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Exploring new approaches and methodologies to characterize species distribution 
dynamics, instead of solely relying on static spatial patterns, should be a priority for 
species distribution modelling research. Dynamic occupancy models (here, ‘dynocc 
models’) are a promising tool to capture temporal patterns of distribution change but 
their spatial accuracy has been shown to be limited. In this study, we evaluated the 
effectiveness of incorporating neighborhood connectivity effects into the coloniza-
tion and extinction functions of dynocc models. To accomplish this, we compared 
dynocc models accounting either for neighborhood connectivity only, for site-level 
habitat covariates only, or combining both neighborhood and habitat explanations 
in the models for species extinction and colonization. All models were evaluated for a 
total of 46 bird species typical of forests and shrublands using data at 1 km2 scale from 
two Catalan breeding bird atlases (CBBA2: 1999–2002 and CBBA3: 2015–2018). 
Models’ predictive performance varied across species between dynocc models incor-
porating habitat covariates alone and those considering neighborhood connectivity 
alone. Among species, 68% exhibited a predominant response to habitat effects, 24% 
showed similar responses for habitat and connectivity effects, and 9% were mostly 
associated with connectivity effects. Dynocc models combining connectivity and habi-
tat covariates achieved the best predictive performance for most species, with bigger 
gains for species with similar results from habitat-only and connectivity-only models. 
However, relative performance gains compared to dynocc models using only habitat 
or connectivity variables were generally modest for most species. This study shows the 
benefits of considering more spatially explicit formulations in dynocc models, specifi-
cally incorporating neighborhood connectivity into the extinction and colonization 
processes. Our work also highlights the importance of evaluating different model for-
mulations and assessing which aspects of the model are more important depending on 
the study species.
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Introduction

In the context of global change, species are shifting their spa-
tial distributions mostly in association with changes in cli-
mate and anthropogenic land use (Parmesan and Yohe 2003). 
Understanding the underlying factors of distribution change 
and predicting how and where these changes will occur is key 
to effectively plan and implement biodiversity conservation 
measures. Distribution dynamics result from complex inter-
actions between multiple biotic and abiotic factors, which 
makes it especially challenging to identify processes associ-
ated with changes in species distributions (Hodgson  et  al. 
2009, Urban et al. 2013, Ehrlén and Morris 2015). In this 
regard, modelling emerges as a crucial tool to provide robust 
and policy-relevant information by linking environmental 
changes with shifts in species distributions (IPBES 2016).

Among the suite of available modelling approaches, spe-
cies distribution models (SDMs) are a powerful set of meth-
ods to predict species changes in response to different biotic 
and abiotic factors (Guisan and Thuiller 2005). A large vari-
ety of SDM approaches are currently available, ranging from 
static correlative methods to purely process-based models in 
a gradient of increasing complexity, degree of mechanism, 
and data requirements. Static correlative SDMs (Guisan and 
Zimmermann 2000, Elith and Leathwick 2009) are relatively 
simple to fit and only require occurrence or abundance data. 
However, such models can lead to misleading predictions of 
range dynamics since they do not explicitly account for the 
processes that actually cause species distribution changes, and 
instead assume that species are in equilibrium at any given 
moment (Elith et al. 2010, Sofaer et al. 2018, Piirainen et al. 
2023). At the other end of the model gradient, the so-called 
‘process-based models’ explicitly identify and model the 
mechanisms that drive range dynamics at the population or 
individual level. Consequently, these models offer a more 
comprehensive understanding of the drivers of change and 
have the potential to yield more accurate predictions (Zurell 
2017, Briscoe et al. 2019). Nonetheless, such models tend to 
be very complex and normally require different types of data 
(e.g. on dispersal distances, species interactions, thermal reac-
tion norms). This makes them difficult to implement because 
in most cases the data required to calibrate or parametrize 
such models are not available or the species-specific behavior 
is not known (Urban et al. 2016). Thus, the real challenge 
of process-based models is to find a model formulation that 
incorporates the most important processes affecting species 
dynamics (e.g. dispersal or local extinction) without mak-
ing them too complex (Fordham et al. 2018), especially with 
respect to the available data.

Dynamic occupancy models (MacKenzie  et  al. 2003) 
(hereafter dynocc models) represent a healthy tradeoff 
between model complexity and data requirements, and the 
incorporation of key processes describing range dynamics 
(Briscoe  et  al. 2021). These models characterize occupancy 
dynamics by explicitly modelling the probability of local col-
onization and extinction between successive time steps using 
a statistical approach, exactly as in a metapopulation model 

(Hanski 1998). Dynocc models are calibrated with occur-
rence data of different ‘seasons’ (typically breeding seasons 
for birds). These data are arguably easier to obtain than abun-
dance and demographic data required by purely process-based 
models (Zurell 2017). One distinctive feature distinguishing 
dynocc models from traditional metapopulation models is 
their ability to account for imperfect detection when mul-
tiple surveys per season are available (MacKenzie et al. 2003, 
Guillera-Arroita 2017). Additionally, these models have the 
flexibility to define different functions to describe the proba-
bility of colonization, extinction, and detection. This enables 
one to study drivers on each process.

