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Abstract

We provide a general expression of the Haar measure—that is, the essentially unique
translation-invariant measure—on a p-adic Lie group. We then argue that this measure
can be regarded as the measure naturally induced by the invariant volume form on the
group, as it happens for a standard Lie group over the reals. As an important application,
we next consider the problem of determining the Haar measure on the p-adic special
orthogonal groups in dimension two, three and four (for every prime number p).
In particular, the Haar measure on SO(2, Q,,) is obtained by a direct application of
our general formula. As for SO(3, Q,) and SO(4, Q,), instead, we show that Haar
integrals on these two groups can conveniently be lifted to Haar integrals on certain p-
adic Lie groups from which the special orthogonal groups are obtained as quotients.
This construction involves a suitable quaternion algebra over the field Q, and is
reminiscent of the quaternionic realization of the real rotation groups. Our results
should pave the way to the development of harmonic analysis on the p-adic special
orthogonal groups, with potential applications in p-adic quantum mechanics and in
the recently proposed p-adic quantum information theory.

Keywords Locally compact group - Haar measure - p-adic Lie group - Quaternion
algebra

Mathematics Subject Classification 28C10 - 28C05 - 22E35 - 11E08 - 11E95 - 81Q65 -
11R52

Contents

I Introduction . . . . . .. . .. ... 2

2 Basicnotionsand tools . . . . . ... L. 4
2.1 The Haar measure on a locally compact group and the lifts of Haar integrals . . . . . .. .. 5
22 p-AdicLie groups . . . . . ... 12

Extended author information available on the last page of the article

@ Springer


http://crossmark.crossref.org/dialog/?doi=10.1007/s11005-024-01826-8&domain=pdf
http://orcid.org/0000-0003-4298-8275
http://orcid.org/0000-0002-9224-7451
http://orcid.org/0000-0002-3797-3987
http://orcid.org/0000-0001-9563-6471
http://orcid.org/0000-0002-1389-0319
http://orcid.org/0000-0001-6344-4870

78 Page2of 59 P. Aniello et al.

2.3 p-Adic rotation roups . . . . .. ..o e e e e e e e e e 15
2.4 Integration on p-adicmanifolds . . . . . . ... ... L o 18

3 The Haar measure on p-adicLie groups . . . . . . ... ... ... ... ... . ... ... ... 22
4 Applications . . . . . .. e 28
4.1 The Haar measure on SO(2, Qp)ic o v v v oot 28
4.2 The quaternion algebraHl, . . . . ... .. ... ... L 30
421 Case P> 2 . .ot e 31

422 Case p =2 . . ... e 33

4.3 Relation between p-adic quaternions and special orthogonal groups . . . . . .. ... ... 35
4.4 The Haar integral on SO(3, Qp) . . . . . .. ... ... ... ... 42
4.5 The Haar integral on SO(4, Qp) . . . . . . . ... ... ... 45

S Conclusions . . . . ... 50
A The real quaternion algebra and its relations with SO(3, R) and SO4,R) . . . . ... ... ... 51
A.1 Thereal quaternion algebra H . . . . . . . .. .. .. . . L 51
A.2 Relations between real quaternions and rotations . . . . . . . ... ... L. L 53

B Alternative proof of Proposition 4.15 . . . . ... ... ... . . o o o 54
References . . . . . . . . . . . 56

1 Introduction

During the last decades of the XX century, a new branch of mathematical physics,
the so-called p-adic mathematical physics, has been developed as an effort to find
a non-Archimedean approach to space-time and string dynamics at the Planck scale
[1-5]. Since then, various p-adic quantum mechanical models have been considered
and studied [6—19], and several applications to quantum field theory and string theory
have been proposed [20-24]. Although the original focus of these theories was on the
foundational aspects, further investigation has revealed new surprising applications,
especially in the context of statistical and condensed matter physics. For instance, it
has been observed that the natural ultrametric hierarchical structure of p-adic numbers
makes them suitable for the description of the dynamics of chaotic and disordered
systems. From this observation, Mézard, Parisi and their collaborators have shown, in
the first half of the 1980s, that the ground state of the spin glasses exhibits a natural
(non-Archimedean) ultrametric structure [25-27].

In more recent years, further intriguing applications of p-adic numbers have
emerged, well beyond their original mathematical and physical context. Indeed, p-
adic numbers have proved to be a valuable tool in solving issues related to algebraic
dynamical systems, image analysis, compression of information, image recognition,
cryptography and computer science (see [28], and references therein). Even more
recently, there has been an increasing interest in the potential applications of the field
of p-adic numbers to quantum information theory, as well [29—-31]. This interest stems
from the unique properties of p-adic numbers, that may provide new solutions to chal-
lenging problems in quantum information science. E.g., it has been observed that the
p-adic numbers can be profitably used in the construction of mutually unbiased bases
(MUBS), for any Hilbert space dimension [32].

As a first step in establishing the foundations of a p-adic theory of quantum infor-
mation, it has been argued [31] that a suitable model of a p-adic qubit can be obtained
by resorting to two-dimensional irreducible projective representations of the group of
rotations on the configuration space Q; (for an alternative ‘purely p-adic’ approach
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to the qubit also see [33]). The special orthogonal groups over the p-adic fields can
be defined through quadratic forms over Q,,. Unlike the real case, however, definite
(i.e., representing the zero trivially) quadratic forms over @@, exist only in dimen-
sion two, three and four [34]. The resulting symmetry groups SO(2, Q,), SO(3, Q)
and SO(4, Q) are the only compact p-adic special orthogonal groups. In particular,
SO(3, Qp) can be thought of as the group of rotations on Qf,, and its geometrical
features have been explored in [35]. The compactness of the aforementioned groups
entails that all their irreducible unitary representations occur (and can be studied) as
subrepresentations of the regular representation, according to the celebrated Peter-
Weyl theorem [36].

Now, the study of the regular representation of compact groups—in particular, the
formulation and the application of Schur’s orthogonality relations—as well as several
other fundamental issues of abstract harmonic analysis, involve the Haar measure
on such groups, namely, the essentially unique (say, left) invariant Radon measure,
or, regarding such a measure as a functional [36], the Haar integral. More generally,
the irreducible—in general, projective—representations of compact groups are square
integrable (see [37-40], and references therein), and thus satisfy suitable orthogonality
relations, where, once again, the Haar measure is involved. Still another class of prob-
lems where this measure plays a central role, is related to the ‘phase-space’ formulation
of quantum mechanics [41]. Here, the phase space appears in quotes for a two-fold
reason: first, because a p-adic model of phase space is what we have in mind; second,
because the usual group of translations on phase space (with its genuinely projective
representations) is replaced with a locally compact group—e.g., with a compact p-adic
Lie group—admitting square integrable representations. Such representations allow
one to define generalized Wigner transforms mapping quantum-mechanical operators
into complex functions on the relevant group [37-40].

In the present work—as a first point of an ideal program devoted to the study
of harmonic analysis on the compact p-adic special orthogonal groups, and to its
applications to quantum information science—we face the problem of describing the
Haar integral on the p-adic Lie groups SO(2, Q,), SO(3, Q,) and SO4, Q,), for
every prime p. Whereas the Haar measure on standard special orthogonal groups over
the reals has been extensively studied using different approaches, the corresponding
p-adic problem seems to be (to the best of our knowledge) still unexplored.

Our strategy to deal with such a problem articulates in two main steps:

1. On the one hand, we derive a general formula for the invariant measure on a
generic p-adic Lie group. Our construction relies on the existence of a suitable
atlas of mutually disjoint charts on such a group, which allows one to express its
Haar measure in the local Q’I',—coordinates by exploiting the change-of-variables
formula for integrals on Q’;}. Precisely, we first obtain a quasi-invariant measure
on the group. At this point, we observe that every quasi-invariant measure on a (in
general, locally compact) group immediately yields a Haar measure. This method
is tailored on the peculiar properties of a p-adic Lie group, but we next show that
our result can be interpreted within the invariant volume form approach to the Haar
integral usually adopted for standard Lie groups over the reals.
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2. We then observe that, on the other hand, a direct ‘brute force’ application of the
previous general approach may not be very practical or convenient, depending on
the (more or less) manageable parametrization of the group one has to work with.
In concrete applications, it is often more convenient to exploit a realization of the
group one is interested in as a suitable quotient group X = G /H, where G is some
suitable p-adic Lie group and H is a closed subgroup of G. Now, if the approach
outlined in the previous step provides us with a convenient expression of the Haar
integral on G, then we can simply /ift the Haar integral living ‘downstairs’ on X
to an integral ‘upstairs’ on G. This nice lifting strategy for computing the Haar
integrals relies on the so-called Weil-Mackey—Bruhat formula [36, 42, 43].

A direct application of the general formula mentioned in the first point above
easily yields the Haar measure on SO(2, Q). In dimensions three and four, instead,
we find it convenient to introduce a quaternion algebra over Q) first. We can then
realize SO(3, Q,) and SO(4, Q,) as suitable quotient groups and next apply the lifting
strategy of the Haar integrals outlined in the second point above. This approach is
reminiscent of the quaternionic realization of the standard rotation group SO(3) the
reader may be familiar with.

The structure of the paper is as follows. In Sect. 2, we collect the basic notions and
tools which will be used throughout the remaining sections of the paper. Specifically,
in Sect. 2.1 we recall some basic facts concerning the Haar measure on locally compact
groups and the lifts of Haar integrals on quotient groups. In Sect. 2.2, we discuss p-
adic manifolds and introduce the notion of a p-adic Lie group, before delving into
the specific class of p-adic special orthogonal groups, in Sect. 2.3. Section3 deals
with a general construction of the Haar measure on a p-adic Lie group, eventually
showing that it naturally coincides with the measure associated with the (maximal-
rank) invariant differential form defined on the group. Section4 is devoted to the
applications of the (previously constructed) theory to the p-adic special orthogonal
groups in dimension two, three and four. Specifically, in Sect. 4.1, we derive the Haar
measure on SO(2, Q). In Sect. 4.2, we explicitly construct, for any prime number
p, the p-adic quaternion algebra and, in Sect. 4.3, we highlight its relation with the
elements of SO(3, Q,) and SO(4, Q). Then, in Sects. 4.4 and 4.5 we construct the
Haar integrals on SO(3, Q,) and SO(4, Q,,) by exploiting the suitable ‘lifting strategy’
and, hence, by realizing them as Haar integrals on specific subgroups of the p-adic
quaternion algebra. Finally, in Sect.5, conclusions are drawn, with a quick glance at
future prospects.

2 Basic notions and tools

In this section, we collect some basic results and tools which will be relevant for all
our later derivations. We begin by recalling the notion of Haar measure on a locally
compact group. Then, we introduce the p-adic Lie groups and we consider, in partic-
ular, the class of p-adic special orthogonal groups. Finally, we provide a brief outline
of integration theory on a p-adic manifold.
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2.1 The Haar measure on a locally compact group and the lifts of Haar integrals

Let G be a locally compact (Hausdorff) topological group; in short, a LC group. By a
left (resp. right) Haar measure (1 on G we mean a non-zero Radon measure for which
the following condition holds:

(&) = m(&) (resp. u(€g) = u(f)), ey

for every Borel set £ C G, and g € G [36, 44]. We refer to (1) as to the left-invariance
(resp. right-invariance) property of the measure.

Itis worth recalling a remarkable characterization of the left (resp. right) Haar mea-
sure provided by a suitable left- (right-)invariance condition for a class of functionals
on C,(G)—the algebra of compactly-supported continuous complex-valued functions
on G [36, 45].

Remark 2.1 We are adopting the convention that the support, supp( f), of a continuous
function f is the closure of the open set {g € G | f(g) € C\{0}}.

Let 1 be a fixed Radon measure on a LC group G. The map defined as

C(G) 5 f s I(f) = /G F(9)du(g) € C @

is easily seen to be a positive linear functional on C.(G). On the other hand, the
celebrated Riesz Representation Theorem (cf. Theorem 7.2 in [45]) assures that for
every positive linear functional on C.(G), there is a unique Radon measure u on G
such that / is represented as in (2). Exploiting this correspondence, a Radon measure p
is a left Haar measure iff the associated functional is left-invariant, i.e., iff the condition

fG (L f)(g)du(g) = /G F(e)dn(e) 3)

holds for every f € C.(G). Here, the map Ly, for h € G, of left translation on
C.(G) is defined as (L, f)(g) = f(h_lg). By defining the right translation via
(Rnf)(g) = f(gh), we capture analogously right-invariance of the measure. In what
follows, whenever p is a Haar measure on G, we will refer to the integral in the r.h.s.
of (2) as to the Haar integral associated with .

It is a well known result (see, e.g., Theorem 2.10 and 2.20 in [36]) that any LC
group admits an essentially uniquely defined Haar measure. In particular, if x and v
are left Haar measures on G, then there exists ¢ € R} such that 4 = cv. If G isa LC
group, its left and right Haar measures are related via the so-called modular function
A: G — R} [36]. In the case where A = 1 (as it happens for abelian and compact
groups), G is called unimodular, meaning that left and right Haar measures coincide.

Remark 2.2 Alocally compact group G has finite left (and right) Haar measure p if and
only if it is compact [36, 46]; in this case, it is possible (and customary) to normalize
the Haar measure in such a way that u(G) = 1.
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Example 2.3 (Haar measure on Q). The (additive) group of the field of p-adic num-
bers Q, (p € N prime) is a LC group once endowed with its standard ultrametric
topology (namely, the topology induced by the non-trivially valued, non-Archimedean
absolute value | - |, on Q). Therefore, it admits a left Haar measure A. Since (Q,, +)
is abelian (hence, unimodular), X is right-invariant as well, i.e.,

MEF+X)=A1E)=A(x+E) 4

holds for every Borel subset £ in Bg,, and any x € Q,. Since the subring Z of
p-adic integers is a compact subset of Q,,, we can normalize A by setting

MZp) = 1. ®)

It is now not difficult to explicitly construct the measure . Indeed, let E(r, Xp) =
{x € Qp | Ix —xo0lp < r} be aball centred in xo € Q, of radius r € Z-¢. Since
B(1,0) = Z p» owing to the invariance condition (4) and the normalization (5), we
get A(E(l, x)) = 1 forevery x € Q. Moreover, the topological features of Q ,—i.e.,
any ball of radius p*, k > 0, is a disjoint union of p* balls of radius 1—also entail
that A (E(pk, x)) = pXforeveryk € Z,x Q,. Hence, we get to the conclusion that
the measure of every Borel set £ of Q, is given by

A& =inf{> pmiec|JBp™.xpy. (6)

Jj=1 j=1
analogous to the formula for the Lebesgue measure on the real line.

