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Abstract

Background: Thrombolytic recombinant tissue plasminogen activator (r-tPA) treatment is the 

only pharmacologic intervention available in the ischemic stroke acute phase. This treatment 

is associated with an increased risk of intracerebral hemorrhages, known as hemorrhagic 

transformations (HTs), which worsen the patient’s prognosis. Objectives: To investigate the 

association between genetically determined natural hemostatic factors’ levels and increased risk of 

HT after r-tPA treatment.
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Methods: Using data from genome-wide association studies on the risk of HT after r-tPA 

treatment and data on 7 hemostatic factors (factor [F]VII, FVIII, von Willebrand factor 

[VWF], FXI, fibrinogen, plasminogen activator inhibitor-1, and tissue plasminogen activator), 

we performed local and global genetic correlation estimation multitrait analyses and colocalization 

and 2-sample Mendelian randomization analyses between hemostatic factors and HT.

Results: Local correlations identified a genomic region on chromosome 16 with shared 

covariance: fibrinogen-HT, P = 2.45 × 10−11. Multitrait analysis between fibrinogen-HT revealed 

3 loci that simultaneously regulate circulating levels of fibrinogen and risk of HT: rs56026866 

(PLXND1), P = 8.80 × 10−10; rs1421067 (CHD9), P = 1.81 × 10−14; and rs34780449, near 

ROBO1 gene, P = 1.64 × 10−8. Multitrait analysis between VWF-HT showed a novel common 

association regulating VWF and risk of HT after r-tPA at rs10942300 (ZNF366), P = 1.81 × 10−14. 

Mendelian randomization analysis did not find significant causal associations, although a nominal 

association was observed for FXI-HT (inverse-variance weighted estimate [SE], 0.07 [−0.29 to 

0.00]; odds ratio, 0.87; 95% CI, 0.75–1.00; raw P = .05).

Conclusion: We identified 4 shared loci between hemostatic factors and HT after r-tPA 

treatment, suggesting common regulatory mechanisms between fibrinogen and VWF levels and 

HT. Further research to determine a possible mediating effect of fibrinogen on HT risk is needed.

Graphical Abstract

Keywords

fibrinogen; hemorrhagic transformation; hemostatic factors; r-tPA treatment; von Willebrand 
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1 | INTRODUCTION

The initiation of treatment within the first hours after suffering from an acute ischemic 

stroke (IS) is crucial in producing better health outcomes [1]. Currently, the only available 

treatments in the acute phase are reperfusion therapies, such as thrombolysis and mechanical 

thrombectomy. Regardless of the benefits of thrombolytic recombinant tissue plasminogen 

activator (r-tPA) treatment, this is only offered to a low percentage of patients (15.6%) [2] 

due to a narrow therapeutic window [3] and potential severe side effects [3–5]. The most 

serious side effect is hemorrhagic transformation (HT), which involves disruption of the 

blood-brain barrier and extravasation of blood into the brain tissue, increasing the risk of 

mortality and worsening stroke outcomes. HT is influenced by a wide range of factors, 

including blood coagulation and fibrinolysis. According to the European Cooperative Acute 

Gallego-Fabrega et al. Page 3

J Thromb Haemost. Author manuscript; available in PMC 2024 May 20.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Stroke Study, HT can be classified as hemorrhagic infarction or parenchymal hematoma 

(PH) [6].

Thrombolytic treatment presents a 6- to 7-fold increased risk of intracerebral hemorrhage 

[7]. Patients who develop PH have been shown to present a worse outcome and 

an increased risk of 3-month mortality [8]. Despite this, the most recent guidelines 

recommend administrating r-tPA to all eligible patients, even those undergoing mechanical 

thrombectomy [9], or elderly patients [10], and clinical trials have assessed the viability 

of extending the time window to thrombolysis therapy [11], which requires increased 

knowledge of the putative adverse effects of this treatment.