In a recent study evaluating different SDMs (Briscoe et al. 
2021), it was shown that dynocc models were the best suited 
to capture short-term temporal trends using presence–
absence data, although their spatial accuracy was low when 
looking only at sites that showed some occupancy change 
(i.e. the models failed at identifying the specific sites where 
range changes are likely to occur). Moreover, in recent years, 
several studies have proposed modifications to the original 
formulation of the dynocc model in order to incorporate 
the influence of the occupancy state of the focal cells’ neigh-
bors (neighborhood connectivity) into both colonization 
and extinction processes (Bled et al. 2011, Risk et al. 2011, 
Chandler et al. 2015, Broms et al. 2016). In this way, dynocc 
models turn out to be more spatially explicit since, on one 
hand, for a colonization process to happen the presence of 
neighbors around the focal site is needed; and, on the other 
hand, extinction risk diminishes for sites with a higher neigh-
borhood connectivity due to the rescue effect (i.e. higher 
chances of immediate recolonization after extinction) (Brown 
and Kodric-Brown 1977). All in all, incorporating spatial 
effects into the dynocc models by including connectivity-
dependent colonization and extinction was found to enhance 
models’ performance compared to dynocc models assuming 
independence of sites (Yackulic et al. 2012, Eaton et al. 2014, 
Hall et al. 2018).

Aside from the neighborhood information, incorporat-
ing habitat variables at the site level is key to obtain real-
istic predictions about occupancy dynamics because species 
distributions are strongly influenced by environmental con-
ditions (Ehrlén and Morris 2015). Studies investigating spe-
cies dynamics using dynocc models with spatial effects often 
incorporate habitat covariates at the site level together with 
neighborhood connectivity indicators as predictors for the 
colonization and extinction functions, for example Molinari-
Jobin et al. (2018) and Zylstra et al. (2019). However, there 
are no studies at present assessing the relative importance of 
each predictor type individually. More importantly, it is yet to 
be assessed whether adding spatial effects into dynocc models 
already incorporating a good predictive set of site-level habi-
tat covariates can significantly improve model performance, 
and how such patterns may differ among species. 

In the present study, we defined three objectives to evalu-
ate how the incorporation of neighborhood connectivity to 
the colonization and extinction terms of a dynocc model 
affects predictive performance for avian species: 1) we analyze 
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how model performance of spatial dynocc models is affected 
by the choice of neighborhood connectivity measures, 2) we 
compare the predictive power of neighborhood connectivity 
and site-level habitat covariates (hereafter habitat covariates) 
as predictors of colonization and extinction, and finally 3) we 
evaluate the performance gain obtained by using both con-
nectivity and habitat covariates together as predictors as com-
pared to using them separately. To this end, we fitted dynocc 
models with five different formulations for the probability 
of extinction or colonization: two with only spatial effects 
(each with a different formulation for connectivity), one with 
only habitat covariates, and two with both spatial and habi-
tat covariates. We fitted all models for 46 bird species that 
breed in Catalonia (north-eastern Spain) using binary occur-
rence data from the second and third Catalan Breeding Birds 
Atlases (hereafter, CBBA2 and CBBA3, respectively) over a 
period of 16 years (Estrada et al. 2004, Franch et al. 2021). 
Furthermore, we conducted a simulation exercise to validate 
the efficacy of our study design and model formulations, 
ensuring their ability to accurately capture both neighbor-
hood connectivity and habitat effects in species colonization 
and extinction patterns.

Material and methods

Data collection, study area, and study species

We used survey data from the second and third Catalan 
Breeding Bird Atlases that cover the periods 1999–2002 
(CBBA2) and 2015–2018 (CBBA3), respectively, thus with 
an interval of approximately 16 years. The survey data include 
five 1 km2 squares within each 100 km2 square in Catalonia, 
a 32  114 km2 region in north-eastern Spain. They contain a 
total of 1506 sites that were sampled in both atlas projects. 
In each sampling site, two surveys were conducted during the 
breeding season, each lasting for one hour. The first survey 
was conducted in March/April and the second in May/June. 
Most squares (86% in CBBA2 and 97% in CBBA3) were 
fully surveyed in a single year whereas the remaining squares 
were surveyed in consecutive years. Fieldwork was carried 
out between sunrise and 11:00 or between 6:00 and sunset 
(Franch et al. 2021).

Among the 214 species of birds detected in the atlases, we 
selected a subset of species based on the following criteria: 
1) species that are mostly associated with Mediterranean for-
ests and shrublands according to the CBBA2 (Estrada et al. 
2004); that is, 53 out of 214 species and 2) species that were 
observed in at least 100 sites in the CBBA2. Based on these 
criteria, we retained 46 species for the analysis (see Supporting 
information for a list of species).

Site-level habitat covariates

We worked with a large set of predictor variables (Supporting 
information) to capture the wide-ranging environmental and 
anthropogenic variation across Catalonia to fit the habitat 

models (see ‘Model fitting’ sub-section). We selected vari-
ables mainly related to vegetation and landscape due to their 
dynamic nature, the direct implications for management-ori-
ented thinking, and potential future model applications. All 
covariates were measured during the period of the CBBA3. 
Below we provide an overview of all the variables used, but 
for a detailed description of each variable see the Supporting 
information.