Example 2.4 The group Q) = Q) x - -+ x Qp (n-times), endowed with the product
topology, has a natural structure of (additive) LC group; hence, it admits a left (and
right) Haar measure. To find it explicitly, it is enough to observe that, being Q) a
second countable LC group, there is no distinction between the standard product of
measures and the Radon product (see §2.2 in [36]). Therefore, the Haar measure on
Q7, is provided by the n-times product of the Haar measure on Q,, i.e.,

A=A X ---x A (n-times), A Haar measure on Q. @)

With a slight abuse of notation, we will denote by X the Haar measure on QZ for every
n € N, as the dimension n will be clear from the context.

Let G be a LC group, and let X be a LC Hausdorff space. We call X a (transitive)
G-space whenever it is equipped with a (transitive) continuous left action (-) [-]: G X
X — X of G.If G is a locally compact second countable Hausdorff (in short, LCSC)
group, and H a closed normal subgroup of G (e.g., the centre of G), let X = G/H
denote the quotient (LCSC) group. Furthermore, let g: G — X be the quotient map
(i.e., the projection homomorphism) which is an open continuous map. We can then
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define a natural continuous action (-)[-]: G x X - X of Gon X, i.e.,,
glx] = q(g)x, g€G, xeX. (8)

This action is transitive and, hence, turns X = G/H into a transitive G-space. In the
literature, one refers to such a G-space as to a homogeneous space [36, 4244, 46,
47].

Letnow wug, h, ix denote the (left) Haar measures on G, H, X = G/ H respec-
tively, and let Ag, A g be the modular functions on G and H. It is a standard fact that
(since X admits a X-invariant, hence G-invariant, measure px; see Theorem 2.51 of
[36])

Ag(h) = Ay (h), Vh € H, ©)]

i.e., Ay = Ag|g. Therefore, if G is unimodular, then H shares the same property.

Let (X, Bx), (Y, By) be (Borel) measurable spaces. We recall that amap ¢: X —
Y is called a Borel map if, for every Borel set £ € By, ¢~ () € By; it is called a
Borel isomorphism if it is one-one, onto, and f~! is a Borel map. If X = G/H is a
quotient group, we also denote by s: X — G a Borel (cross) section of X into G,
i.e., a Borel map satisfying the condition g(s(x)) = x, for every x € X.

Proposition 2.5 (Lemma 6 of [38]). For every Borel section s: X — G, the mapping
Ys: XX H>x,h)—>sx)heG (10)

is a Borel isomorphism (X x H being endowed with the product topology).

For every f € C.(G), we put

(Pf)(x) = /H A (D) (f o ys)(x, )

Z/I:IdMH(h)f(S(x)h)s xeX. Y

Remark 2.6 1t is worth observing that the function H > h — f(gh) € C, for any
g € G,isin C.(H) (in particular, gh € supp(f) = h € g~ 'supp(f) () H), where
g~ 'supp(f) (N H is a compact subset of G and, hence, of H). Therefore, the integral
on the r.h.s. of (11) is well-defined.

Remark 2.7 Note that, by the left-invariance of u g, the integral f y dum(h) f(gh) is
constant w.r.t. g varying in ¢~ ({x}), for every x € X. Hence, (Pf)(x) € C does not

depend on the choice of the cross section s.

Theorem 2.8 For every f € C.(G), the function
X>x— (PfHHx)eC (12)
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belongs to C.(X), and the mapping C.(G) > f +— Pf € C.(X) is surjective.
Moreover, for every f € C.(G), we have that

/ duc(8) f(g) = / dix x (6, ) £(s(OR)
G XxH
_ / dix () / dies () f (s()h)
X H

= / dux(x)(Pf)(x), (Weil-Mackey—Bruhat formula), (13)
X

where the Haar measures (LG, Ly, Lx are supposed to be suitably normalized and
s: X — G is any Borel cross section.

(Note: Since X, H are LCSC groups, in the first line of (13) it is not necessary to
make a distinction between the standard product of measures and the Radon product

[36].)
Proof See Sect. 2.6 of [36]; in particular, Proposition 2.50 and Theorem 2.51. O

For every ¢ € C.(X) and ¥ € C.(G), we set

(ZyP)(@) =Vv(8)(q(8). g€G. (14)

It is easy to see that ZI/,¢ € C.(G); in particular, we have that

supp(Zy¢) C supp(¥) ()¢~ (supp(¢)) (15)

is a compact subset of G.

Lemma 2.9 For every compact subset K of X, there exists a function ¥ € CH(G)
such that
(PYy)(x)=1, VxeKk. (16)

Here and in the following, we set CT(G) = {f € Co(G) | f >0, f #0}.
Proof Use Lemma 2.49 of [36]. O

By Lemma 2.9, for every nonempty compact subset K of X, we can define the
following (nonempty) subset of C (G)

Wg = {y € CH(G) | (PY)(x) = 1, Vx € K}. (17)

By convention, we put Wy = {yy = 0}.

Definition 2.10 Given any ¢ € C.(X), for every ¥ € Wyypp(g), We call the function
Ly ¢ € Co(G) a Weil-Mackey-Bruhat (WMB) lift—specifically, the v/-lift—of ¢.
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The notion of Weil-Mackey—Bruhat lift in Definition 2.10 is strictly related to the
WMB formula (13). Indeed, given a -lift of a function ¢ € C.(X), exploiting the
WMB formula, it is not difficult to prove the following results:

Lemma 2.11 For every ¢ € C.(X), and every ¥ € Wyypp(p), We have that
P(Zy¢) =¢. (18)

Proof In fact, by Lemma 2.9, we have:

(P(ZLy¢))(x) = /H dip (h) Y (s(x)h)¢(q(s(x))h)
=(PY)(X)p(x) =¢(x), VxeX, (19)

where s: X — G is any Borel cross section (¢(s(x)h) = x). O
We are now able to express any Haar integral on X as a Haar integral on G:

Theorem 2.12 Let ¢ be a function in C.(X). Then, for every WMB lift £ ¢ € C.(G)
of ¢ (¥ € Waupp(g))> We have that

/Xd/LX(X)qﬁ(X)Z/Gd,uc(g)(fwﬁ)(g), (20)

where a suitable (mutual) normalization of 1 x and pg is assumed.

Proof In fact, by the second assertion of Theorem 2.8,

/;;dliG(g)(gw¢)(g) =/Xd/LX(X)(P(a%¢))(X)
Z/Xdux(xw(X), 21

where, for the second equality, we have used Lemma 2.11. O

We will call the Haar integral on the r.h.s. of (20) a /ift of the Haar integral on the
Lh.s. of the same formula.

In our specific applications, X = G/H will be a compact group. In this case, some
of the previously discussed results admit a remarkable generalization. To start with, let
us notice that, when X is compact, C.(X) coincides with the set C(X) of all continuous
functions on X. Let us put ¥ = Wy. From Theorem 2.12, we can immediately prove
the following:

Corollary 2.13 Let X = G/H be compact. Then, for every € ¥V, we have that

/XdlLX(X)fﬁ(X) = /Gd/LG(g)(quﬁ)(gL V¢ € C(X), (22)
where a suitable (mutual) normalization of wx and g is assumed.
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Remark 2.14 Fixed any ¥ € W = Wy, the map % : C(X) — C.(G) is a right
inverse of P: C.(G) — C(X), i.e., it satisfies relation (18) for all ¢ € C(X).

Remark 2.15 Without any assumption of com/Eactness of X, the map P: C.(G) —
C.(X) can be extended to a (surjective) map P : L'(G) - LY(X), defined by

(Pf)x) = /Hduﬁ(h)f(S(x)h), xeX, fel'(G); (23)

see Lemma 7 of [38] and Theorem 3.4.6 of [42] (Ll(G) =LYz, g) denotes the
set of complex-valued functions on G whose absolute value is integrable w.r.t. ;g).
Moreover, the extended WMB formula holds:

/GdMG(g)f(g)=/Xdux(X)(ﬁf)(x), v elX(G), (24)

for a suitable (mutual) normalization of the Haar measures wy, 1g-.

The forthcoming Theorem will provide us with a suitable generalization of the
results in Lemma 2.11 and in Theorem 2.12, tailored to the case where X = G/H
is a compact group. To this end, we find useful to preliminary recall the notion of
pushforward measure.

Definition 2.16 Let (X, By) and (Y, By) be (Borel) measurable spaces. Let i be a
Borel measure on X. If ¢: X — Y is a Borel map of X into Y, the pushforward
measure @, o of p through ¢ is the measure on (Y, By) defined by

P (E) = o (&), 25)

for every Borel set £ in By.

Remark 2.17 1f (X, Bx) and (Y, By) are Borel measurable spaces, andif f: ¥ — Ris
a Borel function on Y, the following (abstract) change-of-variables formula (C.O.V.E.,
in short) holds [48]:

[ roon= [ ragw. (26)
X Y
Moreover, from (26), it is not difficult to prove the following relation [48]:

0x(gdp) = g o o~ ' d(gup0), 27)

for every Borel function g: X — RR. We shall constantly resort to this formula in our
description of integration theory on Q@ ,-manifolds.

We are now ready to prove the following result

Theorem 2.18 Let X = G/H be compact. Then, for every v € WV, the map
Zy: C(X) — C.(G) admits an extension—a so-called extended WMB lift

Ly LX) — L'(G), (28)
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defined by R
(Zud) (@) =¥ () (¢ oq)(g), (29)

that is a right inverse of P:
P(Zy¢) =¢, Yo elL'(X). (30)

Moreover, for every ¢ € L'(X), we have that

/XdMX(X)fﬁ(X) =/Gd/ic(g)(=@¢)(g), 3D

for a suitable (mutual) normalization of ux, Ug.

Proof Letus first prove that, forevery ¢ € L!(X), the (Borel) function fw ¢ belongs to
L! (G).Infact, by Lemma 7 of [38], for any Borel section s: X — G, the pushforward
measure (Ys)«(x X wg) coincides (up to normalization) with ;. Hence, we have
that

/(;dMG(g)|(on¢)(g)’ =deMG(g)1/f(g)|¢(f](g))|
= /Gd((ys)*(ux X 1))@V ()P (q(g))
2/ dux x pwg(x, )Y (s(x)h)|d(x)]
XxH
:/;(dMX(x)/HdMH(h)Tﬂ(S(x)h)W(X)L (32)

where the last equality is obtained by Tonelli’s theorem. Therefore, we find that
fG 416 (@)|(Zye) )| = /X dx (Ol ] = 19115, (33)

and .,2’”:/,¢ € L1(G). At this point, one easily proves (30) and (31). m]
Remark 2.19 Relation (33) shows that @ L X)) — LY(G) is a (linear) isometry.

To conclude this section, we state the following remarkable consequence of Theo-
rem 2.8

Theorem 2.20 Let us suppose that H is compact. Then, for a suitable normalization
of ug and px, g«(nG) = px.

Proof Since H is compact, g.(ug) is a Radon measure on X (for every compact
ECX, q_l(E) = K H, with K C G compact by Lemma 2.48 of [36]; hence, K H
is compact too). Then, for every ¢ € C.(X), by the WMB formula we have that

/X dg. (1) ()P (x) = /G duG(9)d(q(s))
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— / dux (x) / At (Db (x) = / dux((),  (34)
X H X

where we have assumed that uy (H) = 1 and ug,u g are suitably normalized. Hence,
qx(nG) = px. o

2.2 p-Adic Lie groups

In this subsection, we discuss the main features of p-adic manifolds and p-adic Lie
groups [49-51].

As in the standard real setting, the starting point is to introduce a suitable notion of
chart on a Hausdorff space.

Definition 2.21 Let 2" be a Hausdorff space. A chart on 2" is a triple (% , ¢, Q')),
where 7 C 2" isanopensubsetand : % — Q) isamapsuchthatg: % — ¢(%)
is a homeomorphism. We refer to % as the domain of the chart, and to n € N as its
dimension.

Ifx e % c 2, wesay that (%, ¢, Q) is a chart around x. In the following, we
will set 1(/7: @ (%) — 7 to be the inverse map of ¢ on its range.

Definition 2.22 If U is an open subset of Q" a function f: U — Q, is said to be a
Qp-analytic function, if it is expressed by a convergent power series in a neighborhood
ofeveryxinU.Amap f = (f1,..., fm): U — Qf,,” is said to be a Q,-analytic map,
ifevery f;,i =1,...,m,is a Qp-analytic function.

Definition 2.23 Two charts (%1, ¢1, Q}') and (%, 2, Q}?) on 2" are compatible, if
bothgro@ | : @1 (% NU) — (U NU) and @10 @, @2(UNU) — (U NU)
are Q,-analytic maps.

If (%, ¢1,Q}') and (%, 2, Q) are compatible charts on 2 such that 2| N%, #
(3, then one can prove that, necessarily, it is n1 = ny [49].

Definition 2.24 An atlas A for 2 is a family {(%y, ¢, Q';‘”)}%A of pairwise com-
patible charts which cover 2, i.e., & = UaG A Uy An atlas A for 2 is called
n-dimensional if all the charts in A have dimension 7.

Similarly to the standard real case, it is now natural to set the following:

Definition 2.25 A Hausdorff space, 2", together with a maximal (w.r.t. inclusion) atlas
A is called a Q-analytic manifold. The manifold is called n-dimensional if the atlas
A is n-dimensional.

For notational convenience, in what follows we shall denote an n-dimensional atlas
on Z as A = {(%, Pu)}aca; moreover, we will refer to ‘Q,-analytic manifold’
simply as ‘Q,-manifold’. If 27, # are two Q,-manifolds of dimension m and n
respectively, we shall say that a map f from 2" to % is Q,-analytic if, for every
x € 4, there exist a chart (%, ¢, Q’[Z’) on £ around x, and a chart (¥, ¥, Q’;)) on

% around f(x), suchthat f(%) C V¥, anddfofoal (%) — Q) is aQp-analytic
map.
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Remark 2.26 Every Q,-manifold 2" is both totally disconnected and locally compact
(TDLC in short). In particular, the latter condition entails that for every point x of
Z, the set 7, of all compact open subsets in 2~ containing x forms a base at x (see
Lemma 7.1.1 in [52]). Therefore, the set 7 (2Z") = (J,c 9~ 7 of all the compact open
subsets of .2 forms a basis for the topology of 2 .

