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Introduction

Dystrophinopathies are X-linked recessive neuromuscular 
disorders stemming from pathogenic dystrophin gene vari-
ants (DMD, locus Xp21.2). They encompass two well-rec-
ognized conditions: Duchenne muscular dystrophy (DMD), 
with an incidence of 1 per 3.800–6.300 live births males, 
and the comparatively milder and less frequent Becker 
muscular dystrophy (BMD) [1–3]. In DMD, the absence 
of dystrophin, a subsarcolemmal protein, induces progres-
sive muscle degeneration, leading to the loss of indepen-
dent walking, respiratory insufficiency, and cardiomyopathy 
during adolescence or early adulthood. BMD is character-
ized by a reduction in dystrophin levels, and the onset of 
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Abstract
Dystrophinopathies, such as Duchenne and Becker muscular dystrophy, frequently lead to cardiomyopathy, being its 
primary cause of mortality. Detecting cardiac dysfunction early is crucial, but current imaging methods lack insight into 
microstructural remodeling. This study aims to assess the potential of cardiac magnetic resonance (CMR) parametric 
mappings for early detection of myocardial involvement in dystrophinopathies and explores whether distinct involvement 
patterns may indicate impending dysfunction. In this prospective study, 23 dystrophinopathy patients underwent CMR 
with tissue mappings. To establish a basis for comparison, a control group of 173 subjects was analyzed. CMR protocols 
included SSFP, T2-weighted and T1-weighted sequences pre and post gadolinium, and tissue mappings for native T1 
(nT1), extracellular volume (ECV), and T2 relaxation times. The difference between the left ventricular posterior wall and 
the interventricular septum was calculated to reveal asymmetric myocardial involvement. Significant differences in LV 
ejection fraction (LVEF), myocardial mass, and late gadolinium enhancement confirmed abnormalities in patients. Tissue 
mappings: nT1 (p < 0.001) and ECV (p = 0.002), but not T2, displayed substantial variations, suggesting sensitivity to 
myocardial involvement. Asymmetric myocardial involvement in nT1 (p = 0.01) and ECV (p = 0.012) between septal and 
LV posterior wall regions was significant. While higher mapping values didn’t correlate with dysfunction, asymmetric 
involvement in nT1 (ρ=-0.472, p = 0.023) and ECV (ρ=-0.460, p = 0.049) exhibited a significant negative correlation with 
LVEF. CMR mappings show promise in early myocardial damage detection in dystrophinopathies. Although mapping 
values may not directly correspond to dysfunction, the negative correlation between asymmetric involvement in nT1 and 
ECV with LVEF suggests their potential as early biomarkers. Larger, longitudinal studies are needed for a comprehensive 
understanding and improved risk stratification in dystrophinopathies.

Keywords  Dystrophinopathies · Cardiac magnetic resonance · Parametric mappings · Cardiomyopathy · Heart failure

Received: 26 January 2024 / Accepted: 1 April 2024
© The Author(s) 2024

Asymmetric Myocardial Involvement as an Early Indicator of Cardiac 
Dysfunction in Pediatric Dystrophinopathies: A Study on Cardiac 
Magnetic Resonance (CMR) Parametric Mappings

Roger Esmel-Vilomara1,2,3  · Lucía Riaza1,4  · Laura Costa-Comellas1,5  · Anna Sabaté-Rotés1,2  · Ferran Gran1,2

1 3

http://orcid.org/0000-0003-4449-3217
http://orcid.org/0000-0001-8742-8453
http://orcid.org/0000-0002-1180-8772
http://orcid.org/0000-0002-3127-7673
http://orcid.org/0000-0001-9076-241X
http://crossmark.crossref.org/dialog/?doi=10.1007/s00246-024-03488-8&domain=pdf&date_stamp=2024-4-23


Pediatric Cardiology

symptoms generally occurs later in life, with a slower pro-
gression [2, 4, 5]. In addition, around 10% of DMD female 
carriers exhibit certain clinical manifestations of the disease 
like mild weakness, isolated cardiomyopathy or cognitive 
involvement [1].

