression of Rj; in (30),

2 2

Ly (o ol o N

JeTp—y 210 T2 ) — _5,A%) forall fe V.
02210519 L1 (0120)

By applying Lemma 2.3 and Theorem B.1, the function Ms(x, 0210) in S2 is € in a neighbour-
hood of any (A, us) € (0, 400) x W such that A, ¢ Z>¢. Thus the function on the right hand
side of the above equality, that we denote by Ag; in the second paragraph of the proof, is €
on ((0, +00) \ ﬁgl) x W with bgl := N. Since we know on the other hand by Theorem C.5 that
Agr € €°(((0,4+00) \ Dg;) x W) with Dj; = N, see Remark 1.1, this implies by continuity
that the second equality in (b) is true for (A, ) € ((O, +00) \ D81) x W. Certainly we also use
here, and it is essential, that the parameter fto = (Ao, it0) € W with Ao ¢ Q that we fix at the very
beginning is arbitrary.

Let us begin now with the computation of Ri, i.e., the second coefficient of the transition
map for the first passage, by means of Lemma A.3. In this case, using Table 1 together with (30)
and (32), we get

-2 -1

2 %
T121 ( P1 7112 2 T120 42 o212 Tipo

Rip = <—<—)(0, T120) — )a” ——L1(t120) +—= ——L1(7120)
T120 \ P2 PASRY T 2 i

—1/A
—2/1
£ / e

-2
x>
T A~
+ Olfl —rﬁ? Li(t120)M1(1/X, T120) -

5172/%2(81)

Since Rj| = el_l/ka“ from (30) once again and, on the other hand, 7129 = €1¥2(0, £1) with
Y2(0, 0) = 1, it follows that we can write
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R —1/x=1 , o12
—— =p3(ene +5—
R ! 201

Observe that the quotient g—if does not depend on ¢ because, from (17) and (18)

A R
k _ Tgx(kﬂ)] — Ak + l)l.
Aok R
Since this is also the case for the quotient z‘ﬁ, see (28) and (33), we get that ¢3 (8])8;1/)L71 =c

for some constant depending only on ji. Thus ¢3(g1) = cs}/ A and, due to L = 19 ¢ Q, this
implies ¢ = 0. Therefore,

Rz _an _ o2 ol (ﬁ

P

o
= = )(0, o120) — ——M1(1/X, 0120) = S1, 37
Ryt 2011 20111 0120

Li(o120)

where the second equality follows from (28) and (33) again and the last one from the definition
in (4). Hence

A1o = AgorSt and Ajj = Agi2AS) = —A3;2481 S, forall L € V.

On account of the expression of S, and S7 given in (36) and (37), respectively, the application
of Theorem B.1 shows (following the notation introduced in the first paragraph of the proof)
that D?o = % and 5?1 =NU %. Since these sets coincide with D(l)O and D?l, respectively, this
concludes the proof of assertion (b).

Let us show next the validity of the identities in assertion (c), that deal with the coefficients of
the Dulac time. As before we begin with the study of the regular passages and the computation
of the first coefficients of their time functions. With regard to T! (s; &1, [) it turns out that

7120 Lnl
L (x) , _mdx

1 _ m -
Tnl_all / PZ(O x)xz AT

ny np
n ny—~k A np—=b A
=a] (7120 M Ar(ny /A —na, T120) =05 © A1(n1/A —nz,mzo))-
-t
e” * euler)

The first equality above follows by Lemma A.3 taking into account the expression of p1; in (28)
and Table 1. The second equality follows by applying Theorem B.1 with A{(x; (i), that belongs
to € x W) by Lemma 2.3, and the fact that t19 = €1¥2(0, 1) with ¥»(0,0) = 1. Notice
that it is here the first time that we take the assumption n # (0, 0) into account. Then

To="T, = T, + T R}

N pa(er) — ! _oR4 (n1/A —na, 0120)
i T G ) Pr0,0y) T 7120 AR TR 0120

66



D. Marin and J. Villadelprat Journal of Differential Equations 404 (2024) 43—107

o111%150 3
— =, —— - A1(n1 /A —na, o120).
L} (o120)

The first and second equalities above follow from (27) and (23), respectively, and the third one
1/

by using (15) together with (30). In the last equality we use that T},,0, 11 = ‘lelg(:llzzoo) and o1 do

not depend on ¢ and this, on account of A ~ A9 ¢ Q, implies that ¢4(g1) = m. For

the reader’s convenience let us be more precise in this last implication because we use the same

argument repeatedly. The point is that there exists ¢, not depending on ¢1, such that

ny

_n 1
‘9,112 g (<P4(81) -

(n1 —Anz) P1(0,0)

) =c for all g1

and we know on the other hand that ¢4 is €% ((—8,8)) with K arbitrarily large. In this case

for our purpose we need K > Z—(l) — n2, so that (by shrinking V) we have K > 5t — n; for all

€ V. Since Ay ¢ Q we can also assume that "T‘ —ny ¢ Z>o for all ;1 € V. That being said,
note then that frorn the above equality it turns out that ¢4 is a €% function that is written as

no_
va(e1) = celA * + ¢ with the exponent “L — ny smaller than K and not being in Zxq. It is
evident that this is only possible if ¢ =0, as we claimed. Hence

n| l’lz
Th0= #Al(nl/k —ny,01p0) forall p e V.
Ly (o120)
By Theorem B.1, the function on the right hand 51de is € in a neighbourhood of any
(Opy la) € W with 52 —no ¢ Z>o, ie., A & D”}1 0= N . Thus D” 0CDy o= =U%, Nin

see Remark 1.1, and therefore by continuity the above equahty is vahd provided that A ¢ D,’fl 0
This proves the first identity in (c).
Regarding the time function 7% (s; €2, 1) of the second regular passage one can check that

2 nai ni—nai 3 An
T, =¢" (02110 *Ax(nak —ny,0210) — Tofg 2A2(n2)»—n1,1210))

n1

& ‘ﬂs (e2)

= 5‘;2)»0—;110 "% A (nah — ny, 0210) + &5 ps(£2),
where the first equality follows by Lemma A.3 and on account of pr1(x) = 8%x"\L2(x), and

the second equality by applying Theorem B.1 with A;(x; 1), that belongs to € (I, x W) by
Lemma 2.3. Hence, taking (15) and (24) into account,

. 1
T2 =T2 + T = 5o} " Ay (nah — ny, &) &
s +1, 9210 2(m2h = n1, 0210) + €5 { @s(e2) + (n1 — Anz)P1(0,0)

and, accordingly,

A "2
. R 01110120
Tom, =Ty, = (T? s C(RT1EN™ =0y 2 A (nad — n1, 0210) <7L’]\(0120) g
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where the first and second equalities follow from (27) and (26), respectively. Finally, in the last
equality we use that 01 and 02 do not depend on ¢ and that this is also the case for T ,, and, see

1/2 _ .
(30), R, - 2”(1:'20) Since A & Ag ¢ Q, this implies @s(s2) = m and finishes
the proof of the second identity in (c).

We proceed next with the computation of the coefficient Tnl1 +1- To this end we apply
Lemma A.3 taking account of Table 1 and the expressions of p11, Rj; and pi> given in (28),

(30) and (32), respectively. In doing so we obtain

_ ni+1 ny _ny—1 ny _ny—l
1 _(A ) 1217517190 - 91219141%120
1+1

T &t ag
" ! P>(0, 7120) P>(0, 120)
n 1+1
er” * golen)
T120 d
ni+1
+a’f;+1fL”1+1(x)x lTaIPZ—l(o,x)%
0120
T120
-1 -1 — =1
+7 ol /L’fl (x)x ~*
120
1 72 R np—1
x (ozlngLl(x) +2a121xTL1(x)M1(1/A,x)) RO

Here we also use that t; does not depend on ¢, and that 7139 and 7121 vanish at ¢ = 0. Then
some easy manipulations first, on account of the definitions of A and B given in (3), and next
the application of Theorem B.1 yields to

ny _npy—1
ikl 01210111915

1 ny—
T, 1=¢ " geler) —

P>(0, 0120)
T120 d ni— 1 T120 d
_mtldx | niapd _mdx
+aft! / By (x)x"" —+—2“ / A (0)a"
X X
a120 0120
na—1 +1 n
01210110 ny—4L— -2
= e ((1)1;12‘; +e T T e e ps(en)
(0, o120
ni+1 mr . nyp 41 n1a120/f{_1 nsz' ~ /ng
—o 910 B Y —n2,0120 ——2 120 A(T—nz,mzo),

where in the second equality we also use that «11 and «12 do not depend on ¢, see (28) and (33),
respectively. Notice that

Tn1+1,0 =T

1 0 pni~alngl 1 0 pn Ri2 1 0 pn
n+1,0 = Tn1+1 + T leTl : _Tn|+1 +mT, R11| Rii _Tn1+1 +m T Rlisl’
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where in the first equality we use (27), in the second one (23) with k =n; + 1, in the third one
the fact that T["‘ =n g2 R” from (17), and in the last one that S| = R'Z = 22 from (37). On

o 2an1
ny
O 2=
account of this and using also that, from (15) and (30), T'R 11 =—¢ —(nl ) Prio0) We get
ny  no=1 n+1 n
01219111920 np—" ny—"1
Tnj+10=——F o ——— e e gole)
1+1,0 1 @7(€1 1 @9 €1
P>(0, o120)
ni+l 1 ny
n +l nay— ~ (N + n ma—2L o~ sng
—ajy oy Bl( Y —n2,0120 | —niS1ajj01y, * Al R —n2,0120
n np—1
912191119120 oMo Sanp+1
- o11o15 ®110750B1 —n2,0120
P>(0, o120) A

~ (N
+n151A1(7 —n2,0120)>-

Here we also use that o1, o1, T,+1,0 and S; do not depend on ¢ and apply Lemma 2.7 to
conclude that

np+l1 ny

e T e+’ P polen) =0

Then by using the expression of o1 in (28) and an easy manipulation we get that

o121 niS

Ar(n1/x —na, 0120)
0120P2(0,0120) L' (0120)

~ ny _ny
Tn1+1,o(u)=—0111‘7120(

o111
ni+1
L' (o120)

Bi((n1 + 1)/ —n2,0120)>

for all i € V. The application of Lemma 2.3 and Theorem B.l shows that the func-
tion on the right hand side is ¥* in a neighbourhood of any (A.,us) € W such that

1 n ni+1 .
[k—*,i—nz, l)», —nz}ﬂzzozﬂ,l.e.,

A*¢Dn 1 :=1U i n1+1.
MALOTN T Nap, - Nay,

Since D! = U?;l“l N;z, see Remark 1.1, by continuity we can assert that the third
identity in (c¢) is true at any g = (A, u) € W with A ¢ Dle o Y D::l+1 0= DZlH oY
L. — n3
[Be=12 1 -1)
We begin at this point the computation of the coefficient 7,,41. To this aim we apply

Lemma A.3 using in this case the second column in Table 1 and the expressions of Rp1, p21
and p;. We thus obtain

69



D. Marin and J. Villadelprat Journal of Differential Equations 404 (2024) 43—107

na+1 ni—1 ny _nyj—1
T2 = o o0 L(0210) %210 _ 211710
na+1 = %21 92119231 ) Py (0210, 0) P (1210, 0)
—— 02210210 1 210, 1(7210,
Any+1) —nlv—d
& pi0(e2)
{ 0210
1 — — -1
+ = a72112+ X A(no I)ng ()C)
2 \%/—/
SA(anrl)TZlO

2
ni—1

x <n2<%_12 a2 XM La(x) +2x”L2(x)Mz<x,x))m

0

+2x L3 0)xm T g P x, O))dx

where we use that ap; = 8% from (31), app = 0 from (35) and the fact that 7519 and 721 vanish
at &2 = 0. Notice on the other hand that, by using (24), (26) and (27),

—_ Tt _ —A(na+1) A ynatl
Tony41 =Ty, 41 = (T 2+162 ) (e1Ryp)™
which in particular shows that Tnz2 1180 2D oes not depend on ¢. Having said this, note that

—1—=A(ny+1) an—H

2 kD) _ 9211910 (9210) | pi—ama4D)
Tis182 o1 P1 (0210, 0) #1o(e2)
0210 l’l2
dx
+ L g, )+ LY 0)aa P (x, 0) ) A D 2
P1( ,0) X
7210
B (x)
—1=A(ma+1) ;41
02110'210 na L’lz (0210) Enl_k(nz-’_l)golo(f;‘z)
0221 P (0210, 0)

+ 05} THFD By (2 + 1) — n, 0210)

- MY By (Gu(na + 1) — nip, 1a10)

—A(np+1)
821 "2 011 (e2)

—1-X(n2+1) 5 na+1
02116 L (0210) —A 1
210 0 + o) Y By (g + 1) — n1, 0210),

o1 Py (0210,

where in the second equality we apply Theorem B.1 and in the third one we take advantage of

the fact that Tnz2 &, ~Hm2FD and o2 do not depend on ¢ to conclude, thanks to A & A ¢ Q, that

_ "111"120

(o1 by the second equality in (30), we get that

= A
@10 = ¢11. Hence, due to 1 R} =
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—A(ny+1
Ty = (T, ™) (01 R

5 np+1
_ [ 29120
L} (o120)
ny—1—=A(n2+1) 5 ny+1
. [ 219210 Ly (0210) + oM B iy + 1) — ny, 0210)
0221 P1(0210,0) 210 ’

From here, taking the expression of Agg into account, we can assert that

0211 0221 A
Ti = "ZHG"‘ o + By(A(ny+1) —ny, 0
Oma+1 () = 2HO72LN 610 Py (0210, 0) L;2+1(O'2]()) (12 +1) =1, 9210)

for all 1 € V. Exactly as in the previous cases, by applying Lemma 2.3 and Theorem B.1 it
turns out that the function on the right hand side is > on ((0 +00) \ D! ) x W with

D(’)‘ " Nen Furthermore, by Theorem C.5 we know that the function on the left hand side
2+1 nz—H

is €*° on ((O +00)\ Dy, +1) x W where, see Remark 1.1, D, = Ij;r"{ UN. Accordingly,

due to Do o1 C Dy ny+1> DY continuity we can conclude that the fourth equality in (c) is true
on the given domain.

