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Global biogeography of microbes driving
ocean ecological status under
climate change

Zhenyan Zhang 1,9, Qi Zhang1,2,9, Bingfeng Chen1, Yitian Yu1, Tingzhang Wang3,
Nuohan Xu1,2, Xiaoji Fan3, Josep Penuelas 4,5, Zhengwei Fu6, Ye Deng 7,
Yong-Guan Zhu 7,8 & Haifeng Qian 1

Microbial communities play a crucial role in ocean ecology and global bio-
geochemical processes. However, understanding the intricate interactions
among diversity, taxonomical composition, functional traits, and how these
factors respond to climate change remains a significant challenge. Here, we
propose seven distinct ecological statuses by systematically considering the
diversity, structure, and biogeochemical potential of the oceanmicrobiome to
delineate their biogeography. Anthropogenic climate change is expected to
alter the ecological status of the surface ocean by influencing environmental
conditions, particularly nutrient and oxygen contents. Our predictive model,
which utilizes machine learning, indicates that the ecological status of
approximately 32.44% of the surface ocean may undergo changes from the
present to the end of this century, assuming no policy interventions. These
changes mainly include poleward shifts in the main taxa, increases in photo-
synthetic carbon fixation and decreases in nutrient metabolism. However, this
proportion can decrease significantly with effective control of greenhouse gas
emissions. Our study underscores the urgent necessity for implementing
policies to mitigate climate change, particularly from an ecological
perspective.

Microbial population of the oceans, the largest environment on Earth,
reaches billions per liter of seawater, with an overwhelming diversity
and complexity that is governed by both abiotic and biotic factors1.
Previous research has provided insights into the diversity, structure
and dynamics of microbial communities, which exhibit clear vertical
stratification, regional variability, and temporal fluctuations in the
oceans2–4.Marinemicrobes play a critical role in adding, removing, and

transforming organic and inorganicmaterials from seawater, and their
complex interactions drive the global biogeochemical fluxes of major
elements, including carbon, nitrogen and sulfur5,6. Functional traits,
including the ability in biogeochemical cycling, have been widely
recognized as important perspectives for research on the ocean
microbiome2. Global surveys using high-throughput nucleic acid
sequencing have provided comprehensive information about the
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functional diversity, genomic potential and even transcriptomic
activity of themicrobial cycling of elements in the ocean7,8. In addition,
the frequency of nutrient acquisition genes can be used as biomarkers
of nutrient limitation in the ocean9,10.

Compared to other ecosystems on Earth, oceans potentially have
the most complicated and changeable environmental conditions on
broad spatial and temporal scales; as such, they are highly vulnerable
to changes in climate from intensive anthropogenicdisturbances, such
as emissions of greenhouse gases11. These changing environmental
conditions can eventually influence the structure of the microbial
community and organismal interactions12,13. Previous research has
demonstrated the impacts of anthropogenic climate change on the
marinemicrobial community, including the reorganization of themain
taxa12,14,15, loss of diversity16,17, and modification of primary
productivity16–18. With recent advances in our understanding of ocean
biogeography mediated by climate change, several studies have also
identified the variable responses of marine microorganisms to climate
change from low- to high-latitude regions and the poleward shifts of
some specific taxa14.

Previous studies have raised questions regarding whether the
intricate dynamics of microbial diversity, structure, and functional
traits align spatially and how they collectively respond to climate
changes over time. Although several earlier studies have explored
these three ecological dimensions of microbial communities
simultaneously7,19,20, they did not offer a systematic indicator for
assessing the ecological status of marine microbial communities. In
this study, we gathered a substantial dataset of 953 ocean samples
from an extensive metagenome sampling project, namely, Bio-GO-
SHIP21 (Fig. 1a and Supplementary Data 1), for taxonomic and func-
tional annotations. For functional annotation, we compiled a database
of biogeochemical marker genes associated with the core pathways of
photosynthesis, carbon fixation, nitrogen metabolism, and sulfur
metabolism (Supplementary Data 2). These marker genes are expres-
sed by microbes and contribute to biogeochemical processes in the
ocean7. By using the above dataset and database, we overviewed the
variations in microbial communities in oceans and their links to
environmental conditions. Subsequently, we constructed machine
learning models for each microbial index and predicted their current
distribution patterns in the global ocean. In this step, we also estab-
lished ecological status, which serves as a composite representation of
microbial communities, considering their functional traits, diversities,
and structures. Finally, we harnessed machine learning techniques to
elucidate how climate change might affect the future alteration of
ecological status and to pinpoint the key drivers behind this trans-
formation. This study is designed to bridge existing knowledge gaps in
the biogeographic profiles of the global ocean under the influence of
anthropogenic climate change. This topic holds significant importance
in guiding management decisions and establishing effective policy
objectives aimed at preserving the ecological integrity of our oceans.
Furthermore, our comprehensive framework, encompassing ecologi-
cal status, can be applied to other microbial ecosystems to assess and
predict their resistance and resilience in the face of environmental or
climate changes.

Results
Temporal and spatial variation in the ocean microbial
communities
Bio-GO-SHIP21 is an international multidisciplinary project in which
metagenomic samples are collected under standard pipelines without
size fractionation (a detailed sampling protocol can be found in the
‘Methods’ section). Here, we collected 953metagenomic samples from
8 cruises in Bio-GO-SHIP across 26 Longhurst Provinces22 that traveled
from 2011 to 2020 (Fig. 1a and Supplementary Data 1). Notably,
Longhurst Provincewas used to show the spatial variation inmicrobial
profilesmore clearly. Longhurst Province is a long-standing concept of

biogeochemical partitioning in the global ocean23 and has also been
used for spatial distribution patterns of chemical conditions24,
animals25, protists26 and so on. Our results showed that the richness,
Shannon index and relative abundance of the top five phyla and bio-
geochemical marker genes clearly varied among the different samples
across temporal and spatial scales (Fig. 1b and Supplementary
Figs. 1–6). Specifically, Bacteroidetes had the highest coefficient of
variation, while richness had the lowest one. Besides, coefficient of
variation of genes involved in photosystem I, photosystem II, the
Calvin cycle, and sulfur oxidation were greater than those of genes
involved in other functions (Fig. 1c).