Land cover variables were generated using the Habitat 
Cartography of Catalonia for 2018 (agricultura.gencat.
cat/ca/serveis/cartografia-sig/bases-cartografiques/habitats/
habitats-catalunya/index.html). A total of 29 land cover cat-
egories (Supporting information) were aggregated from the 
original 279 classes of the map (Franch et al. 2021). For each 
1-km square we calculated the proportion of each land cover 
category and, based on those, the Shannon diversity index as 
an indicator of landscape heterogeneity (Franch et al. 2021). 
We also included a variable indicating the proportion of each 
square affected by wildfires based on the land cover map of 
Catalonia for 2017 (mcsc.creaf.cat/index_usa.htm).

We calculated three vegetation productivity indices 
(Radeloff  et  al. 2019) in the study squares (Supporting 
information) based on Modis images of 500 m resolution 
(MOD13A1), and seven variables describing forest struc-
ture characteristics (Supporting information) from the 
2016 tree biophysical variables at 20 m resolution (icgc.
cat/Administracio-i-empresa/Descarregues/Capes-de-
geoinformacio/Mapes-de-variables-biofisiques-de-l-arbrat-de-
Catalunya) based on LiDAR2 data (aero-transported sensors). 

Finally, using the 2018 population census of Catalonia 
(Idescat 2021) and topographic maps we calculated the dis-
tance from the study square centroids to the closest large 
town or city (> 10  000 inhabitants) to account for at least 
one anthropogenic factor (Franch et al. 2021).

Survey covariates

For the detection component of the dynocc models we used 
survey date (day of the year as Julian day) because some spe-
cies can have breeding seasons shorter than the atlas sam-
pling period (from March to June) and atlas period (CBBA2 
or CBBA3) to allow differences in probability of detection 
between atlases. We defined five different formulations for 
the detection probability: only the intercept, date as the only 
predictor (with its linear and quadratic terms), atlas period 
as the only predictor, and both date and atlas period as pre-
dictors with or without an interaction term between the two 
(Table 1).

Dynamic occupancy modelling

We based our occupancy modelling framework on the 
multi-season occupancy model accounting for imperfect 
detection as described by MacKenzie  et  al. (2003) (also 
known as the dynocc model). The model is formulated as 
a first-order hidden Markov model where the probability 
of occupancy (ψ) at time t + 1 of a focal site depends on its 
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occupancy status at the previous time step t and the cor-
responding probabilities of colonization (ɣ) and extinction 
(∊) (Eq. 1): 

� � � �t t t� � � � � �� ��1 1 1Œ 	  (1)

Since the state ‘occupied’ in the Markov chain might not be 
observed, the model hierarchically accounts for this by inclu-
sion of the probability of observation, which is defined as the 
product of the probability of occurrence and the probabil-
ity of detection (p). The probability of detection is included 
as a logistic submodel depending on survey covariates (see 
‘Survey covariates’ sub-section).

Effects of covariates can be incorporated in the form of 
simple GLMs or more complex mechanistic models in each 
of the four parameter types (ψ1, ∊, γ, and p), we take advan-
tage of this model flexibility to compare different formula-
tions for the extinction and colonization models.

Spatial formulations of the dynocc model

We used two different spatial formulations of the mod-
els wherein we incorporated the effects of neighborhood 
occupancy on extinction and colonization probability: buf-
fer radius models (BRMs) and incidence function models 
(IFMs) connectivity measures. The main difference between 
the two spatial formulations is the number of neighbors they 
consider in order to calculate neighborhood connectivity. 
BRMs only consider cells within a fixed radius from the focal 
cell, which is defined a priori, whereas IFMs consider all the 
cells in the landscape, but with different influence based on 
the distance to the focal cell.

BRMs were formulated similar to Yackulic  et  al. (2012) 
and Eaton et al. (2014), where neighborhood connectivity is 
calculated as the mean occupancy probability at time t of all 
the neighbor sites within a chosen buffer distance (radius) d 
from the focal site ( ˆ , ,ψi t

Ni d ). The neighbour connectivity vari-
able is then incorporated as a linear term into the extinction 
and/or colonisation probability functions (Eq. 2):

logit �i t i t
N

n n
i d X,   ,  ˆ
, � � � � � �� � � �0 1 1 	  (2)

where Θi,t is the probability of extinction or colonization for 
site i between seasons t and t + 1, β is a parameter vector to be 
estimated, and Xn the optional site-specific habitat covariates. 

IFMs were formulated similar to Chandler et al. (2015), 
where the probability of colonization or persistence (1 − ε) 
between seasons t and t + 1 is calculated as the cumulative 
probability Eq. 5 taken from each pairwise probability of 
colonization or persistence Eq. 3 between the squares in the 
study area and the focal square (Eq. 3, 4, 5): 

�
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Here, δB,i,t is the ‘baseline’ colonization or persistence prob-
ability for site i (which might be constant or depend on habi-
tat covariates Xn Eq. 4), di,j is the distance between sites, and α 
is the rate of exponential decay (often interpreted as the mean 
dispersal distance), ψj,t is the occupancy probability of site j 
at time t, and Ω is a scaling parameter ≥ 1 to help model fit-
ting (see ‘Model fitting’ sub-section). In Eq. 5, M is the total 
number of neighbor sites of the focal site i.