Although r-tPA has been used for more than 20 years, the biological processes associated 

with the risk of HT are largely unknown. To date, a few biomarkers have been studied to 

predict the risk of HT after r-tPA treatment, including blood levels of circulating proteins, 

such as matrix metalloproteinases, cellular fibronectin, or vascular adhesion protein-1 [2,12–

15]. Additionally, some genetic variants (rs669, rs1801020, rs79770152, and rs76484331) 

have been associated with the response after r-tPA treatment [2,16,17]. A few studies have 

investigated the relationship between levels of various hemostatic factors and HT after 

r-tPA treatment [18–21]. Monitorization of the plasmin inhibitor complex, von Willebrand 

factor (VWF) levels, or fibrin/fibrinogen degradation products after r-tPA administration 

suggested that a test combining levels of these markers could aid in predicting intracerebral 

hemorrhages [18]. Intravenous thrombolysis using r-tPA results in increased perfusion of 

microvessels and decreased infarct size, likely due to depletion of plasma fibrinogen [19]. 

Additionally, recent clinical and experimental evidence suggests that ADAMTS-13 and 

VWF may be promising targets for thrombolysis of intracranial thrombi [20,21].

Genetically determined levels of hemostatic factors have been studied in relation to other 

vascular and cerebrovascular conditions. A Mendelian randomization (MR) study identified 

that factor F(XI) may be a viable target for reducing the risk of the cardioembolic subtype 

of IS [22]. Another MR study observed a causal relationship between FVIII and VWF and 

peripheral artery disease [23]. The development of specialized algorithms and statistical 

methods has allowed us to leverage existing summary statistics data from genome-wide 

association studies (GWASs) to identify new gene-phenotype associations. Using GWAS 

data from 2 different phenotypes, we can identify the proportion of variance that the 

2 traits share, estimating the level of pleiotropy or causal overlap using global or local 

genetic correlations algorithms (linkage disequilibrium score regression [LDSC] [24] and 

SUPERGNOVA [25]). Multitrait analysis [26,27] is similar to meta-analysis in which 2 

GWAS datasets from related phenotypes are combined to boost the power and aid the 

identification of new shared loci among them. Finally, 2-sample MR [28] is a statistical 

method that capitalizes on the random distribution of genetic variants that occurs at 

conception to avoid confounding and investigate causal relationships between an exposure 

(trait 1) and an outcome (trait 2).

We hypothesized that endogenous modifications in hemostatic factors that might alter the 

balance between thrombosis and bleeding might affect HT risk. With this study, we aimed 

to shed light on the relationship between several hemostatic factors’ genetically determined 
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plasma levels and the risk of HT after tissue plasminogen activator (tPA) treatment by 

leveraging computational and statistical approaches that use existing GWAS data.

2 | METHODS

2.1 | Study design

To evaluate the relationship between hemostatic factors and HT after r-tPA treatment, we 

used several approaches, including first, estimating global and local genetic correlations 

between each hemostatic factor and HT after r-tPA treatment using LDSC [24] and 

SUPERGNOVA [25], respectively, to estimate shared genetic heritability between traits. 

Since there were local points of genetic correlation, we then performed multitrait analyses 

between the 7 hemostatic factors and HT to identify loci that simultaneously regulate 

both phenotypes [26]. Finally, to discern if the observed relationships between hemostatic 

factors and HT were causal, we performed 2-sample MR [28]. Figure 1 contains a graphic 

representation of the study design.

2.2 | GWAS data sources

We used GWAS summary statistics investigating plasma levels or activity of 7 hemostatic 

factors (VWF [29], FXI [30], fibrinogen [31], plasminogen activator inhibitor-1 [PAI-1] 

[32], tPA [33], FVII [34], and FVIII [29]) and from a study reporting on HT after r-tPA 

treatment in the acute phase of an IS [17]. Characteristics and sample sizes of the GWAS 

datasets are listed in Table 1 [35]. In short, we used summary-level data from GWAS of 

hemostatic factors plasma levels from the Cohorts for Heart and Aging Research in Genomic 

Epidemiology Consortium [36,37]. For the present study, only data from European-ancestry 

individuals were used.