Cardiac dysfunction, which eventually progresses to 
dilated cardiomyopathy with heart failure, stands as one of 
the primary causes of mortality in these patients [1, 5, 6]. 
Detecting this condition is challenging and usually relies 
on imaging findings, as the manifestation of symptoms is 
obscured by limited patient mobility [2, 4, 6]. Hence, estab-
lishing proactive strategies for early diagnosis becomes cru-
cial in enhancing the quality of life for those affected [5].

While there is no current cure for DMD, the use of gluco-
corticoids aims to extend ambulation, delay cardiomyopathy, 
and enhance life quality while slowing disease progression 
[2, 4]. In the last years, research focuses on developing novel 
therapies to restore dystrophin function, including exon 
skipping, stop codon readthrough, gene replacement and 
gene editing [7]. However, tools for early cardiac dysfunc-
tion assessment and treatment response evaluation are still 
in development. Traditional imaging methods, like echocar-
diography and cardiovascular magnetic resonance imaging 
(CMR), excel in assessing heart structure and function but 
lack insight into subclinical microstructural remodeling, 
identified on pathology as progressive fibrofatty infiltration 
[8–10]. Parametric CMR tissue mappings hold potential for 
evaluating microstructural changes, primarily fibrosis [11–
13], and potentially detecting early heart involvement in this 
high-risk group [8–10, 14].

The objective of this study is to characterize tissue fea-
tures (fibrosis, edema and fat) through CMR parametric 
mappings within a cohort of pediatric patients diagnosed 
with dystrophinopathies. Additionally, we seek to discern 
whether any pattern of myocardial involvement may work 
as a potential indicator for incipient cardiac dysfunction.

Methods

This prospective study comprised pediatric patients affected 
by dystrophinopathies (n = 23), who underwent CMR with 
tissue mappings between May 2019 and September 2023. 
Patients with DMD were classified into four stages based on 
their motor abilities: pre-symptomatic (no symptoms, only 
creatine kinase elevation), early ambulatory (able to rise 
from the floor and climb stairs with some difficulty), late 
ambulatory (inability to climb stairs or rise from the floor), 
early non-ambulatory (wheelchair mobility with good trunk 
control), and late non-ambulatory (loss of upper limb and 
trunk control) [1, 5].

To establish a basis for comparison, we analyzed normal 
CMR data from subjects (n = 173) who underwent CMR for 
non-myocardial diseases such as heart block and ventricular 
ectopy and had no myocardial involvement.

Echocardiographic studies were conducted to evaluate 
the right and left ventricular (LV) ejection fraction (LVEF), 
hypertrophy, and dilation. LVEF was assessed using Simp-
son’s biplane method, with an LVEF < 50% indicating LV 
dysfunction. LV dilation was defined as an end-diastolic 
diameter z-score > + 2. Valvular regurgitation was evaluated 
by assessing the color flow area of the regurgitant jet and its 
extension into the atrium. Electrocardiograms (ECG) were 
utilized to identify specific abnormalities, including deep Q 
waves (> 2 mm) and T-wave inversions.

Cardiac MRI was conducted using a 1.5 T Magnetom 
Avanto (Siemens Medical System) with cardiac synchro-
nization. Assessment of ventricular volumes, function, and 
myocardial mass was performed using balanced steady-
state free precession sequences (SSFP), acquired as a 
short-axis stack. Dysfunction was identified by an ejection 
fraction below 50%. T2-weighted short-tau inversion recov-
ery (T2W-STIR) and T1-weighted sequences (TSE) were 
performed before and after the administration of intrave-
nous gadolinium. Phase sensitive inversion recovery (PSIR) 
reconstructions enabled the delayed uptake of contrast 
detection, commonly known as late gadolinium enhance-
ment (LGE). Tissue mappings were measured on the left 
ventricular (LV) posterior wall (LVPW) and the interven-
tricular septum (IVS) during end-diastole in short-axis 
views, and encompassed native T1 relaxation times (nT1), 
extracellular volume (ECV), and T2 relaxation times. For 
ECV, a modified look-locker inversion recovery sequence 
(MOLLI) on T1 was used, before and 20  min after con-
trast administration (Fig. 1). The difference between LVPW 
and IVS was calculated to reveal asymmetric myocardial 
involvement. Normative data for nT1, ECV and T2 is pro-
vided [15, 16].