Our model modifies the Chandler et al. (2015) model as 
follows: 1) we used an exponential dispersal kernel instead of 
a Gaussian kernel so the parameter α could be more compa-
rable to the parameter d (distance between sites) of the logis-
tic models, 2) we used a deterministic formulation instead of 
a stochastic one for the autocovariates so the model could be 
fitted using maximum likelihood estimation (MLE) meth-
ods, and 3) we defined the probability of persistence (repre-
senting the rescue effect) independently from the probability 
of colonization so we could analyze the effects of the prob-
ability of extinction by itself. Additionally, for computational 
reasons, we used a bounding box to limit the neighbors to 

Table 1. Overview of the 10 dynamic occupancy models fitted to the data of 46 bird species. SDM-CBBA2, species distribution model of 
the second Catalan Breeding Bird Atlases; BRM, buffer radius model; IFM, incidence function model.

Model Occurrence t0 Colonization Extinction Detection

Fixed colext SDM-CBBA2 Intercept Intercept Intercept
Fixed colext SDM-CBBA2 Intercept Intercept Date
Fixed colext SDM-CBBA2 Intercept Intercept Atlas
Fixed colext SDM-CBBA2 Intercept Intercept Date + Atlas
Fixed colext SDM-CBBA2 Intercept Intercept Date: Atlas
Spatial colext BRM SDM-CBBA2 BRM BRM Best fixed colext
Spatial colext IFM SDM-CBBA2 IFM IFM Best fixed colext
Habitat colext SDM-CBBA2 Habitat covariates Habitat covariates Best fixed colext
Habitat-Spatial colext BRM SDM-CBBA2 Habitat covariates + BRM Habitat covariates + BRM Best fixed colext
Habitat-Spatial colext IFM SDM-CBBA2 Habitat covariates + IFM Habitat covariates + IFM Best fixed colext
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consider, and only those neighbors at < 30 km from the focal 
square were considered (i.e. local evaluation of the likelihood, 
Milleret et al. 2019). 

Model fitting

All models were fitted as two-season dynocc models using 
CBBA2 and CBBA3 data. The Atlas data were divided into 
five training and test datasets, respectively, with an 80–20% 
split in order to perform k-fold cross validation. Each model 
was separately trained on all training sets for each species, 
except for the models used to select the best detection and 
habitat covariates that were fitted using 100% of the data. 
We assumed that the occupancy status did not change within 
the breeding seasons of an atlas period, thus treating each 
atlas period as a single season. For all models, initial occu-
pancy (ψ1) was estimated using the values of expert vali-
dated SDMs calculated in the CBBA2 for each species as the 
only covariate. These models were developed by integrating 
various algorithms like generalized linear models, boosted 
models, and maximum entropy models, with predictions 
weighted by model quality. Expert ornithologists rigorously 
assessed the final results, considering species distribution, 
ecology, and potential survey biases, ensuring robustness and 
accuracy (detailed modelling methodology can be found in 
Estrada et al. 2004).

We fitted four types of dynocc models for all the selected 
study species with different formulations for the colonization 
and extinction modules (Table 1): 1) without habitat covari-
ates or spatial effects (only intercept): fixed colext models, 2) 
with spatial effects only: spatial colext models, 3) with habitat 
covariates only: habitat colext models, and 4) with both habi-
tat covariates and spatial effects: habitat-spatial colext models. 
Below we describe the characteristics of each model type.

First, we fitted fixed colext dynocc models for each spe-
cies in order to select the best detection model to be used 
in the other model types, as well as to have a baseline met-
ric for model comparison. Fixed colext models were fitted 
using fixed colonization and extinction parameters (only 
the intercept) and selecting the best detection formulation 
(see ‘Survey covariates’ sub-section) in terms of the Akaike 
information criterion (AIC). We used AIC for model selec-
tion instead of directly comparing model predictions to the 
observed data, because the latter can be biased by imperfect 
detection, whereas the former is based on the model likeli-
hood which in dynocc models explicitly accounts for it. On 
the other hand, we note that it could be possible that the best 
detection model changed when covariates are added to the 
colonization and extinction modules. Nevertheless, it seemed 
reasonable and practical to select a single detection model for 
each species.

Then, we fitted spatial models without habitat covariates. 
For each species, we fitted dynocc models with a spatial term 
for the colonization and extinction terms using either BRM 
(spatial colext BRM models) or IFM (spatial colext IFM models) 
formulations. To assess how the distance parameters affected 
model performance, for each species we used eight values of 

the parameter d (1, 2, 3, 5, 7.5, 10, 15, and 20 km) for BRMs 
and five values of the parameter α (1, 2.5, 5, 10, and 20 km) 
for IFMs (i.e. for each species we fitted eight spatial colext BRM 
models and five spatial colext IFM models in total). We used a 
gridded design for the sites and, for both spatial models, con-
nectivity was calculated using the probability of occurrence 
values (ψ in Eq. 2–3) of the CBBA2’s SDMs of all neighboring 
sites (i.e. the unconditional probability of occupancy).

For the habitat colext models, we did not have a priori 
hypotheses of the variables most influencing colonization or 
extinction, hence we performed a variable selection from the 
set of 42 site-level habitat covariates for each term separately. 
Starting from the fixed colext model, we used a forward selec-
tion based on AIC to select up to four variables per species 
and model term (extinction or colonization). Both linear and 
quadratic terms were evaluated for each variable, and we only 
kept the one resulting in a largest decrease of AIC. While 
we acknowledge the existence of alternative model selection 
approaches, such as stepwise selection, we opted for forward 
selection and a maximum of four variables per species to mit-
igate the risk of model overfitting. Finally, we fitted habitat 
colext models with the best variables selected for the extinc-
tion and colonization terms.