It only remains to compute 759 and Ty in the case that n1 = 0 and ny = 0, respectively. Let us
consider first the case n = 0. To this end we begin by computing the coefficient of s in the time

function T'! of the first regular passage. By applying (b) in Lemma A.3 for the case £ = 0 and
nz 1

0,no+1

taking f(x1,x2) = m, see Table 1, we know that it is written as T21 = %(Ul - Vi+ W)
with
Uy = (t12R3) + 1121 R12) £ (1120, 0) + Ty R, 81 f (T120, 0) + 271217111 RY; 92 £ (7120, 0)
~1 2
=¢ ™ o1a(e1) + ¢’ " o13e1),
Vi =012 £ (0120, 0) + 051 1 £ (0120, 0) + 20121011132 f (0120, 0)

ny—1 2 ny—2
_ 912207y 91219120 ( ny—1
2P5(0, 0120) 2 P>(0, 0120)

np—1 -1
+ 01210111015 91 P, (0, 0120)

+ a12082 Py (0, 0120))

and
7120
—1
Wi= [ (e Lio2a 7. 0)
0120

H(onax 7 Ly () + 2025 Ly(x) My (1/A, %)) f (x, 0)) dx

T120 d 7120 d

_2d4ax _lax

=ai) / C1(x)x"? A74‘&12/31(%))6”2 e
0120 0120
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2, _2,
=01f1<71n§0 FC1(2/h —n2, T120) —0199 * C1(2/ 0 —n2,0120)>

"2/

£ p14(e1)
+a12<T120 Bi(1/x — na, t120) 0120 31(1/?» —na, 0120))
’112 i p15(e1)
Let us note that to rearrange U; we use that Ry = anef]/)" and Rjp = %mzsf]/)‘ from (30)

and (37), respectively, and moreover that t122, 7120 and 7121 vanish at £; = 0. On the other hand,
to simplify W we apply Theorem B.1 and use that, in this case, By (x) = L1(x)0; P2_1 (0, x) due
to n1 = 0. By the same reason, using also (23) and (27), we get that

ol 0a0] et ]
T20=TZO:T2 +T1T2 :TZZE(UI_VI—FWI)

since Tgo] = 0. This shows in particular that U; — V| + W does not depend on ¢ and, since this
is also the case for ;1 and 2, we can assert that

nz

Y (@1a(e1) + anngis(en) + &)’ M isen + atip1a(e)) =0

1/
by applying Lemma 2.7 and using that A &~ Ag ¢ Q. Finally, since o] = % and oy =
201151 by (28) and (37), respectively, we obtain that

no—1 2 nyp—2
912209130 9121%120 < ny —1

Tro(ft) = —
2P5(0, 0120) 2 P>(0, o120)

+ 012082 P; (0, 0120))

np—1 —1
— 01210111013, 01P; (0, 0120)

2 nz

9111%120 1110 120
— U710 & (20 — na, 0120) — S1+——22 By (1/A — na, 0120)
2L3(0120) Li(o120)

for all 1 € V. By applying Lemma 2.3 and Theorem B.1 we have that él(Z/A — no,0120) 18
%*° in a neighbourhood of any (A4, is) € W such that {1/A4,2/Ax —n2} N Z>o = @. The con-
dition for the function Sy, see (4), and él (1/A—n3,0120) is 1/A, ¢ Z>p and 1 /A, —np ¢ Zzo,
respectively. Therefore the function on the right hand side in the above equality is € o

((0, +00) \ D4y) x W with DE’O: U Nz . Due to Dy, = N from Remark 1.1, we get
that D, U D"0 =Dj,U { k=1,2,. ("72] — 1} and, on account of the considerations in the

second paragraph of the proof, this shows that the above equality is true in the domain given in
the statement.
Let us turn finally to the computation of g, for the case np = 0. Similarly as before we apply

np—1
(b) in Lemma A.3 with f(x1,x2) = m to get that T} = %(Uz — Vo 4+ Wy). In this case
some long but easy computations taking account of Table 1 give
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Uy = (0212R3, + 0211 R22) f (0210, 0) + 03, R3,01 f (9210, 0) + 202110221 R3, 32 f (0210, 0)
2
L S
= Pl 2(0210) <ZZ— ;211 > - )
0221033 0210 P1 (0210, 0)

2
where we use that Ry = &5 LZ(I‘mO) from (29) and (31) and that Ry = —&3* 5, (5222(1‘210)) from
2 210

(36) and, for the sake of shortness, we denote

02120210 + (1] — Do o2
2120210 + (11 = Doy, + 2 01 P (crz1o,0)+72110221 32Pfl(0210,0)~

Z:= 3
205,0P1(0210, 0) 20210 0210

Since 1210, T211 and 1212 vanish at & = 0, one can also verify that

Va = 1212 f2(1210, 0) + 31101 f2(1210, 0) + 2211722132 f2 (7210, 0) = €5 @16 (£2).

Furthermore, on account of the definition of the function C, given in (3) and applying Theo-
rem B.1,

0210

- d
Wa = / ((Szx FLo(x))* x93 Py (x, 0) + 265" ”‘_MLz(x)Mz()»,x)asz](x,O))TX
7210
0210 d
_82 /C (x)xm 222 . —'9%}”(0;110 ZACZ(Z)»—M (7210)—7:2]0 62(2)\,_”1,7:210)>.
7210

6;1_2%17(62)
Notice at this point that, from (24), (26) and (27), Too = Ty, = (T#e; **)(e1R},)?, which shows
in particular that T2282_ 2 does not depend on ¢ because this is the case for Tpy and, see (30),

elRi‘l = «aq1. Consequently U, — V, + W, does not depend on ¢ and so 8;1—ZA(¢16(82) —
@17(€2)) = c. Since A ~ Ao ¢ Q, this implies that ¢;6 = 17 and therefore

2 2
Toy = 01119120 o L>(0210) (Z _ 021152 >
L} (0210) 210\ oai04, 20210 P1 (0210, 0)

1
+202"f0 #&2(2% — ny, 0210)

021152 03
20210P1(0210,0)  2L3(0210)

= Ajyohl (Z - Cr(2n — n1,0210)> .

for all it € V. Exactly as before, by applying Lemma 2.3 and Theorem B.1 we can assert that
C2(2A — ny1,07210) is € in a neighbourhood of any (A, t«) € W such that {A,, 2A, —n1} N
Z>o = . The corresponding condition for the function Sy, see (4), is A, ¢ Z>¢. Thus the
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function on the right hand side in the above equality is €°° on ((0, +00) \ D(’)'z) x W with

~ N>n . ~
Dg,:= N U —. Due to Dy, = % from Remark 1.1, it turns out that D5, U D%, = D73, and,
on account of the considerations in the second paragraph of the proof, this shows that the above

equality is true in the domain given in the statement. This concludes the proof of the result. M

Lemma 2.8. Let ®(x, y), withx = (x1,x2,...,X,) € RY and y € R, be a continuous function in
a neighbourhood of (0,0) e RN x R. If y®(x, y) is analytic in a neighbourhood of (0, 0) then
®(x, y) is analytic in a neighbourhood of (0, 0).

Proof. By the Weierstrass Division Theorem (see [11, Theorem 1.8] or [15, Theorem 6.1.3])
there exist a neighbourhood U of 0 € RY and an open interval I containing y = 0 such that
yO(x,y) =yg(x,y)+r(x) with g € €°(U x I) and r € €“(I). The evaluation of this equality
at y =0 yields r = 0. Consequently ®(x, y) = g(x, y) forall (x,y) e U x (I \ {0}) and, by the
continuity of ® in a neighbourhood of (0, 0), we easily get ® =g on U x I. This proves the
result because g € (U x I). A

Proposition 2.9. In the analytic setting (see Remark 1.2), the following assertions hold:

(a) The coefficient A;j of the Dulac map is € on ((0,+00) \ D?j) x W for (i, j) €
{(0,0), (1,0), (0, 1), (1, D}. '

(b) For each (i, j) € {(n1,0), (0, n2), (n1 + 1,0), (0, n2 + 1)}, the coefficient T;; of the Dulac
time is analytic on ((0, +00) \ ij) x W. This is also the case for (i, j) = (2,0) and (i, j) =
(0, 2) assuming n1 =0 and ny =0, respectively.

Proof. By applying Lemma 2.3 we know tI}at, for i =1, 2, the functions L; (u; j1), M; (u; i) and
A;(u; 1) given in (3) are analytic on I; x W. Let us recall here that /| and I, are the intervals of
R containing 0 as introduced in (2). In addition,

e the functions Bj(u; j1) and Cy(u; i) are analytic on I x ((0, +00) \ %) x W, and
e the functions B;(u; j1) and Co(u; i) are analytic on I x ((0, +00) \ N) x W.

Moreover, since the parametrisation o; (s; /1) of the transverse section X; is analytic by assump-
tion for i = 1, 2, from (4) we get that S7 (X, i) and S>(A, ) are analytic on ((0, +00) \ %) x W
and ((0, +00) \ N) x W, respectively.

The fact that each coefficient A;;(A, u) in assertion (b) of Theorem A is analytic on
(0, +00) \ D?j) x W follows readily from regularity properties stated in the previous paragraph
because, see Remark 1.1,

1 1
Dy =¥, Dg =N, Djy = and D} =N U .

This proves assertion (a).

By the first assertion in (d) of Theorem B.1, the regularity properties established in the first
paragraph also imply that each coefficient 7;;(A, u) listed in (c¢) of Theorem A is analytic on
(0, +00) \ D;’j) x W, with the exception of the special values

o A=gwithke{l,2,..., 251 — 1} for T 41,0(4, ), and
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o =71 withke{l,2,...,[]— 1} for To(x, w),

where the respective formula does not hold. Indeed this follows using that, see Remark 1.1 again,
Dl =0
00 ’

ni . N>y, .
D" _ U l D” _ o if ny 2 1,
n;,0 — N- ’ 0,np — .
=1 =Mm ) ifnp, =0,
ni+1
1 N>n
n _ n _ >n|
Dyy10= U Now, and D ,,, 4 p—— UN,

i=1

together with D7, = N2 forny =0 and D(’)’2 = % for np = 0. For instance, due to A (u; 1) €
=ny

E° (I x W), the Qrst assertion in (d) of Theorem B.1 implies that Az(a, u; (i) is analytic on
R\ Zx>p) x I x W and hence

ni na
0. 0. ~
~ 2109221
Ton, (1) = Ay —5 ——— Az (nad — ny, 0210)
L?
5 (0210)

is analytic at A = Ao provided that nodg — ny € Z>o, i.e., Ao ¢ Dy, . The analysis of the other
coefficients follows similarly and the details are omitted for the sake of brevity.

So let us focus on the analyticity of T, 11,0 and Ty at the special values listed above. In order
to study the first case let us fix Ag = % withk e{l,..., fﬁ} — 1}. Note that we can write, see
(¢) in Theorem A,

To+10= fo+ fiS1A1(n1 /% — n2,0120) + foB1((n1 + 1)/A — na, o120) (38)

where, see (3), Bi(u) = gl(u)Ml(l//\,y) + go@) and S| = f3 + faMy(1/x, 0120) with
gi(u; 1) € €°(I1 x W) and f; (1) € €“(W). That being said we argue as follows:

1. Al(nl/)\ — ny,0120) 1s analytic at A = X due to X—(l) —ny =ntk —ny € Z o by the first
assertion in (d) of Theorem B.1.

2. (A — )»0)1\;11(1/)», u; i), and consequently (A — Ag)Bi(u; 1) and (A — Xg)S; (1), extends
analytically at A = A by the second assertion in (d) of Theorem B.1 since 1/Ag =k € Z>o,

3. and this implies (in this case by applying the first assertion) that (A — Ao)él((nl +1D/r—
ny, o120) extends analytically at A = X because ’”H —ny=m;+ Dk —nyeZ_y.

Taking this into account, from (38) it follows readily that (A —X0) T, +1,0(ft) extends analytically
at A = Ag. On the other hand, since Ag ¢ D] |+1,0> hOte that T, +1,0(ft) is smooth at A = Ao by (b)
in Theorem C.5. Accordingly, in view of Lemma 2.8, we can assert that 7, +1,0(/L) is analytic at
A = Ag as desired.

Let us turn next to the second case. So let us fix Ao = % withk e {1,..., |'”721 — 1} and observe
that from (c) in Theorem A we get that if n; = 0 then we can write

Too = fo+ f1C1(2/A — n2, 0120) + f2S1B1(1/) — n2, o120) (39)
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with, see (3), C1(u) = B (u)(Ll(u) + 2M1(1/A, u)) and S1 = f3 + f4A;11(1/A, o1p0) for some
fi € CK‘*’(W). We point out that in this case, since ny =0, By (#) = L1(u)9; PZ_I(O, u) is analytic
on I} x W. Then we proceed as follows:

1. él(l/A — ny,0120) is analytic at A = Ap due to 1/Ag — np = k — ny € Z o by the first
assertion in (d) of Theorem B.1.