Statistical analysis was carried out using SPSS 25.0 
(IBM). Nominal data were described using proportions, 
and continuous quantitative data as medians and interquar-
tile range [IQR] due to the non-normal distribution of the 
sample. The Mann-Whitney U test was employed to assess 
continuous variables, and Spearman’s Rank was used to 
determine correlations (ρ). P values < 0.05 were deemed 
statistically significant.

Results

A total of 23 pediatric patients were included in the study, 
comprising 14 DMD cases, 1 female carrier, and 8 BMD 
cases. Among BMD patients, all were ambulatory, whereas 
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within the DMD group, 5 were in the early ambulatory 
stage, 1 in the late ambulatory stage, and 8 in the late non-
ambulatory stage. Demographic information is shown in 
Table 1.

Among boys with DMD, a reduced LV ejection frac-
tion (LVEF) was detected in 3 out of 14 (21.4%) through 
echocardiography and in 4 out of 13 (28.6%) through CMR. 
Among BMD patients, a reduced LVEF was observed in 1 
boy via echocardiogram and in 2 out of 8 (25%) through 
CMR. Metrics of LV function derived from echocardiog-
raphy, standard CMR, and tissue mappings are presented 
in Table  1. As expected, significant differences were evi-
dent between patients and controls in LVEF (59 vs. 65%, 
p = 0.01), myocardial mass (66 vs. 54 g/m2, p = 0.038), and 
LGE (12/23 vs. 1/171, p < 0.001). Regarding tissue map-
pings, significant differences were observed in nT1 at the 
LVPW (1038 vs. 991 ms, p < 0.001), while no significant 
differences were noted at the nT1 in the IVS, nor in ECV or 
T2-weighted mappings.

Twelve patients demonstrated LGE in at least 4 myo-
cardial segments based on the American Heart Association 

(AHA) 17-segment model [17], as illustrated in Fig. 2; all 
these patients presented involvement of the LVPW.

In patients with dystrophinopathies, an asymmetric myo-
cardial involvement was detected, with statistically sig-
nificant differences between septum and LVPW regions in 
nT1 (1038 vs. 1007ms, p = 0.01) and ECV (25.7 vs. 24.1%, 
p = 0.012), but not in T2 (48 vs. 47ms, p = 0.888), as rep-
resented in Fig. 3. This asymmetric involvement was dis-
tinctive of the patients as compared to controls in terms of 
nT1 (with a difference of 27 vs. 19 ms, p = 0.045) and ECV 
(with a difference of 2.9 vs. 1.5%, p = 0.019). In this small 
sample, a greater degree of asymmetry in the nT1 or ECV 
values wasn’t found to be associated with DMD in com-
parison to BMD, nor did it correlate with more advanced 
clinical stages in patients. Similarly, the presence of LGE in 
any segment was not associated with significant asymmetric 
involvement detected by CMR mappings.

Notably, higher mapping values did not correlate with 
reduced ventricular function in our study. However, an 
asymmetric myocardial involvement, particularly in ECV, 
displayed a significant negative correlation with LVEF 

Fig. 1  Examples of tissue mappings and late gadolinium enhancement 
(LGE) in a patient with Duchenne muscular dystrophy. T1 mappings 
(A and B) and T2 mappings (C) were measured in the LVPW and 

IVS during end-diastole in short-axis views. Native T1 mappings pre-
contrast (A) and post-contrast (B) were used to calculate ECV. Image 
D shows late gadolinium enhancement in the LVPW
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not show statistical association (3/4 vs. 9/19, p = 0.329). 
A negative correlation (Fig.  4) was observed with LVEF 
and increased asymmetry, especially with nT1 (ρ=-0.472, 
p = 0.023) and ECV (ρ=-0.460, p = 0.049), but not with 
T2 (ρ=-0.381, p = 0.073). Additionally, asymmetrical nT1 
mappings showed a negative correlation with superior s’ 
wave values in the lateral wall (ρ=-0.482, p = 0.02), reflect-
ing LV function.

Finally, among dystrophinopathy patients, ECG altera-
tions were associated with elevated LVPW mappings, par-
ticularly in nT1 (1087 vs. 1028 ms, p = 0.024), ECV (30.5 
vs. 25.6%, p = 0.052, though not statistically significant). 
However, these alterations were not linked to lower LVEF 
(53.6 vs. 59%, p = 0.658), LV end-diastolic volume (63.5 vs. 

