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dynocc models accounting either for neighborhood connectivity only, for site-level
habitat covariates only, or combining both neighborhood and habitat explanations
in the models for species extinction and colonization. All models were evaluated for a
total of 46 bird species typical of forests and shrublands using data at 1 km? scale from
two Catalan breeding bird atlases (CBBA2: 1999-2002 and CBBA3: 2015-2018).
Models’ predictive performance varied across species between dynocc models incor-
porating habitat covariates alone and those considering neighborhood connectivity
alone. Among species, 68% exhibited a predominant response to habitat effects, 24%
showed similar responses for habitat and connectivity effects, and 9% were mostly
associated with connectivity effects. Dynocc models combining connectivity and habi-
tat covariates achieved the best predictive performance for most species, with bigger
gains for species with similar results from habitat-only and connectivity-only models.
However, relative performance gains compared to dynocc models using only habitat
or connectivity variables were generally modest for most species. This study shows the
benefits of considering more spatially explicit formulations in dynocc models, specifi-
cally incorporating neighborhood connectivity into the extinction and colonization
processes. Our work also highlights the importance of evaluating different model for-
mulations and assessing which aspects of the model are more important depending on
the study species.
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Introduction

In the context of global change, species are shifting their spa-
tial distributions mostly in association with changes in cli-
mate and anthropogenic land use (Parmesan and Yohe 2003).
Understanding the underlying factors of distribution change
and predicting how and where these changes will occur is key
to effectively plan and implement biodiversity conservation
measures. Distribution dynamics result from complex inter-
actions between multiple biotic and abiotic factors, which
makes it especially challenging to identify processes associ-
ated with changes in species distributions (Hodgson et al.
2009, Urban et al. 2013, Ehrlén and Morris 2015). In this
regard, modelling emerges as a crucial tool to provide robust
and policy-relevant information by linking environmental
changes with shifts in species distributions (IPBES 2016).

Among the suite of available modelling approaches, spe-
cies distribution models (SDMs) are a powerful set of meth-
ods to predict species changes in response to different biotic
and abiotic factors (Guisan and Thuiller 2005). A large vari-
ety of SDM approaches are currently available, ranging from
static correlative methods to purely process-based models in
a gradient of increasing complexity, degree of mechanism,
and data requirements. Static correlative SDMs (Guisan and
Zimmermann 2000, Elith and Leathwick 2009) are relatively
simple to fit and only require occurrence or abundance data.
However, such models can lead to misleading predictions of
range dynamics since they do not explicitly account for the
processes that actually cause species distribution changes, and
instead assume that species are in equilibrium at any given
moment (Elith et al. 2010, Sofaer et al. 2018, Piirainen et al.
2023). At the other end of the model gradient, the so-called
‘process-based models’ explicitly identify and model the
mechanisms that drive range dynamics at the population or
individual level. Consequently, these models offer a more
comprehensive understanding of the drivers of change and
have the potential to yield more accurate predictions (Zurell
2017, Briscoe et al. 2019). Nonetheless, such models tend to
be very complex and normally require different types of data
(e.g. on dispersal distances, species interactions, thermal reac-
tion norms). This makes them difficult to implement because
in most cases the data required to calibrate or parametrize
such models are not available or the species-specific behavior
is not known (Urban et al. 2016). Thus, the real challenge
of process-based models is to find a model formulation that
incorporates the most important processes affecting species
dynamics (e.g. dispersal or local extinction) without mak-
ing them too complex (Fordham et al. 2018), especially with
respect to the available data.

Dynamic occupancy models (MacKenzie et al. 2003)
(hereafter dynocc models) represent a healthy tradeoff
between model complexity and data requirements, and the
incorporation of key processes describing range dynamics
(Briscoe et al. 2021). These models characterize occupancy
dynamics by explicitly modelling the probability of local col-
onization and extinction between successive time steps using
a statistical approach, exactly as in a metapopulation model
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(Hanski 1998). Dynocc models are calibrated with occur-
rence data of different ‘seasons’ (typically breeding seasons
for birds). These data are arguably easier to obtain than abun-
dance and demographic data required by purely process-based
models (Zurell 2017). One distinctive feature distinguishing
dynocc models from traditional metapopulation models is
their ability to account for imperfect detection when mul-
tiple surveys per season are available (MacKenzie et al. 2003,
Guillera-Arroita 2017). Additionally, these models have the
flexibility to define different functions to describe the proba-
bility of colonization, extinction, and detection. This enables
one to study drivers on each process.

In a recent study evaluating different SDM:s (Briscoe et al.
2021), it was shown that dynocc models were the best suited
to capture short-term temporal trends using presence—
absence data, although their spatial accuracy was low when
looking only at sites that showed some occupancy change
(i.e. the models failed at identifying the specific sites where
range changes are likely to occur). Moreover, in recent years,
several studies have proposed modifications to the original
formulation of the dynocc model in order to incorporate
the influence of the occupancy state of the focal cells’ neigh-
bors (neighborhood connectivity) into both colonization
and extinction processes (Bled et al. 2011, Risk et al. 2011,
Chandler et al. 2015, Broms et al. 2016). In this way, dynocc
models turn out to be more spatially explicit since, on one
hand, for a colonization process to happen the presence of
neighbors around the focal site is needed; and, on the other
hand, extinction risk diminishes for sites with a higher neigh-
borhood connectivity due to the rescue effect (i.e. higher
chances of immediate recolonization after extinction) (Brown
and Kodric-Brown 1977). All in all, incorporating spatial
effects into the dynocc models by including connectivity-
dependent colonization and extinction was found to enhance
models’ performance compared to dynocc models assuming
independence of sites (Yackulic et al. 2012, Eaton et al. 2014,
Hall et al. 2018).