Finally, we fitted habitat-spatial colext models for each 
species by incorporating both spatial BRM or IFM vari-
ables and the habitat covariates selected in the habitat colext 
models to the extinction and colonization terms. For each 
species, we fitted habitat-spatial colext models for the same 
set of five α (IFM) and eight d (BRM) values used in the 
spatial colext models. All models other than the spatial IFM 
models were fitted using the function colext in the R-package 
‘unmarked’ (Fiske and Chandler 2011, Kellner et al. 2023) 
to obtain maximum likelihood estimates of the parameters. 
For the spatial IFM models, we modified the source code of 
the colext function so that the probability of colonization and 
extinction could be expressed as a function of connectivity 
as described in the sub-section Spatial formulations of the 
dynocc model. In the case of the BRM models, implementa-
tion was straightforward using the colext function, since the 
neighborhood information of each study square is calculated 
a priori (using the occupancy values of the CBBA2’s SDMs), 
and it is just incorporated as another site-level covariate. 

A caveat of using MLE to fit complex models with multiple 
variables is that the optimization algorithms can sometimes 
get stuck in local optima instead finding the global optima 
(Kéry and Royle 2021). To avoid this, we fitted all models 
with 10 sets of starting values for the regression parameters 
(uniformly distributed between −1.5 and 1.5) and kept the 
best fit in terms of AIC. Additionally, for the spatial IFM 
models we used a set of different scaling parameters Ω for the 
δi,j,t values, which we found to be necessary for the models to 
correctly converge, especially for large values of alpha.

Model performance

We evaluated the spatial performance of the models by com-
paring models’ predicted probability of occurrence with the 

 16000587, 0, D
ow

nloaded from
 https://nsojournals.onlinelibrary.w

iley.com
/doi/10.1111/ecog.06985 by R

eadcube (L
abtiva Inc.), W

iley O
nline L

ibrary on [10/07/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



Page 6 of 12

collapsed observed data (i.e. assigning a presence if the species 
was observed in at least one survey, and absence otherwise). 
For each trained model we calculated the AUC (area under 
the ROC curve) using the model predictions at the second 
time step and the respective test data observed in the CBBA3. 
AUC provides a measure of model discrimination (whether 
occupied sites are consistently ranked higher than unoccu-
pied sites). Moreover, for each trained model, we calculated 
the AUC difference relative to the fixed colext models (null 
colonization and extinction models). By calculating the AUC 
increase, we could directly evaluate the relative influence of 
habitat and neighborhood connectivity in the predictions of 
occurrence change. Finally, for each species and model type, 
we averaged the absolute AUC and AUC increase results for 
the five test sets.

Furthermore, for each species, we visually evaluated the 
predicted occurrence change from each dynocc model by 
plotting the predicted probability of occurrence at t1 minus 
the probability of occurrence at t0 for all the squares in the 
study area.

Simulation analysis

We aimed to compare dynocc models incorporating habitat 
and neighborhood connectivity effects on the colonization 
and extinction probability. However, we were unsure if – 
with our modelling approach applied to this specific case 
study, where only 5% of cells in the landscape were sur-
veyed – we could accurately capture the effects of each vari-
able type on species colonization and extinction. To address 
this uncertainty, we conducted a simulation study to assess 
our ability to evaluate the neighborhood connectivity and 
habitat effects given the limited data available in the study 
area. 

We simulated species occupancy dynamics for four dis-
tinct scenarios: one scenario with colonization and extinction 
rates depending on habitat covariates only, one depending on 
neighborhood connectivity only, and two scenarios with both 
habitat and connectivity effects with strong and weak con-
nectivity effects, respectively (Fig. 1). These simulations were 
conducted under the same landscape size and survey design 
as in our case study, and we evaluated the goodness of fit of 
the model in terms of AUC.

To conduct these simulations, we created a 180 × 180 
grid and followed these steps: first, we used a Gaussian ran-
dom field as a covariate to determine the initial probability of 
occupancy. Then, we simulated occupancy changes over one 
time step. To achieve this, we simulated two more Gaussian 
field variables representing the emergence of new habitat and 
the loss of existing habitat, which we used as single covariates 
for the colonization and extinction, respectively, for all the 
scenarios including habitat effects. For the scenarios includ-
ing connectivity effects, we used the BRM model (see ‘Spatial 
formulations of the dynocc model’ sub-section) with an arbi-
trary dispersal parameter d of 10 km for the probabilities of 
colonization and extinction. We ran 10 replicates of occu-
pancy data for each model type and scenario. 

For each replicate, we randomly selected 5% of the land-
scape cells and simulated two visits with a fixed detection 
probability of 50% (mean average detection probability of 
the species in our case study). Subsequently, we fitted the 
resulting detection data of each scenario to all the model 
types used in the study (Table 1): fixed colext, habitat colext, 
spatial BRM colext, spatial IFM colext, habitat-spatial BRM 
colext, and habitat-spatial IFM colext.

To assess the spatial predictive performance of our models, 
we followed the same methodology as for the Catalan bird 
species models (see ‘Model performance’ sub-section). We cal-
culated both the AUC and the AUC increase respective to the 
fixed colext models using the model predictions of occupancy 
at the second time period and the observed simulated data.