Analytic differential forms on QQ,-manifolds are defined in a similar fashion to the
standard real setting (see Chapter 2 in [52] for a thorough discussion). Indeed, let 2~
be a Q,-manifold of dimension , and let A = {(%, ¢o)}nca be anatlason 2. If ®
is a differential form of degree k < n on 2, its restriction ®y := ©|, —in the local
coordinates of (%, ¢4)—is given by

Ou(w)= Y 0% . (wdxj A Adxj,, (35)
i< <k
where 9;‘1 j, are Qp-valued functions on %, and where we set ¢y (1) = (x1, ..., X;)

to denote the local coordinates of u in %, . If, for every o € A, the maps 9"‘1 ;, are
all Qp-analytic functions on %,, we say that © is a Q,-analytic differential k-form
on 2. If Q is a Qp-analytic differential n-form on 2~ (i.e., of maximal degree equal
to the dimension n of 27), its local expression €2, := 2|4, can be written as

Qu(u) = wo(u)dxy A -+ Adxy, (36)

for wy: % — Q p a Qp-analytic function. In what follows, we shall abbreviate
‘Qp-analytic differential k-form’ to ‘differential k-form’.

Let F: & — % be aQp-analytic map between n-dimensional QQ,-manifolds 2,
%, and let E be a differential n-form on %. The pullback F*E of E through F is a
well-defined differential n-form on 2 [52]; specifically, if (%, ¢y) is a chartin 2",
and (73, ¥g) is a chart in %/, then, on %, N F_l(”f/,g) one has:

F*Eﬂ — F*(Eﬂ dyt Ao Adyn) = (§g o F)(detDF)dxy A - -+ Adxy, (37

n
i=

where (x;)?_; and (y j)?=1 denote the systems of local coordinates of %, and 7}
respectively, and where DF is the Jacobian matrix of the transformation F.

To conclude this subsection, we now discuss the principal object of our investiga-
tions:

Definition 2.27 A p-adic Lie group G is a Q,-manifold which is also a group, and
such that the multiplication map

GxG>(g,hr—gheG (38)
is Qp-analytic.
From Definition 2.27, it follows that the inverse map, G > g +— g’] € G,isaQ,-

analytic map. Moreover, it is clear that every p-adic Lie group is a TDLC Hausdorff
space (see Definition 2.25 and Remark 2.26).
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Remark 2.28 Let G be a p-adic Lie group. For 1 € G, the map ¢;, of left translation
by A is defined as:
G>gr— (g =hg edG. (39)

This map is the composition of the map G > g — (h, g) € G x G, and the multipli-
cation map defined in (38); hence, it is Q,-analytic (the composition of Q,-analytic
maps is a Q,-analytic map; see Lemma 8.4 in [49]). Similarly, one can define the map
of right translation, r, on G, which is QQ,-analytic as well.

Remark 2.29 A classical result by van Dantzig (see Theorem 7.7 in [44]) states that a
TDLC group admits a base at the identity consisting of compact open subgroups (and
vice versa). This result provides a peculiar characterization of the topology of p-adic
Lie groups.

Since a p-adic Lie group, G, is a Q,-manifold, we can clearly define differential
k-forms on it. In particular, we say that a differential k-form ® on G is left-invariant
if E;@ = 0O forany & € G, i.e., if

60(g) =0(h"g) (40)

holds for every g and & in G. Right-invariant differential n-forms are defined similarly
with £, replaced by 7. By taking & = ¢! and g = e in (40), we also see that

z;,1®(e) = 0(g), 41)

that is, if ® is left-invariant on G, its value at every point on G is determined by the
value ® assumes at the identity e in G. In the next subsection, we shall prove that
a left-invariant n-form on G can always be constructed, and that it naturally induces
the left-invariant Haar measure on G. For the moment, we want to stress a relevant
topological feature of p-adic Lie groups which will turn out to be central in our later
derivations. We recall that a Hausdorff space 2" is called paracompact, if every open
covering of 2" can be refined into a locally finite open covering. We say that 2~
is strictly paracompact if every open cover of 2" admits a refinement consisting of
pairwise disjoint open sets.

Proposition 2.30 Let G be a second countable p-adic Lie group. Then, G is a strictly
paracompact space.

Proof By assumption, G is locally compact, second countable and Hausdorff, hence o -
compact (i.e. union of countably many compact subspaces). Every o -compact space is
Lindelof, and, therefore, paracompact (cf. Theorem 5.1.11. in [53]). Then, the propo-
sition follows by the equivalence of the points i and ii of Proposition 8.7 in [49].

O

Remark 2.31 From Proposition 2.30 it follows that any second countable p-adic Lie
group G can always be endowed with an atlas consisting of pairwise disjoint charts.
Indeed, since every atlas is an open covering, it admits a refinement consisting of
pairwise disjoint open sets. Then, the restriction of the coordinate maps of the initial
atlas to the sets in the refinement provides a new system of charts for G.
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Remark 2.32 1t is well known that a LC group G is Polish iff it admits a second
countable topology (see Theorem 5.3 in [54]). Therefore, a second countable p-adic
Lie group is also a Polish group.

In this work, p-adic Lie groups will always be assumed to be second countable (as
so are the most important examples); hence, they are LCSC Polish groups.

2.3 p-Adic rotation groups

A noteworthy class of p-adic Lie groups is given by the special orthogonal groups over
the p-adic fields. We devote this subsection to recall some of their basic properties
[31, 35].

The general definition of special orthogonal group is given in terms of quadratic
forms Q: V — F, for V a vector space over a field F (see [34, 55] for a thorough
discussion). Quadratic forms, up to linear equivalence and scaling, lead to isomorphic
special orthogonal groups [34]. In this work, we always assume that the quadratic
forms Q are non-degenerate (i.e. they have maximum rank).

If the characteristic of I is different from 2 (as it is for R and Q,), a bilinear
form b(x,y), X, y € V, induces a quadratic form Q(x) = b(x, X) and, vice versa, a
quadratic form induces a bilinear form, i.e.,

1
b(x,y) = E(Q(X+Y) -0 — 0(y). (42)

Therefore, we are allowed to use interchangeably quadratic forms and bilinear forms.

The unique non-degenerate definite quadratic form on R”, for every n > 2, is given
(up to linear equivalence and scaling) by Or (x) = ;’:_01 xl.z. This is represented in the
canonical basis by the n-dimensional identity matrix I,,. Thus, the (compact) special

orthogonal group over R of degree # is

SO, R) ={LeM,(R) | LTL=1,, det(L) =1} (43)
={L e M,(R) | (Lx, Ly) = (x,y) forevery x,y € R", det(L) = 1},
(44)

where (-, -): R” xR" — Ris the Euclidean scalar product on R”, and M,, (R) denotes
the associative algebra of n x n matrices over the field of real numbers R.

The following theorem characterizes the definite quadratic forms over Q, in every
dimension, as explicitly derived in [35] (see also [34, 55]).

Theorem 2.33 For every prime p > 2, letu € U, be a non-square—with U, denoting
the group of p-adic units, i.e., the group of all invertible elements of Z.,—andletv € U,
be defined by

~1 ifp=3 mod 4
v = 7p=3 modd, (45)
—u ifp=1 mod4.
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In the case where p > 2, there are (precisely) three definite quadratic forms on Q2,
up to linear equivalence and scaling,

0-v(®) = x5 —vxi, Qp() =xj+pxi, Qr(X) =uxg+pxi,  (46)
and there are seven on @%, namely,

01(x) =x3 +x},  Qs2(x) = x3 +2x3,

015(x) = x3 £5x7, Qx10(%) = x5 £ 10x7. (47)

There is a unique definite quadratic form on Qz (depending on p), up to linear equiv-
alence and scaling, i.e.,

2 2 2
x5 —vxi + px5 if p > 2,
X) = 48
Q-‘r( ) {xg+x12+x% lfp:2, ( )
as well as on Q4, ie.,
2 2 2 2
X5 — vxi + px5 — pvxsy if p > 2,
Q) =179 1772 0 (49)
Xy +xy+ x5 +x3 if p =2.

No quadratic form on QY is definite for n =5.

Remark 2.34 Note that all restrictions of the definite quadratic form Q4) on Q‘; to
any three variables, and indeed to any three-dimensional subspace, are equivalent to

3
Q4+ onQy,.
We can now characterize a relevant class of special orthogonal groups over Q.

Corollary 2.35 The p-adic special orthogonal groups associated with the definite
quadratic forms on Q%, are (up to isomorphism)

502, Qp)c = {L € My(Q)) | Ac=LTAL, det(L) = 1}, (50)
where A, are the matrix representations, in the canonical basis of Q, of the quadratic
forms in (46) and (47). Index « ranges in {—v, p, %} whenever p > 2, while k €
{1, £2, £5, £10} when p = 2.

For every p > 2, the special orthogonal group associated with the definite quadratic
form on Q;’, is (up to isomorphisms)

SO(3,Q,) ={L e M3(Q)) | A=LTAL, det(L) =1}, (5D
while the one on Qﬁ, is

S04, Q,) ={L e My(Q,) | A'=LTA'L, det(L) = 1}. (52)
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A and A’ are the matrix representations in the canonical basis of Qf, and Qﬁ, of the
quadratic forms (48) and (49) respectively.

Itis not difficult to prove that the special orthogonal groups SO(n, Q,),n =2, 3, 4,

in Corollary 2.35 are compact as subsets in Q’I’f. Indeed, we can introduce a p-
adic (non-Archimedean) norm on SO(n, Q,) by setting [|M|l, = [[(M;j)ijll, =
max; j—1,..n |M;jlp. Clearly, SO(n, Q,), n = 2,3, 4, turn into topological groups,
whenever they are endowed with the natural topology generated by the open balls of
the p-adic norm. We recall that a set K C @Z’ is compact if and only if it is closed and
bounded w.r.t. the ultrametric topology generated by (the open balls of) the p-adic
norm N, (X) := max;—1, . m |%i|p of@Z‘ [6,56]. SO(n, Q,), n =2, 3,4, are closed,
as they are groups of solutions of a system of continuous (polynomial) equations. On
the other hand, every matrix in the groups of Corollary 2.35 has bounded entries (see
Theorem 5 and Remark 14 in [35] for the details); specifically, we have:!

SO, Q) = SOQ2,Z,), except SOQ2, Q2)_s5 = SOQ2,27'Zy)_s;
SOB3,Q,) = SO3,Z,); (53)
SO(4,Q,) = SO, Z,) except SO(4, Qy) = SO4,27'7Zy).

2

This entails that |M||, < p for every M € SO(n,Q,) C M,(Q,) = '1', ,

SO(n, Qp), n = 2,3, 4, is a bounded subset of Q’;,z.

Remark 2.36 We have used definite quadratic forms to define the p-adic special orthog-
onal groups. It turns out that those groups defined on indefinite quadratic forms are
not bounded, whence, not compact.

i.e.,

In the light of the discussion above, the following result is now clear:

Proposition 2.37 The groups SO(n, Qp), n = 2, 3, 4 of Corollary 2.35 are all and the
only compact p-adic special orthogonal groups.

The next theorem provides a parameterization of the compact p-adic special orthog-
onal groups in dimension two [35].

Theorem 2.38 Any element of SO(2, Q). takes the following matrix form in the
canonical basis of Qf, :

l—ka? _ 2ka
2 2

Re(a) = | Mpe® THeg ) 0 e Q) U {00}, (54)
I+ka?  1+ka?

where R (o0) = —R(0) = —Ih, and k € {—v, p, f}for p > 2, while k €
{1, £2, 45, %10} for p = 2. The composition of two elements in SO2, Qp), for
any fixed k, is given by

RAa)RK(ﬂ):RK( ath ) (55)

1 —«kap

' To be precise, the statements concerning p = 2 are not quite right in Ref. [35], and are corrected here.

@ Springer



78 Page 18 of 59 P. Aniello et al.

foreverya, p € Q, U {oo}.

Remark 2.39 By choosing k = 1, and taking & = tan (6/2), a generic p-adic rotation,
as given in (54), assumes the form

(cos@ —sinG) ’ (56)

sin 0 cos 6

i.e., it ‘formally’ reduces to a real planar rotation by an angle 6.

2.4 Integration on p-adic manifolds

This subsection deals with integration theory on p-adic manifolds [52]. For our pur-
poses, we will need a p-adic counterpart of the well known change-of-variables
formula for multiple integrals on R". Therefore, we start with the following:

Theorem 2.40 (Change-of-variables formula). Let a € QZ and let &€ = (&1,...,&,)
1 U C Q) —» V C Q) beaQp-analytic isomorphism between an open neighborhood
U of a, and an open neighborhood V of & (a), such that

det (E(a)> # 0. 57)
8xj

Then, for every integrable function f on V, the following formula holds:
a .

det (i(x))
0x;

Proof Formula (58) is actually a special case of the abstract C.O.V.E. (see (26) in
Remark 2.17) specialized to the case where the pushforward of the measure on U is
realized via a Q ,-analytic map. See Proposition 7.4.1 in [52] for the technical details.

O

f F Ay (x) = / FE@)
Vv U

dhy (x), (58)
p

where )\ is the Haar measure on QZ.

Let 2" be a second countable n-dimensional QQ p-manifold, and 2 a differential
n-form on 2. If A = {(Zy, ¢o)}aca is an atlas on 27, Q is expressed as in (36) in
the local coordinates of each chart in A. Then, we can associate a Radon measure (¢
with Q by setting

na(e) = [f | ()] (9 )5h) (1), (59)

for every compact (open) subset ¢ C %, of 2, and where d((;a)*)»)(u) denotes the

pushforward of the Haar measure A by aa. It is not difficult to verify that this measure
is well-defined: if (%, ¢p) is another chart in A containing € (i.e., € C %p N %),
then

A e ()| pd (@ ) k) () = L g ()] pd((9 p)<1) (), (60)
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that is, nq (%) does not depend on the considered chart containing %’. We shall give
the proof of this result in Remark 2.42 below.

Remark 2.41 Since a second countable Q,-manifold is o-compact, the measure (59)
is regular (cf. Theorem 7.8 in [45]). Then, the measure of a Borel set £ C %, of 2~
is given, by inner regularity, by the supremum of the measures of the compact (open)
sets contained in £.

If f € C.(Z) is such that supp(f) C € C %, its integral w.r.t. g is also
well-defined, and is given by

/fQ::/ F @) wg ()] pd((9o)xk) @). 61)
F Uy

Let now % be an arbitrary compact (open) subset of 2. Its measure w.r.t. ;L can
be defined as follows. First, we can decompose % as

Cﬁ=|_|(€i, € C U,, for some o € A, (62)

i.e., as a disjoint union of compact (open) subsets %;, each contained in some %.
Then, the measure of % is given by

no(€) =Y na(6). (63)

Similarly, we can then extend the measure (63) to arbitrary Borel sets £ in 2~ (see
Remark 2.41). Exploiting (61), it is then not difficult to define the integral of an
arbitrary function f € C.(Z") w.r.t. ug, as well.