Aside from the neighborhood information, incorporat-
ing habitat variables at the site level is key to obtain real-
istic predictions about occupancy dynamics because species
distributions are strongly influenced by environmental con-
ditions (Ehrlén and Morris 2015). Studies investigating spe-
cies dynamics using dynocc models with spatial effects often
incorporate habitat covariates at the site level together with
neighborhood connectivity indicators as predictors for the
colonization and extinction functions, for example Molinari-
Jobin et al. (2018) and Zylstra et al. (2019). However, there
are no studies at present assessing the relative importance of
each predictor type individually. More importantly, it is yet to
be assessed whether adding spatial effects into dynocc models
already incorporating a good predictive set of site-level habi-
tat covariates can significantly improve model performance,
and how such patterns may differ among species.

In the present study, we defined three objectives to evalu-
ate how the incorporation of neighborhood connectivity to
the colonization and extinction terms of a dynocc model
affects predictive performance for avian species: 1) we analyze
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how model performance of spatial dynocc models is affected
by the choice of neighborhood connectivity measures, 2) we
compare the predictive power of neighborhood connectivity
and site-level habitat covariates (hereafter habitat covariates)
as predictors of colonization and extinction, and finally 3) we
evaluate the performance gain obtained by using both con-
nectivity and habitat covariates together as predictors as com-
pared to using them separately. To this end, we fitted dynocc
models with five different formulations for the probability
of extinction or colonization: two with only spatial effects
(each with a different formulation for connectivity), one with
only habitat covariates, and two with both spatial and habi-
tat covariates. We fitted all models for 46 bird species that
breed in Catalonia (north-eastern Spain) using binary occur-
rence data from the second and third Catalan Breeding Birds
Atlases (hereafter, CBBA2 and CBBA3, respectively) over a
period of 16 years (Estrada et al. 2004, Franch et al. 2021).
Furthermore, we conducted a simulation exercise to validate
the efficacy of our study design and model formulations,
ensuring their ability to accurately capture both neighbor-
hood connectivity and habitat effects in species colonization
and extinction patterns.

Material and methods

Data collection, study area, and study species

We used survey data from the second and third Catalan
Breeding Bird Adases that cover the periods 1999-2002
(CBBA2) and 2015-2018 (CBBA3), respectively, thus with
an interval of approximately 16 years. The survey data include
five 1 km? squares within each 100 km? square in Catalonia,
a 32 114 km’ region in north-eastern Spain. They contain a
total of 1506 sites that were sampled in both atlas projects.
In each sampling site, two surveys were conducted during the
breeding season, each lasting for one hour. The first survey
was conducted in March/April and the second in May/June.
Most squares (86% in CBBA2 and 97% in CBBA3) were
fully surveyed in a single year whereas the remaining squares
were surveyed in consecutive years. Fieldwork was carried
out between sunrise and 11:00 or between 6:00 and sunset
(Franch et al. 2021).

Among the 214 species of birds detected in the atlases, we
selected a subset of species based on the following criteria:
1) species that are mostly associated with Mediterranean for-
ests and shrublands according to the CBBA2 (Estrada et al.
2004); that is, 53 out of 214 species and 2) species that were
observed in at least 100 sites in the CBBA2. Based on these
criteria, we retained 46 species for the analysis (see Supporting
information for a list of species).

Site-level habitat covariates

We worked with a large set of predictor variables (Supporting
information) to capture the wide-ranging environmental and
anthropogenic variation across Catalonia to fit the habitat

models (see ‘Model fitting’ sub-section). We selected vari-
ables mainly related to vegetation and landscape due to their
dynamic nature, the direct implications for management-ori-
ented thinking, and potential future model applications. All
covariates were measured during the period of the CBBA3.
Below we provide an overview of all the variables used, but
for a detailed description of each variable see the Supporting
information.

Land cover variables were generated using the Habitat
Cartography of Catalonia for 2018 (agricultura.gencat.
cat/ca/serveis/cartografia-sig/bases-cartografiques/habitats/
habitats-catalunya/index.html). A total of 29 land cover cat-
egories (Supporting information) were aggregated from the
original 279 classes of the map (Franch et al. 2021). For each
1-km square we calculated the proportion of each land cover
category and, based on those, the Shannon diversity index as
an indicator of landscape heterogeneity (Franch et al. 2021).
We also included a variable indicating the proportion of each
square affected by wildfires based on the land cover map of
Catalonia for 2017 (mcsc.creaf.cat/index_usa.htm).