2. (A — Ao)Ml(l/A, u; 1) extends analytically at A = Ao by the second assertion in (d) of
Theorem B.1 because 1/1yg =k € Z>( and,

3. consequently, this is so for (A — A¢)S1 (1) and (A — Ao)él(Z/k — ny, 0120), the latter by the
first assertion in (d) of Theorem B.1 since 2/Ag — np, =2k —ny € Z .

On account of this, from (39) we get that (A — Ag) T20(j1) extends analytically at A = 1. Exactly
as before, it happens that T5o(/1) is smooth at A = A¢ by (b) in Theorem C.5 due to Ag ¢ D5,.
Therefore, by Lemma 2.8 again, we can assert that T>o(fi) is analytic at A = A¢ as desired. This
proves the validity of (b). W

Example 2.10. Let us illustrate the application of Theorem A with the computation of two coef-
ficients for a specific range of hyperbolicity ratios. For instance, if n; = 0 and n, > 0 then

TO ([:\L) = (M)nz AAz(nz)\_ 0'210)
" L2 (0210) ’
o A ny A (O) 0210 "
221400 2 o .
- - t+o Ar(u) — A2 (0 4t
(L2(0210)) noh %10 / (Az(u) 200) u -
Here the first equality follows by (c) in Theorem A (and it is valid for all A ¢ D0n2 — 111\7_2, see

Remark 1.1), whereas the second one follows by applying (») in Theorem B.1 with k = 1 and
assuming noA < 1 additionally. In [18] we study the case {n; = 0, n, > 0} and the integral ex-
pression for Tp,, obtained after the second equality is precisely the one that we give in that
paper, which only holds for A € (0, %) because the integrand has a pole of order noi + 1 at
u = 0. Similarly, if n; =0 and n, > 0 then

o121 o111
0120P2(0,0120)  L1(o120)

T10(ﬁ)=—01"220< él(l/)»—nz,cnzo)>

0120

n o121 Ol _1/a—n _1y;du
=015 + ‘712/0 ? / By(wyu" 1/ —
0120P2(0,0120)  L1(o120) u

0

In this case the first equality follows by (c) in Theorem A (and it is valid as long as A ¢ D}, =
N; see Remark 1.1) and the second one follows by applying (b) in Theorem B.1 with k =0
prov1ded that 1/A — ny < 0. The integral expression for Tjo obtained after the second equality
is precisely the one that we give in [18], which only converges for A € ( nlz, +00). In [21] we
extend the results in [18] to arbitrary n = (ny, np) but still in the analytic setting and assuming
the family linearisation property (FLP). The coefficient formulas given in that paper are also
particular cases of the ones in Theorem A.
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3. Poles and residues of the coefficients

Let us recall, see Theorem C.5, that the coefficient A;; (A, i) of the Dulac map is € on
(0, 400) \ D?j) x W for each (i, j) € Ao and the coefficient T;; (A, u) of the Dulac time is €'
on ((0, +00) \ le’j) x W for each (i, j) € A,. The next result is addressed to the behaviour of
these coefficients at the boundaries of their respective domains of definition.

Lemma 3.1. Consider the coefficients A;;j and T;; of the Dulac map and the Dulac time, respec-
tively, given by Theorem C.5. The following assertions hold.:

(a) If (i, j) € Agand Ly € D?j then there exists £ € Z>q such that i — (A —)»O)KAU (1) extends
G to {ho} x W.

b) If (i, j) € Ay and Mg € ij then there exists £ € Z>q such that L +— (\. — )»())KT,-]- () extends
G to {ho} x W.

Moreover, setting Ao = p/q with gcd(p, q) = 1, the estimates { < ~ +

cases.

Ty < i+ j hold in both
Proof. For convenience we prove (b) first. Due to Ag € D;’j, we have Ly € Q and we write
Ao = p/q with ged(p, g) = 1. Setting r,:=max{r € Z>o : (I, j) + r(p, —q) € A}, we define

(in, jn) = (, j) + rn(p, —q). Then A € D,’.f“/.n, "Z{i:inko # 1, see Definition C.4, and we take
£:= max "Q{i:lj,,ko' By (b2) in Theorem C.5 we know that len" in (w; ) € %> (U)[w], where U is

an open neighbourhood of {Ag} x W, and

T3, i)=Y Timrp jurg (D1 +aw)” for i # Ao,

€D} inng
where @ = p — Ag. Let us write T?,loj,z (w; 1) = Zi:o Ac(wk with Ax € €°°(0). For
convenience we define u:= 1 + aw, so that w = o« (u — 1) for « # 0. Thus wk =
a F 3k () (= DFu” and, for & # i,

¢
A0 LY —
Tinjn(w’“)—2<

r=0

‘ k
> Al <r>(—1>k—’) (I+aw)".

k=r

Accordingly this shows that T;,_,p j,+rq (1) = Zi:r Ar(a*k (I;)(—l)k_’ provided that r €
A 5o and A 7 Ao, With regard to the first condition let us observe that r, € 7. , by con-
struction. Hence T}, j (1) = Zi:rn Ar(a* (r];)(—l)k_’" and, due to o = g (ko — A),

4
k
= 20)'Tij () = (=) Y g * A(D)(h — xo)f—"( ) for 1 # Ao.
k=ry Tn

Since Ay € €°(U), this shows that i > (A — Ao)eTij(/l) extends € to {Ao} x W and
proves (b).
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The proof of (a) follows verbatim replacing n = (n1, n2) by 0 = (0, 0) and is omitted for the
sake of shortness. Let us turn now to the proof of the last assertion in the statement. The estimate
for the case in (a), i.e., (i, j) € Ag and 1g € D?j, is clear because

Here the first inequality follows using that 42%0] " #W@Wand (io—rp, jo+rq) € Ao=7Z>0 X Z>o
for all r € ’diojoko’ see Definition C.4, the equality is due to (i, jo):= (I, j) + ro(p, —q), the
second inequality is a consequence of j — rog = jo = 0 and the third inequality is evident since
P, q € N. Finally, the estimate for the case in (b), i.e., (i, j) € A, and A € D , 1S a consequence

of the previous discussion and the fact that, by construction, .« i ko 7 % and max 7" ke S

0
0
max ;zflo ioro"

This completes the proof of the result. W

By Lemma 3.1 the coefficients A;; and T;; have poles at D?j x W and D;’j x W, respectively,
of order at most i + j. This is a general result, meaning that it holds for any (i, j). Theorem A
provides the explicit expression of some of these coefficients and the rest of the present section
is devoted to give sharps bounds for the order of their poles. We will also compute the residues
of these coefficients at their poles, which determine the values of the leading terms of the poly-
nomials A?‘jf) (w; 1) at Ao € D?j and T?jf) (w; 1) at Ag € D;’j (see Theorem 4.1 and Theorem 4.3,
respectively, in Section 4). We illustrate the use of the residues for this purpose in Example 4.2.
Let us also advance that at the end of the section we will finish the proof of Corollary B, which
shows that in the analytic setting these coefficients are meromorphic on W = (0, +00) x W.

With regard to the next statement we recall that Dgl =N, D?O = % and D(l)1 =NU § (see
Remark 1.1).

Proposition 3.2. The following assertions hold:

(a) For any 1o = (Mg, o) € D(I)O x W, the function (i — (. — Lg) A1o(1) extends E® at 1=

fuo, and if ho =L with i € N then lim (A — ho)A1o(f2) = _ Ao001119459 Ml ©

fi— il Li(o120)i3 A=
(b) For any [io = (ro, o) € Dol x W, the function (i — (A — AO)A01 (/l) extends € at i =
A2 M0
fuo, and if \o=1i € N then lim (A — A9)Ao1 () = —?2"(?21]‘(7)2)10 by ( ) i

A= io
(¢) For any j19 = (Mo, o) € (D11 \ {1}) x W, the function 1 — (. — A9)A11(1) extends €*°
ar i = fio and

2 i
(c1) if o= L withi € Ny then lim (. —20)Aqy (R) = 2Z071%0 M1 Lo Sl
= i o 1(0120)i”

a=po’

ey . Ay 2iN}omiah, MY (0)
(c2) ifro=ic NZ2 then ﬂll)nlllo()\ —A0)An () =— L>(0210) il N |ﬁ«:ﬁ0'
Finally, for any 1o = (Ao, jto) € {1} x W, the function f — (A — Ao)>A11(Q1) extends €™
2 01110120M7(0) 62210210M}(0) |
L1(0120)) Ly(o210)  lfi=f1o"

at L= fro and lim (A — 10)2A11(2) =2A
A= o
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Proof. In order to show (a) we fix jig = (1/1, uo) € D(l)o x W with i € N and note that, by () in

Theorem A, Ajg = AgorSi where Agy € €°(W) and, see (4), S; = f1 — Ll%,lllzo) Mi(1/x, a120)

with f] € ‘KOO(W). On account of this and (¢) in Theorem B.1, the function (A — 1/i)A19(4)
extends €°° at 1 = [ig and

. . —o111 = 1/A -
lim (A —1/i)S1=——| . M (1/A, 0120)
A—fo Li(o120) la=fio p—>po 1
(i)
o M{7(0)
_ - 1" ool (40)
Li(o120)i il fi=fto

Ao0o1110}50 Mfi)(O)
Li(onpo)i® i la=fo’
To prove (b) we fix 1o = (i, ng) € D01 x W with i € N and note that, by (b) in Theorem A,

Aol = —A%OSz where §) = fo — inf'fzzllo) M> (X, 0210) with f> € €°°(W). Exactly as before, (c)

in Theorem B.1 implies that the function (A — i) Ag; (1) extends €’*° at 1 = j1p and, moreover,
that

Therefore lim;_, 5, (A — 1/i)Ajo(Qt) = —

0
mMD0)

lim (h—i)Sy = —2L lim (i — %) Ma(h, 0210) = ﬂ?i()oz'm @

i fio L2 (0210) 1 a=fio i—jio L(0210) 1! A=/

. . ~ A} joni0dy, MY (0)
o _ _ Ay 210 My o
and, consequently, lim;_, 5, (A — ) Ag1 (i) Lo0) T | a=0

Let us turn to the proof of (c). To this end we note that, by (b) in Theorem A, Ay} =
—2A80k51S2. If g = (1/1, f1o) € D?l x W with i € N>j then S, is smooth at fi = fig by (a) in
Theorem B.1 and therefore from (40) it follows that

202 011104, MP (0
tim (.~ 1/0) A () = 07100 MO,
A= o Ly(o120)i i! fr=fto

Exactly as before, the fact that (A — 1/i)A1(ft) extends €°° at 1 = fio follows by (c¢) in The-
orem B.1. This shows the assertion in (c1). Similarly if o = (i, o) € D?l x W with i € N>»
then S| is smooth at L = jig by (@) in Theorem B.1 and, from (41),

, , A 2i A2 oot M (0)
Tim (b —DAN(R) = -0 202 ——g,|
fi—fio L>(0210) i! fi=fo

which proves (c2). Finally, if fig = (1, o) with ug € W, the combination of (40) and (41) easily
implies that

lim (. — 1D?A11(2) =2A%| . lim (A= DS lim (A — DS,
Ao A=fio fi—fo i— o
_ 2A3y0111012002210210

M (0)M) (O
Li(0120)L2(0210) 105 )/2=A
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and, on the other hand, (¢) in Theorem B.1 shows that (A — 1)? A1 (1) extends €™ at i = fio.
This proves the last assertion in (¢) and concludes the proof of the result. H

We omit the proof of the next result for the sake of brevity since it is very similar to the

N>n [
previous one. With regard to its statement we recall that Dy, = ——t and Dy = =UL
>ny
(see Remark 1.1).

Proposition 3.3. The following assertions hold:

(a) For any 19 = (Ao, o) € Dgnz x W with ny > 0, the function i +— (A — X0)Ton, (1)

extends € at L = (19, and if Ly = "}1—;” with i € Z>q then lim (A — A0)Ton, (1) =
A= o
Anz "2110+l"2nzz| A(I)(O) i
ny Ly (oa10) 11 A=fo”

(b) For any 1y = (Ao, o) € DZ.O x W with Ag

n,0(Q) extends €°° a

= [io. In the case that Ao = with i € Z>0, then the function L +— (A — )»O)Tnlo(l/b)

nz-l—l .
ny _np+i (i)
R . R A9 0)
extends € at L = fig and lim (A — Ag)T, =1L 0”1'7'20 L
124 Mo [L—>[L0( 0) nIO(l/L) (n2+l)2 L (5210) il |,LL=;1,0

N>,
Let us recall in regard to the next statement that D0 o+l = ot ——1 UN, see Remark 1.1.