We can consider the pushforward of the measure pg via ¢, to a measure on Q’;,.
This allows us to treat the integration theory on a manifold 2" via integrals on Q.
Indeed, using formula (27), we have:

d((e)e112) () = (o) (00 @] pd((00) 1)) = (@4 0 9)(X)]pdA (), (64

where ¢, (4) = (x1, ..., x,) = x denotes the coordinate representation of the point
u € Z . Hence, using the (abstract) C.O.V.F. (cf. relation (26) in Remark 2.17) with
f = x¢, we obtain

(%) = L | ()] pd((9)51) () = / [(@a © 9o)(X)]pdA(x).  (65)

Z

¥a(?)

Furthermore, if f € C.(Z") is a function with supp(f) C € C %, it is clear that

/@/ F @)y ()] pd((9o)et) ) = / (f 0 @) (0)|(@0 9 ) ()] pdA(x). (66)

Vo (Uoy
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With the above discussion, we get to the following two conclusions. First, from (59),
we see that

-~ d
V«QW[OI L (@g)sh, - = |a)a|ps (67)

i.e., uqly, is an absolutely continuous measure w.r.t. (Ea)*)», with Radon-Nikodym
derivative given by |wy|p: % — R;. Secondly, (65) entails that (¢g)«pa <K
Moy (2, as well, with Radon-Nikodym derivative |w, o 1‘!_’a| »: 9o(%y) — R The
latter condition means that the pushforward of the measure pq on 2 via the maps ¢y,
for every o € A, provides an absolutely continuous measure w.r.t. the Haar measure
A on QZ' Their Radon-Nikodym derivative—which, for notational convenience, here-
after we will simply denote by n—is globally defined, and it is uniquely defined up
to a set of points of null measure (any other Radon-Nikodym derivative is equal to n
almost everywhere). Accordingly, we shall denote by 1, = |wy 0 1(/_30‘ | the restriction
of n on ¢ (%) C Q7, for every %, in the covering atlas A of .Z". Exploiting this
notation, and recalling condition (65), we can then write

na(?) = / N (x)dA(x), (68)
@ (€)

for every compact (open) subset ¢ C %, C Z . Similarly, we can express the integral
w.r.t. Q of every function f € C.(Z )—with supp(f) C € C %y—as

/ fe= / F@)|wg ()] pd((@ o) k) ) = / (f 0 9u) (D) a (X)AA).
Z Q/oz (/)oz(%u) (69)

Remark 2.42 Using the local representation (68), it is now not difficult to prove the
equality of integrals in (60). Indeed, let " C %, N %p be a compact (open) setin 2 .
Then, we want to show that

/ Na (X)dA(x) = / ng(y)dr(y). (70)
¥a(%) @ (%)

We first consider the change of variable y = (¢g o ga)(x) in the r.h.s. of (70). Then,
using Theorem 2.40, we see that (70) holds iff

N (x) = (1 0 9 0 Po)(x)| det D(gp 0 94) ()], (71)

where det D(gg o ga)(x) denotes the Jacobian of the transformation ¢g o ;a. On the
other hand, the pullback formula (37) also shows that

(@a 0 Po)(X)dx] A -+ Adx, = (9g)*Q

= (g0 9a) (9p) R

@ Springer



Invariant measures on p-adic Lie groups: the p-adic Page210of59 78

= (pp o @) (wpo@g)(y)dy A--- Ady,

= (wpo @gogpgo@,)(x)detD(pp o ¢,)(x)dx;
Ao Adxy,. (72)

Therefore, taking the p-adic absolute value of the Lh.s. and of the last equality in (72)
entails that (71) (and, hence, (70)) holds.

To conclude this subsection, we prove that it is always possible to construct an essen-
tially unique—i.e., uniquely defined up to a multiplicative constant—(left-)invariant
differential n-form on every n-dimensional p-adic Lie group. We will then show that
it is naturally associated with the (left) Haar measure on the group. This will draw a
parallel with the standard theory of (real) Lie groups [57, 58].

Let us first note that, also in the p-adic setting the tangent space TG to G ate € G
has a natural structure of Lie algebra g, whenever the elements X € T, G are identified
with the corresponding left-invciriant vector fields XonG [50]. Let Xq,..., X, bea
basis of T.G, and let X 1, ..., X, be the corresponding left-invariant vector fields in
g. We can now define, for all g in G, the 1-forms wy, ..., w, on G via the condition

(@) (X)g) =8, j=1,....n. (73)

By construction, wy, ..., @, are left-invariant 1-forms on G, as follows by observing
that 3 3 :
Lewi) (X)) = wi (65X ) = 0i(X). (74)

In particular, this also entails that w1, ..., , form a basis of the dual space of T,G
for every g € G. Therefore, the differential form 2j,, defined as

Qiny = w1 A+ Ay, (75)

is a (nowhere vanishing) left-invariant n-form on G. Indeed, since the pullback EZ‘,
commutes with A, we have:

K;Qim, =€Z(a}1 Ao Awy) :Ezwl /\-~-/\€;wn =w| A Awy = Qiny, (76)

that is, Qjpy is left-invariant. It is clear that any constant multiple of 2,y is a left-
invariant n-form as well. Conversely, if €2 is another left-invariant n-form on G, there
must exist ¢ € Q, such that fZ(e) = ¢Qjny(e). But then, the left-invariance condi-
tion (41) entails that fZ(g) = cQiny(g) for every g in G.

We want now to show that if Qj,y is the left-invariant differential n-form on G, its
induced measure, (1, , is the left Haar measure on G (up to multiplicative constants).
Indeed, we already know that g, is a Radon measure. To conclude that it is a Haar
measure, we have to show that it is left-invariant. Let € be a compact (open) setin G.
From the left-invariance of Q2j,y we see that

@o 0 9o = (9a)" Qnv = (9a)" L1 Qiny. (77
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for every g € G. This entails that ug,  (8%) = ng,, (¥), for every compact (open)
set € C G, and g in G (see (65)). Moreover, since G is second countable, ug,,, is
regular. In particular, inner regularity entails that

Uiy (€) = sup{ug,, (K) | K C € compact}
= sup{uq;, (¢K) | K C & compact}
= o, (£5), (78)

for every Borel set £ in G, and every g € G. Concluding, we proved that ug,  is a
left-invariant Radon measure on G, and since the Haar measure is essentially uniquely
defined, it must coincide with the Haar measure on G up to a multiplicative constant.

3 The Haar measure on p-adic Lie groups

In this section, we show how to construct a left Haar measure i on a (second countable)
p-adic Lie group G. Our approach exploits the peculiar topological features of p-adic
Lie groups, and relies on the possibility to construct a quasi-invariant measure for
G. Eventually, we will prove that the measure thus constructed coincides with the
measure induced by the left-invariant differential n-form i,y on G (see Sect. 2.4).

We begin by recalling the notion of a quasi-invariant measure [36]. Let G be a
p-adic Lie group, and let v be a Radon measure on it. For 27 € G, we can define the
left translation v", of v by &, as

V(&) = v(hE), (79
for every Borel set £ € Bg. We say that v is quasi-invariant if the measures v" are all
equivalent, i.e., mutually absolutely continuous [45]. In such a case, we have:

dv"(g) = n(h, g)dv(g), (80)

where n: G x G — R} is a positive map on G x G. The function 7 is the Radon-
Nikodym derivative dvh/dv. For h, h' € G, since ph = (vh)h,, the chain rule for the
Radon-Nikodym derivative entails the following cocycle formula:

n(hh', g) =n(h,K'g)n(h’, g). (81)
forevery g € G. Inparticular, using (81) it is not difficult to prove the following result.

Lemma 3.1 Let G be a p-adic Lie group, and let v be a quasi-invariant measure on
it. The measure defined as

du(g) = n(g, e) 'dv(g) (82)

where e denotes the identity element in G—is a left Haar measure on G.

@ Springer



Invariant measures on p-adic Lie groups: the p-adic Page230of59 78

Proof Let " be the left translation, by 4 in G, of the measure u, as defined in (79).
For every Borel set £ in Bg, we have:

uhE) = /h €n<g,e)—1dv(g>= /g n(hg, e) " dv" (g), (83)

where in the last equality we have used the change of variable . ~!g — g. Then, taking
into account condition (80) for quasi-invariant measures, and exploiting the cocycle
formula (81), we have:

n(hg,e) = n(h, en(g,e),  dv"(g) = n(h, g)dv(g), (84)

which yield

/gn(hg,erldvh(g)=fgn(h,grln(g,e)-‘n(h,g)dv(g)
= /g n(g, &) 'dv(g) = u(&). (85)

Therefore, the first equality in (83) and the last one in (85) give the desired result. O

From Lemma 3.1 we see that it is always possible to construct a left Haar measure
on a p-adic Lie group G once known a quasi-invariant measure on it. Hence, our next
step is to show how to explicitly construct a quasi-invariant measure on G.

Let A = {(Zy, ¢a)}aca be a disjoint atlas on G (cf. Proposition 2.30). We can
construct a (regular) Radon measure v on G as follows. First, in every chart (%, ¢q)
in A, we define a measure v, on %, by setting

Vg = ((ﬂa)*)tou )‘Ol = )‘"(ﬂa(g}/ot)’ (86)

that is, vy is the pushforward measure, via Za : o (Uy) — U4, of the restricted Haar
measure Ay, (7,) on Q;. Note that since v, is finite on compact sets, it is a Radon
measure. In this way, we have constructed a Radon measure on every chart (%, ¢y )
in A. To obtain a Radon measure v on the whole group G, we can then act as follows.
Given any Borel set £ in Bg, we express it as the disjoint union £ = | |, 4 £y, where
Eo = E N, and set

aeA

V(€)= Z Ve (Ey). (87)
a€A

Since A is countable, the series in (87) contains a countable number of non-null terms.
It is now easily proved that the measure defined in (87) is a (regular) Radon measure
on G. Indeed, v takes values in [0, +00] as so do all the vys, and v(?) = 0. If {&;};
is a countable family of Borel sets in G, then v(U; &) = Zi v(&;), as follows by
observing that the v, s are o -additive, and that the summation order can be exchanged
in the double series Za Zi v (Ei N%,,) by positivity of the v, s. Moreover, v is clearly
finite on compact sets, and since G is second countable, we can conclude that v is a
regular, and hence Radon, measure on G (cf. Theorem 7.8 in [45]).
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Our next step is to show that this measure is quasi-invariant. To this end, leth € G
be some fixed point, and let us set, for any o, 8 € A,

Uly =g € U | hg € Up) = W™ (W) N Up)) = U OV ™ Up). (89)
Note that ﬁi/a]f p C W is an open set and

U = | |20 (89)

Assuming that %a}fﬂ # @, forevery j = 1,...,n,and at given h € G, we put

a( U} ) 3 x > Cpj(h: x) = pp.j(hp (1)) € Qp, (90)

where @g ; is the j-th vector component of gg: % — Q7, ie. ¢ = (90/3’1,

QB (p,g,n>. Moreover, the definition of g j(h; -) can be extended to the

whole open set ¢y (%) = |_| g P (%Off ) by varying § in A. In this way, we obtain a
map g j(h; )i @o(%) — Qp (for suitable labels 8 depending on the charts as in
(90)), for any given & € G. We can then define a function

pp(hs ) 6o (W) = RE,  pp(h; x) = |det [%(h; x)Lj’ksn ,, O1)
Eventually, we obtain a functionn: G x G — Rj, defined as follows:
n(h, ) = pp(h; o (8), 8 € U, o € A. 92)
Let us now define a (regular) Radon measure u; on G by setting
dun(g) = n(h. g)dv(g). 93)
We want to prove that v is quasi-invariant and, moreover, u, = v, so that
%h(g) =n(h, g). (94)

Since v is a regular measure, then v" and , are regular measures. Hence, by outer
regularity, it is sufficient to show that

wn(0) =v"(0), (95)
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for every open set O C G. Actually, since

0= |©n%. (96)

itis sufficient to prove (95) on every open subset O = O, of %, fora € A. Moreover,
since for any open Oy C %y,

Ou =|_|©a n%Ly) |_|oaﬁ, Oh 5= 0a N 4. 97)

it is enough to prove (95) on every open subset O = (’)g’ 8 of %ah 2 Assuming that

oh s @ (otherwise there is nothing to prove), we have:

v (O ﬂ) _w/};Oh dv(g)

a.p

= / dr(x) (since h(’)g’}3 C Up)

vB (hoa f;)
= / o (h; x)dA(x) (by C.O.VF. (58))

0o (O} )
= /oh n(h, g)dv(g) (by (86)-(87) and (92))

a,p

= un(Of p). (98)

In conclusion, we have v = ju;,. Therefore, v and v are mutually absolutely contin-
. . . h
uous, for every h € G—namely, v is quasi-invariant—and %(g) =n(h, g).
As a direct consequence of Lemma 3.1, the left Haar measure ¢ on G is of the form

du(g) = n(g. )" 'dv(g). (99)
With the above construction, we have proved the following result:

Theorem 3.2 Let G be a p-adic Lie group, and let A = {(y, ¢o)}aca be a disjoint
atlas on G. If w is the left Haar measure on G then, for every Borel set £ in Bg, and
any Uy in A, the following equality holds:

-1
dr(y),  (100)

det[ o ’(wa(y) ¢0(6))]

W(E N ) = /
(pa(gm%a)

where (%, o) is the chart around the identity e € G, (x);_, denotes a system of
local coordinates w.r.t. (%, ¢o), and ¢ is the map defined in (90).

1<j.k<n p
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Remark 3.3 In (100), the functions &, ; are correctly labelled by «. In fact, their deriva-
tives are performed in a neighborhood of x = ¢g(e), and, thus, &g, ,-(Ea(y); x) =
@a, j(Ea(y)Eo(x)) whenever go(x) € 2 is ‘sufficiently close to e’ such that

0o o(x) € Y.