We calculated three vegetation productivity indices
(Radeloft et al. 2019) in the study squares (Supporting
information) based on Modis images of 500 m resolution
(MOD13A1), and seven variables describing forest struc-
ture characteristics (Supporting information) from the
2016 tree biophysical variables at 20 m resolution (icgc.
cat/Administracio-i-empresa/Descarregues/Capes-de-
geoinformacio/Mapes-de-variables-biofisiques-de-l-arbrat-de-
Catalunya) based on LiIDAR?2 data (acro-transported sensors).

Finally, using the 2018 population census of Catalonia
(Idescat 2021) and topographic maps we calculated the dis-
tance from the study square centroids to the closest large
town or city (> 10 000 inhabitants) to account for at least
one anthropogenic factor (Franch et al. 2021).

Survey covariates

For the detection component of the dynocc models we used
survey date (day of the year as Julian day) because some spe-
cies can have breeding seasons shorter than the atlas sam-
pling period (from March to June) and atlas period (CBBA2
or CBBA3) to allow differences in probability of detection
between atlases. We defined five different formulations for
the detection probability: only the intercept, date as the only
predictor (with its linear and quadratic terms), atlas period
as the only predictor, and both date and atlas period as pre-
dictors with or without an interaction term between the two

(Table 1).

Dynamic occupancy modelling

We based our occupancy modelling framework on the
multi-season occupancy model accounting for imperfect
detection as described by MacKenzie et al. (2003) (also
known as the dynocc model). The model is formulated as
a first-order hidden Markov model where the probability
of occupancy (y) at time 7+ 1 of a focal site depends on its
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Table 1. Overview of the 10 dynamic occupancy models fitted to the data of 46 bird species. SDM-CBBA2, species distribution model of
the second Catalan Breeding Bird Atlases; BRM, buffer radius model; IFM, incidence function model.

Model Occurrence t, Colonization Extinction Detection
Fixed colext SDM-CBBA2 Intercept Intercept Intercept

Fixed colext SDM-CBBA2 Intercept Intercept Date

Fixed colext SDM-CBBA2 Intercept Intercept Atlas

Fixed colext SDM-CBBA2 Intercept Intercept Date +Atlas
Fixed colext SDM-CBBA2 Intercept Intercept Date: Atlas
Spatial colext BRM SDM-CBBA2 BRM BRM Best fixed colext
Spatial colext IFM SDM-CBBA2 IFM IFM Best fixed colext
Habitat colext SDM-CBBA2 Habitat covariates Habitat covariates Best fixed colext
Habitat-Spatial colext BRM SDM-CBBA2 Habitat covariates + BRM Habitat covariates + BRM Best fixed colext
Habitat-Spatial colext IFM SDM-CBBA2 Habitat covariates +1FM Habitat covariates + IFM Best fixed colext

occupancy status at the previous time step # and the cor-
responding probabilities of colonization (y) and extinction
(e) (Eq. 1):

Vi =y (I-€)+ (1= )y ey

Since the state ‘occupied’ in the Markov chain might not be
observed, the model hierarchically accounts for this by inclu-
sion of the probability of observation, which is defined as the
product of the probability of occurrence and the probabil-
ity of detection (p). The probability of detection is included
as a logistic submodel depending on survey covariates (see
‘Survey covariates’ sub-section).

Effects of covariates can be incorporated in the form of
simple GLMs or more complex mechanistic models in each
of the four parameter types (y,, €, y, and p), we take advan-
tage of this model flexibility to compare different formula-
tions for the extinction and colonization models.

Spatial formulations of the dynocc model

We used two different spatial formulations of the mod-
els wherein we incorporated the effects of neighborhood
occupancy on extinction and colonization probability: buf-
fer radius models (BRMs) and incidence function models
(IFMs) connectivity measures. The main difference between
the two spatial formulations is the number of neighbors they
consider in order to calculate neighborhood connectivity.
BRM:s only consider cells within a fixed radius from the focal
cell, which is defined a priori, whereas IFMs consider all the
cells in the landscape, but with different influence based on
the distance to the focal cell.

BRM:s were formulated similar to Yackulic et al. (2012)
and Eaton et al. (2014), where neighborhood connectivity is
calculated as the mean occupancy probability at time 7 of all
the neighbor sites within a chosen buffer distance (radius) &
from the focal site (\I/;Zi'd ). The neighbour connectivity vari-
able is then incorporated as a linear term into the extinction
and/or colonisation probability functions (Eq. 2):

logit(©,, ) = By + By +By., X, @
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where @, is the probability of extinction or colonization for
site 7 between seasons zand 7+ 1, B is a parameter vector to be
estimated, and X, the optional site-specific habitat covariates.

IFMs were formulated similar to Chandler et al. (2015),
where the probability of colonization or persistence (1 — €)
between seasons # and #+1 is calculated as the cumulative
probability Eq. 5 taken from each pairwise probability of
colonization or persistence Eq. 3 between the squares in the
study area and the focal square (Eq. 3, 4, 5):

o i\t _di i j b
5, - ! Q g G)

logit (85, ) =Bo +B. X, (4)

M
®i,t =1- Hl - 6:‘,],; 5)
j=1

Here, 8, is the ‘baseline’ colonization or persistence prob-
ability for site 7 (which might be constant or depend on habi-
tat covariates X, Eq. 4), d, ;s the distance between sites, and o
is the rate of exponential decay (often interpreted as the mean
dispersal distance), W, is the occupancy probability of site j
at time 4 and Q is a scaling parameter > 1 to help model fit-
ting (see ‘Model fitting’ sub-section). In Eq. 5, M is the total
number of neighbor sites of the focal site :.