Todetermine the linksbetween environmental conditions and the
microbial community, we obtained ten environmental factors for each
sample (Supplementary Data 3) from the Geophysical Fluid Dynamics
Laboratory Earth System Model version 4 (GFDL-ESM4)27. These
environmental factors include temperature, salinity, partial pressureof
carbon dioxide (pCO2), mixed layer depth, and concentrations of
dissolved oxygen, nutrients (nitrate, phosphate, silicate, carbonate
and iron); these factors have also been used in previous studies for
evaluating the response of microbial communities to environmental
change7,16,18. Consistent with microbial indices, these factors clearly
varied among different samples (Supplementary Fig. 7) and con-
tributed to temporal and spatial variations in both the structure and
function of microbial communities (Fig. 1d, e).

Mapping the microbial profiles in the global ocean
The basic logic for our work is as follows: 1) Environmental variables
change on broad spatial (e.g., different ocean regions) and temporal
scales, and this progress can undoubtedly be influenced by the com-
bination of natural processes and anthropogenic activities in the
ocean28. Notably, natural processes (e.g., density and currents) can also
be influenced by anthropogenic activities. 2) Changes in environ-
mental conditions can subsequently alter the microbial profiles of the
ocean1,5,8.

The tight links between environmental conditions and microbial
communities have sparked questions regarding whether we can
quantitatively predict microbial profiles in unknown oceans by using
existing environmental data. To this end, we constructed a reliable
regression model using machine learning for each microbial index
(Supplementary Data 4). Our models simultaneously considered mul-
tiple environmental factors rather than a single stressor andweremore
reliable for predicting future conditions16,18. The results of hyperpara-
meter tuning for the XGBoost random forest, linear regression, LASSO
regression, and K nearest neighbor algorithms based on tenfold cross-
validation showed that the random forest algorithm had the highest
prediction performance (Supplementary Fig. 8 and Supplementary
Data 5). Thus, we used the random forest algorithm with the best
combination of hyperparameters to construct the final regression
model for each microbial index (except richness because of the
low R2).

Based on the regression models, we quantitatively predicted and
mapped microbial profiles in the global ocean (Supplementary
Figs. 9–11) under the current (2023) environmental conditions, which
were obtained from GFDL-ESM4. We observed that maps of microbial
profiles clearly divided the global ocean into several parts, indicating
the feasibility of defining a comprehensive ecological index based on
microbial profiles.

Definition of the ecological status of ocean microbial
communities
A microbial community can be described by multiple ecological
dimensions, such as diversity, structure, and functionality, as outlined
above. These characteristics in turn determine the ecological status of
communities in various habitats. In terrestrial ecosystems,Guerra et al.
defined priority areas for soil nature conservation by synthetically
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considering soil biodiversity and ecosystem services29. Although some
previous research has discussed the diversity, structure and functional
traits of microbial communities simultaneously7,19,20, we still lack a
systematic indicator to describe the ecological status of microbial
communities in the global ocean. This situation hampers our ability to
understand the comprehensive influence of anthropogenic activities
on microbial communities in ocean systems. In this study, we defined
the ecological status of an ocean microbial community not only as
representing taxonomic and diversity changes, as was done in pre-
vious studies14,16, but also considering the biogeochemical potential
(Supplementary Fig. 12).

Hyperparameter tuned hierarchical clustering successfully divi-
ded the ocean area (0.5° × 0.5° spatial resolution, n = 44564) into seven
types of ecological status (defined as ES1 to ES7) (Supplementary

Data 6), which had significantly different microbial profiles from each
other (Fig. 2a and Supplementary Data 7) and exhibited clear spatial
variation (Fig. 2b). For example, most samples from ES4 existed in the
tropical Atlantic Ocean and Indian Ocean. While ES7 dominated in the
Antarctic area, ES2 was the main type of ecological status in the Arctic
area. We also compared our results for 2023 with those for Longhurst
Province22. The results showed that some Longhurst Provinces, such as
the MONS and WTRA, had a single ecological status (Supplementary
Fig. 13). However, themajority of Longhurst Provinceswere comprised
of multiple types of ecological statuses, indicating that the ecological
status as defined in this study is a critical supplement for Longhurst
Provinces.

The ecological status in this study could be used as a composite
indicator to distinguish among ocean samples from a systematic
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Fig. 1 | Environmental conditions contribute to the variation in microbial
communities in the surface ocean. a Geographic distribution of samples in the
Bio-GO-SHIP project. Each point indicates one sampling location to the nearest
degree, with the point color indicating the metagenome sampling cruise. These
cruises were performed at different times following different routes. b The struc-
ture, diversity, and functions of the microbial communities varied among the dif-
ferent samples. c Different microbial indices had different coefficients of variation.
Specifically, Bacteroidetes had the highest coefficient of variation, while richness
had the lowest coefficient of variation. The variation in genes related to photo-
system I, photosystem II, the Calvin cycle, and sulfur oxidation was greater than