Proposition 3.4. The following assertions hold:

(a) Forany fig = (Mo, (o) € D() ny1 X W with Ly € N_ ny, the function L > (A — 20)? To.ny+1(R)
25
extends € at il = (1o, and if .o =i € N_n then
- 712

1 1 1
i G a2 o mA el o2 M 0) AT (0)
dim (A = A0)"To,ny+1 (1) = T m AR
H=>[o (ny + 1)L22 (0210) L (n2i —ny)! la=po

(b) Forany jig = (ro, o) € Dy 1 X W with Ly ¢ NZ%, the function i = (A —x0)To,n,+1 (1)

extends € at L = 19, and
(b1) if ko =i € N_n then, setting ii:= (ny + 1)i —ny,
np

Anz+1 na+1 n1 M(i)(o) .
lim (= Ao) Tonp+1(2) = Oomm 2200 (1) T2 08 1 An(ing — n1. 0210)
A=t (9210) r
nZGéio i M(])(O)A(ll ])(O)
+(n2+1)10‘2 J j—i R ’
— .
A=ty

i .
where R = ﬁa{; (L;zH(u)E)szl(u, 0)) |u=0 foriy >0 and R =0 otherwise,
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b2) if ro = L ¢ N with i € Zso, then lim (A — A0)Tom+1(2) =
A= fio

ny+l _np+l ny+i ()
AN "210 le(o)’

(ﬂz+1)L22 (0210)

A=’

Proof. For the sake of convenience we write T ,,+1, see (¢) in Theorem A, as

To,ny+1 = fo (fl + HBy((na 4+ DA — nlaUZIO)) (42)
with fy:= A"ZH 2"1‘0022], fli= crsz(?(dlzw L fri= "2(3?; : and where, recall (3),
221

Ba(u) = na Ay ()Mo, u) + f3(u) with f3(u):= Ly )2 P (u, 0).

That being said we begin with the proof of (52). With this aim we note first that By (u; A, p) is
smooth along A = Ag ¢ Z>¢ because so is M2 (A, u; ft) by (a) in Theorem B.1. For this reason,

sincg Z;E ¢ Z >0 by assumption, we can apply Corollary B.4 taking o = A, v = (A, u), ap =
Zzlj_"l , V0= (Z’Z‘L , o), k1 =ny + 1 and kp = —n; to conclude that
: (i)
. ny+i - B, (0)
lim — A ) B2((n2+ DA —ny,0 —=——0]
ﬂ—>ﬁo<nz+1 > 22 +1) 1,0210) = (n2 + D! 7210|5_p,

Hence, on account of (42) and by applying Corollary B.4, the function (i — (A - m) To.n,+1(2)

R n An2+l ny+1l ny+i (,) 0
extends € at I = fig and tends to ——2 02221 %10 2“( )}A_A
(n2+l)L2 (0'210) : M=o
(b2).

Let us turn now to the proof of assertion (a). So assume that Ag =i € N with nyi —ny >0
and observe that, by Corollary B.4, the function i — (A — i )2 fg((nz + 1A —ny, 0210) extends
€° at i = f19 and tends to 0 as i — [ig. Thus, by applying firstly (a) in Corollary B.3 and
secondly (a) in Lemma B.5 with {&« =X, v = (A, u), p =n1,q = ny}, from (42) we can assert
that i — (A — i )2T0,n2+1 (1) extends € at 1 = [i9 and, moreover,

as L — [1o and this shows

Unzifm M(l)(o) A("Zi*nl)(())
Iim (A —10)°T; =n 210 2 2 ‘ ,
u—>uo( 2 To.n+1 () =n2fofal 5z, T i i = i

which proves (a). In order to show (b1) we consider Ag =i € N with nyi —n < 0. In this case,
e . . 2 - “o

if i1 := (12 + 1)i —n1 >0 then lim;_, 5, O — i) f3((12 + DA — n1, 0210) = n;{'{’ L0 )|H e
by Corollary B.4, whereas if ij < 0 then limj_, ; (A — i)f3((n2 + 1)A — ny1,0210) =0 by (a)
in Theorem B.1. Taking this into account the assertion in (b1) follows by applying firstly (a) in
Corollary B.3 and secondly (b) in Lemma B.5 with {& = A, v = (A, u), p =n1,q = na}. This

concludes the proof of the result. MW

Regarding the next statement let us recall, see Remark 1.1, that D) | = =t Jlrl Ni .
=1 N,
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Proposition 3.5. Let us consider any [ig = (Ao, JL0) € DZH_I o X W. Then the following asser-
tions hold:

(a) Case Lo € w 1
(al) If)\o =~ wzth i € N_n, then the function L — (A — X0)? Tn,+1,0(2) extends € a

_”1

= flo and

ni+l _(n+1)i @) (n1i—ny)
o o M;’(0) A 0
Alin} (= )‘O)ZTnl-ﬁ-l,O(ﬂ) = il 1n20+1 1. © 1 ; ©
M=o (n1 + 1)Z2L1| (0120) i! (n1i —ny)! =

@2) If Ao = ll with i € NN [nilil i) then the function fi > (. — ko)Ty,+1,0(0) ex-

tends € at i = [iy and, setting iy = (n1 + 1)i — ny,

' A O_n]-‘rlo_i(n]"rl) io i() M(])(O)A(IO_])(O)
Tim (= A0) Ty 41,0(f2) = ——— L 120 ni Z( ) —
= fio (n1 + DiZig! L™ (0120) iz N J—1

+ a0 (L) o Py @, 0)) ’u=°)

a=fio
@3) If \o=+ Wlth ieN_ 2 then Ty, 41,0(1) extends € to {Ao} x W.

b) Casexoe( ug;jnl)\N.
b1) If ho = ;2 ¢ § ”1“ with i € Z=o then the function fi + (h — ho)Ty,+1.0(Q1) ex-

tends € at,&:ﬂo and lim (A — o) Ty, +1.0(2) = ”‘*0”“1”122; AP O 1‘ .
fi— fio ml L e T T azp
(b2) If Ao = Z'zi? ¢ N—12 with i € Lo then fi > (A — 20) Ty, +1.0(f) extends € at fr =
o and
+1 _ny+i 7. (L @)
nirgo o (A1 My (-, )" (0)
lim (A —X0) T 41,0(1) = : lLl'l”+ 120 zf)'
. !
fi=>fio (n2 +1)L; "(o120) A=io
b3) If xo = m = %for some i1, iy € Zx then the function L — (A — 10) Ty, +1,0(2)
extends € at i = j19 and
lim (A — 20) Ty +1,0(2)
Ao
_ miootyy (o™ A(”>(O) - o2 (ATMi (55, ) (0)
LT (o120) \ 12 + ir ! ny + iz i) o
A=io
(¢) Finally, if Ao ¢ % U anlnz I'Q;i ni+1,0(Q) extends € at L = [1o.
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For the sake of brevity we omit the proof of Proposition 3.5. Let us only mention for reader’s
convenience that, by (¢) in Theorem A,

Thi+10=fo (fl + f2B1((n1 + 1)/A — na, 0120) + f3S1A1(n1 /A — na, 0120))

with f; € ‘KOO(W). This expression is similar to the one in (42) for Ty ,,+1 that we analysed in
the proof of Proposition 3.4, but with the additional summand f3 S Al . This extra term increases
the number of cases to be studied in terms of A but they follow using exactly the same arguments
as those explained in the proofs of Propositions 3.2 and 3.4.

Lastly we state a result concerning the poles of the coefficients 7o and Ty, in the cases n; =0
and ny = 0, respectively. For the sake of shortness we do not specify the value of the residues,
which can be computed using the same techniques as in the previous results. For the same reason
we neither include the proof. With regard to its statement let us recall that D}, = ﬁnz and

82 = % see Remark 1.1.

Proposition 3.6. The following assertions hold:

(a) Assume that n; = 0 and consider any fig = (Ao, Lo) € Dy, x W.
(al) If Ao € ﬁnz then the function fu — (A — A0)>Tro(f0) extends € at [io.
(@2) If \o ¢ ﬁnz then the function L — (. — Xg)Tro([1) extends € at (1.
(b) Assume that ny =0 and consider any fio = (o, o) € D, x W.
(b1) If Mo € Nx,, then the function i — (. — r)>To2 (1) extends €™ at fiy.
(b2) Ifroe N, U (Ni"‘ \ N) then the function j1 — (. — X9)To2 (1) extends € at [1o.

(b3) If Ao € 52\ N then Tom, (1) extends € at i,

We are now in position to conclude the proof of Corollary B.

Proof of Corollary B. In the analytic setting (see Remark 1.2) we know by Proposition 2.9
that the coefficients A;; and T;; listed in Theorem A are analytic on ((0, +00) \ D?j) x W and

(0, +00) \ D?l.) x W, respectively. The fact that each A;; is meromorphic on W= 0, 400)x W

with poles of order at most two along D?j x W follows by realising that in the analytic setting
the statement of Proposition 3.2 is true replacing > by €“, i.e., that the extensions are ana-
lytic. Indeed, the proof of this analytic version is literally the same but appealing to the analytic
assertions in Theorem B.1 instead of the smooth counterparts. More specifically, using (d) in the
place of (a) and (c). Similarly, the fact that each 7;; is meromorphic on W= (0, 4+00) x W with
poles of order at most two along D;’j x W follows by noting that in the analytic setting the state-
ments of Propositions 3.3, 3.4, 3.5 and 3.6 are true replacing €’°° by . In this case, besides
appealing to (d) in Theorem B.1 in the place of (a) and (c), we apply the analytic versions of
Corollary B.4 and Lemma B.5, i.e., taking @ = w instead of @ = co. This completes the proof
of the result. W
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4. First monomials in the asymptotic expansions

Theorem A is the main result of the present paper and it is intended to be applied in com-
bination with Theorem C.5 (which in fact gathers our main results in [23]). Because of this, in
order to ease the applicability, we next particularise Theorem C.5 to specify the first monomials
appearing in the asymptotic expansion of the Dulac map, see Theorem 4.1, and the Dulac time,
see Theorem 4.3, for arbitrary hyperbolicity ratio 1¢. In both statements, the order L ranges in a
certain interval depending on Ag. The left endpoint of this interval is only given for completeness
to guarantee that none of the monomials in the principal part can be included in the remainder.

Theorem 4.1. Let D(s; i) be the Dulac map of the hyperbolic saddle (1) from X1 and %,.

(1) If Ao < 1 then D(s; 1) = Doo(W)s* + Ao (W)s** + F*({ro} x W) for any L € [2k,
min(31o, 1 + Ap)).

(2) If ko =1 then D(s; 1) = Ago()s* + A28 (w; s+ + F2({ho) x W) for any L € [2,3),
where

A0 (s 1) = Ajo(R) + Aot () (1 + o),

a=1—Aand w=w(s;a).
(3) If ko > 1 then D(s; 1) = Aoo([1)s™ + Aro()s* ! + F*({ro} x W) for any L € [ho +
1, min(2 + 29, 219)).

Proof.

(1) We begin by showing that the assumptions on Ag and L imply 9320’,“_)‘0 ={(0,0), (0, D}.

Let us prove first that L < min(3Xq, 1 + Ag) implies QEO,L_AO C {(0,0), (0, 1)}. Indeed, we
claim that if (7, j) € Ao \ {(0,0), (0, 1)} then (i, j) ¢ '%)(A)o,L—ko’ ie.,i+Agj>L— Xy It
is clear that the claim will follow once we prove its validity for (i, j) = (0,2) and (i, j) =
(1, 0). For the first case observe that 2Ag > L — A holds because L < 31 and, for the second
one, 1 > L — o holds due to L < 1+ Ag. One can verify similarly that the reverse inclusion
‘@go,L—Ao D {(0,0), (0, 1)} is guaranteed by 249 < L.
Let us show next that Ag < 1 implies Ay ¢ Dg—;\o- To prove this we use firstly that D&) U
Dgl = N by Remark 1.1, so that Ao ¢ D80 U D81~ Secondly, see Definition C.4, we use that
Ao € D%_AO if and only if there exists (i, j) € ‘%)f\)(),L—Ao such that Ao € D?j, which is not
possible since 2) |, =1{(0,0), (0, 1)} and Ao ¢ D, U D§,. Hence Ao ¢ D} _, and the
asymptotic expansion follows by (a1) in Theorem C.5.

(2) Exactly as we did in the previous case, Ao = 1 and L € [2,3) yields '@20, Loy =
{(0,0), (1,0), (0, 1)}. This implies, due to Ag =1 € D?O = N by Remark 1.1, that Ag €
Dg—ko' Then, by (a2) in Theorem C.5,

D(s; ) = Ao (1)t + AT (@; (1)s™ + FE({ro) x W)

with © = (s;0), @ = 1 — L and AJ§(@: 1) = Y} _g A1rp.04rg (D) (1 + @) = Aro(f2) +
Ao1 (1) (1 + aw) because, see Definition C.4, %01,\0 ={0, 1}, ‘Q{I%/\o = and %%/\0 = {0}.
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(3) Similarly as we argue in (1), in this case the assumptions on Ay and L imply ﬂgo Lowy =

{(0,0), (1,0)}. Then, since D00 U Dlo = N and Ag > 1, it turns out that Ag ¢ DL " and
thus the asymptotic expansion in the statement follows by (al) of Theorem C.5.