Our model modifies the Chandler et al. (2015) model as
follows: 1) we used an exponential dispersal kernel instead of
a Gaussian kernel so the parameter o could be more compa-
rable to the parameter  (distance between sites) of the logis-
tic models, 2) we used a deterministic formulation instead of
a stochastic one for the autocovariates so the model could be
fitted using maximum likelihood estimation (MLE) meth-
ods, and 3) we defined the probability of persistence (repre-
senting the rescue effect) independently from the probability
of colonization so we could analyze the effects of the prob-
ability of extinction by itself. Additionally, for computational
reasons, we used a bounding box to limit the neighbors to

85U8017 SUOWILLIOD A1) 3|qeol dde aup Aq peusenob ae Sapoiie YO ‘8sn JO 3| 10} Aeiq 178Ul UO 48] 1M UO (SUORIPUOD-PUR-SLUBIALICO" A3 1M AeIq | U1 [UO//:SdNL) SUORIPUOD pue SWie 1 8y} 88s *[¢202/20/0T] Uo Ariqiauliuo A8|IMm ‘(oueAnde ) aqnopesy Aq 58690'6009/TTTT'0T/10p/LI00 A IM AIqIBUI|UO'S UINO oS/ :SdNY WoJy papeojumod ‘0 ‘2850009T



consider, and only those neighbors at < 30 km from the focal
square were considered (i.e. local evaluation of the likelihood,

Milleret et al. 2019).

Model fitting

All models were fitted as two-season dynocc models using
CBBA2 and CBBA3 data. The Atlas data were divided into
five training and test datasets, respectively, with an 80-20%
split in order to perform k-fold cross validation. Each model
was separately trained on all training sets for each species,
except for the models used to select the best detection and
habitat covariates that were fitted using 100% of the data.
We assumed that the occupancy status did not change within
the breeding seasons of an atlas period, thus treating each
atlas period as a single season. For all models, initial occu-
pancy (y,) was estimated using the values of expert vali-
dated SDMs calculated in the CBBA2 for each species as the
only covariate. These models were developed by integrating
various algorithms like generalized linear models, boosted
models, and maximum entropy models, with predictions
weighted by model quality. Expert ornithologists rigorously
assessed the final results, considering species distribution,
ecology, and potential survey biases, ensuring robustness and
accuracy (detailed modelling methodology can be found in
Estrada et al. 2004).

We fitted four types of dynocc models for all the selected
study species with different formulations for the colonization
and extinction modules (Table 1): 1) without habitat covari-
ates or spatial effects (only intercept): fixed colext models, 2)
with spatial effects only: spazial colext models, 3) with habitat
covariates only: habitat colext models, and 4) with both habi-
tat covariates and spatial effects: habitat-spatial colext models.
Below we describe the characteristics of each model type.

First, we fitted fixed colext dynocc models for each spe-
cies in order to select the best detection model to be used
in the other model types, as well as to have a baseline met-
ric for model comparison. Fixed colext models were fitted
using fixed colonization and extinction parameters (only
the intercept) and selecting the best detection formulation
(see ‘Survey covariates’ sub-section) in terms of the Akaike
information criterion (AIC). We used AIC for model selec-
tion instead of directly comparing model predictions to the
observed data, because the latter can be biased by imperfect
detection, whereas the former is based on the model likeli-
hood which in dynocc models explicitly accounts for it. On
the other hand, we note that it could be possible that the best
detection model changed when covariates are added to the
colonization and extinction modules. Nevertheless, it seemed
reasonable and practical to select a single detection model for
each species.

Then, we fitted spatial models without habitat covariates.
For each species, we fitted dynocc models with a spatial term
for the colonization and extinction terms using either BRM
(spatial colext BRM models) or IEM (spatial colext IFM models)
formulations. To assess how the distance parameters affected
model performance, for each species we used eight values of

the parameter 4 (1, 2, 3, 5, 7.5, 10, 15, and 20 km) for BRMs
and five values of the parameter « (1, 2.5, 5, 10, and 20 km)
for IFMs (i.e. for each species we fitted eight spatial colext BRM
models and five spatial colext IFM models in total). We used a
gridded design for the sites and, for both spatial models, con-
nectivity was calculated using the probability of occurrence
values (y in Eq. 2-3) of the CBBA2’s SDMs of all neighboring
sites (i.e. the unconditional probability of occupancy).

For the habirat colext models, we did not have a priori
hypotheses of the variables most influencing colonization or
extinction, hence we performed a variable selection from the
set of 42 site-level habitat covariates for each term separately.
Starting from the fixed colext model, we used a forward selec-
tion based on AIC to select up to four variables per species
and model term (extinction or colonization). Both linear and
quadratic terms were evaluated for each variable, and we only
kept the one resulting in a largest decrease of AIC. While
we acknowledge the existence of alternative model selection
approaches, such as stepwise selection, we opted for forward
selection and a maximum of four variables per species to mit-
igate the risk of model overfitting. Finally, we fitted habitar
colext models with the best variables selected for the extinc-
tion and colonization terms.