that in genes related to other functions. The structure (d) and function (e) of
microbial communities exhibited clear spatial and temporal variation (evaluatedby
adonis, two-sided, n = 890), which resulted from changes in environmental condi-
tions. The results of adonis are directly shown as r2 and p value in the plots. Spatial
variation was evaluated by grouping samples into different Longhurst Provinces. A
detailed description of each Longhurst Province can be found in Supplementary
Data 1. MLD mixed-layer depth, ATP adenosine triphosphate, Pta-Ack phosphate
acetyltransferase-acetate kinase, 3HP/4HB 3-hydroxypropionate/4-
hydroxybutyrate.
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perspective of the structure, diversity, and biogeochemical potential
of the microbial community (Fig. 2c–e). Compared with the other
ecological status groups, the ES4 group had the greatest abundance of
Cyanobacteria, the lowest diversity, and the greatest functional
potential for major biogeochemical processes. ES1 showed a median
level of most microbial indices, including the median abundance for
eachdominant taxon,mediandiversity, and biogeochemical potential.
Other types of ecological status all had low abundances of Cyano-
bacteria and were dominated by Proteobacteria; however, they can be
distinguished from the perspective of diversity or biogeochemical
potential. For example, ES3 and ES5 had no obvious difference in
diversity (adjusted p value > 0.05 in pairwise comparisons performed
by Dunn’s test, with |Cohen’s d| < 0.1), but they were significantly dif-
ferent in terms of biogeochemical progress. Compared with ES3, ES5
had greater functional potential in the phosphate acetyltransferase-
acetate kinase pathway (Pta-Ack pathway) and Calvin cycle, but its

functional potential in other pathways was much lower than
that of ES3.

Overall, the ecological status clustered and defined here can be
recognized as a composite description of ocean microbial commu-
nities, which we can easily use to construct a classification model and
predict whole microbial alteration under changing environmental
conditions. We applied machine learning classifiers using the same
environmental factors in the regression model to predict the ecolo-
gical status of the surface ocean (Supplementary Data 8). To reduce
the bias resulting from different sample sizes for different types of
ecological status, we performed random sampling for each type of
ecological status (n = 3000). Compared to the original dataset, the
randomly sampled dataset had the same composition of environ-
mental factors (Supplementary Fig. 14) and correlations between them
(Supplementary Fig. 15), and was then used as a training dataset in
machine learning. And the remains were used as test dataset. The
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Fig. 2 | Ecological status of microbial communities in the surface ocean.
a Principal component analysis showing the distinct patterns of microbial com-
munities in ocean samples belonging to different types of ecological status. The
detailed pairwise comparisons for each microbial index between ecological sta-
tuses were performed by the Kruskal‒Wallis H test with Dunn’s test, which can be
found in Supplementary Data 7. b Global distribution of different types of ecolo-
gical status under current environmental conditions. cDifferent types of ecological
statuses exhibited different compositions of ocean microbial communities. Com-
pared with the other ecological status types, ES4 had the highest abundance of
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maxima, and whiskers. The outliers of boxes were not shown. The number of
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under the boxes. Different letters represented the significant difference (p <0.05)
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biogeochemical potential of ocean microbes varied with different types of ecolo-
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tion ability. Heatmap exhibited the relative abundance (scaled as Z-Score) of each
pathway in each type of ecological status. ATP adenosine triphosphate, Pta-Ack
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results of hyperparameter tuning for random forest, XGBoost, support
vector machine, and logistic regression based on tenfold cross-
validation indicated that XGBoost, with n_estimators = 200, max_-
depth = 9, and learning rate =0.3, had the highest prediction accuracy
(Supplementary Data 9). Thus, we used the XGBoost algorithm with
the above combination of hyperparameters to construct the final
classifiedmodel (accuracy = 99.09%on the training dataset and 98.31%
on the test dataset). The high prediction accuracy of the machine
learning models we constructed also confirmed the reliability of the
ten environmental factors in classifying ecological status. The confu-
sionmatrix also confirmed the good performance of the finalmodel in
the classification of ecological status (Supplementary Fig. 16). Besides,
phosphate was the most important environmental factor in the pre-
diction of the ecological status of the ocean (Supplementary Fig. 17).

Changes in ecological status in the future ocean
Shared socioeconomic pathways (SSPs) induce a series of scenarios in
which greenhouse gas (GHG) emissions (SSP1-1.9 (sustainability), SSP2-
4.5 (middle of the road), SSP3-7.0 (regional rivalry), and SSP5-8.5 (fossil-
fueled development without policy intervention))30 contribute to the
prediction of future changes in microbial communities across diverse
habitats14,16,29. A range of distinct outcomes of climate change were
observed for ten environmental factors at the end of this century
compared to the present under different climate scenarios (Supple-
mentary Figs. 18, 19). In the SSP5-8.5 scenario, which has the highest level
of anthropogenic climate change with immoderate fossil fuel develop-
ment and GHG emissions30, the water temperature and pCO2 increased,
but the concentrations of phosphate, carbonate and oxygen decreased
in the global ocean. In some specific areas, the concentrations of iron
(tropical Pacific Ocean) and nitrate (tropical Atlantic Ocean and Indian
Ocean) also increased under the SSP5-8.5 scenario. These changes in
environmental conditions incontrovertibly altered the ecological status
at the end of this century (Fig. 3a, b and Supplementary Fig. 20).