We also used summary-level data from the Genetic Study in Ischemic Stroke Patients treated 

with r-tPA (GenoTPA) [17] (Table 1). GenoTPA is a multicenter GWAS of European-

ancestry patients with IS admitted to the emergency room at Spanish hospitals and treated 

with r-tPA alone (N = 2045). The study aimed at exploring genetic differences between 

patients presenting a PH after r-tPA treatment (N = 141; PH-1 = 69, PH-2 = 72) vs those 

without HT (non-HT) (N = 1904) [17]. Detailed information about the GenoTPA cohort and 

GWAS analysis [17] can be found in the Supplementary Methods and Supplementary Table 

S1.

2.3 | Standard protocol approvals and patient consent

All selected GWAS received ethical approval from their local committees. All patients 

included in the studies have provided informed consent for their participation.

2.4 | Genetic correlation and heritability estimates

LDSC [24] was used to estimate global genetic correlations between each pair of hemostatic 

factors’ plasma or activity levels and the hemorrhagic outcome after r-tPA treatment in 

patients with IS. Additionally, SUPERGNOVA [25] was used to calculate local genetic 

correlations between each pair of hemostatic factors’ plasma or activity levels and HT [25]. 

We used the genome partitions obtained with LDetect [38] from the 1000 Genomes Project 
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[39], from European ancestry, to define the regions. We applied a Bonferroni correction to 

each individual pairing analysis to establish statistical significance (P < 3 × 10−6). Further 

details can be found in the Supplementary Methods.

2.5 | Multitrait analyses

Multitrait analyses were performed between each pair of the 7 hemostatic factors (FVII, 

FVIII, VWF, FXI, fibrinogen, PAI-1, and tPA) and the HT outcome after r-tPA treatment 

using the metaUSAT R package (v1.17) (R Core Team [2022]) [26].

To detect loci that regulate both the levels of a particular hemostatic factor and the risk of 

HT after r-tPA treatment, we selected loci with a lead variant with a P value <5 × 10−8 

in the multiphenotype analysis, which was at least an order of magnitude smaller than the 

lowest P value in the individual phenotypes, and with a P value <5 × 10−3 for both individual 

phenotypes [40,41].

To define a locus, we selected variants that were in a genomic region ±500 kb around the 

lead variant or linkage disequilibrium r2 > 0.2 with the lead variant.

2.6 | Trait-trait colocalization

Genomic regions with significant correlations and significant common loci identified in 

the multitrait analyses were submitted to a colocalization analysis using the COLOC R 

package (v5) [42] to look for evidence of common genetic variants regulating both the 

expression of the hemostatic factor and the risk of HT after r-tPA treatment. We considered 

conditional probabilities of colocalization (CPCs) ≥ 0.8, defined as the probability that a 

common regulatory variant exists, assuming the existence of a signal in both traits (posterior 

probability of hypothesis [PPH] 4 ÷ [PPH3 + PPH4]), as significant colocalizations 

[43]. Further details on the calculation of conditional probabilities are shown in the 

Supplementary Methods.

2.7 | MR

2.7.1 | Genetic instruments selection—We initially selected genetic variants that 

reached statistical significance (P < 5 × 10−8) in each GWAS for the 7 hemostatic factors. 

Variants were then pruned using an r2 cutoff of 0.05 and a 1-Mb window based on the 

1000 Genome Project European ancestry panel for linkage disequilibrium reference [44]. 

Independent variants with the lowest P values in each window and present in the summary 

statistics of HT after r-tPA treatment were kept as instrumental variables for further MR 

analysis (Supplementary Tables S2 and S3).

2.7.2 | Estimating causal effects—Two-sample MR was performed using the R 

package “TwoSampleMR” (v0.5.5) [45] using each hemostatic factor as exposure to test 

its potential causal effect on HT after r-tPA treatment. We considered the inverse-variance 

weighted meta-analysis method as the main MR method to combine the effect estimates of 

the variants associated with each hemostatic factor and required an adjusted q value of <.05. 