This proves the validity of the result. M

Example 4.2. By Theorem 4.1, if Ap = 1 then D(s; 1) = Ago(fi)s* + A?g(w; st 4+
Fr°({ro} x W) for any L € [2,3), where

A (@: 1) = Aro(2) + Aot () (1 + aw),

o =1— 2 and ® = w(s; ). The order of monomials in the principal part as s — 0% is s* <10
s @ <, s, see [23, Definition 1.7] for details. The coefficient of s* at fig = (1, i) follows
directly by evaluating the expression of Agg given in assertion (b) of Theorem A. The subsequent
coefficient is the one of s!**w and, by applying (b) in Proposition 3.2 with i = 1, its expression
at 1o = (1, o) is equal to

. R A2,0210210
lim (1—M)Ag () = —2———

= M5(0)
fi— fio La(o210) 2 |

a=po

Moreover some easy computations on account of the definitions given in (3) show that

P, P, P,
Mz(O)—31< )(00)32< )(00)+812< )(00)

Let us also remark that, more generally, one can compute all the derivatives of L;(u), M;(u),
A;(u), Bi(u) and C;(u) atu =0, fori = 1, 2, in terms of the derivatives of P;(x, y) and P>(x, y)
at (x,y) =1(0,0).

The second part of Theorem C.5 provides the asymptotic expansion of the Dulac time asso-
ciated to a vector field (1) having poles of arbitrary order n = (n1,nz) € Zio. In Theorem 4.3
we restrict ourselves to the case n; =0 and ny > 1 for several reasons. Firstly, for the sake of
simplicity in the exposition, since dealing with the general situation will increase very much the
number of cases to consider. Secondly because the study of the Dulac time of a hyperbolic saddle
at infinity of any polynomial vector field of degree d yields to the case ny =0 and no =d — 1.
Thirdly, and more important for us, because it allows to tackle the conjectural bifurcation dia-
gram of the period function of the quadratic centres that we undertook in [19].

Theorem 4.3. Assuming n; =0 and ny > 1, let T(s; 1) be the Dulac time of the hyperbolic
saddle (1) from X1 and X.

(1) If ho € (0, 352y) then T (s; 1) = Too (/1) + Ton, (W)s*™ + To np 1 (Ws* 2D + F ({20} x
W) forany L € [)\o(nz + 1), min(1, Ao(n2 + 2))).
2) If o € Glps o) \ () then

T(s3 ) = Too () + Ton, ()™ + T10(Q)s + To my1 (™ 2TD + F (a0} x W)
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forany L € [max(l, Ao(n2 4+ 1), min(2, Agny + 1, Ag(no + 2))).

(3) If 2o € (A7 i) then T (s: 1) = Too (1) + Tio()s + Tony (A)s™"2 + Tao () + F° ({ho}
W) forany L € [max(2, Aona), Aonz + min(1, ko)).

@) If ho > ;Z then T(s: ) = Too(2) + Tio()s + Tao()s> + F°({ho} x W) for any L €
[2, min(3, )\.0712)).

(5) I ho = 5ty then T(s: ) = Too () + Touy ()™ + s TG (@ ) + F7((ho} x W) for any

Lell, Z;ﬁ) where

T'9(w; ) = Ti0(f1) + Tony1 () (1 + aw),

a=1—A(ny+1)and w=w(s;a).
6) If 2o = ,,]—2 with ny > 1 then T(s; 1) = Too() + sT}3(@; ) + To 1 (s> 4
FP({ro} x W) forany L € [%, %), where

T30 (o; 1) = Tio(7) + Ton, () (1 + aw),

a=1—Anyand w=w(s;a).
. A A A A A A
(7) If ho = o with na > 1 then T (s; 2) = Too() + Ti0()s + Ton, (W)™ + s> T3 (3 1) +

F2({ro} x W) for any L € [2, min (2;’22:;‘, 3n"22j11 ), where

T3 (w; ) = Too (/1) + Tonp1 () (1 + aw)?

d=gcd2,ny+ 1), a = % and w = w(s; o).
(8) Ifho=1andny =1 then T(s; 1) = Too([2) + sT}S(w; 1) + 52 T53(@; [1) + F2 (o} x W)
forany L € [2, 3), where

,
Ti§(@:i ) =) Tr—ii(W)(1 +aw), forr =1,2,
i=0

a=1—dand w=w(s;a). N
©) Ifho = 2 then T(s: ) = Too(2) + Tio(i)s + s> T3(@: 1) + F§*({ro) x W) for any L €
[2,min (3,2 + %)) where

T2 (@1 1) = Too(f2) + Tomy (1) (1 + ),

d=gcd(2,n), a = 2_2‘"2 and w = w(s; ).
Proof. The asymptotic expansions in (1), (2), (3) and (4) will follow by applying (b1) in Theo-
rem C.5 once we determine the grids %’;‘0’ ;. and show that, under the respective assumptions on

Ao and L, we have Ao ¢ D7} . Next we particularise the arguments leading to this in each case:
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(1) In this case the hypothesis Ag(ny + 1) < L < min(1, Ao(n2 + 2)) yield %)’\‘ L= = {(0, 0),
(0, n3), (0, ny 4+ 1)}. For instance let us show that L < min(1, Aq(ny + 2)) 1mphes %)» 1L C
{(0,0), (0, n2), (0, n2+ 1)}. To prove this it suffices to check that (1, 0) and (0, n2 +2) do not
belong to %;’0’ 1» which is indeed a consequence of L < 1 and L < Ao(ny + 2), respectively.
The reverse inclusion D follows similarly taking Ag(n2 4+ 1) < L into account. Since the
assumption Ao € (0, ;=) and Remark 1.1 imply that 29 ¢ Dy, U Dy, UDg, ., =0U

Ony 0,ny+
% U (HE_I U N) we can assert that 1o ¢ D7 .
(2) In this case it turns out that max(1, Ag(ny + 1) < L <min(2, Agny + 1, Ao(n2 + 2)) implies
that the grid is given by ,@;’0 ;. =1(0,0),(0,n2), (1,0), (0, n2 + 1)}. For instance, to show
the inclusion C is enough to verify that (2, 0), (1, n2) and (0, ny +2) do not belong to %’;’0 I

which is a consequence of L <2, L < 1+ Apnz and L < Ao (n2+2), respectively That being

said, we know by Remark 1.1 that D" = N , DYy = N and Dy, 1 = n2+l U N. Thus,
on account of the assumption Ag € (n2+1’ n2+1) \ {nz} we get Ag ¢ Dy, Dgnz U DY, U

Dy ,,,+1- Hence, see Definition C.4, Ao ¢ Dj .

(3) Ifmax(2,n2Ar0) < L <min(Agna+1, Ao(n2+ 1)) then %’ZO’L ={(0,0), (1,0), (2,0), (0,n2)}.
Indeed, the lower bound gives the inclusion D. To prove the inclusion C it suffices to check
that (3,0), (1,n2) and (0,77 4+ 1) do not belong to @;‘0’ 1» Which is a consequence of
L <3, L <1+ Xxny and L < Xo(no + 1), respectively. These three inequalities follow
by the assumption L < min(Agny + 1, Ag(ny + 1)) together with the fact that Agny < 2

due to A € ( o 2 ) This last condition, taking Remark 1.1 also into account, implies
%o & DIy U DIy UD” UDE‘O—Q)U@U% and then Ao ¢ D .

(4) Similarly as in the previous cases, if 2 < L < min(3, Agny) then %’ZO,L = {(0,0), (1,0),
(2,0)}. Moreover, by Remark 1.1 and the hypothesis Ao > %, we get Ag ¢ Dgj, U Dy U
D5y =0U @ U ﬁnz Therefore Ag ¢ D .

The remaining assertions follow by applying (b2) in Theorem C.5. To this end we need to verify
that 1o € D} and determine the grid 93;’0 ; together with the corresponding sets Qfl;’ 5o As before
we next particularise this in each case:

5) Ifxg= nzﬁ and 1 <L < 1+— then %" L =1(0,0), (0,n2), (0,n2+1), (1, 0)}. Indeed,
to show the inclusion C it sufﬁces to check that (1,n7), (O nz +2) and (2, 0) do not belong
to %’/\ L which is equivalent to L < 1 + Agnp =1 + ™ +1’ L <imn+2)=1+ n2+1
and L < 2, respectively. These three conditions are a consequence of the assumption L <
1+ s +1 With regard to the inclusion D, the fact that (0, 0), (0, n3), (0,n, 4+ 1) and (1, 0)
belong to %Z . is written as L >0, L > Aona = #, L>2Mmny+1)=1land L >1
respectively, which are guaranteed by the assumption L > 1. Since, on the other hand, Ag =
e Dg el = nz+1 by Remark 1.1, it turns out that 1y € D7, see Definition C.4.
Finally the result follows, see Definition C.4 again, using that eQ{l’(l))n() = {0, 1}, ,5270’6/\0
%’;m {0} and %’fn2+l,)»o = ¢, together with p =1 and ¢ = ny + 1, so that o =
1 —A(ny+1).

6) If o = % with ny > 1 and % <L< % then, just as we argue in the previous cases,
we get that f%’fo’L =1{(0,0), (1, 0), (0, n2), (0, ny + 1)}. Furthermore, since Ao = % e D}y, =
ﬁnz by Remark 1.1, it turns out that Ay € D7 . On account of this the result follows using
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)

®)

€))

that ﬁfi'(’)A ={0, 1}, & OOAO %rfnzﬂ,ko {0} and <, Onm = (4, together with the fact that
a=1-— Anz, which in turn follows due to p =1 and g = n».

If Ao = nz% with ny > 1 and 2 < L < min (2’:’22:14, 3;1'122—:11) then

L@;O’L ={(0,0), (1,0), (0, n2), (2,0), (0,n2 + 1)}.

As usual, the inequality L < min (1”22114, 3n”22:]1 ) gives the inclusion C, in this case by show-

ing that (3, 0), (1, n2), (0, ny +2) ¢ %ﬁ L whereas the inequality 2 < L implies the reverse

inclusion D. Hence, since Ao = 1 € Dy, = N2 by Remark 1.1, we conclude that 1y €
=ny

DY . On the other hand, due to nz > 1, one can verify that &7y, = szlmo Do = (0}

) = and %”ZA = {0, d}, where d = gcd(2,n2 + 1). Since p = andq ”ZH

0,n2+1,19
the last equahty yields

A A A A N
TR )= Y T, 5 0, (3) (1 +aw) =Tao(d) + Tom1 () (1 +aw)’,
re{0,d}

where w = w(s; o) and o = %. This proves the validity of the statement.
If Ao =1,n2=1and 2 < L < 3 then one can readily show that

%KO,L =1{(0,0),(1,0), (0, 1), (2,0), (1, 1), (0, 2)}.

On account of this, since Ao =1 € Dj; = N by Remark 1.1 due to n = (0, 1), we can as-
sert that Ao € D7} . In this case one can easily verify that %’BA = {0}, < o = %”ZAO

;zfl”lko @, szl'fno {0, 1} and <7, 20A = {0, 1, 2}. Since p = g = 1, the two last equalities

show, respectively,

,
Ti§(@: ) =) Tr-ii(W)(1 +aw)’, forr = 1,2,
i=0

where o =1 — A and w = w(s; ).

If Ag = % and 2 < L < min(3 2+ %) then 2} | ={(0,0), (1,0, (2,0), (0, n2)}. Con-
sequently, due to Ag = E € Dgnz = ﬁ by Remark 1.1, we have Ao € D}. Moreover
De = Hope =10}, g, =0 and %’}M = {0,d} with d = ged(2,n). Since p = 2
and g = d , from the last equality it follows that

To@ )= ) T, 2., ()1 +aw) =T + Ton@) (1 +aw)’,
ref{0,d}

where w = w(s; @) and o = z_dﬂ

This concludes the proof of the result. H

Let us finish this section by pointing out that the formula of every coefficient 7;; appearing in

Theorem 4.3 is given in assertion (c) of Theorem A, except for T7; in point (8), that corresponds
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T+ a
S/\(n2+1) 8/\n2

v

1 1 2 2

na+1 na na+l  ns

>

Fig. 3. Going upward from each abscissa A € (0, +00), order of monomials sitM as s > 01 and A & Mg for (i, j) €
{(0,0), (1,0), (2, 0), (0,n2), (0,n3 + 1)}.

to A9 = np = 1. The formula of this coefficient follows by applying also assertions (a) and (b),
which show that 771 = Q10701 and Q2190 = AS7. Also with regard to this statement, it is worth
noting that the order as s — 07 of the monomials in points from (1) to (4) follows readily from
Fig. 3. For instance, 1 <;, s*"2 <3, s*™+D <, "5 <, 5% for A € (0, ﬁ) and 1 <, 5™ <,
5 < shn2+D) <10 s2forrg € (ﬁ, %), see [23, Definition 1.7] for details. For A ~ Ao = nz%,
which corresponds to an intersection between two straight-lines in Fig. 3, the compensators come
into play and we have 1 <;,, shm <o SO(S; Q) <5y S <2 s2witha=1— A(ny + 1), see point
(5) in Theorem 4.3. This type of information is very relevant in order to apply [23, Theorem C]
to bound the number of critical periods or limit cycles that bifurcate from a hyperbolic polycycle.

Data availability
No data was used for the research described in the article.
Appendix A. Derivatives of regular transition map and transition time

In this section we consider a family of vector fields of the form

(3x + yh(x, y; v)dy), (43)

v

Yy
where

e {eZ and v € U, where U is some open set of RV,

o fLhe€X(VxU)with V:=(a,b)x(—c,c) CR?, a<bandc>0,
e f(x,0;v)#0Oforallx € (a,b) andv e U.

We also consider two %X families of transverse sections £(-;v):(—e, &) —> I1; and
¢(-;v): (—e, &) —> I, to the straight line {y = 0}, i.e., verifying & (0) = ¢»(0) = O together
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with £5(0) # 0 and £;(0) # 0. Our goal is to give the first non-trivial terms of the transition
map P(-;v) and the transition time 7'(-; v) between I1; and IT,. More precisely, denoting by
@(t, po; v) the solution of Y, with initial condition po € V, we define P(s;v) and T (s; v) by
means of p(T(s),&(s)) = ¢(P(s)). The smoothness assumption for the results in this appendix
is K > 3.