Our prediction indicated that the ecological status would change
in 32.44% of the surface ocean area by the end of this century com-
pared to the present level, because of changes in environmental con-
ditions under the SSP5-8.5 scenario (Fig. 3b). However, if we positively
implemented policies to mitigate climate change and control the full
range of GHG emissions, such as those outlined in the Paris Climate
Agreement31, this proportion of changed areas in the surface ocean
could effectively decrease (e.g., to 13.04% under the SSP1–1.9 scenario)
(Fig. 3a). In addition, the proportions of different types of ecological
status significantly changed in 2100 under the SSP5-8.5 scenario
compared to the present scenario (Fig. 3c). Specifically, changes from
ES1 to ES4 and from ES6 were common under the SSP5-8.5 scenario
(Fig. 3d). However, environmental conditions under the SSP1-1.9 sce-
nario only slightly altered the spatial distribution of each type of
ecological status without obvious changes in their proportion in the
global ocean (Fig. 3c and Supplementary Fig. 20), further confirming
the necessity of implementing climate policies.

Using our regression models, we also focused on the detailed
changes in diversity, key taxa, and biogeochemical potential between
2023 and 2100 under different climate change scenarios. We only
considered ocean areas with changing ecological status (hereafter
called “changed areas”) in this analysis. Overall, the detailed microbial
profiles exhibited results similar to those for the ecological status: the
SSP5-8.5 scenario had greater impacts on all microbial indices (Sup-
plementary Figs. 21–24). Changes in environmental conditions under
the SSP5-8.5 scenario profoundly increased the abundance of Cyano-
bacteria in 61.70% of the changed area, mainly in the low-latitude
regions (Fig. 3e and Supplementary Fig. 22). We also observed an
increase in the functional potential for photosynthesis and carbon
fixation (e.g., photosystem I, photosystem II, and the Calvin cycle)
(Fig. 3f). These results were consistent with previous studies showing
that elevated CO2 and temperature under high GHG emissions

(Supplementary Fig. 19) promoted the growth of marine
phytoplankton32, primary production33 and carbon fixation34. The
results also revealed that the abundances of Proteobacteria, Ascomy-
cota, Bacteroidetes and Firmicutes exhibited poleward shifts
(increased in high-latitude regions but decreased in low-latitude
regions) under future climate scenarios, especially under the SSP5-
8.5 scenario (Supplementary Fig. 22), which has been widely men-
tioned inprevious studies12,14 as a thermal adaptation strategy formany
microbes17. This poleward shift in the dominant taxa further resulted in
considerable decreases in diversity (Supplementary Fig. 21), nitrogen
metabolism (Supplementary Fig. 24c) and sulfur metabolism (Sup-
plementary Fig. 24d) in low-latitude regions. However, poleward shifts
in thermal adaptation cannot offset the negative impacts of future
climate change on the biogeochemical potential of ocean microbes:
more ocean areas will suffer from decreasing nitrogen and sulfur
metabolism than from increasing nitrogen and sulfur metabo-
lism (Fig. 3f).

Environmental drivers in the alteration of ecological status
In the future, anthropogenic climate change may influence ecological
status and microbial profiles by modifying environmental conditions.
Consequently, the effects of anthropogenic climate change on chan-
ges in ecological status across each grid point of the surface ocean
result from a combination of factors: i) the impacts of anthropogenic
climate change on environmental factors and ii) the repercussions of
these environmental factors on the alteration of ecological status.
Although we have already identified phosphate as the most critical
factor for predicting ecological status, these factors alone are insuffi-
cient for accurately evaluating the individual contributions of each
factor to the alterations in ecological status induced by climate change
across surface ocean grid points.

Previous studies have reported shifts in the dominant drivers of
plankton biogeography reorganization under climate change across
different oceanic regions12,14. In line with this, we also quantified the
relative contributions of the ten environmental factors to the changes in
ecological status induced by climate change, employing the methodol-
ogy from these prior studies12,14. Anthropogenic climate changeprimarily
reshaped the ecological status by altering nutrient concentrations
(including nitrate, phosphate, silicate, iron and carbonate; 45.79% of the
changed area) under the SSP1-1.9 scenario (Fig. 4a), while the dissolved
oxygen and carbonate contents acted as two major drivers of the
changing ecological status under the SSP5-8.5 scenario (Fig. 4b).

Discussion
As the Earth’s largest ecosystem, healthy oceans play a pivotal role in
supporting human well-being through various means, such as food
provision, livelihoods, recreational opportunities, and climate
regulation35. Understanding the microbiome provides valuable
insights into the role of the ocean in biogeochemical cycling during
inevitable climate change. Developing an index for ocean health using
microbial indicators is both essential and challenging36 and requires
comprehensive consideration from multiple perspectives. Recently,
the concept of biogeochemical provinces has been widely used to
partition the ocean by considering distinct patterns of biological
variables and environmental conditions, such as primary productivity,
chlorophyll-a concentration, taxonomic composition, temperature,
and salinity14,22,23. This concept not only partitions the ocean but also
enhances our understanding of the critical role of the ocean in global
biogeochemical cycling. For example, compositional shifts among key
planktonic groups in different oceanic provinces could be used to
estimate the fluxes of nitrogen and carbon14. By using data from
metagenome sampling projects, we systematically demonstrated the
spatial and temporal variations in diversity, structure, and biogeo-
chemical potential of oceanmicrobial communities and their response
to changing environmental conditions. Most importantly, we propose
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Fig. 3 | Changes in the ecological status and detailed biogeographic profiles of
ocean microbial communities in 2100 compared to those in 2023 under dif-
ferent climate change scenarios. Changes in the ecological status of the global
ocean in 2100 compared to that in 2023 under the SSP1-1.9 (a; 13.04%) and SSP5-8.5
(b; 32.44%) scenarios. Only the oceanic regions with changes in ecological status
are shown here. The pie diagrams show the proportion of changed areas in the
global ocean. The detailed changes in ecological status from 2023 to 2100 under
the SSP1-1.9 and SSP5-8.5 scenarios can be found in Supplementary Fig. S20. c The
proportion of each ecological status in the global ocean significantly changed in
2100 compared to that in 2023 under the SSP5-8.5 scenario. However, there were
no obvious changes under the SSP1-1.9 scenario. d Different patterns of changes in
ecological status under different climate change scenarios. Changes from ES1 to