Further details on sensitivity analyses and power calculations are found in Supplementary 

Table S4 and in the Supplementary Methods.
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All values were normalized, and results are expressed as odds ratios (ORs) in outcome risk 

per every SD change of the hemostatic factor.

2.8 | Reporting guidelines

A completed copy of the Strengthening the Reporting of Observational Studies in 

Epidemiology (STROBE) Statement: guidelines for reporting observational studies and its 

extension for MR analysis STROBE-MR are provided as Supplementary material.

3 | RESULTS

3.1 | Genetic correlation and heritability estimates

Estimates of global genetic correlations between FVII, FVIII, VWF, FXI, fibrinogen, PAI-1, 

and tPA with HT after r-tPA treatment are shown in Supplementary Table S5. Overall, 

we did not find significant global genetic correlations between hemostatic factors and HT 

after r-tPA treatment. Local correlations analyses identified 1 genomic region with local 

covariance between fibrinogen and HT on chromosome 16 (significant local covariance P 
= 2.45 × 10−11) after applying multiple comparisons for all phenotypes (P < 3 × 10−6) 

and 2 more suggestive regions after applying multiple comparisons correction within each 

phenotype (P < 2.2 × 10−5) (Table 2 and Supplementary Table S6).

3.2 | Multitrait analyses

We detected a total of 99 significant loci (P < 5 × 10−8) (Supplementary Table S7) 

across all multitrait analyses. Specifically, we detected significantly associated loci for all 7 

analysis pairings: FVII-HT: 12 loci; FVIII-HT: 10 loci; VWF-HT: 18 loci; FXI-HT: 5 loci; 

fibrinogen-HT: 48 loci; PAI-1-HT: 2 loci; and tPA-HT: 4 loci. Among these, we identified 

4 loci that were associated with both phenotypes individually (at a suggestive P value 

<5 × 10−3), thus suggesting that these loci might simultaneously regulate the levels of a 

hemostatic factor and the risk of suffering from HT after r-tPA.

Table 3 contains the complete information about the 4 loci identified in the multitrait 

analyses. Briefly, 2 loci in the multitrait analysis between fibrinogen and HT were located in 

chromosome 3, with lead variants rs34780449 and rs56026866. rs34780449 was located on 

an intergenic region, 87 kb downstream of the ROBO1 gene, and rs56026866 is an intronic 

variant of the PLXND1 gene. A third locus detected between fibrinogen and HT was located 

on chromosome 16 with lead variant rs1421067, an intronic variant of the CHD9 gene. 

Finally, 1 locus detected in the multitrait analysis between VWF and HT was located on 

chromosome 5, with lead variant rs10942300, an intronic variant of the ZNF366 gene.

Manhattan plots with the multiphenotype analysis results between these phenotypes are 

shown in Figure 2.

3.3 | Trait-trait colocalization

We performed colocalization in the genomic region with significant local correlation and 

the 4 significant shared loci. Colocalization results in the region with local correlation 

between fibrinogen and HT did not suggest the existence of a common regulatory variant 
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(CPC, 0.48). On the other hand, we found significant evidence of colocalization on the 

chromosome 3 locus identified near ROBO1 in the multitrait analyses (CPC, 0.96) (Table 

3 and Figure 3). This confirms the existence of a common variant that regulates both 

circulating levels of fibrinogen and HT risk after r-tPA treatment. Colocalization results for 

the other 3 loci were not significant, although we obtained suggestive results (CPC, >0.6) of 

the existence of a common regulatory variant for the loci in PLXND1 and CHD9 (Table 3).

3.4 | MR

In total, 173 genetic instruments from 7 hemostatic factors were used to assess causality 

with HT risk after r-tPA treatment in patients with IS.