Now, we prove that Theorem 3.2 still holds in the case of an atlas including possibly
overlapping charts. Indeed, let A = {(Z, ¢o)}aca be an arbitrary atlas on G. Since
G is strictly paracompact (see Proposition 2.30), we can always find a refinement A’
of A consisting of pairwise disjoint charts. Then, Theorem 3.2 provides us with a left
Haar measure on (every chart of) .A’. To show that this measure is well-defined on A as
well, we have to prove that for every Borel set £ in B contained in the intersection of
two charts in A, the value of the integral in (100) is the same w.r.t. the local coordinates
of the two charts; that is, we want to prove

(& N W) = (€ N Up), (101

for every Borel set £ in G such that & C %, N Ug, U, %p € A. To start with, the
r.h.s. of (101) explicitly is

-1
dA(z), (102)

wenw = [

0 (ENUp) oxy

0 Lo
det[ £. (cpﬁ<z>;¢o<e))]

1<j.k<n p

where we have denoted by y the local coordinates in the chart (%4, ¢g). Then, the

change of variable z = ¢g o Za (y) immediately yields
—1
dA(z)

/(Pﬁ (Enp) P

= det 00 o :
[ﬂa(Sn%)‘ © [ dxx ((‘pﬂ ¢80 ¢a)(y) <Po(6)>

GhY:

B /w ()

det [8(% 0@y (y)]

0 Yk
B /w (EN)

where, for notational convenience, we have omitted 1 < j, k < n in the Jacobians.
Note that in the second equality of (103), we have used the C.O.V.F. for multiple

g i —
det [ ;ﬁ” (95 ¢0(€))}

Xk
-1

p

X dr(y)

p

-1 -1

det [8(% 0 P4)j (y)]
0 Yk

08y i ~—
det[ N ((pa(y);fpo(e))}

0Xy

p p

x da(y)

p

—1
dA(y) = u(€ N %), (103)
P

o i —
det|: ; L (0o (1) <po(e))}
X
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integrals in Q) (cf. Theorem 2.40). Moreover, in the third equality, we have used the

fact that g ; and ¢y, ; are related via the condition gy ; = @q,; © 1(;_3‘9,]- o ¢p,j, and
then we have exploited the usual chain rule for the Jacobian of a composite function.
Therefore, (101) shows that the (left) Haar measure in Theorem 3.2 is well-defined
over overlapping charts; that is, it does not depend on the particular chosen chart in
A. Concluding, we have the following Corollary of Theorem 3.2.

Corollary 3.4 Let G be a p-adic Lie group, and let A = {(y, ¢o)}aca be a (not
necessarily disjoint) atlas on G. The left Haar measure . on G is expressed, in the
local coordinates of any given chart (Uy, ¢y) in A, as

-1
dr(y), (104)

det[ b ’(%(y) wo(e>)]

W(E N W) = /
Wa(gm%a)

for every Borel set £ € Bg, where (%), o) is the chart around e € G, and (Jck)z=1
denotes a system of local coordinates w.r.t. (%, ¢o)-

1<j.k<n »

To conclude this section, we now show that the Haar measure (104) coincides with
the measure on G associated with the left-invariant differential n-form 2;,, on G, as
constructed in Sect. 2.4. Indeed, let us denote with Q the differential n-form on G
whose local expression Qq, in every chart %, in A, is given by

Qu(g) = det[D&y (g5 9o(e))] ™ dxy A -+ A duxy, (105)

where, as usual, D¢, denotes the Jacobian matrix of ¢, = ({«,;)/_,, and where we

j=r
set 9y (g) = (x1,...,x,). It is clear that the measure ug, associated with Q via
relation (65), coincides with the Haar measure in (104). (It is worth noting that, from
Corollary 3.4, it follows that €2 does not depend on the particular chosen chart on
G, i.e. it is a well-defined differential n-form on G). To prove that the form (105)
coincides with the left-invariant differential n-form Qj,y on G, it is enough to show
that condition (40) holds, i.e., EZQ(hg) = Q(g), for every h, g in G. Indeed, this
will prove that €2 is a left-invariant differential n-form on G, and due to its essential
uniqueness, we can then conclude that it coincides with Qi (up to a multiplicative
constant). In fact, we have:

6:Q2hg) = EZ(det[DéﬁC s 0017 (hg)dyr A -+ A dyn)
= det[D(¢(-: @o(e)) o €)1~ (hg) det[Dey]dxy A -+ A dxy
= det[D&y (h~'hg; 9o(e))1™ " det[De; 17! det[D)]dx; A -+ A dx,
= Q(g), (106)
where we set gy (hg) = (y1, - - ., yn). Note that, in the second equality we have used the

pullback formula (37) for differential forms, while in the third equality we have used
the formula for the Jacobian of a composite function, taking into account the relation
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la,j = Pa,j © I(Zﬂ’j o ¢p,j between ¢, ; and ¢g ;. Hence, since the Haar measure is
essentially uniquely defined, we get to the conclusion that the left Haar measure (104)
must coincide (up to a multiplicative constant) with the measure g, , induced by the
left-invariant differential n-form Qj,y on G.

Remark 3.5 Let us clarify how the local formula (104) for the Haar measure © on G
allows us to globally integrate a function on G. Given f € C.(G), its Haar integral
/, ¢ f(8)du(g) can be computed by splitting f* as a sum of its components on local
supports contained in the domains of the charts in an atlas for G. This is done by
making use of a partition of unity { x4 }wca under an atlas {(%, ¢o)}aca of G. Then,
the following relations hold:

/G f(@du(g) = /G Y Xef(@du(@) =)

aeA a€A

ﬁz/ X f (8)dp(g)- 107)

Each integral in the summation can be computed by using the local formulas (104).

4 Applications

As previously observed (Proposition 2.37), the groups SO(n, Q,), n = 2,3, 4, are
compact. Hence, they admit a (left and right) Haar measure, which is essentially
uniquely defined, i.e., unique up to a normalization constant factor. The construction of
the Haar measure on SO(2, Q) immediately follows by formula (104). On the other
hand, we will explicitly construct the Haar integrals on SO(3, Q,) and SO(4, Q,). A
fruitful approach is to introduce a suitable p-adic quaternion algebra, H,, and exploit
its relations with the p-adic special orthogonal groups in dimension three and four. In
particular, we will prove that the latter groups can be realized as suitable quotients of the
quaternion groups H[X, and IP’(]HI;) respectively (c.f. Theorems 4.14 and 4.16), whose
Haar measures are determined, once again, by means of a direct application of (104).
Then, exploiting the Weil-Mackey—Bruhat formula introduced in Sect. 2.1, we will
express the Haar integrals on SO(3, Q) and SO(4, Q) as lifts to the Haar integrals
on the covering quaternion groups (see the forthcoming Theorems 4.21 and 4.26).

4.1 The Haar measure on SO(2, Qp)

In this subsection, we explicitly construct a left and right Haar measure on every
SO(2, Qp)«, as in Corollary 2.35.

According to parameterization (54), SO(2, Q) is homeomorphic to the p-adic
projective line, and it is covered by two disjoint charts. One coordinate map, say
@), is defined on SO(2, Q). \{—I} to Q,, and it is such that E(K)(x) = R(x)
(cf. Theorem 2.38); the other one maps —I € SO(2, Q,), to co. Since the groups
SO(2, Qp), are compact and infinite (uncountable), the singleton {—I} has zero Haar
measure. The Jacobian in (104) is now easily computed: by recalling the composition
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law (55), we find

I<jk<n dB

[3§(K)

d o+ p 1 +«a?
z (=)

1 —xap - (108)

(¢ 0@ B) | = T rag

(Note that —« is never a square [35],1i.e., | +ra? # Oforevery o € Q,). Therefore, an
application of (104)—with 8 = ¢()(I) = O—immediately yields the Haar measure
of every Borel subset £ in SO(2, Q) :

n3 @& = /

D(k)

—  dMa), (109)
(g) |1 + KC(2|p

with dA(«) the Haar measure on Q.

Remark 4.1 One can directly verify that the measure in (109) is a Haar measure, i.e.,
left- and right-invariant. Indeed, let us consider the functional invariance condition
in (3):

dA(a)
() _
/ Lgf(x)dﬂz (x) —/LRK(ﬁ)f(RK(a))m
SO(Z»QP)K O(EQ,,
dA ()
= / FR(=BRe(@)——2—, (110
[T+ ka|,
aeQ),

for f € C(SO(2, Qp),() a compactly supported function on SO(2, Q) (recall that
C.(X) = C(X), whenever X is compact), and where g = R, (8), for some 8 € Q,,.
In the last integral, we have also used the fact that L, f(x) = f (g_lx) (i.e., the left
translation of functions on SO(2, Q). ), together with R, (8) 1 =R, (—B).Recalling
formula (55), we have:

(k) Ol—ﬂ 1
Lg f(x)dpy " (x) = / f<RK<1+m,B)) |1+m2|pdk(ot)- (111)

SO2,Qp)« acQ),

Let us now set w = (@ — B)/(1 + xaB). We have:

2
(1 —kwp)?

= (112)

and, by inserting (112) into (111), we obtain
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11— kwpl3 11+ kB2,
/ N ) +x(w + P, 11— Bl

o eQ)
11+ xpB2,
— d
éf(w)|1+/cw2+/<,32+/<2w2/32|p @
@ eQp
11+ kB, / 1
— dw = 4
/ f(w)|(1+/cw2)(1+l<ﬂz)|p @ f(w)|1+/<w2|p @
weQ), weQ)
= f Fduy? (). (113)
SO2.Qp)x

This shows the left-invariance of the measure. On the other hand, since the group is
compact, this also entails the right-invariance of the measure (109).

Remark 4.2 The Haar measure of any Borel subset F of SO(2, R) is given by

n(F) = re(F)), (114)

where A denotes the Haar measure on R, and the coordinate map on SO(2, R) is

0959 —sinf = 6 € [0, 27[. On the other hand, with k = 1 and
sin 6 cos 6

given by ¢ (
o = tan (%), an element of SO(2, Q,)1 becomes formally identical to an element
of SO(2, R) (cf. Remark 2.39). Therefore, one may expect that such a ‘reduction’
applies also for the Haar measure. Indeed, using the C.O.V.F. for p-adic integrals (see

Theorem 2.40) we have:

! 1
(1)
1y () Z/ —d?»(a)—>/ ' ‘ dr(6)
2 o © 1 +ka?|, o(F) | 1+ tan?(6/2) » »

_ / dr(0), (115)
o(F)

i.e., the Haar measure on SO(2, Q) reduces to that on SO(2, R), up to the normal-
ization constant factor.

1
cos2(9/2)

4.2 The quaternion algebra H,

The study of real quaternions was originally motivated by their property to model
Euclidean orthogonal transformations of R3 and R* [59]. It turns out that this
familiar picture keeps some of its main futures - but also requires some essential
modifications—when switching from the real to the p-adic setting. In what follows,
we will describe the quaternion algebra H, over the field Q, of p-adic numbers [60],
in a way that closely mimics its real counterpart (briefly reminded in “Appendix A.17);
later, (cf. Sect. 4.3), we shall clarify its relations with the p-adic special orthogonal
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groups in dimension three and four. The cases where p > 2 and p = 2 will be
discussed separately.

4.2.1 Casep > 2

In the standard real case, the quaternion algebra H is the vector space R* = R x R3
equipped with a suitable standard basis, namely, the one consisting of the vectors
1,i,j,k in R4 satisfying the commutation rules (200) of “Appendix A.1”. From this,
one can then define an isomorphism which realizes H as a subalgebra of M;(C).
Switching to the p-adic setting, it is then natural to set the following

Definition 4.3 Let p > 2 be an odd prime. By a p-adic quaternion algebra we mean
a four-dimensional vector space H, = Q,, x Qi;’j over Q, which is a Q,-algebra, and
satisfies the following conditions:
(a) There existi, jin H, such that, denoting by 1 the multiplicative identity in IH,,
the set {1, 1, j, k := ji} is a Q,-basis in H,.
(b) The basis vectors i, j, k in H, satisfy the following commutation rules:
2 2 2 se _ es Y TR T T
i“=v, j=—-p, k"=pv, ji=-ij, ki=-ik=vj, Kkj=-—jk=pi,
(116)
for v € Q, a non-quadratic p-adic unit.

Remark 4.4 By means of a direct calculation, one verifies that the centre of the quater-
nion algebra H, coincides with the base field Q,. This is reminiscent, to some extent,
of the standard real case where, similarly, one shows that the field of real numbers R
is the centre of the real quaternion algebra H.

On the quaternion algebra H,,, we can define a natural involutive anti-automorphism
by setting
Hp 3§ = qo +iq1 +Jq2 +Kg3 = § = qo —iq1 —jg» — kg3, & € Hp. (117)

Then, it is easily checked that, for every & € H,, the product of £ and E results into

£E = Qw (90, 91, 92, 43) = 4§ — vqi + pg3 — pvg3, (118)

that is, the unique (up to linear equivalence and scaling) four-dimensional definite
quadratic form over Q,, for p > 2 (cf. (49) in Theorem 2.33). Therefore, we can
express the inverse £ ~! of every (non-null) p-adic quaternion as

i 5
0w (qo, 91,92, 93)

(119)

In what follows, we shall denote by

HJ = {§ e H, | £ # 0} = {§ = qo+iq1+iq2+kgs € Hp | Q4)(q0. q1. 92. 43) # 0}
(120)
the multiplicative group of invertible quaternions.
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Remark 4.5 In the literature (e.g., see [59]), the reduced norm is defined as the map

H, 5 & — nrd(€) = &€ = Q)(q0, q1. 92, 43) € Q). (121)

It is_easily checkeii that nrd is a multiplicative map; namely, nrd(£n) = &nén =
Enng = &nrd(n)é = nrd(n)é§ = nrd(§)nrd(n), for every §,n € Hp. More-
over, for every o« € Q, and & € H,, nrd(a§) = o?nrd(é), and nrd(€) =

Q@ (q0, —q1, —q2, —43) = Q4)(qo, 91, g2, q3) = nrd(§). In what follows, we shall
denote by & /nrd(&) the inverse element (119) of a quaternion & € H;.