In what follows ¢ (¢, po; v) denotes the solution of Z, := d, + yh(x, y; v)d, with initial con-
dition at pg = (x, y). Itis clear that ¢ (¢, po; v) = (x +t, ¢2(t, po; v)). With regard to the second
component we prove the next result:

X
Lemma A.1. Let us define H(x, y; v) =exp /h(u, 0; v)du |. Then the following hold:
y

(@) 3x¢a(t, (x,0)) =0 and 32,2 (1, (x,0) =0,
(b) dypa(t, (x,0)) = H(x +1,x) and 93,¢2(t, (x,0)) = H(x +1,x) (h(x +1,0) — h(x,0)),

(©) 82,2, (x,00) =2H (x +1,x) [y H(x + v, x)d2h(x + v, 0)dv.

Proof. On account of d;¢,(¢, (x, ¥)) = ¢2(¢, (x, y))h(x + ¢, pa(t, (x, y))) and ¢ (¢, (x,0)) =0
we obtain

0 0x 2 (t, (x,0)) = h(x +1,0)0:h2(z, (x, 0)).

Since 9,¢2(0, (x,0)) = 0 due to ¢ (0, (x,y)) =y, we get dy¢a(¢, (x,0)) = 0. Accord-
ingly fo¢>2(t, (x,0)) =0 and this shows (a). Similarly we obtain 9,dy¢2(t, (x,0)) = h(x +
t,0)9y¢2(t, (x,0)) and 3y¢2(0, (x, 0)) = 1. Consequently

t
dya(t, (x,0)) = exp /h(x +u,0)du | = H(x +1,x) (44)
0

and

t t

33,¢2(t, (x,0)) = exp /h(x+u,0)du /alh(x+u,0)du
0 0
=Hx +1,x)(h(x +1,0) — h(x,0)),

which shows the validity of (b). Finally, using that

35,9t (. 0) = 35, (x4 1, @2, (x. 32t (x. ) ’y=o
= 2001 (x +1,0) By 2.1, (x, ) + h(x +1,0002,2(1, (x, 0)),

together with 8)2,),452(0, (x,0)) =0 and (44), we get
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t t v

8y2y¢2(t,(x,0))=2exp /h(x—i—u,O)du /exp /h(x+u,0)du orh(x + v, 0)dv.
0 0 0

Taking (44) into account once again, the above equality shows (c¢) and concludes the proof of
the result. M

Let us remark that in the previous result (and in what follows when there is no risk of ambigu-
ity) we omit the dependence with respect to the parameter v for the sake of shortness. Note on the
other hand that the solution ¢(z, £(s)) of Y, is inside {y = ¢ (x — &1(s), £(s))}. Thus, in order to
obtain the first coefficients of the Taylor expansion of T (s) and P(s) at s = 0, we compute first
the ones of

s> Q(x,5:v):=a(x —E1(s3:v),§(s3v); v).

This is done in the next result, where H (x, y) = exp (fyx h(u, O)du), see Lemma A.1, and we
use the compact notation &;; = Ei(k) 0) fori=1,2.

Lemma A.2. The function Q(x,s;v) is €K on (a,b) x (—¢&,8) x U. Moreover it verifies
Q(x,0;v) =0, p1(x; v):=052(x, 0; v) =521 H (x, §10) and

p2(x; V)= 92,Q(x, 0; v) = H (x, £10)| 22 — 26118211 (E10, 0) + 25221 / H(u,£10)02h(u, 0)du |.
§10

Proof. The fact that Q is X on (a, b) x (—¢, &) x U follows from the smooth dependence of
solutions with respect to initial conditions and parameters (see for instance [9, Theorem 1.1])
and that Q(x, 0; v) = 0 is due to the invariance of the straight line {y = 0}.

Since ¢ (¢, (x, y)) is the solution of Z,, with initial condition at (x, y), in order to avoid any
ambiguity we consider Q(z, 5) = ¢2(z — £1(s), £(s)) and so we keep the notation 9;, 9, and 9,
for the partial derivatives of ¢, (¢, (x, ¥)). In doing so we obtain

p1(2) = 052 (z — £1(). ()|,
= — 0oz — £1(5), E(5))E][ ()
+ Bxa(z — £1(5), E())E] (5) + ypa(z — £1(5), EGNEL(S)]
= — (2 — £1(8), EGDA (2, d2(z — £1 (), E(5)))E] (5)
+0c 2z — £1(5), E(9))E] () + 0y (z — £1(5), ())& ()], (45)

=&1H(z,&15),
where in the third equality we use that ¢ is the flow of Z, = 9, + yh(x, y; v)dy and in the
fourth one that ¢ (x — £1(0), £(0)) = 0 due to & (0) = 0, together with d,¢; (¢, (x,0)) =0 and
0y (t, (x,0)) = H(x +1, x), as established by Lemma A.1.
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Next we proceed with the computation of py(z). With this aim in view note that, from (45),

p2() = 02z — E1(5).6())|
= —£11h(z2, 00952 (2 — £1(5), £(5)) + 110052 (2 — £1(5), £(5))
+ 0,(0,62 — 816, £6DBO)| . (46)

§=!

By applying Lemma A.1, some computations show that

050x¢2(z — &1(5), £(5))s=0 =&11 ( — 0;0x¢2 + fofiﬁz)(z —&10, (510, 0))

+ £2197,¢2(z — &10. (610, 0))
=&1H (z,£10)(h(z,0) — h(&10,0)),

and

030,622 — £1(5), 66| g =11 ( = 010,62 + 03,62) (2 = £10. €10, 0))

+ €107, ¢2(z — £10, (§10, 0))

— H(z 810) | —E0h(10, 0) + 280 / H(u, £10)92h(u, 0)du
£10

Since d5¢2(z — £1(5), §())|;_ = dyd2(z — £1(0), £(0))£(0) = &1 H (z, §10) by Lemma A.
once again, the substitution of the two previous identities in (46) yields

p2(z) = H(z, &10) 522—251152%(510,0)4‘25221/H(M,glo)fbh(u,o)du ,
10

as desired. Hence the result is proved. W

We are now in position to give the two first non-trivial coefficients of the transition map
P(-;v) and the transition time 7'(-; v) between I1; and I1;. In this regard it is to be quoted a
previous result by Chicone (see [8, Theorem 2.2]), where it is given the expression of d; P (0; v)
for vector fields in general position, i.e., not assuming that the straight line {y = 0} is invariant.
He also gives the formula of d;7 (0; v) in the case that £ = 0. More recently, explicit formulas
of d; P(0; v) and also 955 P(0; v) for vector fields in general position are given in [16, Theorem
4.2]. The proofs in [8,16] are based on Diliberto’s theorem on the integration of the homogeneous
variational equations of a plane autonomous differential system in terms of geometric quantities
along a given trajectory. (Similar results for the transition map can be found in the book of
Andronov et al. [1].) In our next lemma, besides these coefficients, we also give the second
coefficient of the transition time, which to the best of our knowledge constitutes a new result. The
lemma is in fact an upgrade of [23, Lemma 2.4], where we study the regularity properties of these
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maps without giving the expression of the coefficients. In the statement for the sake of shortness
we use the compact notation &;; = Ei(k) (0) and ¢j = {i(k) (0), i =1, 2, for the derivatives of the
parametrisation of the transverse sections. We also remark that the functions p; and p, appearing
in these coefficients are the ones given in Lemma A.2.

Lemma A.3.Let P(s;v) and T(s;v) be respectively the transition map and transition
time of the flow given by (43) between the transverse sections E(-;v): (—e,e) —> Iy and
(-5 v): (—e,8) —> Il to {y = 0}. Then the following hold:

(a) The function P(s; V) is €K on ((—8, g) X U). Moreover P(0;v) =0,

10
p1(v):=09;P0;v) = ?exp /h(u, 0)du
21

10

and
pa(v)im 92 P(0; v) = (26118217210, 0) — ¢22) P} + ,02({10)'
&1
¢10
(b) T(s;v) =s‘T(s;v) with T € €5X1((—e, &) x U) verifying T(0;v) = /pf(x)f(x,O)dx
&10
and
0T (0:v) =115 Py £(£10.0) — £11&5, f (10, 0)
¢10
1 —1 2
45 [T 0 (62007, 0) + 2001 (5,0
10

Moreoverif £ =0 then T € €¥ ((—8, €) X U) and

95, T(0:v) = (2127 + C11P2) £(£10. 0) + £y P31 f (£10. 0) + 2811821 12 f (£10. 0)
— &12.f (€10, 0) — £(1 91 £ (§10, 0) — 2£11£21 92 f (610, 0)
¢10
+ [ (P05 6,00+ a2 2.0
10

Proof. The assertion concerning the smoothness of P (s; v) follows by the smooth dependence
of solutions with respect to initial conditions and parameters and the application of the implicit
function theorem (see for instance [9, Theorem 1.1]). Note on the other hand that, by definition,
o(T(s),&(s)) = ¢(P(s)) where (¢, po) is solution of Y,, with initial condition pg € V. Since
Z, =y f(x,y;v)Y, =8, + yh(x, ¥)dy, it follows that
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L(P(9)) = 2 (61(P(5)) = §1(5), £(5)) = (¢1(P (), 5),

where ¢ (7, (x,y)) = (t +x, $2(z, (x, y)) is the flow of Z, and, by definition, Q(x,s) = ¢2(x —
£1(s), £(s)). Accordingly

5 (P($))P'(s) = 012(L1(P(9)), 5)¢{ (P () P'(5) + 822(¢1 (P (5)), 5),

which, evaluated at s = 0 and applying Lemma A.2, gives £ P’ (0) = 8,2(¢10,0) = p1(¢10) =
&1 H (10, £10). Therefore py = P’(0) = %H({lo, &10), as desired. By computing an additional
derivative with respect to s in the above equality and evaluating at s = 0 afterwards we get

02 p3 4 221 P"(0) = 205,Q(210, 0)11 p1 + 95, 2(C10, 0) = 201 (L10)A(C10, 00211 p1 + 02(C10),

where we apply Lemma A.2 and take p{(¢10) = 2191 H (¢10, §10) = £21 H ($10, £10)1(¢10, 0) =
&1 p1h(&10, 0) into account. Consequently,

(22118217810, 0) — £22) P} + P2(&10)

P"(0)=p>= o

and this proves (a). Let us turn now to the proof of the assertions in (). With this aim we note
first that the transition time between IT; and I, has the following integral expression
S1(P(s))
T(s) = / Qx, )" f(x, Qx, 5))dx.
§1(s)
By Lemma A.2 we know that Q is a X function such that Q(x, 0) = 0 and 9,Q(x, 0) = p1 (x).
Hence, the application of Lemma 2.1 shows that Q(x, s) = s(p1(x) + R(x, s)) for some ¢K-1
function R with R(x, 0) =0. Accordingly T (s) = stT (s) with
S1(P(9)
T(s):= / (01(x) + R(x, $)° f (x, Q(x, $))dx.
§1(s)
Then, since p; does not vanish, by a well-known result on the regularity properties of integrals
depending on parameters (see [36, page 411]) it follows that 7 is €X' as well. Let us com-

pute now 7~”(O) and T’ (0). This is easy for the first one because 7~‘(0) = ;1‘00 pf (x) f(x,0)dx.
Concerning the second one we note that

T'(0) = pt(10) £ (€10, 0)Z11 p1 — Y (E10) £ (€10, 0)E1
¢10

1
+ /pfil(x) (EE,OZ(X)f(x, 0) + 0> f (x, O)pf(x)) dx.
§10

Here we use that, thanks to Lemma A.2, 9,R(x,0) = %82229()6,0) = %pz(x). Now, taking
p1(€10) = &1 and p1(Z10) = ¢21p1 into account, one can verify that the above expression is
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equal to the one given in the statement. Hence it only remains to prove the assertions concerning
the case £ = 0. The fact that if £ =0 then T is €’X follows from the regularity properties of in-
tegrals depending on parameters that we mention above. With regard to the expression of 7" (0)
we note that if £ =0 then

T'(s) =f(£1(P(5)), Q1I(P($)), )L (P() P'(s) — f(&1(5), (E1(5),5))&] (5)
¢1(P(s))
+ / a0 f(x, R2(x,s))02R2(x, s)dx.
&1(s)

Accordingly, since 9122(x,0) =0, 92Q2(x,0) = p1(x) and 82229(x, 0) = p2(x), some easy com-
putations give

T"(0) =31 f (¢10, 0)¢y T+ 282 £ (£10, 0)p1(S10) 11 1 + f(E10, 0)(¢12PF + 2811 p2)

— 31 £ (10, V&R, — 282 f (€10, 0) 01 (E10)E11 — £ (10, 0)EN2
¢10
+/(8222f(x,0)p12(x)+p2(x)82f(x,0))dx.
10

Finally the substitution of p1(£19) = &1 and p1(£10) = &1 p1 yields to the expression of T (0)
given in the statement. This concludes the proof of the result. W

Appendix B. An incomplete Mellin transform

In this appendix we introduce a sort of incomplete Mellin transform that is a key tool for
giving a closed expression for the coefficients of the first monomials in the asymptotic expansion
of the Dulac map and Dulac time. In short, given « € R \ Z>¢ and a smooth function f(x) on an
open interval / that contains x = 0, we consider the singular scalar differential equation

xy —ay = f(x).