Finally, we fitted habitat-spatial colext models for each
species by incorporating both spatial BRM or IFM vari-
ables and the habitat covariates selected in the habitat colext
models to the extinction and colonization terms. For each
species, we fitted habitar-spatial colexr models for the same
set of five o (IFM) and eight & (BRM) values used in the
spatial colexr models. All models other than the spatial IFM
models were fitted using the function colext in the R-package
‘unmarked’ (Fiske and Chandler 2011, Kellner et al. 2023)
to obtain maximum likelihood estimates of the parameters.
For the spatial IFM models, we modified the source code of
the colext function so that the probability of colonization and
extinction could be expressed as a function of connectivity
as described in the sub-section Spatial formulations of the
dynocc model. In the case of the BRM models, implementa-
tion was straightforward using the colext function, since the
neighborhood information of each study square is calculated
a priori (using the occupancy values of the CBBA2’s SDMs),
and it is just incorporated as another site-level covariate.

A caveat of using MLE to fit complex models with multiple
variables is that the optimization algorithms can sometimes
get stuck in local optima instead finding the global optima
(Kéry and Royle 2021). To avoid this, we fitted all models
with 10 sets of starting values for the regression parameters
(uniformly distributed between —1.5 and 1.5) and kept the
best fit in terms of AIC. Additionally, for the spatial IFM
models we used a set of different scaling parameters Q for the
9, . values, which we found to be necessary for the models to

cg’rrectly converge, especially for large values of alpha.

Model performance

We evaluated the spatial performance of the models by com-
paring models” predicted probability of occurrence with the

Page 5 of 12

85U8017 SUOWILLIOD A1) 3|qeol dde aup Aq peusenob ae Sapoiie YO ‘8sn JO 3| 10} Aeiq 178Ul UO 48] 1M UO (SUORIPUOD-PUR-SLUBIALICO" A3 1M AeIq | U1 [UO//:SdNL) SUORIPUOD pue SWie 1 8y} 88s *[¢202/20/0T] Uo Ariqiauliuo A8|IMm ‘(oueAnde ) aqnopesy Aq 58690'6009/TTTT'0T/10p/LI00 A IM AIqIBUI|UO'S UINO oS/ :SdNY WoJy papeojumod ‘0 ‘2850009T



collapsed observed data (i.e. assigning a presence if the species
was observed in at least one survey, and absence otherwise).
For each trained model we calculated the AUC (area under
the ROC curve) using the model predictions at the second
time step and the respective test data observed in the CBBA3.
AUC provides a measure of model discrimination (whether
occupied sites are consistently ranked higher than unoccu-
pied sites). Moreover, for each trained model, we calculated
the AUC difference relative to the fixed colext models (null
colonization and extinction models). By calculating the AUC
increase, we could directly evaluate the relative influence of
habitat and neighborhood connectivity in the predictions of
occurrence change. Finally, for each species and model type,
we averaged the absolute AUC and AUC increase results for
the five test sets.

Furthermore, for each species, we visually evaluated the
predicted occurrence change from each dynocc model by
plotting the predicted probability of occurrence at #, minus
the probability of occurrence at #, for all the squares in the
study area.

Simulation analysis

We aimed to compare dynocc models incorporating habitat
and neighborhood connectivity effects on the colonization
and extinction probability. However, we were unsure if —
with our modelling approach applied to this specific case
study, where only 5% of cells in the landscape were sur-
veyed — we could accurately capture the effects of each vari-
able type on species colonization and extinction. To address
this uncertainty, we conducted a simulation study to assess
our ability to evaluate the neighborhood connectivity and
habitat effects given the limited data available in the study
area.

We simulated species occupancy dynamics for four dis-
tinct scenarios: one scenario with colonization and extinction
rates depending on habitat covariates only, one depending on
neighborhood connectivity only, and two scenarios with both
habitat and connectivity effects with strong and weak con-
nectivity effects, respectively (Fig. 1). These simulations were
conducted under the same landscape size and survey design
as in our case study, and we evaluated the goodness of fit of
the model in terms of AUC.

To conduct these simulations, we created a 180 X 180
grid and followed these steps: first, we used a Gaussian ran-
dom field as a covariate to determine the initial probability of
occupancy. Then, we simulated occupancy changes over one
time step. To achieve this, we simulated two more Gaussian
field variables representing the emergence of new habitat and
the loss of existing habitat, which we used as single covariates
for the colonization and extinction, respectively, for all the
scenarios including habitat effects. For the scenarios includ-
ing connectivity effects, we used the BRM model (see ‘Spatial
formulations of the dynocc model’ sub-section) with an arbi-
trary dispersal parameter & of 10 km for the probabilities of
colonization and extinction. We ran 10 replicates of occu-
pancy data for each model type and scenario.
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For each replicate, we randomly selected 5% of the land-
scape cells and simulated two visits with a fixed detection
probability of 50% (mean average detection probability of
the species in our case study). Subsequently, we fitted the
resulting detection data of each scenario to all the model
types used in the study (Table 1): fixed colext, habitat colext,
spatial BRM colext, spatial IFM colext, habitat-spatial BRM
colext, and habitat-spatial IFM colext.