Lower genetically predicted tPA levels were associated with higher risk of HT (OR, 0.57; 

95% CI, 0.35–0.93; P = .023), but this result was not consistent across all sensitivity 

methods (Supplementary Table S8 and Supplementary Figure S1). Genetically predicted 

lower levels of FXI were nominally associated with the risk of HT after r-tPA treatment 

(OR, 0.87; 95% CI, 0.75–1.00; P = .05), with consistent results across sensitivity methods 

(Supplementary Table S8 and Supplementary Figure S1), but this association was not 

significant after correction for multiple comparisons. No significant associations were 

observed with FVII, FVIII, VWF, fibrinogen, or PAI-1, even after removing highly 

pleiotropic variants in the ABO gene (Supplementary Table S8 and Supplementary Figure 

S1). However, power calculations based on our sample sizes estimated that effect sizes 

substantially higher than those we are currently observing (OR, 1.08–2.12) are needed for all 

MR analyses except that of FVII-HT to reach 80% of the power with our sample size. Full 

statistical power calculations are available in Supplementary Table S4.

4 | DISCUSSION

Using large-scale GWAS data from 7 hemostatic traits and HT risk after r-tPA 

administration in the acute phase of IS, we present indications of potential common 

regulatory mechanisms between hemostasis and HT. Specifically, we observed a region with 

shared genetic covariance between plasma levels of fibrinogen and HT after r-tPA treatment. 

This region located in chromosome 16 contains the CHD9 gene. A variant in CHD9 has 

also been identified in this work jointly associated with HT and fibrinogen, suggesting the 

existence of common regulatory pathways involved in plasma levels of fibrinogen and HT. 

CHD9 codes for the chromodomain helicase DNA-binding protein 9, a DNA-binding protein 

involved in chromatin regulation and gene transcription [46]. Variants near CHD9 have 

been associated with plasma renin activity, a marker for variability in blood pressure (BP) 

response to antihypertensive agents, and with better systolic BP response to atenolol [47]. 

BP is an important determinant of functional outcome after r-tPA treatment [48], and its 

management has been long discussed with regards to r-tPA safety outcomes [49,50].

With regards to the common genes found with the fibrinogen-HT multitrait analyses, the 

lead variant on chromosome 3 (rs34780449) is an intronic variant located 87 kb downstream 

ROBO1, and the colocalization analysis suggested its regulatory effect on both circulating 

levels of fibrinogen and HT risk. Gene level association scores for ROBO1, calculated using 

the Multi-marker Analysis of GenoMic Annotation (MAGMA) algorithm [51] and Human 
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Genetic Evidence (HuGE) score [52], available at the Cerebrovascular Disease Knowledge 

Portal [53], indicate a strong association of common and rare variants in ROBO1 with 

hypertension and diastolic and systolic BP.

ROBO1 encodes for roundabout homolog 1 protein (ROBO1), a receptor of SLIT1 and 

SLIT2 proteins. Together, they regulate cell migration and are particularly important 

during neuronal development [52]. The involvement of these proteins with thrombosis 

regulation is not new since increased ROBO1 expression has been detected in platelets 

and megakaryocytes in humans and mice, and SLIT2 acts as a strong regulator of platelet 

activity and thrombus appearance, prolonging bleeding times [53]. In animal models, 

ROBO1 has been associated with better recovery after stroke via Slits’ role in angiogenesis 

and neurogenesis [54]. A reduction in ROBO1 expression levels has also been associated 

with increased infiltration of polymorphonuclear neutrophils in the brain, which causes an 

increased inflammatory reaction [55].

PLXND1 encodes for the Plexin-D1 protein and is mainly linked to regulation of cell 

migration, development of the nervous system, and regulation of angiogenesis. Plexin-D1 

is the receptor of Semaphorin 3E, which together regulate vascular development. A recent 

study showed that Plxnd1 knockout mice had worsened neurologic deficits, infarct volume, 

neuronal survival rate, and blood flow recovery [54]. Semaphorin 3A, a gene in the same 

family and located in the same chromosome of Semaphorin 3E, was nominally associated 

(second top hit) with HT in the original GWAS [17], and it has been related to vascular 

permeability of the blood-brain barrier and brain damage after cerebral ischemia in murine 

models [55].