It turns out that this differential equation has for each « a unique solution y = f (cr, x) which is
smooth on 7. As we will see, the fact that O € I turns out to be crucial for the uniqueness. The
idea is to relate this particular solution with the trajectories of the autonomous planar differential
system

{)'c:x,
y=ay+ f(x),

that has a hyperbolic critical point at (0, —f(0)/«) being a saddle for « < 0 and a focus for
a > 0. In the saddle case, which is the simplest one, y = f (o, x) is no more than the graph of
the stable separatrix. This is in fact the idea in the proof of our next result, which is a little more
complicated than it should be because in our applications f depends on parameters and we need
good regularity properties of the solution with respect to « and these parameters as well. For that
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purpose we apply the so-called centre-stable manifold theorem (see for instance [14, Theorem
1]) but instead one may use the parametrisation method for invariant manifolds (see [6,7]).

Theorem B.1. Let us consider an open interval I of R containing x = 0 and an open subset U
of RV,

(a) Given f(x;v) € € x U), there exists a unique f(a,x; V) € € (R\Zsp) x I xU)
such that

x0x f(a, x30) — o f (o, x5 0) = f(x;v). 47)

(b) If x € I \ {0} then 8X(f(a, x;v)x]7% = f(x;v) Bl and, taking any k € Z o with k > «,

X

k=1 ,4; x
A~ 0. f(O;v) o _ _ods
fw‘”ﬂmx + 1] /(f(sw)—Té‘ ) ls U= @9)
= 0

where Té‘f(x; V) = Zi'(:o il—!8)’;f(0; v)x' is the k-th degree Taylor polynomial of f(x;v) at
x=0.

(¢) Foreach (ig, x0, v0) € Z>0 x I X W the function (o, x, v) — (io —a)f(oz, x; v) extends €
at (ig, xg, vo) and, moreover, it tends to %8;0]‘(0; vo)x(i)O as (o, x, v) = (ig, X0, V0)-

(d) If f(x;v) is analytic on I x U then f(oz,x; v) is analytic on (R \ Z>o) x I x U. Finally,
for each (ag, xo, v0) € Z>o x I x U the function (o, x,v) — (o — oc)f(oz,x; V) extends
analytically to (ag, X9, Vo).

Proof. The plan to prove (a) is the following. The uniqueness will be proved firstly. We will
show, secondly, the existence for & < 0 and, thirdly, the existence for & > 0.

To prove the uniqueness let us suppose that, for some o ¢ Zxo, the differential equation
xy' —ay = f(x;v) has two solutions, y = fl(a,x; v) and y = fg(a,x; v), that are €°° on
R\ Zxp) x I x U. Then fl - fz is a smooth function that verifies the homogeneous linear
differential equation xy’ — ey = 0 which, in the case that « ¢ Z>0, has y = 0 as unique >
solution passing through x = 0. Consequently fl = ng, as desired.

Let us prove now the existence for the case o < 0. To this end, related with the scalar differen-
tial equation in (47), note that the planar vector field x0y + (ay + f(x; v))dy has, for each fixed
a < 0and v € U, a hyperbolic saddle at (0, — f(0; v) /o) with a non-vertical stable separatrix. In
order to study its regularity with respect to the parameters we consider the augmented system

X=ux,
y=ay+ f(x;v),
a=0,
v=0.

For each fixed ag € (—00,0) and vy € U, the application of [14, Theorem 1] shows that for
every k € N thfire exists a local ceptre-stable manifold W at (0, — f(0; vo) /o, @g, vo) that is
written as y = fjoc (o, x; v) where fi,c is a €* function in a neighbourhood V of («p, 0, vp). In
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this context, contrary to what happens in general, it turns out that the centre-stable manifold is
unique, which implies that ﬁoc is €°° (see [29, p. 165]). That being said, we assume without
lost of generality that V' is a cube with centre (g, 0, vp) and edge length 4¢. Then for the points
in the strip S = {(«, x, v) : x € I and («, 0, v) € V} we define

X
) d
X | froelar, )™ + / Fsmyse L ifx € 1N (0, 400),
S

Fla,x:v):= froc(@, 0; ) ifx =0,
X

(=) | froe(a, —¢; V)e_"‘+/f(S; v)(—S)_‘"a;—S if x e I'N(—00,0),

—&

(49)
which is clearly °° on S \ {x = 0}. An easy computation shows that the above function verifies
the scalar differential equation (47) for all (o, x, v) € S with x # 0. Hence, due to f (o, £e;v) =
floc (o, €3 v), by the existence and uniqueness theorem for solutions of differential equations
(see [9, Theorem 1.1] for instance) we have that f ly = floc and, consequently, f € € (S).
On account of the uniqueness of f proved firstly, the arbitrariness of g € (—00,0) and vg € U
shows that (49) provides a well defined €*° function f (a, x;v) on (—o0,0) x I x U. This
proves the existence for the case o < 0.

Let us show next the existence for the case o > 0. In what follows we shall use the more
compact notation éa (x;v) = 0 (o, x; v) omitting also the dependence on x and v when there is
no risk of ambiguity. Following this notation, some easy computations show that

1. If ¢ = g + h then 0, = 8o + hy, provided that g, and hy exist.
2. I L(x;v) =Yk gdi()x and @ ¢ {0, 1,2, ..., k} then £y (x; v) = 35, AWy,

1—a

3. If £(x; v) =x"g(x;v) with m > « then fa(x; V) =x"gy_m(x; V).

That being said, let us fix an arbitrary m € N and note that, by applying Lemma 2.2, we can write

m—1

fOsv) =) diw)x’ +x"g(x;v),

i=0

with d; € €U ) and g € €°°(I x U). On account of this, since we have already proved
the existence of fo, for @ < 0, the three properties above imply the existence of f (o, x;v) €
¢ (((—oo,m) \ Zx0) x I x U) satisfying (47). Finally the arbitrariness of m € N and
the uniqueness of f proved firstly imply that f (a, x;v) is a well defined € function on
R\ Z>0) x I x U verifying (47). This concludes the proof of (a).

Let us prove next the assertions in (b). The fact that the equality 0, ( f (o, x;v)|x|7%) =

fx;v) |x!a holds for all x € I \ {0} follows easily from (47) by considering the cases x > 0
and x < O separately. In order to prove (48) we note first that, thanks to Lemma 2.2, we can
write f(x;v) — Tok_lf(x; v) = xKg(x; v) with g € €>°(I x U). Taking this into account and
performing the coordinate change s = rx we get
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X X 1
_ _ds _ds _ dt
|x|“/(f<s;v>—Té‘ Lt (s v)ls] “?=|x|“/s"g(s;v>|s| “T=xk/r" “g(ix;0)

0 0

We claim that this is a €*° function of («, x, v) € (—00,k) x I x U. To prove this we apply
assertions (i), (c¢) and (g) in Lemma 2.4 to conclude that (¢; ¢, x, V) tk_"‘_lg(tx; v) belongs
to F7°((—00,k—1—L) x I x U) for any L € R. Consequently, if we fix any a9 € (—00, k) and
take L = ki% —1thenforanyxoel,vpeU,KeZspandv e Zﬁoﬂ with |v| < K there exist
a compact neighbourhood Q of («g, xg, vp) and constants C, fy > O such that the absolute value

of

ik =o=le(tx; v))

v(k—a—1
9 ([ g(tx; v)) AVIvy -~ VN Uy OUNH @ VN+2x

is bounded by Ct” for all (o, x,v) € Q and 1 € (0, to). It is clear on the other hand that there
exists C’ > 0 such that 3" (t* =g (rx; v))| < C’' for all (o, x,v) € Q and 1 € [1g, 1]. Accord-
ingly 3" (tk=*~1g(tx; v))| is bounded by an integrable function of ¢ € [0, 1] not depending on
(o, x, v). Hence, by applying the Dominated Convergence Theorem (see [33, Theorem 11.30]
and also [36, pp. 409—410]) we can assert that the function (¢, x, v) fol tk""g(tx; v)% is
%° on a neighbourhood of (&g, xo, vg). This proves the claim and shows in particular that the
function on the right hand side of the equality in (48) is written as

k=1 . 1
0! ; : dt
Yl xiv)i=y %x' +xkft"—“g(tx; v)— forall x € I'\ {0}.
(1l —o
i=0 o

Furthermore, on account of the claim, ¢ € (foo(((—oo, K\ Z>0) x I xU ) On the other hand,
by applying the integration by parts formula it follows easily that xd, ¥ —ayy = f. Consequently

k=1 . !

A aL f(0; : _ d

f(a,x;V)=Z%x’ +x"/t" ag(tx;v)Tt (50)
i—0 " 0

X

3L £(0; d
—Z SO iy 1 |“f(f(s;v>—Té‘lf(s;v))mr“{,

5 il — ) )

where the first equality is true for all (e, x, v) € ((—00, k) \ Z>0) x I x U by the uniqueness of
f and the second one holds only for x # 0 by the variable change s = tx. This completes the
proof of (b).

In order to prove (c) let us fix (ip, xo, vo) € Z>0 x I x U and take any k € Z ¢ such that k > ip.
Then the equality in (50) shows that («, x, v) — (ip — a)f(a x; v) extends € at (ig, xo, Vo)
and, moreover, that it tends to ; L 8l°f(0 vo)xo as (a, x, v) — (ig, X0, vo)-

Let us turn finally to the proof of (d), so we assume henceforth that f(x;v) is analytlc on
I x U.Fix any ap € R\ Zx>¢ and vy € U. We claim that the singular differential equation xy’ —
ay = f(x;v) has a solution y = ﬁgc(a, x;v) with floc(a, 0;v) = —éf(O; v) that is analytic in
a neighbourhood of (ayg, 0, vp) inside (R \ Zsq) x I x U.
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To prove the claim we consider the holomorphic extension F (x, v) of f(x; v) in a neighbour-

hood € of (0, vg) € CN*! and for each i € Z~( we define G;(a, x,v):= al%gg';)xi, which is
clearly a holomorphic function on (C \ Z>¢) x 2. We will see that

S(er,x,v):= Y Gi(a.x,v) 51)
i=0

is a holomorphic function in a neighbourhood of («, 0, vp) € (C \ Z>¢) x Q2. To this end we
observe that:

(i) By Cauchy’s Estimates, see for instance [33], if | F(x, v)| < M forall (x, v) € €2 with |x| <
R and |v — vo| < & then 3] F (0, v)| < 2.
(ii) There exist &1, 82 > 0 small enough such that if |@ — ag| < &1 then |i — «| > > for all

i € Zz().

Consequently |G; (¢, x, V)| < % (%)l for all (a, x,v) € CN*2 with x| <L <R, [v—1g| <&
and |o — ag| < &1. This shows that (51) converges uniformly in a neighbourhood of (g, 0, vg) €
(C\Zx0) x 2. On account of this, and the fact that G; («, x, v) is holomorphic on (C \ Zx0) x ©
for all i > 0, we can assert (see for instance [17, Proposition 2]) that S(e, x, v) is holomorphic
on (C \ Zsp) x 2. We have on the other hand that xd,S — «S = F because, by the uniform
convergence again,

oo oo

LFO0,v), dLF(0,v) |
)CaxS(Ol,)C,U)—O(S(O[,X,U)ZXZWZXI — Zm !
i=0 i=0
o
0L F (0, .
—y ey .(' V) i = Fx ).
i=0 l.

Therefore the claim follows taking ﬁoc (o, x; v) to be the restriction of S(«, x;v) to the real
domain.

Suppose that ﬁoc(a, x; v) is analytic in some open cube V with centre («g, 0, vp) and edge
length 4¢. Then from here we follow exactly the same approach as in the proof of (a), i.e., we
define f(a,x; v)in § = {(o, x,v) : x € I and (¢, 0, v) € V} by means of (49) and it turns out
that f (o, x; v) is analytic on S \ {x = 0}. Indeed, this follows from the analyticity of f(x; v)
and that, on account of the previous claim, (¢, v) — floc (e, £¢; v) is analytic at («g, vp). Then,
exactly as for the regularity assertion in (a), by the existence and uniqueness theorem for solu-
tions of differential equations we have that f is an analytic function on S. By the arbitrariness
of vop € U and ap € R \ Z >, this shows that f(ot, x;v)is analyticon (R \ Z>o) x I x U.

In order to prove the second assertion in (d) we fix «g € Z>¢ and vy € U. Then the proof
of the previous claim shows that (o, x, V) —> (@ — @g) f (o, x, v) is analytic at («g, xo, Vo) for
xo = 0. To prove that this is also true for any xo € I we argue exactly as before by using the
extension defined in (49) and, for the sake of shortness, it is left to the reader. This concludes the
proof of the result. W
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Remark B.2. There are some previous results related with the function f (o, x; v) defined in
Theorem B.1 that should be referred here:

(i) Bénoit uses in [2, p. 106] a transformation M, : C[[¢t]] — C[[z]] for every fixed o €
R.o \ Z defined, for each formal series f € C[[7]], by means of the differential equa-
tion —Z%Ma(f) +aM,(f) = f Hence, by assertion (a) in Theorem B.1, if f € R[[¢]]
is convergent then My (f) = — f(a, t).