To assess the spatial predictive performance of our models,
we followed the same methodology as for the Catalan bird
species models (see ‘Model performance’ sub-section). We cal-
culated both the AUC and the AUC increase respective to the
fixed colext models using the model predictions of occupancy
at the second time period and the observed simulated data.

Results

Simulation analysis

Model performance increase relative to the fixed colext model
was well correlated between colext model type and scenarios
of species colonization and extinction. However, the increase
in AUC of the best model fit was highly variable between sce-
narios, being much smaller for the two scenarios incorporat-
ing both connectivity and habitat effects (0.029 only habitat
scenario, 0.101 only connectivity scenario, 0.004 habitat and
strong connectivity scenario, and 0.006 habitat and weak con-
nectivity scenario; Fig. 1). This variability can be attributed
to differences in the absolute AUC values of the fixed colext
models for each scenario (0.78 only habitat scenario, 0.70 only
connectivity scenario, 0.86 habitat and strong connectivity sce-
nario, and 0.85 habitat and weak connectivity scenario), result-
ing in varying margins of improvement between scenarios.

As expected, spatial colext models showed a negligible per-
formance increase for the habitat only scenario and habitar
colext models for the connectivity only scenario, respectively
(Fig. 1). On the other hand, habitat-spatial BRM colext mod-
els performed almost identically to the habitar colext models
for the habitat only scenario while habitat-spatial IFM were
slightly inferior (Fig. 1). For the connectivity only scenario
habitat-spatial BRM and IFM models performed identically
to the spatial BRM and IFM models, respectively, with IFMs
petforming better for smaller dispersal distance parameters and
BRM:s for bigger dispersal distance parameters (Fig. 1). For the
scenarios incorporating both connectivity and habitat effects,
habitat-spatial BRM colext models performed better than the
habitar and spatial BRM colext models alone (X3 and X2,
respectively for the strong connectivity scenario and X1.4 and
x4.8, respectively for the weak connectivity scenario in terms
of AUC increase; see Fig. 1). As expected, habitat-spatial IFM
models performed worse than spatial-habitar BRM, but none-
theless they also performed better than the babitat and spatial
BRM models alone (Fig. 1). Finally, the effects of the dispersal
distance parameter were less noticeable for the scenarios incor-
porating both habitat and connectivity effects compared to the
scenario incorporating only connectivity effects.
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Figure 1. Model performance results for the four simulated colonization and extinction scenarios. Model performance is shown as the mean
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Figure 2. Boxplots of mean absolute AUC (A) and mean relative AUC increase (B). Each model type was fitted to the 46 study bird species.
Models were fit to five different training sets and evaluated as the mean absolute AUC for the five test sets (A) or as the mean AUC increase
(AAUC) compared to the fixed colext models for the five test sets (B). Only the best-performing spatial models were considered (i.e. with
the best dispersal parameters in terms of AUC). The horizontal line in (A) indicates the median AUC of the fixed colext models, and the hori-

zontal line in (B) indicates 0 AUC increase.

In conclusion, findings from the simulation study show
that our study design, coupled with the chosen model for-
mulations, is adequate at capturing both neighborhood
connectivity and habitat effects in species colonization and
extinction patterns. Moreover, it enables a robust assessment
of the relative importance of each variable type.

Model performance overview

All model types (including the fixed colext models) had rela-
tively high spatial performance for most species across the
study landscape, as measured by AUC calculated at the sec-
ond time period using the test datasets, with mean AUC for
all methods > 0.8 (Fig. 2A) which indicates strong discrimi-
nation between presence and absence predictions.

When spatial effects were included in the colonization
and extinction terms (spatial colext models), model per-
formance for the best model selected for each species (in
terms of distance parameter) was increased for most spe-
cies (39/46 for BRMs and 37/46 for IFMs) compared to
fixed colext models (i.e. AUC, it colexe > AUC 4 cotend)- Both
spatial model types had similar performance results. For
BRMs, the mean AAUC was 0.010 with a range of —0.007
to 0.101, while IFMs exhibited a mean AAUC of 0.009,
ranging from —0.018 to 0.076 (Fig. 2B). Moreover, mean
absolute AUC difference between IFMs and BRMs spatial
colext models was relatively small in general (mean 0.004,
SD 0.004) with BRMs performing better for 25/46 species.
As expected, across all species, the probability of coloniza-
tion increased for higher connectivity values, whereas the
probability of extinction decreased for lower connectivity
values (Supporting information).

Including site-level habitat covariates to the colonization
and extinction terms (i.e. habitat colext models) increased
model performance for most species compared to the fixed
colext models (44/46), with mean AAUC 0.025 ranging from
—0.025 to 0.082 (Fig. 2B). The best variables selected were
mostly different for the colonization and extinction terms: for
15 species there were no variables in common, for 22 species
only 1/4 variables were in common, for 7 species 2/4 vari-
ables were in common, and for 2 species 3/4 were in common
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(see Supporting information for all the variables selected for
each species and model term).