Results

Simulation analysis

Model performance increase relative to the fixed colext model 
was well correlated between colext model type and scenarios 
of species colonization and extinction. However, the increase 
in AUC of the best model fit was highly variable between sce-
narios, being much smaller for the two scenarios incorporat-
ing both connectivity and habitat effects (0.029 only habitat 
scenario, 0.101 only connectivity scenario, 0.004 habitat and 
strong connectivity scenario, and 0.006 habitat and weak con-
nectivity scenario; Fig. 1). This variability can be attributed 
to differences in the absolute AUC values of the fixed colext 
models for each scenario (0.78 only habitat scenario, 0.70 only 
connectivity scenario, 0.86 habitat and strong connectivity sce-
nario, and 0.85 habitat and weak connectivity scenario), result-
ing in varying margins of improvement between scenarios.

As expected, spatial colext models showed a negligible per-
formance increase for the habitat only scenario and habitat 
colext models for the connectivity only scenario, respectively 
(Fig. 1). On the other hand, habitat-spatial BRM colext mod-
els performed almost identically to the habitat colext models 
for the habitat only scenario while habitat-spatial IFM were 
slightly inferior (Fig. 1). For the connectivity only scenario 
habitat-spatial BRM and IFM models performed identically 
to the spatial BRM and IFM models, respectively, with IFMs 
performing better for smaller dispersal distance parameters and 
BRMs for bigger dispersal distance parameters (Fig. 1). For the 
scenarios incorporating both connectivity and habitat effects, 
habitat-spatial BRM colext models performed better than the 
habitat and spatial BRM colext models alone (×3 and ×2, 
respectively for the strong connectivity scenario and ×1.4 and 
×4.8, respectively for the weak connectivity scenario in terms 
of AUC increase; see Fig. 1). As expected, habitat-spatial IFM 
models performed worse than spatial-habitat BRM, but none-
theless they also performed better than the habitat and spatial 
BRM models alone (Fig. 1). Finally, the effects of the dispersal 
distance parameter were less noticeable for the scenarios incor-
porating both habitat and connectivity effects compared to the 
scenario incorporating only connectivity effects.
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Page 7 of 12

Figure 1. Model performance results for the four simulated colonization and extinction scenarios. Model performance is shown as the mean 
increment of AUC relative to the fixed colext models of all the replicates. Y-axes are different for the distinct scenarios in order to compare 
the relative performance increase of each model type. For each scenario, the true effects of connectivity and habitat for the probabilities of 
colonization and extinction used for the simulations are also shown below. See ‘Model fitting’ sub-section for detailed model 
specifications.
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In conclusion, findings from the simulation study show 
that our study design, coupled with the chosen model for-
mulations, is adequate at capturing both neighborhood 
connectivity and habitat effects in species colonization and 
extinction patterns. Moreover, it enables a robust assessment 
of the relative importance of each variable type.

Model performance overview

All model types (including the fixed colext models) had rela-
tively high spatial performance for most species across the 
study landscape, as measured by AUC calculated at the sec-
ond time period using the test datasets, with mean AUC for 
all methods > 0.8 (Fig. 2A) which indicates strong discrimi-
nation between presence and absence predictions. 

When spatial effects were included in the colonization 
and extinction terms (spatial colext models), model per-
formance for the best model selected for each species (in 
terms of distance parameter) was increased for most spe-
cies (39/46 for BRMs and 37/46 for IFMs) compared to 
fixed colext models (i.e. AUCspatial colext > AUCfixed colext). Both 
spatial model types had similar performance results. For 
BRMs, the mean ΔAUC was 0.010 with a range of −0.007 
to 0.101, while IFMs exhibited a mean ΔAUC of 0.009, 
ranging from −0.018 to 0.076 (Fig. 2B). Moreover, mean 
absolute AUC difference between IFMs and BRMs spatial 
colext models was relatively small in general (mean 0.004, 
SD 0.004) with BRMs performing better for 25/46 species. 
As expected, across all species, the probability of coloniza-
tion increased for higher connectivity values, whereas the 
probability of extinction decreased for lower connectivity 
values (Supporting information). 

Including site-level habitat covariates to the colonization 
and extinction terms (i.e. habitat colext models) increased 
model performance for most species compared to the fixed 
colext models (44/46), with mean ΔAUC 0.025 ranging from 
−0.025 to 0.082 (Fig. 2B). The best variables selected were 
mostly different for the colonization and extinction terms: for 
15 species there were no variables in common, for 22 species 
only 1/4 variables were in common, for 7 species 2/4 vari-
ables were in common, and for 2 species 3/4 were in common 

(see Supporting information for all the variables selected for 
each species and model term). 

Habitat effects versus connectivity effects

Comparing the performance of habitat colext models with 
that of the best spatial colext models, habitat colext mod-
els outperformed the latter for most species (37/46); see 
Supporting information for the results of each species indi-
vidually. Additionally, predicted occurrence change showed 
different spatial patterns between the habitat colext and the 
spatial colext models at the landscape level for most species 
(Supporting information). Furthermore, habitat colext mod-
els generally predicted higher occurrence probability increases 
and decreases at specific areas where occurrence change was 
high (Supporting information).