(ii) If @ <0 then we can take k = 0 in (48) and get that

A ; _ds
f(oc,x):x“/f(s)s “— forx > 0.
s
0

Therefore if @ > 0 then lim,_, 4o, x“ f (—a, x) coincides with the usual Mellin transform
(see [10])

v d
M f (o) = / f(s)s“f.
0

(iii) Novikov introduces in [28] a truncated (the author calls it one-sided) Mellin transform as

1
u € L, ((0,1]) — Mu(e):= fs"“lu(s)ds
0

and observe in this regard that .Z u(«) = a(—«a, 1) for & > 0.

The formula in (48) enables to interpret f (e, x;v) as a sort of incomplete (and parametric)
version of the Mellin transform of f(x;v). As we have seen in the proof of Theorem B.I,

(48) extends €°° to x = 0 by means of the expression (50) taking the ¥ function g(x; v) =
oy k=1 e
STy Je6v) z(}( f(x’v), see Lemma 2.2.
The proof of the following two results is omitted because it is an easy application of Theo-
rem B.1.

Corollary B.3. Consider an open interval I of R containing x =0, an open subset U of RN and
a € R\ Zxq. Then the following hold:

(@) If f(x;v) = g(x;v) + h(x;v) with g,h € € x U) then Flo, x;v) = g(a, x;v) +
h(o, x;v).

b) If f(xiv) = c(v)g(x;v) with g € €°( x U) and ¢ € €°U) then f(a,x;v) =
c()g(a, x; v). A

(0) If f(x;v) =x"g(x; v) with g € €°(I x U) and n € N then f(a, x;v) = x"g(a —n,x; v).

d) If f(x;v) =1 then f(a,x;v)=—1.
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The next two results are equally valid in the smooth category 4™ and the analytic category
€. For simplicity in the exposition we write “ with the wild card @ € {o0, w}.

Corollary B.4. Let us fix w € {00, w} and consider an open interval I of R containing x =0
and an open subset U ofRN. If f(x;v) €e€P( x U) and k1, k2,29 € R verify k1 # 0 and

ig:= K100 + k2 € Z>q then, for any (xo, vo) € I x U, the function (o, x,v) — (g — a)f(tqoz +
) ;

1 i
a0y (0 vo)xg’ as (o, x, v) — (e, X0, v0).

K2, x; V) extends €7 at (ag, xo, Vo) and it tends to

We conclude the present appendix by proving a technical lemma to be applied for studying
the poles of the coefficients obtained in Theorem A.

Lemma B.5. Let us fix w € {00, w} and consider an open interval I of R containing x =0, an
open subset U of RN and o € R\ Z>o. Let M(x; v) and A(x; v) be €7 functions on I x U and
define

B(x;a,v):= A(x; U)M(a, X;v),
which is a €7 function on I x (R \ Zs0) x U by Theorem B.1. Finally let us take iy, p,q € Z,
with ig > 0 and q # —1, and set i1:= qio — p and i>:= (q + 1)ig — p. The following assertions

hold:

(a) If i1 = 0 then, for any (xg,vo) € I x U, the function (a, x,v) — (ig — ot)zé((q + Do —
p,x;a,v) extends €% at (ig, X9, vo) and it tends to

xg. M (0; vg) AT (0; v)
q+1 ip! ir!

as (o, x,v) = (ig, X0, V0)-

(b) If i1 <O then, for any (xo,v) € I x U, the function («, x,v) — (ip — a)é((q + Da —
P, X;a, v) extends € at (ig, X0, vo) and it tends to

x(i)z ir (iz) MWD (0; vy) A2=1)(0; ) n io M0 (0; vp)
X
0 .
J

— — A(ir, xo; vo)
(g+1)ix! 4 J—lo io!
J=0
as (a, x,v) — (ig, X0, Vo),

where the summation is zero in the case that iy < 0.

. ; D(0:
Proof. By Lemma 2.2 we can write M(x;v) = le"zo w

€ (I x U). Then, by Corollary B.3, M (e, x; v) = Y19 MU0 o 4 yiotl o —ig—1,x: v),

Consequently, on account of B(x; o, v):= A(x; U)M(a, x;v), we get that

x/ 4 x0Flg(x;v) with g €

io :
M) 0; . .
B(x;a,v) = E _— .( 1))fo(x;V)+x’°+1N(JC;0t, V),
pr A )
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where we set N(x;a,v):= A(x;v)g(a — ip — 1,x;v) for shortness. Observe that, since
gla —ip — 1,x;v) is €7 along o = ip by Theorem B.1, so is N(x; a, v). Hence, by apply-
ing Corollary B.3 again with o' = (¢ + 1) — p and v’ = (e, v),

E’((q+1)ot—p,x;a, v)
io :
MD(0:; N . N
= ﬁx’A((q +Da—p—j,x; v) +x'0+1N((q +Da—p—ip—1,x;a, v).
=0 7

Thus multiplying by (i — «)* on both sides of the above equality we get

io G (O- . k
n MY (0;v) (ip — ) + ) :
(io— @) B((g + Do — p, x;0,v) = j(! )((])’—a) A((@+Da—p—j.x;v)x/
j=0 ’

+ (ig — oz)kxi°+11<’((q +Da—p—ig—1,x;a, v).
(52)

In order to prove (a) we set k = 2 above, so that

M) (0; v)

(io—a)zé((q—f— Da—p,x;a, v) = o (io—a)/i((q—I—l)oe—p—io,x;v)xi
0-

in—1 : .
MD0; v) (ig — a)? ~ i
4 j(' ) o~ ) A(@+Da—p—jx;v)x/

j=0
+ (io —a)zxioJrlN((q +Da—p—ip—1,x;0, v).
By Corollary B.4 this expression shows that (¢, x, v) — (igp — a)zf?((q + Do — p,x;a,v) ex-

tends €7 at (i, xg, vo) for any (xg, vo) € I x U. Furthermore, since all the summands except
the first one tend to zero as («, x, v) — (ip, X0, vo) by Corollary B.4 again,

lim (ip — a)zé((q + Do — p,x;v) (53)

(0t,x,v)—> (i0, X0, v0)

M0 (Q: : A
_ MO0 b (o= )A((q + Do = p —io,:v)

io! O (a2, (g x0, 0

provided that the limit on the right hand side exists. In order to compute it we apply Corollary B.4
once again, with k1 = ¢ + 1 and x» = —p — iy, to conclude that

X AW (0; vp)
q+1 i!

lim A((g + Da — p—ig,x;v) =

(e, x,v)— (i0,X0,Vo)

)

where we also take the assumption i1 = gip — p = k1ip + k2 € Z >0 into account. Consequently,
from (53),
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’0 i1 g r(o) (i1)
N MY (0; vg) A 0; v
lim (io — 01)23((11 + Do —p,x;v) = ( 0) (0; vo)
(o, x,v)—> (i0,X0,Vv0) 1 io! il

and this proves (a). Let us turn next to the assertion in (b). In this case we set k = 1 in (52) to
obtain

M(’O)(O v)

(io—a)B((g + Do — p,x;0,v) = P

A((g + Da — p —ig, x; v)x

io=1 Ap(h)

MY (0, v)zo—ocA
Y MO
=07

A((@+Da—p—jx;v)x!

+ (ip —a)xi°+1]\A/((q +Da—p—ig—1,x;a, v).

Note that the last summand on the right hand side is €® at (i, xo, vo) by applying Theorem B.1
because (¢ + 1) — p —ip — 1lg=iy, =11 — 1 < O due to the hypothesis ij := gip — p < 0. It
shows furthermore that it tends to zero as («, x, v) — (ig, X0, Vo). Exactly the same reason shows
that the first summand is €% at (i, xo, vo) and that it tends to WA(QZ‘O — P, X0; vo) as
(e, x,v) = (io, X0, vo)- Then, by applying Corollary B.4 with k1 =g + 1 and ko = —p — j, the
remaining summands on the right hand side also extend € at (ig, x¢, vo) and

lim (io — ) B((q + Da — p. x; )

(et,x,v)—> (i0,%0,v0)

1 & MD©; ) A=D0;09) o MO (0; vp) -
=—> - "+ x A(gio = p, xo: vo).
g+l ji—i ! (i2 = J)! io!

Here we also use that x1ig + kp = (¢ + 1)ig — p — j > 0 if and only if j < (¢ + Dip — p =:i>.
This proves (b) and concludes the proof of the result. W

Appendix C. Asymptotic expansions at arbitrary order

In this last appendix we recap for reader’s convenience the definitions, notation and results
from [23] that we use in the present paper.

Definition C.1. Consider K € Z>o U {+oo} and an open subset U C W C RVNt!. We say that

a function ¥ (s; /1) belongs to the class ¢X = o(U), Tespectively £ K(U), if there exist an open
neighbourhood €2 of

{(s, 1) eRN*2, 5 =0, €U} ={0) x U

in RN*2 such that (s, ) — ¥ (s; ) is €% on N ((0, 400) x U), respectively Q. Finally we
denote

EX W)=y (s; 1) € EXWU); ¥ (0; ) > O forall L € U}.

Here the letter £ stands for functions in €%

=0(U) having extension to s = 0.
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»

k1 1

Fig. 4. The filled dots are points (i, j) € ZZEO in the set Ay for k = (kq, kp).

More formally, the definition of %”SEO(U ) and EX(U) must be thought in terms of germs with
respect to relative neighbourhoods of {0} x U in (0, +00) x U. In doing so these sets become
rings and we have the inclusions €% (U) c £X(U) c %Slio(U).

We can now introduce the notion of (finitely) flatness that we shall use in the sequel.

Definition C.2. Consider K € Z>o U {+00} and an open subset U C W c RV*! Given L € R
and [ig € U, we say that ¥ (s; (i) € ‘ﬁslio(U) is (L, K)-flat with respect to s at fiy, and we write
Y e ff(ﬁo), if foreach v = (vp, ..., vn41) € ZQ’JQ with |[v| =vp+--- 4+ vy41 < K there exist
a neighbourhood V of jig and C, s > 0 such that

My (s; )
dsW0dy" -

< Cst™ forall s € (0,50) and L € V.

If W is a (not necessarily open) subset of U then define ]-"f(W) = ﬂﬁoew ]—"f (f10).

The principal part of the Dulac map and Dulac time will be expressed in terms of the following
deformation of the logarithm.

Definition C.3. The function defined for s > 0 and & € R by means of

sTY—1 .
w(s;a) = o if e #0,
—logs ifa=0,

is called the Ecalle-Roussarie compensator.
Definition C.4. Given any k = (k1, k2) € Zio, throughout the paper we shall use the following
notation: B

o A= (Zziy; x 0D U (Z>0 x Z>y,), see Fig. 4.
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ij:z {A > 0 : there exists (i’, j') € Ax \ {(i, j)} suchthati + Aj =i’ —l—kj’}.
,%’th:: {(i,j)eAk:i+kj<L} foreach L € R and A > 0.

D’i:: {A > 0 : there exists (i, j) € (%’I;’L such that A € le]}

For A = p/q € Q- with gcd(p,q) =1 and (i, j) € Ag,

o 7 if i +rp,j—rqg) € Ay forsome r € N,
ijr— {reZ=o: G —rp,j+rqg) eAr} otherwise.

Observe that if kp =0 then Ay = Zzzo = A regardless of the value of k1. One can prove on the
other hand, see [23, Remark 3.3], that ij and Dlz are discrete subsets of Q.

Let us point out that in the previous definition k stands always for a two-dimensional vector
with components in Zx¢. That being said, if kK = (0, 0) then we write Ao, D?j, %)(3 I DE and

di?x for shortness.
For the reader’s convenience we merge Theorems A and B of [23] in the following result. In
its statement we use the notation introduced so far and denote

) 0 ifn#(0,0),
o) = -1 .
room 1n=0.0)

where recall that the components of n = (n1,n2) € Zio are the orders of the poles of X, along
the axis. -

Theorem C.5. Let D(s; j1) and T (s; L) be, respectively, the Dulac map and the Dulac time of
the hyperbolic saddle (1) from X1 and X5.

(a) Foreach (i, j) € Ag there exists Ajj € € (((0, +00)\ D?j) X W) such that, for every L > 0
and Ly > 0, the following hold:
(al) Ifro ¢ D‘LAO then

D(s;p)=s" Y A(s" + FR({ro) x W).

DB 13

@2) If o € Dgfko then there exists a neighbourhood U of {Ao} x W such that

Dis;p)=s* Y A (o0 a)sH + FR({ro) x W),
(i,,/’)e,@go,L%O

where Ao = p/q with gcd(p,q) =1, a(f) = p — Aq and Aik;’(w; Q) € €2 0)[w]
with

AP Wi = D Aiorp jirg()(1+aw) for A # Ao
re&fi?)\o
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Moreover Ago(1) > 0 forall j1 € w.

(b) Foreach (i, j) € Ay, there exists Tij € € (((0, +00) \ D?j) X W) such that, for every L > 0
and Ao > 0, the following hold:
(b1) If ho ¢ D} then

T(s; ) =To(Wlogs+ Y Ti;(W)s"™ + FP({ho} x W).
W.)eB |

®2) If 2o € DZ then there exists a neighbourhood U of {Ao} x W such that

T(s: ) =To@logs+ Y Ty (s f)s ™ + F (o) x W,
(i,j)e@fol

where Ly = p/q with ged(p,q) =1, a(l) = p — Aq and T;‘;’(w; ) € %"o(l})[w]

with
A. A A
T )= Y Tivrpjtrg (D1 +aw)” for A5 Ao
reﬂ{i?ko
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