Habitat effects versus connectivity effects

Comparing the performance of habitat colext models with
that of the best spatial colext models, habitar colext mod-
els outperformed the latter for most species (37/46); see
Supporting information for the results of each species indi-
vidually. Additionally, predicted occurrence change showed
different spatial patterns between the habitat colext and the
spatial colext models at the landscape level for most species
(Supporting information). Furthermore, habitat colext mod-
els generally predicted higher occurrence probability increases
and decreases at specific areas where occurrence change was
high (Supporting information).

Species were classified based on their relative associa-
tion with habitat and neighborhood connectivity effects
alone, revealing distinct patterns. Approximately 33% of
the species showed a stronger association with habitat effects
(AAUChabitat > 5X AAUCspatial), 35% displayed associa-
tions with both variable types, although more prominently
with habitat effects (2X AAUCspatial < AAUChabitat <
5X AAUCspatial), and 24% showed no clear dominance
of either habitat or connectivity effects (2X AAUCspatial
> AAUChabitat and 2X AAUChabitat > AAUCspatial).
A smaller proportion (2%) exhibited associations with
both but leaned towards connectivity (2X AAUChabitat <
AAUCspatial < 5X AAUChabitat), and 7% were primar-
ily associated with connectivity effects (AAUCspatial > 5X
AAUChabitat). See Supporting information for the classifica-
tion of each species.

Joint habitat and connectivity effects

When the colonization and extinction terms incorporated
both neighbor and habitat covariates (i.e. habitat-spatial
colext models), the best model selected for each species (in
terms of distance parameter and spatial model type) generally
performed better compared to either spatial colext models or
habitat colext models (40/46 species). However, performance
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gains relative to the best model between the spatial colext
model and the habitat colext model of each species were rela-
tively low for most species (mean AUC gain 0.007 ranging
from —0.004 to 0.020). Furthermore, for species for which
the performance increase was the lowest, the habitar-spatial
colext models yielded very similar predictions (i.e. similar spa-
tial patterns of occurrence change) compared to the habitar
colext models (Fig. 3, Supporting information).

Of particular interest was the relative performance increase
in AAUC compared to the best of the spatial colext model
and habitat colext model for each species (AAUC, e pariar /
max (AAUC, ;... AAUC_ .)); see Supporting information.
For species that responded mainly to habitat effects, we still
observed an increase of performance for habitat-spatial colext
models (mean 1.25X). On the other hand, relative increase in
AAUC was generally bigger for species that showed no clear
dominance between habitat and connectivity effects compared
to species that responded more to habitat effect (mean 1.51X
for the former and mean 1.21X for the latter). Finally, for the
few species that were primarily driven by connectivity effects,
there was a large variability in the performance increase of the
habitat-spatial colext models (range 0.89, 3.4X).

Discussion

In the present study, we evaluated whether incorporat-
ing neighborhood connectivity as a predictor for the

Luscinia megarhynchos

BRM Habitat
Regulus ignicapilla
BRM Habitat

colonization and extinction terms in a dynamic occupancy
model (MacKenzie et al. 2003) could improve model predic-
tions of changes in species occurrence between two time peri-
ods. For that, we fitted a variety of models to data from 46
breeding bird species typical of forest and shrublands from
two atlas projects carried out in Catalonia and separated by
16 years. We compared dynocc models that only accounted
for neighborhood connectivity with dynocc models that only
incorporated site-level habitat covariates to assess the predic-
tive power of each variable type individually. Additionally, we
evaluated the joint effects of neighborhood connectivity and
site-level habitat covariates in predicting extinction and colo-
nization. All models were tested for the 46 bird species show-
ing different temporal trends. We found that, for most species,
habitat models performed better than models accounting for
connectivity alone. In addition, adding site connectivity infor-
mation to habitat models generally improved model perfor-
mance, especially for species with similar performance gains for
habitat and connectivity models alone. These results highlight
the importance of evaluating different model formulations
and assessing which aspects of the model are more important
depending on the study species and the study design.
Incorporating neighborhood connectivity information to
the colonization and extinction probabilities improved dyn-
occ model performance for most species compared to models
where colonization and extinction rates were constant. These
results go in line with metapopulation theory: colonization
is positively correlated with neighborhood connectivity and

Habitat_BRM
1.0
L
0.5
0.0
-0.5
Habitat_BRM .0

%

Figure 3. Predicted change in probability of occurrence of the different models. Examples of the predictions of occurrence change between
the two atlas periods (occurrence at #, — occurrence at #,) of the different dynocc models analysed. On the one hand, for Luscinia megarhyn-

chos, as an example of a species where habitat-spatial colext models achieved a substantial increase in performance compared to habitat colext

models, the predictions of distribution change showed different patterns between the two models. On the other hand, for Regulus ignica-

pilla, as an example of a species where habitat-spatial colext models only achieved a small increase in performance compared to habitat colext

models, we can see that the model predictions are very similar between the two models.
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extinction is negatively correlated with connectivity due to
the rescue effect (Hanski 1999). We analyzed two of the most
commonly used dispersal kernel formulations in spatial dyn-
occ models with connectivity-dependent colonization/extinc-
tion: BRMs and IFMs. These two model formulations result
in contrasting connectivity measures, which have been found
previously to perform differently (Moilanen and Nieminen
2002, Nathan et al. 2012, Hall et al. 2018). However, in our
study we found that for most species the differences in model
predictive performance in terms of AUC between the two
spatial formulations of colonization and extinction were min-
imal. For a minority of species for which there was a marked
difference, BRMs generally performed better than IFMs.
Aside from the model formulation, the dispersal parameter
appears as an important factor affecting model performance.
In BRMs it is the buffer radius (4) which defines the entire
neighborhood that can affect dispersal, whereas in IFMs the
parameter o represents the mean dispersal distance of the spe-
cies in the exponential kernel (which is often unknown and
must be estimated). For most of the study species, differences
in model performance were minimal for the different values
of dispersal parameters used (ranging from 1 to 20 km) in
the connectivity measures, especially when habitat covariates
were included. This might be because connectivity values
were highly correlated for the different dispersal distances
analyzed.