(correlation coefficient (ρ)=-0.579, p = 0.004), as presented 
in Fig. 4. This correlation was absent with nT1 (ρ=-0.266, 
p = 0.220), T2 (ρ=-0.043, p = 0.945), and LGE (62 vs. 56.5, 
p = 0.235). The association persisted when categorizing 
patients based on the presence or absence of dysfunction, 
with the ECV asymmetry showing significance (4.6 vs. 2%, 
p = 0.003), while nT1 (54.5 vs. 22ms, p = 0.135), T2 (1.5 vs. 
2ms, p = 0.473), and LGE (4/6 vs. 8/17, p = 0.365) remained 
unrelated.

Upon investigating heart function by echocardiography, 
and its association with CMR mappings, we consistently 
observed that the presence of LV dysfunction was linked 
to an asymmetric myocardial involvement, evident in nT1 
(with a difference of 101.5 vs. 18 ms, p = 0.004) and ECV 
(with a difference of 6.4 vs. 2.2%, p = 0.012). LGE did 

Duchenne muscular 
dystrophy (n = 14)

Female 
carriers 
(n = 1)

Becker muscular 
dystrophy (n = 8)

Control group
(n = 173)

Age at evaluation 13.5 [10.8–18.4] 17 16.5 [13.5–17.8] 13 [10.2–16.0]
Medication
  Steroids 14 (100%) 0 (0%) 3 (37.5%)
  ACEi 14 (100%) 1 (100%) 3 (37.5%)
  Beta-blockers 7 (50%) 0 (0%) 0 (0%)
ECG findings 4 (28.6%) 0 (0%) 2 (25%)
  Deep Q waves 2 (14.3%) 0 (0%) 0 (0%)
  Negative T waves in
  lateral and inferior leads 2 (14.3%) 0 (0%) 2 (25%)
Echocardiography
  Ejection fraction (%) 57.0 [53.8–64.5] 66.0 66.5 [60 − 0–72.0]
  LVEDV (z-score) -0.4 [-1.5–0.1] 1.0 0.3 [-1.3–0.9]
  Mild mitral regurgitation 1 (7.1%) 0 (0%) 0 (0%)
  TDI s’ mitral wave (cm/s) 8.5 [8.0–12.0] 9.0 10.0 [7.0–12.8]
Cardiac MRI
  LVEF (%) 58.0 [46.8–62] 61.0 60.0 [50.8–65.0] 65.0 [59.0–68.0]
  LV EDVI (mL/m2) 64.0 [61.0 -76.3] 75.0 87.5 [66.8–99.5] 79.5 [70.0–89.8]
  LV ESVI (mL/m2) 29.0 [22.3–34.0] 29.0 33.5 [28.0–42.0] 28.0 [24.0–34.0]
  LV mass index (g/m2) 57.5 [49.75–72.5] 37.0 73.5 [66.0–83.0] 54.0 [47.0–65.0]
LGE 9 (64.3%) 1 (100%) 2 (25%) 1 (0.6%)
* Anterior 0/9 (0%) 0/1 (0%) 0/2 (0%) 0/1 (0%)
* Septal 1/9 (11.1%) 0/1 (0%) 2/2 (100%) 0/1 (0%)
* Inferior 1/9 (11.1%) 0/1 (0%) 1/2 (50%) 0/1 (0%)
* Lateral 9/9 (100%) 1/1 (100%) 2/2 (100%) 1/1 (100%)
* Basal 0/9 (0%) 0/1 (0%) 0/1 (0%) 0/1 (0%)
Native T1 mapping (ms)
* IVS 1019.0 

[986.0–1052.5]
942.0 987.5 

[969.8–1019.0]
1006.0 
[986.0–1030.0]

* LVPW 1043.0 
[1032.5–1076.0]

975.0 1002.5 
[987.5–1079.8]

991.0 
[970.0–1018.0]