ES4 and ES6were commonunder the SSP5-8.5 scenario. eChanges in the diversity
and composition of ocean microbial communities under different climate change
scenarios. f Changes in the biogeochemical potential of ocean microbes under
different climate change scenarios. G3P glyceraldehyde 3-phosphate, Pta-Ack
phosphate acetyltransferase-acetate kinase, 3HP/4HB 3-hydroxypropionate/4-
hydroxybutyrate, Re- reductive, PS photosystem, ATP adenosine triphosphate,
ADP adenosine diphosphate, NADPH and NADP+ reduced and oxidized nicoti-
namide adenine dinucleotide phosphate, FNR ferredoxin-NADP+ oxidoreductase,
FD ferredoxin, PQH2 plastohydro quinone, PQ plastoquinone, Cyt b6f Cyto-
chrome b6f complex, ANR assimilatory nitrate reduction, DNR dissimilatory
nitrate reduction, ASR assimilatory sulfate reduction, DSR dissimilatory sulfate
reduction.
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a concept, ecological status, for ocean biogeography by integrating
diversity, biogeochemical potential, and dominant microbial taxa.

Understanding how changes in environmental conditions,
under the influence of climate change, impact microbial compo-
sition and biogeochemical progress in the ocean is paramount
and enables us to take necessary actions to mitigate and adapt to
climate change’s effects on ecological systems. Based on machine
learning, a sophisticated approach in current microbial
research14,16,29,37, we successfully predicted large-scale changes in
the ecological status of the surface ocean from 2023 to 2100
under different climate change scenarios, confirming that the
changing environmental conditions under anthropogenic climate
change could eventually disrupt ecosystems1,5,8. While nutrient
concentration was the most important driver of the changes in
ecological status under the low-level climate change scenario,
dissolved oxygen and carbonate contents altered the ecological
status of the global ocean under high-level climate change sce-
nario. Largely driven by the high level of anthropogenic activities
(e.g., GHG emissions) under the SSP5-8.5 scenario, a decrease in
dissolved oxygen in the global ocean is a widespread phenom-
enon and is predicted to continue throughout this century38. In
addition, anthropogenic emissions of carbon dioxide also con-
tribute to ocean acidification39, which further causes a decrease in
carbonate concentration40. Thus, as the concentrations of both
oxygen and carbonate dramatically decreased in 2100 under the
SSP5-8.5 scenario, ocean deoxygenation and acidification could
play a critical role in the alteration of ecological status. Our
results emphasized that positive climate policies are effective for
mitigating alterations in the ecological status of the future ocean.

In addition, our predictions under different climate change sce-
narios also demonstrated that alterations in ecological status could be
effectively summarized and represented by changes in detailed
microbial profiles, including poleward shifts in themain taxa, increases
in photosynthetic carbon fixation and decreases in nutrient metabo-
lism. Thus, ecological status can be recognized as a more convenient
and comprehensive index for evaluating the influence of anthro-
pogenic activities on microbial communities in ocean systems. For
better use of ecological status, we provide an easy-to-use tool called
ES_predictor (available at https://doi.org/10.6084/m9.figshare.
25627293), which can be used for determining the ecological status
of ocean ecosystems with changing environmental variables under
diverse anthropogenic pressures depending on the research goals. For
example, if researchers have already measured the ten environmental
variables in areas under different fishing pressures, they can easily
evaluate the comprehensive impacts of fishing on microbial ecology

by our tools without metagenomic sequencing, which is costly and
requires bioinformatic skills. Considering the amount of data currently
available and in the future, this tool will also be continually refined.

However, it is essential to acknowledge that we cannot always
perfectly predict and validate the effects of climate change on the
ecological status of oceans by the endof this century.On the one hand,
the metagenome samples in our dataset were collected from 61° S to
55° N (Supplementary Data 1), which may have resulted in a low pre-
diction accuracy in ocean regions with absolute latitudes higher than
60°.On the other hand, the increasing occurrenceof extreme events in
global climatic systems41,42 as well as extensive biotic events (e.g.,
Sargassum blooms in the Atlantic basin43) has induced complexity and
uncertainty in future environmental conditions, which will play a
decisive role in our prediction of ecological status. However, given the
urgency of maintaining global ecological integrity and addressing cli-
mate change crises44, wemust operate under a degree of uncertainty45.
This study provides up-to-date information to help scientists and
policymakers collaboratively address these global crises. To improve
our prediction of the ecological status of the ocean at high latitudes,
future research needs to consider more sample collection from these
regions under the standard pipelines referred to in Bio-GO-SHIP21.
Additionally, global climatemodels, such as theGFDL-ESM4, should be
properly amended based on the comprehensive understanding of the
complicated link between climate change and extreme events46. Our
predictions should also constitute a dynamic and long-term project
under changing climate conditions resulting from updated global cli-
mate models. In addition to the above limitations, this study con-
sidered only the ecological status from a metagenomic perspective.
Weexplored the functional potential ofmarker genes of corepathways
involved in photosynthesis, carbon fixation, nitrogenmetabolism, and
sulfur metabolism. This approach proved useful and invaluable for
overviewing and predicting the genetic potential of microbes in the
biogeochemical processes of the global ocean and their response to
climate change. However, different genes may affect biogeochemical
processes to varying extents, and genetic potential is not entirely
linked to transcriptomic activity, metabolomic composition, or ele-
ment cycling. This limitation of our work could be addressed by
employing multidisciplinary methods, such as transcriptomics, meta-
bolomics, and chemometrics. However, at present, these approaches
still lack international projects with standard sampling protocols.