Dynocc models with only site-specific habitat covari-
ates for the colonization and extinction terms (habitat
colext models) performed better than models only account-
ing for neighborhood connectivity (spatial colext models)
for most species (80%). Nevertheless, the relative effects of
neighborhood connectivity compared to habitat covariates
were still relevant for 67% of the species (AAUC of spatial
colext models was at least 20% of the AAUC of the habi-
tat colext models). These results suggest that, generally, in
dynocc models, considering site-level habitat covariates
alone leads to superior outcomes compared to accounting
for site connectivity alone when predicting the occupancy
dynamics of bird species prevalent in a region (i.e. present
for an extended period). Nevertheless, including the latter
is still important, because colonization and extinction pro-
cesses can be influenced by dispersal constraints. Our results
could be explained by the fact that common bird species
are in quasi-equilibrium with the environment and there-
fore if the environment does not suffer major changes, birds
will not experience large changes in their distributions no
matter how good or poor their neighborhood connectivity
is. Conversely, invasive or reintroduced species experiencing
an expansion process or species linked to active disturbance
regimes such as fires (Zozaya et al. 2012) will typically not
be in equilibrium with the environment. Therefore, their
dynamics will probably be more influenced by their disper-
sal capabilities, and neighborhood connectivity might be a
better predictor of colonization and extinction than habitat
covariates themselves. Finally, we tested if the joint informa-
tion of connectivity and habitat would improve models’ per-
formance as compared to accounting for them individually.

Page 10 of 12

We observed performance gains for almost all species, with
higher gains observed for species that showed similar perfor-
mance improvements for habitat and connectivity models
alone. However, the performance increase in terms of abso-
lute AUC was relatively low for most species. This suggests
that while the models can identify habitat and connectivity
effects on species colonization and extinction processes, there
remains considerable stochasticity in the occupancy dynam-
ics patterns of the studied species. This is further exemplified
in our simulation study, where for species with known habi-
tat and connectivity effects, models that incorporated both
variables showed a limited increase in AUC. This observation
arises from the landscape’s inherent complexity, where gra-
dients of habitat suitability and neighborhood connectivity
values vary widely. Consequently, the probability of coloni-
zation and extinction at each site becomes highly stochastic,
ranging between 0 and 1. This unpredictability underscores
the challenges in accurately capturing and modelling species
occupancy dynamics in heterogeneous landscapes. Finally,
since the models we used are entirely data-driven and require
a large amount of data to obtain reliable estimates, for rare
species with limited presence records, models might fail to
converge. In such cases, the application of alternative sam-
pling designs and modelling methodologies should be con-
sidered to obtain reliable predictions (Zhang et al. 2020,
Jeliazkov et al. 2022).

There is an often-heard claim within the scientific commu-
nity to make models of species distribution change more pro-
cess-based in order to improve their predictions (Urban et al.
2016, Zurell 2017). Explicitly incorporating ecological pro-
cesses into models goes at the expense of requiring extra data
and computational resources, as well as additional expertise in
order to implement them (given their complexity) compared
to classic correlative methods (Hefley et al. 2017). Therefore,
studies evaluating semi-process-based models (where ecologi-
cal processes are simplified and added to the model following
a statistical approach), like the present one, are valuable to
assess which processes are worth adding into a model and
for which study designs or study species. Our results showed
that spatial dynocc models incorporating neighborhood
connectivity as a representation of the dispersal process can
improve model performance for most species. However, for
some species, the performance gains relative to non-spatial
dynocc models were only marginal and probably incorporat-
ing other key processes affecting distribution dynamics into
the model (i.e. species interactions) would be necessary to
improve model predictions. Further studies are needed to
discern the species properties (e.g. specialists versus general-
ists or species migratory behavior) that makes their models
more prone to show a positive response to the introduction
of spatial effects. Furthermore, studies comparing model per-
formance for different study designs (i.e. gridded cells ver-
sus genuine metapopulation patches) and survey efforts (i.e.
the coverage of surveyed cells within the study landscape)
should be encouraged since these are major factors affecting
model performance aside from the study species. Overall, our
study shows that spatial dynamic distribution models are a
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promising tool to improve model predictions for most spe-
cies compared to non-spatial dynocc models. Furthermore,
we establish that site-level habitat covariates are strong pre-
dictors of species colonization and extinction for the majority
of species, suggesting their inclusion in dynocc models when-
ever feasible. Exploring new approaches and methodologies
to better characterize species dynamics, rather than focusing
solely on static spatial patterns, should also be a priority for
ecologists working on species distribution models.
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