Overall, high levels of fibrinogen prior to r-tPA administration have been related to worse 

clinical response and a 2.7-fold risk of death after r-tPA treatment [56]. On the other hand, 

it has been observed that fibrinogen depletion after r-tPA administration increases the risk 

of HT [57,58]. With our sample sizes, we did not have the power to demonstrate a causal 

effect of genetically determined fibrinogen plasma levels on HT. Although a strong causal 

relationship between lifelong fibrinogen levels and HT risk has been deemed unlikely, we 

cannot rule out a causal effect with an effect size below our power threshold. However, 

overall results indicate that CHD9, ROBO1, and PLXND1 would independently regulate 

fibrinogen levels and HT risk.

Finally, 3 genes were located close to ZNF366, TMEM171, and TNPO1 genes in the VWF-

HT multitrait analyses. HuGE scores [52] for ZBF366, available at the Cerebrovascular 

Disease Knowledge Portal [53], indicate a moderate association of common and rare 

variants with systolic BP and pulse pressure. Silencing of TMEM171 and TNPO1 genes, 

also on this locus, has previously proved to result in an increase in VWF levels [29]. 

TMEM171 codes for a transmembrane protein that has been associated with different types 

of cancer [59], and TNPO1 codes for Transportin, a protein that participates in the nuclear 

transport of molecules [60]. Neither of these 3 genes has been previously associated with the 

development or recovery of IS.
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We found suggestive evidence for a causal association of higher genetically determined 

circulating levels of FXI with a decreased risk of HT after tPA treatment. FXI is a serine 

protease involved in the propagation phase of coagulation and in providing clot stability; 

a FXI deficiency is related to a mild bleeding disorder [61,62]. Genetically determined 

FXI levels have been causally associated with increased risk of IS and cardioembolic and 

undetermined causes of IS [22], but this is the first instance it has been suggested to 

be related to a higher risk of suffering HT due to r-tPA administration. Our sample size 

for these phenotypes can allow detection of only effect sizes representing a 30% increase/

decrease in risk per every SD increase/decrease in FXI levels. Follow-up studies in larger 

cohorts are required to validate this observation. FXI has been recently prioritized as a drug 

target for stroke treatment based on genetic evidence for putative drug effects [62]. If the 

present results could be confirmed in larger datasets, these data would open an avenue for 

potential new treatments.

Genetically determined levels of hemostatic factors might not be equivalent to those 

observed during the stroke acute phase but rather reflect lifetime effects of hemostatic 

factors on the HT risk given an acute event. However, since the instrument variants are 

randomly distributed at birth, they are more robust to confounding and reverse causation. 

Several studies have evaluated the link between prestroke hemostatic factor levels and stroke 

risk, severity, and outcome as well as levels at admission and after r-tPA treatment [63]. 

High levels of hemostatic factors before stroke are generally associated with increased 

risk of stroke. While these might provide a better reflection of the real effect of elevated 

hemostatic factors on HT in certain situations, the effect of confounding factors or reverse 

causation on hemostatic levels cannot be ruled out when using protein levels. Unfortunately, 

our MR study was underpowered to confirm causal associations between lifelong genetically 

predicted circulating levels of hemostatic factors and HT.

Overall, we detected 4 loci that might regulate both fibrinogen and VWF levels and the risk 

of HT after r-tPA treatment. Our results suggest the existence of possible common regulatory 

pathways between levels of fibrinogen and the risk of suffering from HT. Further analyses 

are warranted to elucidate if these loci affect both phenotypes independently or if there 

is a mediating effect of plasma levels of fibrinogen on HT risk after r-tPA administration, 

although our results seem to indicate an independent regulatory effect on both phenotypes. 

While the direct role of CHD9, ROBO1, and ZNF366 in HT is unclear, a mediation effect 

via its role in BP should be further explored. Finally, we found a suggestive causal effect of 

genetically determined plasma FXI levels on HT that needs verification in larger samples.