In the group of invertible quaternions H, it is possible to single out the subgroup
of the so-called unit quaternions, namely, the group:

U(H,) =& e H) | §7' =&} = {§ € H, | nrd(§) = 1), (122)

We want now to show that, as in the standard real case, H, can be realized as a
suitable matrix algebra. To begin with, we recall that in the quadratic form Q) (x) =
xg - vx% + px% — pvx% onQ,, v € Q, is anon-quadratic p-adic unit,i.e., v ¢ (ny‘)2
and |v|, = 1. Accordingly, we set Q,(/v) to denote the quadratic field extension
of Q) by J/v. Let Mp(Q p (4/v)) denote the algebra of two-dimensional matrices over
Qp(4/v), and let H, be the subalgebra of the matrices M in M»(Q,, (1/v)) of the form

< x0 + Jvxi —x2 + ﬁx3> (123)
plx2+vx3)  xo—+Jvxg )’

where x; € Q,,i =0, 1,2,3. Itis easily checked that H,, is a (unital) Q,-division
algebra, where the inverse of every non-null element M € H), is

b X0 — 4/vx1 X2 — A/Ux3
M a det(M) (_p(XZ + ﬁX:«}) X0 + ﬁxl ’ (124)

and where det(M) = Q4)(xo, X1, X2, x3). Let us now introduce the matrices i, j, k in
M>(Q),(4/v)) defined as

R I S N

It is clear that every M in H), can be expressed as follows:

M = xo +ix; + jxo + kx3, xo,x1,x2,x3 € Qp, (126)
(here, we are omitting the identity matrix I, multiplying x¢); that is, H, coincides
with the Q,-linear span of the set {I,, i, j, k}. Moreover, i, j, k satisfies the following

commutation rules:

iZ=0vh, j>=-ph, K*=puh, ji=—-ij=k, ki=-ik=vj, (127)
kj = —jk = pi,
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from which we can argue that H,, is a non-commutative QQ,-division algebra.

Remark 4.6 As in the complex case, the subset of invertible elements in H, forms a

group
HY = (M ecH, | M# 0y} = {MeH,|det(M) # 0}, (128)

where 0, denotes the null 2 x 2 matrix on Q p(ﬁ). Moreover, we can single out the
subgroup U(H,,) of elements in H; having unit determinant, i.e.,

UMH,) ={M e H; | det(M) = 1}, (129)

which provides the p-adic counterpart of (206) in “Appendix A.1”.

In the light of the discussion above, it is now not difficult to prove the following
result:

Proposition 4.7 For every prime p > 2, the p-adic quaternion algebra I, is isomor-
phic to the Q,-division subalgebra H), of M2(Q, (/).

Proof Let us consider the map

0+ Vv~ + Ve g
(@2 + Vvq3) qo — Vvqi P

Op : Hp 3 & = qo+iq1+jg2+kg3 — 9p($)3=<

(130)
Itis clear that 8, is one-one, onto and linear, i.e., it is an isomorphism of vector spaces.
Also, 6, is a ring homomorphism, since 6, (1) = 6,(5)8,(n) for every &£, n € H,,.
Hence, it defines an algebra isomorphism from H, to H,,. o

The algebra isomorphism 6, identifies the basis vectors 1, i, j, k of H, with I, and
the matrices (125) in the spanning set of H,, respectively. This then also justifies our
abuse of notation in using the same symbols for the basis elements of both H, and
H,.

Remark 4.8 Exploiting the algebra isomorphism 6, one can easily check that
nrd(§) = det(0,(8)) = Q4 (qo0, 91, 92, 43)- 131

Therefore, we can interchangeably use nrd(§), det(6,(£)) and Q(4)(qo0, g1, g2, g3) to
denote the reduced norm of § = go + ig1 + jg2 + kg3 in H,.

Remark 4.9 Using the isomorphism 6, it is clear that the subgroups U(H,) and H

of H), are isomorphic, respectively, to the subgroups U(H,) and H of H), (cf.
Remark 4.6).

4.2.2 Casep =2

As for the p > 2 case, we start by giving the following
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Definition4.10 Let p = 2. By a 2-adic quaternion algebra we mean a four-
dimensional vector space Hy = Q, x Q% over Q; which is a (Q,-algebra, and satisfies
the following conditions:

(c) There existi, j in Hj such that, denoting by 1 the multiplicative identity in Hp, the
set {1, 1, j, k} is a Q2-basis in H.
(d) The basis vectors i, j, k satisfy the following commutation rules:

P=ji?=K=—-1, ij=—ji=k, jk=-kj=i, ki=—-ik=j. (132)

We can endow H, with the involution (117), thus turning it into an involutive
algebra. Then, the inverse £ ~! of every non-null 2-adic quaternion & can be expressed
as

£

-1 _
o= nrd(§)

(133)

Moreover, we can single out the subgroup H5 < Hl, of invertible 2-adic quaternions
by putting
HY = {6 eH | & #0} = (¢ € Hy | nrd(§) # 0}, (134)

as well as the subgroup U(H)) < HJ of unit quaternions defined as
U(th) = {§ € HY | nrd(§) = 1}. (135)

We want now prove that H, can be made in a one to one correspondence with
a suitable matrix algebra. To this end, we recall that the definite quadratic form of
Q% is now given by (49); moreover, since —1 is not a square in (Q,, we can consider
the quadratic extension Q;(v/—1) of Q; by —1. Let My(Q;(+/—1)) denote the alge-
bra of two-dimensional matrices on Q;(+/—1), and let Hy € M (Q2(+/—1)) be the
subalgebra of matrices M defined by

xo++/—1x1 x2+/—1x3 )
= i Vi=0,...,3.
M <—x2 +/—Ix3 x0—~—1x1)" xi € Q, Vi=0,...,3 (136)

By construction, we have that det(M) = Q4)(xo, x1, X2, X3) = x% + xl2 + x% + x%.
Hence, every non-zero M € Hj is invertible, with inverse given by

M-l — 1 xo—/—1x;  —xa2—+/—1x3) . (137)
det(M) X0 —A/—1x3 x0 + 4/ —1x1 ’

i.e., Hy is an associative (unital) Q;-division algebra. Next, let us introduce the matrices
i, j, kin My (Q2(+/—1)) defined by

(5 () e ()
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Every M in H; can be expressed as M = xo + ix; + jx2 + kx3 (we have omitted
the identity I, multiplying xg); that is, Hy can be realized as the Q;-linear span of
{I, 1, j, k}. By further noting that i, j, k satisfy the commutation rules

P=j?=K=-L, ij=—ji=k, jk=-kj=i, ki=—-ik=j, (139)

we also see that Hj is a non-commutative Q;-algebra.

Remark 4.11 As in the p > 2 case, we can introduce the group
HY ={MecH, | M+# 0y} ={M € Hy | det(M) # 0} (140)
of the invertible matrices in Hy, as well as the subgroup
UH,) = {M € HY | det(M) = 1}. (141)

The following result is a straightforward adaptation of Proposition 4.7

Proposition 4.12 Let p = 2. Then, the 2-adic quaternion algebra H is isomorphic
with the subalgebra Hy of My (Q2(+/—1)).

Proof 1t suffices to consider the map

C q0 +v—lq1 512+\/—193)
6r: Hy > & = go+ig1+jgr+kgs — 0 = e Hp,
h: Hy 3 § = go+iqi1+ig2+Kg3 »(§) <_q2 gy g0 — V=11 2
(142)
and observe that it provides the desired algebra isomorphism. O

Remark 4.13 The quaternion algebra H, shares some analogies with the standard real
quaternion algebra H. In particular, the matrix representation of a 2-adic quaternion is
‘essentially the same’ as in the standard case (just set /—1 := i for the square root of
the non quadratic element —1 € Q7). This is what one expects upon considering the
‘formal equivalence’ of the real four-dimensional quadratic form Qg with the four-
dimensional quadratic form Q 4y on Q.. However, the analogies between standard and
p-adic quaternion algebras cannot be pursued too far. Indeed, a fundamental difference
between H,, for every prime p > 2, and H is the following. For the latter, we have
that Or(qo0, 91,92, 93) = (g0, 41, g2, q3)||]12{4, i.e., the definite quadratic form QOp
on R* coincides with the squared Euclidean norm of R*. (This also entails that the
reduced norm of H is equivalent to the (square of) the Euclidean norm of R*. See
Remarks 4.5 and A.1). On the other hand, in the p-adic setting, we only have the
equivalence Q4) = nrd, i.e., the reduced norm of H, does not coincide with the
square of the p-adic norm of Q‘I‘).

4.3 Relation between p-adic quaternions and special orthogonal groups

This subsection clarifies the relations between p-adic quaternions and the p-adic
groups of rotations SO(3, Q,) and SO(4,Q,), for every p > 2. We begin with
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SO(3, Qp). Let us consider the action by conjugation of the group H of invertible
quaternions on I, ; namely, the map

H, > nr gng~' e Hp, (143)

where £ € H, and p > 2. This map is an isometric linear transformation of H,,
since it preserves the reduced norm of every quaternion 7 in H:

nrd(¢n& ") = nrd(&)nrd(n)nrd(6 1)
= nrd(&)nrd (& ~")nrd(n)

= nrd(£&~ Hnrd(n)
= nrd(n); (144)

equivalently, the action by conjugation of H preserves the definite quadratic form of
Q‘IL,. Moreover, the operation 1 — £n&~! leaves the centre Q p of H,, pointwise fixed
and, hence, also leaves the orthogonal subspace Q;’J invariant.

(Note: Here, we refer to the orthogonality w.r.t. the inner product induced by the
definite quadratic form of Q*, as defined in (42)).

Let us now consider the restriction of (143) to the subset Hg ={vel,|v=
ig1 + jqo +Kkq3} of pure imaginary quaternions in H,; that is, let us consider the map

kpE): HY) v > k() =8vE"", £ eHY. (145)

By noting that Hg =~ 3, and reminding that the action (143) is an isometric trans-
formation of H,, we deduce that «,(§) preserves the restriction of Q) to Q;,
i.e., the (equivalent) quadratic form Q4 (see Remark 2.34). Hence, we deduce that
Kp(€) € 03,Q,) = {L € End(Q}) | Q4 (Lx) = Q1 (%), ¥x € Q}} represents an
orthogonal transformation in Qf,. Next, by observing that, for every &, p € H, and
v € HY, the equalities k,(Ep)v = (Ep)v(Ep) ™" = E(pvp™")E7" = 1p(E)ip(p)V
hold, we can conclude that «, : H; — O(3, Q) provides a group homomorphism.

Let us now explicitly derive its action on a pure imaginary quaternion v in ]HI([)?. If
& =qo+iq1 +jq2 + kg3 € H;,‘ and v = is1 + jso + ks3 € HY, the action of Kkp(€)
on v is given by

_ o . . 1
gvE! = (610+1611+J612+k613)(lsl+Jsz+ks3)(610—lth—JCI2—kCI3)m, (146)

where we have used the fact that £~ = £/nrd(&) (see Remark 4.5). Expanding the
above products, one sees that the scalar part vanishes, as expected, and, by collecting
the terms in i, j and k, we get
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kp&)
| (495 —vai = pas +pvay  2p(qogs + q192) —2p(q0q2 + v4193)
= G 2v(q0q3 — q192) a§ +val + pa3 + pva;  —2v(qoq1 + pg2q3)
2(q092 — vq193) 2(—qoq1 + Pq2q3) a3 +vq? — pg3 — pvg3
(147)
for p > 2, and
g +at—a3—a3  2(q192 — 9390 2(q290 + 43q1)
k2(§) = nrd(®) 2192+ 9093) @} —at+4a3—47  2(q293 — q190)
2(q193 — 9290) 2(q190 + 9293) a3 — 47 — a3 + 43
(148)

for p = 2. A direct calculation shows that the transformations (147) and (148) have
unit determinant, i.e.,

det(kp(§)) = d@)? Q) (90 91,92, 43)° = 1. (149)

d(é

Therefore, we get to the conclusion that, for every prime p > 2, and every & € HX,
kp(&) € SO(3,Q)) is a three-dimensional p-adic rotation.

The above discussion shows that «, (H;) C SO(3, Qp). We are now going to prove
that, actually, also the reverse inclusion SO(3, Q,) C «p (HIX,) holds. Indeed, let us
first introduce the map 7, : HE,), — ]HI([)7 defined, for every p € ]HI; N Hg, as

2b(v, p)
nrd(p) ©

(V) =v — (150)

where b denotes the bilinear form associated with the quadratic form Q. in Q; (cf.
Sect.2). It is easily shown that this map satisfies the conditions 7,(p) = —p and
Q4(tp(v)) = Q4+ (v), forany v € Hg = Q3; namely, 7, € O3, Q,)\SO@3,Q,)
defines a hyperplane reflection (w.r.t. p) in H(,),. Moreover, by taking into account
the defining properties of b, nrd and H’, and recalling that, for a pure imaginary

quaternion v in HY, one has ¥ = —v, we see that the reflection (150) is explicitly

given by 7,(v) = —pvp~ L e T, = —kp(p). On the other hand, by a classical

theorem of Cartan and Dieudonné (cf. Theorem 4.5.7. in [59]), every special orthogonal
transformation in SO(3, Q,) can be written as the composition of two such reflections,
i.e. g = 1,7y, for all g € SO(3,Q)), and suitable py, p; € H; N Hg. Therefore,
every p-adic rotation in SO(3, Q) is expressed by

8 =Tp Ty = (—=Tp)(—Tpy) = kp(p)kp(p2) = Kkp(p1p2) = Kp(§), (151)
for & == p1p € H;. This then shows that KP(H;) = SO(3,Q,), i.e. that k), is

surjective.
The following result is now straightforward and crucial for our purposes.
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Theorem 4.14 The group SO(3, Q)) is isomorphic to the quotient of the group H of
invertible quaternions, and the multiplicative group Q; of non-null elements in Q,,
namely

S0(3,Qp) %H;/Q;. (152)

Proof To prove the group isomorphism (152), we can equivalently show that the
following

1 - QF = HX - 50(3,Q,) — 1 (153)

is a short exact sequence. We already know that «, is surjective. Furthermore, the
kernel of «, ker(k)), coincides with the image (@;,< of the embedding in the short
sequence:

ker(kp) = {&€ € H; | kp(§) =1€S0(@3,Q,))
={£ ¢ H; | kp(E)v = v forevery v € Hg}
= (& e H; | £v = vé forevery v € H))
={& eH; | §p = p& forevery p € H,} = Q}, (154)

as Q% is the centre of H* (see Remark 4.4). O
P P

The exact sequence (153) is reminiscent, to some extent, of the exact sequence
1 - {*1} - UMH) =SU2,C) » SO3,R) — 1, (155)

of the standard real case (cf. the isomorphism (210) in “Appendix A.2”). Here, the main
difference with the sequence (153) is provided by the fact that the groups U(H) and
[F> = {+£1} are replaced, in the p-adic setting, by the groups H} and Q; respectively.
The reason for this discrepancy is related to the peculiar features of the base field Q.
Indeed, it is possible to prove [59, 61] that a sequence as in (155) is exact if and only
if nrd(H*) C (F*)?, namely, iff the reduced norm of every invertible quaternion is a
quadratic element of the field. In the case where F' = R, this is certainly true. Instead,
in the p-adic setting, nrd(H;) - (@;j)2 is never true.