Species were classified based on their relative associa-
tion with habitat and neighborhood connectivity effects 
alone, revealing distinct patterns. Approximately 33% of 
the species showed a stronger association with habitat effects 
(ΔAUChabitat > 5X ΔAUCspatial), 35% displayed associa-
tions with both variable types, although more prominently 
with habitat effects (2X ΔAUCspatial < ΔAUChabitat < 
5X ΔAUCspatial), and 24% showed no clear dominance 
of either habitat or connectivity effects (2X ΔAUCspatial 
> ΔAUChabitat and 2X ΔAUChabitat > ΔAUCspatial). 
A smaller proportion (2%) exhibited associations with 
both but leaned towards connectivity (2X ΔAUChabitat < 
ΔAUCspatial < 5X ΔAUChabitat), and 7% were primar-
ily associated with connectivity effects (ΔAUCspatial > 5X 
ΔAUChabitat). See Supporting information for the classifica-
tion of each species.

Joint habitat and connectivity effects

When the colonization and extinction terms incorporated 
both neighbor and habitat covariates (i.e. habitat-spatial 
colext models), the best model selected for each species (in 
terms of distance parameter and spatial model type) generally 
performed better compared to either spatial colext models or 
habitat colext models (40/46 species). However, performance 

Figure 2. Boxplots of mean absolute AUC (A) and mean relative AUC increase (B). Each model type was fitted to the 46 study bird species. 
Models were fit to five different training sets and evaluated as the mean absolute AUC for the five test sets (A) or as the mean AUC increase 
(ΔAUC) compared to the fixed colext models for the five test sets (B). Only the best-performing spatial models were considered (i.e. with 
the best dispersal parameters in terms of AUC). The horizontal line in (A) indicates the median AUC of the fixed colext models, and the hori-
zontal line in (B) indicates 0 AUC increase.
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gains relative to the best model between the spatial colext 
model and the habitat colext model of each species were rela-
tively low for most species (mean AUC gain 0.007 ranging 
from −0.004 to 0.020). Furthermore, for species for which 
the performance increase was the lowest, the habitat-spatial 
colext models yielded very similar predictions (i.e. similar spa-
tial patterns of occurrence change) compared to the habitat 
colext models (Fig. 3, Supporting information).

Of particular interest was the relative performance increase 
in ΔAUC compared to the best of the spatial colext model 
and habitat colext model for each species (ΔAUChabitat-spatial / 
max (ΔAUChabitat, ΔAUCspatial)); see Supporting information. 
For species that responded mainly to habitat effects, we still 
observed an increase of performance for habitat-spatial colext 
models (mean 1.25X). On the other hand, relative increase in 
ΔAUC was generally bigger for species that showed no clear 
dominance between habitat and connectivity effects compared 
to species that responded more to habitat effect (mean 1.51X 
for the former and mean 1.21X for the latter). Finally, for the 
few species that were primarily driven by connectivity effects, 
there was a large variability in the performance increase of the 
habitat-spatial colext models (range 0.89, 3.4X).

Discussion

In the present study, we evaluated whether incorporat-
ing neighborhood connectivity as a predictor for the 

colonization and extinction terms in a dynamic occupancy 
model (MacKenzie et al. 2003) could improve model predic-
tions of changes in species occurrence between two time peri-
ods. For that, we fitted a variety of models to data from 46 
breeding bird species typical of forest and shrublands from 
two atlas projects carried out in Catalonia and separated by 
16 years. We compared dynocc models that only accounted 
for neighborhood connectivity with dynocc models that only 
incorporated site-level habitat covariates to assess the predic-
tive power of each variable type individually. Additionally, we 
evaluated the joint effects of neighborhood connectivity and 
site-level habitat covariates in predicting extinction and colo-
nization. All models were tested for the 46 bird species show-
ing different temporal trends. We found that, for most species, 
habitat models performed better than models accounting for 
connectivity alone. In addition, adding site connectivity infor-
mation to habitat models generally improved model perfor-
mance, especially for species with similar performance gains for 
habitat and connectivity models alone. These results highlight 
the importance of evaluating different model formulations 
and assessing which aspects of the model are more important 
depending on the study species and the study design.

Incorporating neighborhood connectivity information to 
the colonization and extinction probabilities improved dyn-
occ model performance for most species compared to models 
where colonization and extinction rates were constant. These 
results go in line with metapopulation theory: colonization 
is positively correlated with neighborhood connectivity and 

Figure 3. Predicted change in probability of occurrence of the different models. Examples of the predictions of occurrence change between 
the two atlas periods (occurrence at t1 – occurrence at t0) of the different dynocc models analysed. On the one hand, for Luscinia megarhyn-
chos, as an example of a species where habitat-spatial colext models achieved a substantial increase in performance compared to habitat colext 
models, the predictions of distribution change showed different patterns between the two models. On the other hand, for Regulus ignica-
pilla, as an example of a species where habitat-spatial colext models only achieved a small increase in performance compared to habitat colext 
models, we can see that the model predictions are very similar between the two models.
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extinction is negatively correlated with connectivity due to 
the rescue effect (Hanski 1999). We analyzed two of the most 
commonly used dispersal kernel formulations in spatial dyn-
occ models with connectivity-dependent colonization/extinc-
tion: BRMs and IFMs. These two model formulations result 
in contrasting connectivity measures, which have been found 
previously to perform differently (Moilanen and Nieminen 
2002, Nathan et al. 2012, Hall et al. 2018). However, in our 
study we found that for most species the differences in model 
predictive performance in terms of AUC between the two 
spatial formulations of colonization and extinction were min-
imal. For a minority of species for which there was a marked 
difference, BRMs generally performed better than IFMs. 
Aside from the model formulation, the dispersal parameter 
appears as an important factor affecting model performance. 
In BRMs it is the buffer radius (d) which defines the entire 
neighborhood that can affect dispersal, whereas in IFMs the 
parameter α represents the mean dispersal distance of the spe-
cies in the exponential kernel (which is often unknown and 
must be estimated). For most of the study species, differences 
in model performance were minimal for the different values 
of dispersal parameters used (ranging from 1 to 20 km) in 
the connectivity measures, especially when habitat covariates 
were included. This might be because connectivity values 
were highly correlated for the different dispersal distances 
analyzed.