Methods
Overview of ocean metagenome samples
We collected 953 metagenome samples of surface oceans from the
large-scale metagenome sampling project Bio-GO-SHIP21, which was

Temperature Salinity pCO� MLD Oxygen Nitrate Phosphate Silicate Iron Carbonate

a b

Environmental Factors

Fig. 4 | Environmental factors contribute toclimate change-induced changes in
the status of the surface ocean. The dominant environmental contributors to the
changes in ecological status were determined at each grid point. The areas without
changes in ecological status were excluded. The factors associated with nutrients

are marked by a red frame and were the most important contributors under the
SSP1-1.9 scenario (a). The ecological status in most ocean areas was determined by
the concentrations of oxygen and carbonate under the SSP5-8.5 scenario (b). MLD
mixed-layer depth.
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performed utilizing standard pipelines (Fig. 1a and Supplementary
Data 1). The raw sequencing data were then downloaded from the
NCBI-SRA database. Detailed information on the metagenomes is
available in Supplementary Data 1, including the study ID/title, sample
ID/title, sequencing strategy, laboratory, organization, isolation
source, collection date, latitude, longitude, geological location and
Longhurst Province code. Analysis with a bulk of metagenomic sam-
ples from public datasets is becoming increasingly available for mak-
ing new biological discoveries; however, a series of biases caused by
distinct protocols of sampling (e.g., size fractionation) and DNA
extraction should be noted and reduced before analysis. In this study,
we only used the dataset fromBio-GO-SHIP21, which is a well-organized
project and can minimize sample bias as follows (more details can be
found in Larkin et al.21):

Sampling protocol. Taxonomic and functional traits are completely
different for different fractionated microbes (for example, 0.22–3μm
for bacteria and 0–0.2μm for viruses14), which may cause bias for
sampleswithdifferent size-fractionation schemes. In addition, samples
from different depths cannot be compared if we only focus on the
horizontal mapping of biogeographic patterns of ocean microbial
communities (e.g., microbial profiles in different Longhurst pro-
vinces). For all the samples we used, researchers collected whole sur-
face water (with a depth of ~3–7m) into triple-rinsed containers and
gently filtered it through a 0.22 μm pore size Sterivex filter (Millipore,
Darmstadt, Germany).Afterfiltration, theDNAwaspreservedwith lysis
buffer (4mM NaCl, 750μM sucrose, 50mM Tris-HCl, 20mM EDTA)
and stored at −20 °C before extraction.

DNA extraction protocol. A previous study demonstrated that the
methodofDNAextractionhad a considerable effecton theoutcomeof
metagenomic analysis47. Fortunately, DNA extraction from each sam-
ple via Bio-GO-SHIP21 was performed via the same method. Sterivex
filters were incubated with lysozyme and proteinase K and SDS buffer.
DNA was then extracted from the Sterivex filters using TE buffer
(10mM Tris-HCl, 1mM EDTA), precipitated in an ice-cold solution of
isopropanol and sodium acetate, centrifuged and resuspended in TE
buffer for 30min. Afterwards, the DNA was purified using a genomic
DNA Clean and Concentrator kit (Zymo Research Corp., Irvine, CA).
Finally, DNA concentrations were quantified using a Qubit dsDNA HS
Assay kit and a Qubit fluorometer (Thermo Fisher, Waltham, MA).

Annotation and calculation of the abundance of marker genes
and taxa
For functional annotation, we compiled a database of biogeochemical
marker genes associated with the core pathways of photosynthesis,
carbon fixation, nitrogen metabolism, and sulfur metabolism (Sup-
plementary Data 2). These marker genes can also be expressed by
microbes and contribute to biogeochemical processes in the ocean7.
Wegenerated thenucleotide sequences for eachmarker gene from the
Kyoto Encyclopedia of Genes and Genomes database (KEGG; release
109.0) and clustered them with 100% sequence similarity using CD-
HIT48 (v4.7) to construct a database of biogeochemical marker genes.

We used FastQC (v0.11.5; https://github.com/s-andrews/FastQC)
to qualify the raw data of the metagenomic samples and
Trimmomatic49 (v0.36) to trim and filter the low-quality reads and
obtain clean data for further analysis. The reads were annotated
according to the biogeochemicalmarker genes in the database that we
compiled using BWA50 (v0.7.13), a fast and accurate short-read align-
ment tool. We removed unmapped reads using Samtools (v1.3.1)51, a
flexible tool for handling sequence alignment/map format, and then
counted the number of mapped reads of cycling genes in each ocean
sample using a script available on GitHub (https://github.com/
ZhenyanZhang/Ecological_status)52. Additionally, we estimated the
average genome size (AGS) by MicrobeCensus (v1.1.1)53 based on the

abundance of 30 essential single-copy genes and calculated the gen-
ome equivalent for each metagenome sample as follows:

Genome equivalent =
Library size ðbpÞ

AGS ðbpÞ ð1Þ

where library size is the total number of sequences. Finally, the
abundance of each cycling gene was normalized as reads per kilobase
per genome equivalent (RPKG):

RPKG=
Mapped reads

Gene length kbpð Þ×Genome equivalent
ð2Þ

The use of RPKG can improve the detection of differentially
abundant genes between metagenome samples53. Taxonomic anno-
tation was performed by Kraken254 (v2.1.2) with the default para-
meters, and the abundance of each taxon was also normalized
by RPKG.