We want now to show that SO(3, Q,) and H;‘ /Q; are homeomorphic. This fact
will indeed play a fundamental role in our construction of the lift of the Haar integrals
on SO(3,Q,) to H;.

Let us preliminary recall that every LCSC Hausdorff space is a standard Borel space
once endowed with its Borel o -algebra. Accordingly, one calls a space X a standard
Borel G-space if X is a G-space (cf. Sect. 2.1), its Borel structure is standard, and if
the action of G on X is a Borel map. If X is a standard Borel G-space, and x € X is
a fixed point, let G, = {g € G | g[x] = x} be the stability subgroup at x. One can
show (cf. Corollary 5.8 in [47]) that G is a closed subgroup of G. Moreover, denoting
by g: G — G /G the projection homomorphism, the map

G/Gyr3q(g)— glx]le X (156)
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is a Borel isomorphism, and it is a homeomorphism whenever X is LCSC (cf. Theo-
rem 5.11 in [47]). Therefore, in such a case, X = G /G, are homeomorphic spaces in
a natural way. We are now ready to prove the following result.

Proposition 4.15 The group isomorphism (152) between SO(3, Q) and H; /(@;,< is
also an isomorphism of topological groups.

Proof The proof we give here is based on general measure-theoretical arguments on
G-spaces; for a more specific proof, involving the reduced norm of p-adic quaternions,
see “Appendix B”.

As a vector space, H, = Q, x Q; = Q‘I‘,, and we can provide H, with the product
topology (on Q,, we consider the natural (ultra-)metric topology generated by the
p-adic absolute value). Similarly, H} and Q‘;, — {0} are homeomorphic topological
spaces whenever they are equipped with the induced topology as subspaces of H, and
Q;‘, respectively. The continuity of the group operations (multiplication and inverse)
of H 7 is inherited from the continuity of the addition, inner multiplication (according
to the commutation relations among the basis elements) and multiplication by scalars
of Q‘[‘, — {0}; therefore ]HI; is a topological group. Also, H[X, is LCSC, as Q‘}, — {0}
is so (being an open subspace of the locally compact Hausdorff space Q?’)' We have
already observed that SO(3, Q) is a compact second countable Hausdorft group, once
endowed with the topology introduced in Sect.2. Hence, SO(3, Q,), supplied with
its Borel o-algebra is a standard Borel space. We want now to show that SO(3, Q)
is a standard Borel H[X, -space. To this end, we have to find a Borel action of ]HI[); on
SO(@3, Qp).

Let us introduce the map from ]HI; x SO(3, Qp) to SO(3, Q) defined as

H; x SO(3,Qp) 3 (§,R) — E[R] :=k,(5)R € SO3, Q)). (157)

It is easily shown that the map (157) provides a continuous left action of H 7 on
SO(3, Q). Indeed, continuity follows from that of x, and of the matrix multiplication
in SO(3, Q). Next, we have that £[v[R]] = k(&) (kp,(V)R) = (kp(E)kp(V))R =
kp(§V)R = (Ev)[R], for every £,v € H5, R € SO(3, Q). Moreover R — £[R]
is a homeomorphism for every fixed & € H;, as follows by observing that R +—
&[R] is surjective (since the multiplication in SO(3, Q) by the matrix (&) is so),
and injective (since if x,(§)R; = «k,(§)Ra, then Ry = R by the invertibility of
kp(&) € SO(3, Qp)), and both the map and its inverse are continuous (as they are just
matrix multiplications and inverses). This shows that (157) is a continuous (actually,
Borel) left action of H; on SO(3, Q). This action is also transitive, since it exists
an element R € SO(3, Q,) such that its orbit {x,(§)R | £ € H;} is the whole space
SO(3, Q) (it is enough to consider R = I, and the surjectivity of «,). Therefore,
we can argue that SO(3, Q) is a standard Borel (transitive) H;-Space. On the other
hand, the stability subgroup at every R € SO(3, Q) is given by {§ € H; | £[R] =
Ry = {§ € HY | kp(O)R = R} = {£ € HY | kp(§) = I} = ker(k) = QJ;
hence, we can conclude that SO(3, Q) and H /Q,; are homeomorphic spaces. In
particular, the homeomorphism is as in (156) with, for instance, the stability subgroup
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at I € SO(3, Q). Explicitly, the homeomorphism is ]HI; /Q; > s(@; = kp(€) €
SO(3, Q). This is, indeed, the same map providing the isomorphism in Theorem 4.14.
O

Proposition 4.15 concludes our discussion on the relations between p-adic quater-
nions and rotations in SO(3, Q). Now, we carry out a similar analysis to clarify the
relation between quaternions and the elements in SO(4, Q). To begin with, let us
introduce the left action of HJ x H on H, defined by

Hy>n+>é&no ' €H,, (¢.0) € H; xH. (158)

This action is by similarities, as follows by noting that

nrd(§)

nrd(n0~") = nrd(§)nrd(n)nrd(e™") = i)

d(n). (159)

In particular, the action is by isometries whenever nrd(§) = nrd(p). Hence, let us
introduce the group

PH) = {(§,0) € H x H} | nrd(§) = nrd(o)}. (160)

The restriction of the action (158) to a pair (§, 0) € P(H}) < H} x H is denoted
by «,(§, 0); namely, we set

k(. 0) Hy 30>k, E 0n=Eng " €Hp, (£.0) eP(HY).  (161)

Since this action is by isometries, and H, = Q*, then K;) (¢,0 €04,Qy) ={L €
End(Q‘},) | Qu@)(Lx) = Qu(x), forevery x € Q?,}. It can be easily checked that,
as done for the maps «,(§) in the three-dimensional case, K;(%’, 0) € SO(4,Q,), for

every (§,0) € ]P’(]HI;). Also, /c;,: IP’(H;) — S04, Qp) is a group homomorphism,
and we get to the following result:

Theorem 4.16 The group SO(4, Q) is isomorphic to the quotient of the group P(H;)
and the multiplicative group QIX, of non-null p-adic numbers:

SO@, Qp) = P(HY)/QX. (162)

Proof Since char(Q,) # 2, the isomorphism (162) follows from Proposition 4.5.17.
in [59]. In particular, to prove (162), it suffices to show that the following

1 — QF = P(H) N SO, Q,) — 1 (163)

is a short exact sequence. This is done similarly to the proof of Theorem 4.14: Surjec-
tivity of the map K;, : ]P’(H;) — SO(4, Q) again follows by the Cartan-Dieudonné
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Theorem (cf. Theorem 4.5.7. in [59]), and its kernel is

ker(k)) = (5, 0) € P(EY) | k) (£, 0) = I € SO, Q)
= {(§,0) € PH)) | k, (&, 0)n = n for every n € Hp)
= {(¢,0) € P(H)) | &én = no for every n € Hp}. (164)

In particular, the last condition must hold for = 1 € H,, providing the necessary
condition £ = p; hence,

ker(k,) = {(§,§) € P(H}) | §n = n& for every n € H,}
={& eH) | &n = né forevery n € H,} = Q. (165)

That is, the kernel of K/p is the diagonally embedded Q; = Q; (1, 1) in ]P’(]HI;). O

Remark 4.17 The shortexact sequences (163)is the p-adic counterpart of the following
sequence for the standard real setting:

I - {£1} = UMH) x UH) - SO4, R) — 1, (166)

where U(H) denotes the group of unit quaternions (see (201) in “Appendix A.1”"). This
then entails the well known group isomorphism (211). The main difference with the
p-adic case is provided by the fact that U(H) x U(H) and F, = {£1} are now replaced
by P(H7) and Q; respectively. Once again, this discrepancy is a consequence of the

fact that in the p-adic setting, nrd(H;) a (Q;)z.

Similarly to what we did for SO(3, Q,,), we are interested in proving that SO (4, Q)
and ]P’(H; )/ (@; are homeomorphic; this will allow us to consider the lift of the Haar
integrals on SO(4, Q) to that on ]P’(H;).

Proposition 4.18 The group isomorphism (162) between SO(4, Qp,) and ]P’(]HI;)/Q;
is also an isomorphism of topological groups.

Proof Consider the group ]P’(H;) with the subspace topology induced by Qﬁ, (the
latter, being endowed with p-adic topology). The group operations are continuous,
hence ]P’(H;) is a topological group. It is also Hausdorff and second countable, being
a subspace of the Hausdorff second countable space Qg. In addition, P(H7) is a closed
subspace of the locally compact Hausdorff space Q3 hence it is locally compact as
well. We are now going to show that, actually, SO(4, Q,) is a standard Borel IP’(H;,< )-
space. The group SO(4, Q) with p-adic topology is compact, second countable and
Hausdorff. Thus, SO(4, Q) along with its Borel o-algebra is a standard Borel space.
Let us introduce the map

P(H,) xSO4, Qp) 3 (¢, p), R) = (£, p)[R] =k, (€, p)R € SO@, Q). (167)

This map is continuous, and such that (&, p)[(v, D[R]] = i, (8, p)(/c;,(v, MR) =
(€, L), MR = (&, p)(v, M)IR], for every (&, p), (v,n) € P(HY), R €
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SO(4, Qp) (here, we have used the fact /c;, is a homomorphism). Moreover, the
map R +— (&, p)[R] is a homeomorphism, for every fixed (&, p) € IP’(H;). There-
fore, the map (167) is an action of ]P’(]HI,X,) on SO(4, Qp), which is transitive by
surjectivity of K;,. Actually, it is also a Borel map and, hence, SO(4, Q) is a
standard Borel P(H ;)-space. Now, we observe that the stability subgroup at any
R € S0(4,Qp) is {(§,p) € PH}) | &, pIR] = R} = {(§,p) € P(H)) |
k(6. PR = R} = {(6.p) € PHY) | k(€. p) = I} = ker(x)) = Q. Thus,
we can argue that IP’(H;) / Q; and SO(4, Q,) are homeomorphic, the homeomor-
phism being provided, once again, by (156). In particular, if we consider the stability
subgroup, for instance, at I € SO(4, Q,), the homeomorphism is explicitly given by
P(H;‘)/Q;‘ > (¢, p)@; > K},(é, p) € SO(4,Q,), and coincides with the isomor-
phism of Theorem 4.16. O

4.4 The Haar integral on SO(3, Qp)

The construction of the Haar integral on SO(3, Q) can be conveniently carried out
by exploiting the conclusions of Theorem 2.18 and Proposition 4.15. In particular, this
will bring us along two main steps: First, we shall construct the Haar measure on H;
and, hence, its associated Haar integral. Then, owing to the result in Theorem 2.18,
we will show that there is a natural lift of the Haar integral on SO(3, Q) to that of
H;.

To begin with, let us notice that, since H;‘ is locally compact, it admits a left Haar
measure.

Proposition 4.19 The group H; of invertible quaternions is unimodular.

Proof We exploit the well known result that a locally compact group is unimodular
whenever there exists a compact neighborhood of the identity element which is invari-
ant under the inner automorphisms of the group (see Chapter V in [46]). In the present
case, 1 € H; is an element of Q; < H;. Since Q; is the centre of H;, every subset
of Q; is invariant under the inner automorphisms of H;. Z; provides an instance of
such an invariant compact neighborhood of the identity 1. O

As a consequence of Proposition 4.19, the left and the right Haar measures on H[X,
coincide, and we can construct it by directly exploiting formula (104). In particular,
since H J = Q‘l‘, — {0} as topological spaces, the map ¢ defining this homeomorphism
provides us a global coordinate map for the elements of H 7. Specifically, if § =
qo + ig1 + jg2 + kg3 € HY, its coordinates are given by ¢(§) = (qo, 41, g2, g3)-
Therefore, the density function 5 (cf. Sect. 3) characterizing the Haar measure on H[X,
will be globally defined on the whole ]HI;; . We will discuss the cases p > 2 and p = 2
separately.

Letus assume p > 2 first. If &€ = go+iq1+jg2+Kkgs, and x = xo+ix; +jx2 +kxs
are two quaternions in H, their composition will result in another quaternion { =
z0 +iz1 + jz2 + kz3; namely

¢ =zo+iz1 + jz2 + kzz = (go +iq1 + jgo +Kkq3) (xo +ixy + jxo + Kkx3)
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= qoxo + igox1 + jgox2 + Kqoxs +ig1xo + vq1x1
—Kkqgi1x2 — juvgi1x3 + jg2xo + kgax1 — pgaxz — ipgaxs
+ Kkg3xo + jugsx| +ipgsxz + pvgsxs, (168)

from which we argue that

20 = qoXxo + vq1X1 — pqarx + pvg3x3, 21 = qoX1 + qixo — pqax3 + pq3xy,
22 = qox2 + q2x0 — vq1X3 + vg3Xx], 73 = qoX3 + g3xo — q1x2 + qax1. (169)

We can now compute the function g% (g(q); <p(e)), where the vectors of coordinates
of e and & are (1,0, 0, 0) and (qo, q1, g2, q3) := g respectively:

% 3% 3 %

d a 0 ad v — v
s, - o Mo Tm 9m q0 vq1 quf q3
lo@ie@)= |50 B B B ol P
%1 % 3—2 a—fé 3—2 q2vq3 qo  —vq1
3 s 3G 3G q3 92 —491 4o
axo 9x1  oxp ox3/ o=l
x1,x2,x3=0
(170)
This yields
3¢ —
det (ﬁ(fﬂ(fl); w(e))> = (¢ — vqi + pgs — pva3)*, (171)

which, as anticipated, is globally defined on ]HI;. Then, using (104), we can conclude
that the Haar measure of any Borel subset £ of H is

1
iy ) = [
, 0@ g5 — vai + pa; — pvasl

dr(q), (172)

where we recall that dA(q) denotes the Haar measure on Q‘I‘, (cf. Example 2.4).
For the p = 2 case, a similar discussion to the one leading from (168) to (171)
shows that

q0 —491 —42 —43

i~ q1 90 —q3 ¢ 2,2, 2, 22
det [ =~ : = det = (g2 +q?+q2+g3)>. (173
(axj (¢ @ 90(6))) o @ g —q | = @HaiTa ) (A73)

q3 —q92 41 490

Then, using (104), the Haar measure of any Borel subset £ of ]H12X is

(174)

Uz (E) = / dr(q).
2 0© lag +a} + 43 + q313

We summarize the above results with the following
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Proposition 4.20 Let p > 2 be a prime number, and let ]H[[X, be the group of invertible
p-adic quaternions. The Haar measure I on ]HI; is given by

I x(5)=/ di(q), (175)
o o) 10@(qo, 91, 92, 9313 1

for every Borel set £ C H, where & = qo+iq1 + jg2 + kg3, ¢(&) = (90, 91, 42, 43),
dAr(q) = dqodqi1dqadqs is the Haar measure on Q‘;, and Q 4) is the definite quadratic
form of(@‘l‘) (see (49) in Theorem 2.33).