Dynocc models with only site-specific habitat covari-
ates for the colonization and extinction terms (habitat 
colext models) performed better than models only account-
ing for neighborhood connectivity (spatial colext models) 
for most species (80%). Nevertheless, the relative effects of 
neighborhood connectivity compared to habitat covariates 
were still relevant for 67% of the species (ΔAUC of spatial 
colext models was at least 20% of the ΔAUC of the habi-
tat colext models). These results suggest that, generally, in 
dynocc models, considering site-level habitat covariates 
alone leads to superior outcomes compared to accounting 
for site connectivity alone when predicting the occupancy 
dynamics of bird species prevalent in a region (i.e. present 
for an extended period). Nevertheless, including the latter 
is still important, because colonization and extinction pro-
cesses can be influenced by dispersal constraints. Our results 
could be explained by the fact that common bird species 
are in quasi-equilibrium with the environment and there-
fore if the environment does not suffer major changes, birds 
will not experience large changes in their distributions no 
matter how good or poor their neighborhood connectivity 
is. Conversely, invasive or reintroduced species experiencing 
an expansion process or species linked to active disturbance 
regimes such as fires (Zozaya et al. 2012) will typically not 
be in equilibrium with the environment. Therefore, their 
dynamics will probably be more influenced by their disper-
sal capabilities, and neighborhood connectivity might be a 
better predictor of colonization and extinction than habitat 
covariates themselves. Finally, we tested if the joint informa-
tion of connectivity and habitat would improve models’ per-
formance as compared to accounting for them individually. 

We observed performance gains for almost all species, with 
higher gains observed for species that showed similar perfor-
mance improvements for habitat and connectivity models 
alone. However, the performance increase in terms of abso-
lute AUC was relatively low for most species. This suggests 
that while the models can identify habitat and connectivity 
effects on species colonization and extinction processes, there 
remains considerable stochasticity in the occupancy dynam-
ics patterns of the studied species. This is further exemplified 
in our simulation study, where for species with known habi-
tat and connectivity effects, models that incorporated both 
variables showed a limited increase in AUC. This observation 
arises from the landscape’s inherent complexity, where gra-
dients of habitat suitability and neighborhood connectivity 
values vary widely. Consequently, the probability of coloni-
zation and extinction at each site becomes highly stochastic, 
ranging between 0 and 1. This unpredictability underscores 
the challenges in accurately capturing and modelling species 
occupancy dynamics in heterogeneous landscapes. Finally, 
since the models we used are entirely data-driven and require 
a large amount of data to obtain reliable estimates, for rare 
species with limited presence records, models might fail to 
converge. In such cases, the application of alternative sam-
pling designs and modelling methodologies should be con-
sidered to obtain reliable predictions (Zhang  et  al. 2020, 
Jeliazkov et al. 2022).

There is an often-heard claim within the scientific commu-
nity to make models of species distribution change more pro-
cess-based in order to improve their predictions (Urban et al. 
2016, Zurell 2017). Explicitly incorporating ecological pro-
cesses into models goes at the expense of requiring extra data 
and computational resources, as well as additional expertise in 
order to implement them (given their complexity) compared 
to classic correlative methods (Hefley et al. 2017). Therefore, 
studies evaluating semi-process-based models (where ecologi-
cal processes are simplified and added to the model following 
a statistical approach), like the present one, are valuable to 
assess which processes are worth adding into a model and 
for which study designs or study species. Our results showed 
that spatial dynocc models incorporating neighborhood 
connectivity as a representation of the dispersal process can 
improve model performance for most species. However, for 
some species, the performance gains relative to non-spatial 
dynocc models were only marginal and probably incorporat-
ing other key processes affecting distribution dynamics into 
the model (i.e. species interactions) would be necessary to 
improve model predictions. Further studies are needed to 
discern the species properties (e.g. specialists versus general-
ists or species migratory behavior) that makes their models 
more prone to show a positive response to the introduction 
of spatial effects. Furthermore, studies comparing model per-
formance for different study designs (i.e. gridded cells ver-
sus genuine metapopulation patches) and survey efforts (i.e. 
the coverage of surveyed cells within the study landscape) 
should be encouraged since these are major factors affecting 
model performance aside from the study species. Overall, our 
study shows that spatial dynamic distribution models are a 
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promising tool to improve model predictions for most spe-
cies compared to non-spatial dynocc models. Furthermore, 
we establish that site-level habitat covariates are strong pre-
dictors of species colonization and extinction for the majority 
of species, suggesting their inclusion in dynocc models when-
ever feasible. Exploring new approaches and methodologies 
to better characterize species dynamics, rather than focusing 
solely on static spatial patterns, should also be a priority for 
ecologists working on species distribution models.
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