Links between microbial profiles and environmental factors
The coefficient of variation of each microbial index was defined as the
standard deviation divided by the mean. The Longhurst Province, as a
long-standing concept of biogeochemical partitioning in the global
ocean22, was used to show the spatial distribution patterns ofmicrobial
communities more clearly in this study. We obtained the Longhurst
province information for each sample by using ArcGIS (v10.8). The
sampling time and site from GFDL-ESM4 were searched to obtain the
environmental factors for each sample. GFDL-ESM4 from the National
Oceanic and Atmospheric Administration (NOAA) provided the pre-
sent and future values of all ten environmental factors under different
scenarios and was also used in a previous study for predicting the
reorganization of plankton biogeography under climate change14.
These environmental factors include temperature, salinity, partial
pressure of carbon dioxide (pCO2), mixed layer depth, and con-
centrations of dissolved oxygen, nutrients (nitrate, phosphate, silicate,
iron) and carbonate, which have also been used in previous studies for
evaluating the response of microbial communities to environmental
change7,16,18. In total, we collected all ten environmental factors from
890 samples, and the other 63 samples collected before 2015 were not
considered in further analysis. The Bray‒Curtis distances of the taxo-
nomic and functional traits of the microbial community in the ocean
samples were calculated based on the abundances of the genera and
genes, respectively, using the ‘vegan’ R package55 (v2.5–7). To link the
temporal and spatial variation of microbial communities with envir-
onmental factors, principal coordinate analysis with Bray‒Curtis dis-
similarity of the taxonomic and functional traits of the microbial
community and its links to environmental factors were calculated
using the ‘vegan’ R package (v2.5–7) and visualized by the ‘ggplot2’ R
package56 (v3.4.2).

Prediction of each microbial index in the global ocean
A series of regression models were used to predict the microbial
indices in the ocean combined with tenfold cross-validation for
better performance and less overfitting37. The ten environmental
factors mentioned above were used as independent variables for
machine learning in this study, while 26 microbial indices (5 domi-
nant taxa, richness, Shannon indices and 19 biogeochemical pathway
indices) were included as dependent variables for machine learning.
In other words, we presumed that changing environmental condi-
tions directly determine the microbial communities rather than the
time and site of the samples. This premise ensures that we can pre-
dict microbial profiles and ecological status by using changing
environmental data.

To identify the most suitable algorithm and related hyperpara-
meters for machine learning, we first constructed regression models
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using different algorithms (XGBoost random forest, linear regres-
sion, LASSO regression, and K nearest neighbors) with different
combinations of hyperparameters with tenfold cross-validation. In
hyperparameter tuning for each algorithm, we used only 80% of the
samples as the training dataset, and the remaining data were used as
the test dataset. After hyperparameter tuning, the best hyperpara-
meter combination for each algorithm and each microbial index was
further evaluated by the prediction performance (represented as R2)
on the overall dataset and test dataset. In total, random forest had
the highest prediction performance formost of the microbial indices
and was used to construct the final models (R2 on the test dataset
ranged from 0.198 to 0.844), which were saved for further predic-
tion. However, we failed to construct a promising regression model
for richness with all combinations of the hyperparameters and
algorithms (R2 on the test dataset ranged from −0.026 to 0.025).
Thus, we did not consider richness in the following analysis and only
used the Shannon index (R2 on the test dataset = 0.809) to represent
diversity. After construction of the final models, we also determined
the relative importance of each environmental factor in the predic-
tion of each microbial index. All machine learning steps, including
hyperparameter tuning, algorithm selection,model construction and
feature importance determination, were performedwith the ‘sklearn’
Python package (v1.1.3)57.

To delineate the microbial profiles in the current ocean, we
obtained ten environmental factors in 2023 (average value in monthly
data) from GFDL-ESM4 and predicted each microbial index with a
0.5° × 0.5° spatial resolution and one-year temporal resolution using
the final models in the ‘sklearn’ Python package (v1.1.3). Maps of each
microbial index in the global ocean were generated by the ‘Basemap’
Python package (v1.3.6).

Determining the ecological status of the ocean samples
To further determine how the diversity, structure, andbiogeochemical
potential of themicrobial communities respond to climate change, we
defined the ecological status as a composite description of the ocean
microbial communities. We constructed a matrix that included 1) the
abundance of the five dominant taxa in the ocean, which constitute
>80% of the microbial community; 2) the Shannon index of the ocean
microbial community, which is a critical index of diversity; and 3) the
abundance of each pathway, which represents the biogeochemical
potential of the microbial community. Before performing hierarchical
clustering, a principal component analysis was conducted with the
‘sklearn’ Python package to reduce the dimensionality of the data and
increase the clustering performance. Only the principal components
that account for 95% of the variance are retained for clustering. Hier-
archical clustering was used to cluster samples with hyperparameter
tuning (including different cluster numbers, clustering algorithms and
distance metrics) in the ‘sklearn’ Python package (v1.1.3). The silhou-
ette score, an important internal evaluation index in hierarchical
clustering, was used to evaluate clustering performance. Finally, the
‘ward’ clustering algorithm with Euclidean distance was chosen to
generate seven clusters, whichwere defined as ecological status in this
study. We then analyzed the detailed global distribution andmicrobial
profiles for each ecological status.

Construction of a machine learning classifier for
ecological status
To predict the ecological status in the ocean under future climate
change scenarios, we also constructed amachine learning classifier for
ecological status with ten environmental factors. The ten environ-
mental factors above were used as independent variables for machine
learning in this study, and the seven ecological statuses were included
as dependent variables for the machine learning classifier. To reduce
the bias resulting from different sample sizes for different types of
ecological status, we performed random sampling (n = 3000) for each

type of ecological status. Principal component analysis and correlation
metrics between features were used to ensure the validity of the ran-
domly sampled dataset (Supplementary Figs. 14, 15), which was then
used as a training dataset in machine learning. The remaining dataset
after random sampling was used as an independent test dataset.