Extracellular volume (%)
* IVS 24.1 [23.2–26.2] 27.6 24.5 [22.4–25.6] 26.7 [24.5–28.6]
* LVPW 26.4 [24.8–29.5] 27.4 24.2 [21.7–33.3] 25.0 [22.8–27.4]
T2 mapping (ms)
* IVS 48.0 [46.0–49.5] 55.0 47.5 [44.0–46.3] 48.0 [45.0–52.0]
* LVPW 48.0 [45.0–51.0] 54.0 47.0 [44.0–46.0] 48.0 [45.0–51.0]

Table 1  Description of echocar-
diographic and cardiac Magnetic 
Resonance characteristics, 
stratified by disease classification. 
Categorical data is presented as n 
(%) and continuous variables as 
medians [IQR], unless otherwise 
specified. Myocardial segments 
with LGE were classified into 
5 areas based on the American 
Heart Association (AHA) 17-seg-
ment model [17]: anterior (seg-
ments 1, 7, 13), septal (2, 3, 8, 9, 
14), inferior (4, 10, 15), lateral 
(5, 6, 11, 12, 16) and basal (17). 
Abbreviations: ACEi: angioten-
sin-converting enzyme inhibitors, 
MRI: Magnetic resonance imag-
ing, LV: Left Ventricle, LVEF: 
LV Ejection Fraction, EDVI: end-
diastolic volume index, ESVI: 
End-systolic volume index, IVS: 
Interventricular septum, LVPW: 
LV posterior wall, LGE: Late 
gadolinium enhancement, TDI: 
Tissue Doppler imaging
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Fig. 3  Boxplots illustrating the asymmetric distribution of tissue map-
ping values in the interventricular septum (IVS) and left ventricular 
posterior wall (LVPW) for (A) Native T1 (nT1), (B) Extracellular 

Volume (ECV), and (C) T2-weighted sequences. The asymmetry is 
presented in nT1 and ECV but not in T2-enhanced sequences

 

Fig. 2  LGE affected segments. The majority of the affected segments are found in the lateral LV wall
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Tissue mappings, particularly nT1 and ECV, also displayed 
substantial variations, indicating their potential as sensi-
tive indicators of myocardial involvement. Notably, higher 
mapping values did not correspond to reduced ventricular 
function. However, an asymmetric myocardial involve-
ment, especially in nT1 and ECV, exhibited a significant 
negative correlation with LVEF, highlighting the nuanced 
relationship between tissue mappings and cardiac function 
in dystrophinopathies.

75 mL/m2, p = 0.812), myocardial mass (73.5 vs. 62 g/m2, 
p = 0.87), or LGE (4/6 vs. 8/17, p = 0.640).

Discussion

In this study, limited to pediatric patients, significant dif-
ferences emerged between patients and controls in key car-
diac parameters, including LVEF, myocardial mass, and 
LGE, confirming cardiac abnormalities in these patients. 

Fig. 4  Scatterplots examining the correlation model between asym-
metric myocardial involvement detected by ECV (A and C) and native 
T1 mapping (B) and cardiac function assessed by MRI (A) or echo-

cardiography (B and C). A negative correlation is observed between 
LVEF and increased asymmetry
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often indicative of transitory inflammation [24]. How-
ever, prior studies have consistently reported significantly 
increased nT1 and ECV values in the lateral wall, particularly 
in the inferolateral segment, while the septum appeared less 
affected [8, 10, 18, 19]. Although our study did not establish 
a direct link between asymmetric involvement and the pres-
ence of LGE, it is worth mentioning that LGE and elevated 
mappings often co-occur in the same region, reflecting the 
heightened mechanical stress experienced there. In this situ-
ation, LGE may correspond to a more severe damage when 
compared to the subtle and diffuse fibrosis that may only be 
detected by mappings in LGE-negative regions [8, 9].

We incorporated female carriers alongside BMD and 
DMD patients to comprehensively assess CMR findings 
across the spectrum of dystrophinopathies. While carri-
ers typically experience milder cardiac involvement, they 
remain susceptible to cardiac dysfunction [5, 6, 21]. Inter-
estingly we found and asymmetric involvement in nT1 
values, with shorter nT1 values and prolonged T2 in our 
patient, when compared to controls. Although previous 
studies did not yield statistically significant mapping differ-
ences, a noticeable trend towards increased segmental ECV 
values was observed in the inferior and inferolateral myo-
cardial walls [25].