4.1 | Strengths and limitations

This is the first study using multiple genetic analysis approaches to interrogate a biological 

link between genetically predicted plasma levels of hemostatic proteins and the risk of HT 

due to r-tPA treatment. The small sample size of the r-tPA cohort has limited the results of 

the MR analysis. However, the appearance of HT after r-tPA treatment is a very specific 

phenotype, for which very few cohorts are available. The uniqueness of our resource gives 

added value to these results. Finally, we acknowledge 3 major limitations of this study. First, 

we only used cohorts of European origin, which could make the results not generalizable to 
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other populations. Second, global correlation estimation methods and the multitrait method 

used are unable to discriminate between a causal association and an independent association 

between 2 or more phenotypes. Third, genetically determined levels of hemostatic factors 

might not reflect hemostatic levels in the acute phase of an IS.
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Refer to Web version on PubMed Central for supplementary material.
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Medicine, University of Edinburgh, Western General Hospital, Edinburgh, Scotland. 
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München, Germany. Astrid van Hylckama Vlieg, Department of Clinical Epidemiology, 

Leiden University Medical Center, the Netherlands. Barbara McKnight, Department of 

Biostatistics, University of Washington, Seattle, WA. Bruce M. Psaty, Cardiovascular 

Health Research Unit, Department of Medicine, University of Washington, Seattle, WA, 

United States. Caroline Hayward, MRC Human Genetics Unit, Institute of Genetics 

and Molecular Medicine, University of Edinburgh, Western General Hospital, Edinburgh, 

Scotland. Cavin Ward-Caviness, Office of Research and Development, U.S. Environmental 

Protection Agency, Chapel Hill, NC, USA. Christopher O’Donnell, Cardiology, VA Boston 

Healthcare System, Boston, MA, USA. Daniel Chasman, Division of Preventive Medicine, 

Gallego-Fabrega et al. Page 11

J Thromb Haemost. Author manuscript; available in PMC 2024 May 20.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript
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Department of Hematology, Erasmus Medical Center, Rotterdam, the Netherlands. Frits 

R. Rosendaal, Department of Clinical Epidemiology, Leiden University Medical Center, 

Leiden, the Netherlands. Gail Davies, Lothian Birth Cohorts, Department of Psychology, 
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Jan Bressler, Human Genetics Center, Department of Epidemiology, Human Genetics, and 

Environmental Sciences; School of Public Health, The University of Texas Health Science 
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James F. Wilson, MRC Human Genetics Unit, Institute of Genetics and Cancer, University 

of Edinburgh, Western General Hospital, Edinburgh, UK. Joshua C. Bis, Cardiovascular 

Health Research Unit Department of Medicine University of Washington Seattle Washington 

USA. Julie M. Hahn, Human Genetics Center, Department of Epidemiology, Human 

Genetics, and Environmental Sciences; School of Public Health, The University of Texas 

Health Science Center at Houston, Houston, Texas, USA. Karl C. Desch, Department of 
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FIGURE 1. 
Graphic representation of the study design. CPC, conditional probability of colocalization; 

FVII, factor VII; FVIII, factor VIII; FXI, factor XI; GWAS, genome-wide association 

study; HT, hemorrhagic transformation; IVW, inverse-variance weighted; LDSC, linkage 

disequilibrium score regression; MR, Mendelian randomization; PAI-1, plasminogen 

activator inhibitor-1; tPA, tissue plasminogen activator; VWF, von Willebrand factor.
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FIGURE 2. 
Multitrait analysis. (A) Manhattan plot for fibrinogen–hemorrhagic transformation (HT) 

multitrait analysis. (B) Manhattan plot for von Willebrand factor–HT multitrait analysis. In 

orange: newly identified loci associated with HT; in red: newly identified locus associated 

with fibrinogen and HT.
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FIGURE 3. 
Locus zoom. (A) Colocalization of fibrinogen (FIBR) and recombinant tissue plasminogen 

activator (tPA) rs34780449 locus. (B) Colocalization of FIBR and recombinant tPA 

rs56026866 locus. (C) Colocalization of FIBR and recombinant tPA rs1421067 locus. (D) 

Colocalization of von Willebrand factor and r-tPA rs10942300 locus. Chr, chromosome; 

GWAS, genome-wide association study.
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