To identify the most suitable algorithm and related hyperpara-
meters for machine learning, we first constructed a classification
model using different algorithms (random forest, logistic regression,
support vector machine, and XGBoost) with different combinations
of hyperparameters. Tenfold cross-validation was used for machine
learning to ensure the performance of the random forest algorithm
and avoid overfitting37. XGBoost with n_estimators = 200, max_-
depth = 9, and a learning rate = 0.3 was then chosen because it was
more accurate (average accuracy = 99.09% in tenfold cross-valida-
tion) than the other algorithms and hyperparameter combinations
(average accuracy ranging from 60.64% to 98.28%). The final classi-
fication model was then built using the ‘sklearn’ Python package
(v1.1.3). The confusion matrix was also used to confirm the good
performance of the final model in the classification of ecological
status.

Machine learning prediction
For predicting changes in ecological status and microbial profiles, we
collected ten environmental factors used for machine learning with
0.5° × 0.5° spatial resolution and one-year temporal resolution for the
surface ocean from GFDL-ESM427 under the SSP1-1.9 and SSP5-8.5 sce-
narios of climate change with different levels of trajectory of green-
house gas (GHG) concentrations. We then predicted the changes in
ecological status and microbial profiles in the surface ocean with the
final models using the ‘sklearn’ Python package (v1.1.3).

Determining the contributions of the environmental factors
We used the methodology from Barton et al.12 to determine the con-
tributions of environmental factors to the alteration of ecological
status in the surface ocean induced by climate change. We calculated
the probability (P) for each ecological status (n) under two conditions:
i) all ten environmental factors (E) using the data from 2023 (present)
and ii) all factors using the data from 2023 (present), except for factor
e, for which we used the data for 2100 (future). We then calculated the
relative contribution of factor e (RCe) to the alteration in ecological
status induced by climate change at each grid point with a 0.5° × 0.5°
spatial resolution using Eq. (3):

RCe =

P
n2N Pfutureforfactor eonlyn � Ppresentn

�
�
�
�

�
�
�
�

P
e2E

P
n2N Pfutureforfactoreonlyn � Ppresentn

�
�
�
�

�
�
�
�

ð3Þ

This equation first calculates the total changes in the probability
of ecological status when only one environmental factor (for example,
salinity) changes in the future. Then, such changes under different
environmental factors were added together to calculate the relative
contribution of one environmental factor (such as salinity). Finally, the
dominant factor at each grid point was defined as the factor with the
highest relative contribution at this point.

Development of the ES_predictor
For better use of ecological status, we packed our prediction scripts
and related files (such as the final classification model and Python
environmentalfiles for XGBoost) by using ‘pyinstaller’Pythonpackage,
and developed a software called ES_predictor, which will be
licensed under a Creative Commons Attribution 4.0 International
license (https://creativecommons.org/licenses/by/4.0/legalcode.en).
ES_predictor is an easy-to-use tool developed for Windows users and
can be used for determining the ecological status of surface ocean
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ecosystems with environmental variables. The software package,
demonstrations, and instructionalmanuals can beobtained via https://
doi.org/10.6084/m9.figshare.25627293.

Statistical analysis and visualization
Significant differences were identified usingmultiplemethods. The
adonis test (two-sided) with 999 permutations was performed with
the ‘vegan’ R package (v2.5–7) to determine the temporal and spa-
tial variation in both the structure and function of the microbial
communities. The Kruskal–WallisH test with pairwise comparisons
(Dunn’s test) and Cohen’s d calculation were performed with the
‘scipy’ Python package (v1.13.0) to further evaluate the hierarchical
clustering performance. The Friedman test with Nemenyi pairwise
comparisons was performed with the ‘scipy’ Python package
(v1.13.0) to determine the different performances of the five
machine learning regression algorithms under the best hyper-
parameter combinations. All these statistical tests were two-sided,
and the p values were adjusted by Bonferroni correction. All the
maps were visualized on a world map using the ‘Basemap’ Python
package with the same settings in latitude and longitude. Thus, for
concision of the figures, we only defined the latitude and longitude
in Fig. 1a, and the others were the same. Plots of the principal
component analysis of ecological status were visualized using the
‘matplotlib’ Python package. Point plots, density plots, line plots,
and box plots were visualized using the ‘ggplot2’ R package. Heat-
maps were constructed using TBtools58 (v2.0.42). All schematic
diagrams and elements in Fig. 3f and Supplementary Fig. 12 were
created with BioRender.com released under a Creative Commons
Attribution-NonCommercial-NoDerivs 4.0 International license
(https://creativecommons.org/licenses/by-nc-nd/4.0/legalcode.
en). All other plots (e.g., pie plots and histograms) were generated
using GraphPad Prism (v8.0.2).

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The sequence data were collected from Bio-GO-SHIP21, which is pub-
licly available. Information for all themetadata, including the accession
codes, is provided in Supplementary Data 1. Supplementary Data
containing the critical supplementary information in this study are
publicly available online (https://doi.org/10.6084/m9.figshare.
25828267). The raw data underlying the figures are provided as
Source data that can be obtained from a public repository (https://doi.
org/10.6084/m9.figshare.25828276.v2). The sequences in our data-
base of biogeochemical marker genes are available at https://doi.org/
10.6084/m9.figshare.25634544.v1. Source data are provided with
this paper.

Code availability
The scripts used in this study are all available online at https://github.
com/ZhenyanZhang/Ecological_status52. The easy-to-use tool ES_pre-
dictor can be downloaded from https://doi.org/10.6084/m9.figshare.
25627293.
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