The most striking finding in this study is that, while higher 
mapping values did not correlate with reduced ventricu-
lar function, an asymmetric involvement in nT1 and ECV 
demonstrated a significant negative association with LVEF. 
Patients with dystrophinopathies may exhibit elevated nT1 
and ECV, even when their LVEF is within the normal range, 
revealing early cardiac involvement [9, 19]. However, no 
specific pattern of involvement has been directly linked to 
ventricular dysfunction thus far. A decreased LVEF has just 
been associated with more extensive cardiac damage, pri-
marily indicated by LGE [8, 9], and more recently, by tissue 
mappings [10]. This discovery holds significant promise, 
especially in light of the lack of validated and sensitive car-
diovascular imaging markers for early cardiac deterioration 
identification and monitoring treatment response, particu-
larly in pediatric patients.

In our study, including pediatric patients with potentially 
less cardiac involvement compared to studies in the adult 
population, we did not find significant elevated T2 relax-
ation times, which is consistent with previous reports [19]. 
However, contrasting results have been documented, partic-
ularly in older patients with reduced LVEF, where elevated 
T2-mappings were noted in a number of patients; remark-
ably, those with elevated T2 also demonstrated increased 
nT1 and ECV in the same myocardial region [10]. In classi-
cal CMR, LGE cannot discriminate between edema, fibro-
sis, and fat, but parametric mappings, with the inclusion of 
T2, offer a comprehensive approach to tissue characteristics 

CMR with LGE stands as the gold standard for cardiac 
assessment in dystrophinopathies, assuming a fundamental 
role in risk stratification [1, 2, 6]. It offers a precise and repro-
ducible method for evaluating LV volumes and function, 
along with the capability to detect fibrosis based on LGE, a 
feature strongly linked to adverse cardiac outcomes [9, 11, 
18]. In our pediatric cohort, while their cardiac involvement 
is typically less severe than that reported in adult studies, we 
observed lower LVEF, increased myocardial mass, and the 
presence of LGE in comparison with controls, findings con-
sistent with the existing literature [8, 10, 19]. LGE excels at 
identifying focal fibrosis, but its effectiveness is limited in 
the early detection of diffuse fibrosis, underestimating the 
extent of cardiac involvement [9, 12]. To enhance the early 
detection of cardiac affectation, it becomes imperative to 
evaluate subclinical microstructural fibrofatty infiltration, 
a task beyond the capabilities of LGE-CMR alone [8–10].

CMR parametric mappings provide valuable insights into 
the understanding of myocardial diseases in these patients 
[8, 10, 13]. In contrast to LGE imaging, mappings do not 
rely on the presence of normal myocardium for comparison 
[11]. In the context of dystrophinopathies, nT1 and ECV 
serve as estimates for diffuse myocardial fibrosis, although 
they can also be elevated in the presence of edema. Con-
versely, T2 values increase in response to fat (which is pri-
marily characterized by low nT1 values) and edema, but are 
not indicative of fibrosis [12, 13, 20]. Our study revealed 
notable differences in myocardial nT1 and ECV measure-
ments when compared to controls, aligning with existing 
literature [8, 10, 14, 19, 21]. However, we did not observe 
differences in T2-weighted mappings.

Current evidence suggests that, when CMR is performed, 
patients usually exhibit elevated myocardial nT1 and ECV 
levels, even with normal LVEF and absence of LGE, 
although higher mapping values often present together with 
LGE [8, 14, 19], This situation indicates the coexistence of 
severely damaged focal areas (LGE) and diffuse abnormali-
ties in the remaining myocardium (mappings) [9]. The ele-
vation of nT1 and ECV mappings is indicative of a diffuse 
expansion of the extracellular matrix, a well-known pre-
dictor of adverse outcomes, independent of the underlying 
disease [22, 23]. NT1 and ECV may serve as non-invasive 
biomarkers for early subclinical myocardial disease in this 
high-risk population [8, 19], offering the potential for moni-
toring disease progression, given their correlation with the 
degree of cardiovascular involvement [12, 14].

In our cohort, a myocardial involvement asymmetry 
was observed, which was significantly more pronounced in 
patients compared to controls. It is noteworthy that a greater 
degree of asymmetry was not associated with the presence 
of LGE. Interestingly, even healthy individuals have been 
reported to exhibit transient segmental T1 abnormalities, 
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