Exploiting the results of Theorem 2.18, we shall now prove that there exists a
one-one correspondence between the Haar integrals on SO(3, Q) and those of HIX,

Indeed, let us consider the quotient group H; / Q; . According to the results in Sect. 2.1,
denoting by A the Haar measure on Q, (see Example 2.3), and with s : H}/Q) — HJ
a Borel cross section, the map P: L! (HX) — L! (H /Qy) defined as

(Pfx) = f @) fsWa).  xeHX/QF, fel'@®)  (176)

is a well-defined surjection of L! (H;) onto L! (H; / Q;) (cf. Remark 2.15). For K a
compact subset of HX, we can then define the set (cf. (17)):

Wi = {y € CI(H)) | (PY)(9) =1, Vg € K}. a7

In particular, adhering to the notation used in Sect. 2.1, we set W = \IIH; JQ5 Moreover,
forevery ¢ € W, we also denote by .,?:p Lt (H;‘ /Q;) - L! (]HI; )—i.e., the extended

WMB lift—the right inverse of P, as defined in (29). We are now ready to prove the
following

Theorem 4.21 Let u3 and M be the Haar measures on SO(3, Q,) and H; respec-

tively. For every prime p > 2, and any ¢ € L (SO(3, (@p)), the following equality
holds:

/ dus(R)$(R) = / dig @) (20 9)(@). (178)
S03,Qp) Hy 7

where ﬁpd) el! (H;) is the (extended) WMB lift of the map ¢.

Proof From Proposition4.15, SO(3, Q) is homeomorphic to H; /Q, hence this two
spaces are Borel isomorphic. In particular, by exploiting the homeomorphism between
SO(3, Q) and H /Qy, itis clear that, for any ¢ € L!(SO(3,Q,)), the Haar integral
in the Lh.s. of (178) can be expressed in terms of a Haar integral of the function ¢
on the homogeneous space ]HI; / Q[X,. On the other hand, the same homeomorphism
also entails that H[f / Q; is a compact group. But then, the equality in (178) directly
follows from (31) in Theorem 2.18. m]
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Remark 4.22 We stress that the result of Theorem 4.21 provides an equivalence of Haar
integrals. In other terms, computing the Haar integral of a function ¢ inL! (SO(3, Q,))

is equivalent to performing the integration of the function .Z ¢, namely

[ amwem = [ (o0, 919283 440, dgndgs, (179)
Q@) (90,91, 92, 43)13,

$0G3,Q)) H;
where we have used the explicit form of the Haar measure (175).

4.5 The Haar integral on SO (4, Q)

Here we extend to SO(4, Q) the results of the last subsection. In particular, in com-
plete analogy to what was done for SO(3, Q,), we will provide a suitable lift of the
Haar integral on SO(4, Q,) to that on }P’(H;).

We start by observing that the group P(IH 7 ) is locally compact and, hence, it admits
a left Haar measure. Moreover, ]P’(H;) is unimodular, since it is a subgroup of the
unimodular group H;‘ X H[X, (being the direct product of the unimodular groups H[X,)
[46]. Since the measure on every chart covering IP’(H;) can be obtained by translating
the measure around its identity element e, it is enough to explicitly provide the latter
by exploiting formula (104).

Consider the pairs of quaternions («, 8), (y,d) € IP’(H;). From the defining con-
dition of the group IP’(H;), it must be true that nrd(«) = nrd(8) and nrd(y) = nrd(5).
Explicitly, let «, 8, v, § be given by

a = ao +iay + jaz +Kkas, B = bo +iby + jbs + kb3,
y = co +ic; + jeo + kes, 8 =do +id| + jdo + kds. (180)

We shall denote the composition of the two elements («, 8), (v, d) in IP’(]HI;) by
¢ = (¢1, &) = (ay, Bd), where {1 = zo+izi+jz2+kzz and £ = z(+iz) +jz5+kz5.
Clearly, ¢ is a function of the parameters a;, b;, ¢;,d; for i = 0, 1,2, 3. Now, to
construct the Haar measure on P(H;‘), we have first to compute the Jacobian of the
function ¢. In particular, we shall consider («, §) as fixed, and (y, §) as variables. In
what follows, we will treat separately the cases p > 2 and p = 2.

Assume p > 2 at first. The components z; and zlf, i=0,1,2,3,0f {1 and &, can
be computed in the same way in which we found (169):

z0 = apco + vaicy — paxer + pvazes,  zi = bodo + vbidi — pbads + pubsds,
71 = apcy +ajco — paxes + pascz, 2} = body + bydy — pbads + pbids,

22 = apcy + axco — vaics + vascy, 25 = body + bady — vbid3 + vb3di,

73 = agcsz + azco — ajcy + axcey, 2/3 = bods + bzdy — bidy + brd;. (181)
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As anticipated, z; and z; are functions of the parameters ¢;, d;, i = 0, 1,2, 3 (we are
assuming a;, b; to be fixed). The defining condition nrd(y) = nrd(§) of the group
]P’(HIX,) is equivalent to 0(2) = Qu(do, dr,dr, d3) + vc]2 — pc% + pvc%, and imposes
a constraint on the variables c;, d;. Actually, this condition allows us to only consider
(c1, c2, €3, dy, d1, d>, d3) as independent parameters in a neighborhood of e € ]P’(H,X, ):
As the forthcoming remark will clarify, in such a neighborhood Q 4)(do, d1, d>, d3) +
vc% - pc% + pvc% is a quadratic element, and its square root will then provide co up
to a sign.

Remark 4.23 The identity element of P(H7) is identified in Qf, by (co, c1, ¢2, ¢3, do,
di,dr»,d3) = (1,0,0,0,1,0,0,0). Now, consider an open ball in Qi of cen-
tre (1,0,0,0,1,0,0,0) and radius 1, in the usual p-adic topology. Here, dy =
1 + pyo,di = pyi,ci = px; with yo,yi,x; € Zp, i = 1,2,3. Then,
Q@) (do, d1, da, d3) = 1+ pt and Q4)(do, d1, da, d3)+vci—pc§+pvc§ = 1+pt,
where ¢ = 2y0 + pQu (0. ¥1.¥2.y3), t' = t + p(vx{ — px3 + pvx3) € Z).
We can now resort to Hensel’s Lemma (Chapter II, Section 2.2 of [34]) to show that,
actually, 1 + pz, z € Zp, is a square in Z,, i.e. that f(x) = x? — 1 — pz admits
roots in Z,. First, f(x) = x2 — 1 mod p has roots x = +1 mod p, where the
derivative % = 2x takes values 2 # 0 mod p. Then, Hensel’s Lemma allows
us to (uniquely) lift each of these simple roots to a root of the same function modulo
p", n € Z-1, converging to a p-adic root. This proves that Q) (do, d1, d2, d3) and
Q@) (do, dy, dr, d3) + vc% — pc% + pvc% are squares. Hence, we can write

¢o = £/ Qe (do. 1. dy. ds) + ve? — pck + puc, (182)

atleast for (co, c1, ¢2, ¢3, do, dy, d>, d3) inaball in Qi centredin (1,0,0,0, 1,0, 0, 0)
of radius 1.

From Remark 4.23 above, we know that the domain of definition of the square
root (182) is non empty, and contains a neighborhood of the coordinates of the identity
element of P(H;), where c, ¢3, ¢3, do, d1, d>, d3 can be assumed as independent
variables. Here, we are referring to the coordinate map on such a neighborhood of
e€E IP’(H;) as

P(HY) 5 (v, 8) ~ 9o((y, 8)) = (c1, 2, c3, do, di, da, d3) € Q},, (183)

where y and ¢ are as in (180). The same argument can be repeated for the condi-
tion nrd(¢1) = nrd(&y), to express zo in terms of the other independent coordinates
20s Zi» 20, i = 1,2, 3. In conclusion, we are left with the following 7 x 7 Jacobian
matrix
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320, (9o(ai, bi); go(e)) B2y bz Dz Bz B2 Bz Bz
= 36} 36; 30;, adp Bd} Bd; dd3 s
0k t<jher | 22 02 03 07y 0z e b2

0z3 0z3 0z3 0z3 0z3 973 95 0

o1 Jes dex dde Bdi 3d> dda cl=cr=c3=

dcy dcy dc3 ddy ddy ddy 9d3 dom 1y =dymd3=0
(184)

where, inthe l.h.s., pg(e) = (0, 0,0, 1, 0, 0, 0) and (xk)z:1 = (c1, c2,¢3,do,d1,da, d3).
By using (182), the partial derivatives of the dependent variable ¢y w.r.t. the inde-
pendent ones are

0 0
9 Y =0, fori=1,2,3,  (185)
dc; | c1=ca=c3=0 ad; | c1=c2=c3=0
do=1,d1=dy=d3=0 do=1,d1=dr=d3=0
and 3
€0
— = =+1. 186
ody| c1=ca=c3=0 (186)

do=1,d1=dr=d3=0

Hence, using the expressions in (181), the Jacobian matrix (184) is straightforwardly
computed and reads:

ap paz —pay £a; 0O 0 0

vas ay —vay far 0 0 0

a —a; ag =Faz 0 0 0
=10 O 0 by vby —pby pvbs
0 O by by pby —pb
0 0 bz Ub3 b() —vb1
0 0 by by —by b

(187)

320, (wolai, bi); po(e))
Xy

1<j,k<7

o O O

The p-adic absolute value of the determinant of such a matrix is

det afo,j(g()(ai, bi); o(e))

= ‘ao(a(z) — va% + pa% - pva%)(b(z) - vb% + pb% - pvbg)z‘[7

Xy
V4
= '\/Q<4)(b0, b1, by, b3) +va? — pa3 + pval Qu)(bo, b1, by, b3)*| . (188)
V4
For the last equality, we used again the condition nrd(§) = nrd(p) in a suit-

able neighborhood for the coordinates of the identity of ]P’(]HIIX,), where ay =
i\/ Qy(bo, b1, b, b3) + vai — pa3 + pvaj is well-defined.
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Let us now switch to the case where p = 2. The components of {; and ¢, are now
given by:

Z0 = apco — aic| — arcy — ascs, 26 = body — b1di — brdr — b3ds
z1 = apcl + aico + azes —azca,  zy = body + bidy + bads — byds
22 = aopcy + axco — ajcz + asey, Z/z = body + brdy — bids + bzd;
73 = apcs + asco + ajcy — azxer, 75 = bods + bado + bidy — bady. (189)

The defining condition nrd(v) = nrd(p) is equivalent to c(z) = Qu(do, dv,dr, d3) —
c% — c% — c%. Then, analogously to the case where p > 2, itis not difficult to prove that,
in a suitable neighborhood of (1, 0, 0, 0, 1, 0, 0, 0) in Q?,, co can be expressed in terms
of the independent variables c1, c2, ¢3, do, d1, d2, d3, as the forthcoming Remark will

clarify.

Remark 4.24 Consider an open ball in Qg of centre (1,0,0,0, 1,0, 0, 0) and radius
1/2,in which dy = 1 4 4yg, di = 4y;, ¢; = 4x;, with yo, yi, xi € Zp,i = 1,2, 3.
In this case, Q) (do, d1, da, d3) = (1 +4y0)* + (4y))? + (4y)* + (4y3)? = 1+
8(yo + 20 (30, 1, ¥2, ¥3)) and Q) (do. di, da, d3) — 3 — c3 — 3 =148y +
Z(Q(4) (vo, Y1, ¥2, y3) — x12 — x% — x%)] are squares in Z, as they are congruent to 1

modulo 8. Therefore, we can write

co = £/ Q) (do, di, da. d3) — 3 — 3 — 3, (190)

at least for (co, c1, ¢2, ¢3, dy, d1, da, d3) in an open ball in (@g centredin (1,0, 0,0, 1,
0, 0, 0), and of radius 1/2.

As a consequence, the coordinate map on a suitable neighborhood of e € P(H))
to (@; is as in (183). An analogous discussion can be carried out for the condition
nrd(¢1) = nrd(¢2), to show that zg can be expressed as a function of the (independent)
variables z, z;, z;, i = 1,2, 3, in a suitable neighborhood of the identity. It follows
that the Jacobian matrix for p = 2 is of the same form (184) for p > 2 and, as one
can easily check, the partial derivatives of the dependent variable c( are again given

by (185) and (186). Thus, we obtain

apg —az az :|:a1 0 0 0

a3 ap —ayta; 0 0 O

820, (Volai. bi): po(e)) I e A A

0 0 0 b by —bs by

0 0 O by by by —bt

0 0 O bz —by by by
(191)

0xy )
1<j,k<7
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which then yields

1o 220 i (9otai, bi); gote))
0Xy

= ‘ao(a(% +a? +al + a3) (b + b3 + b3 + b3)? )
2

= ’\/Q(4)(bo, b1, by, b3) —ai — a3 — a3 Q) (bo, by, ba, b3)?

. (192)
2

Once more, this expression is valid in the domain of definition of the p-adic square
root, containing a neighborhood for the coordinates of the identity of P(H).

By exploiting (104), the p-adic absolute values (188) and (192) immediately yield
the Haar measure on a neighborhood of the identity element of ]P’(]HI; ).

Proposition 4.25 Let p > 2 be a prime number, and let ]P’(]HI;) be the group of p-adic

quaternion pairs (160). For any Borel subset £ of ]P’(H,f ), the following equalities
hold:

MP(H; ) (€N
/500(50”//0)

—1

\/Q<4)(b0, b1, by, b3) + va? — pa? + pva? Qu(bo, b1, b2, b3)*|  di(q),
P

(193)

for p > 2, while for p =2,

'U’IF’(]HI;( ) (ENU)

/</Jo(5ﬁ”7/o)

Here, Mp@y) and d\(q) = daidaydazdbyodb1dbydbs denote the Haar measure on

~1
\/Q(4)(bo, by, by, b3) —a? — a3 — a3 Qu(bo, b1, b, b33 dr(g).

2
(194)

P(H}) and on QZ, respectively, Q) denotes the definite quadratic form of Q*, and

U is a suitable neighborhood of the identity element e € IP’(H;) where the coordinate
map ¢g (cf. (183)) is defined.

Since, by translation invariance, one can ‘move’ the measure on the fixed chart
around e all over the group, Proposition 4.25 is enough to compute any Haar integral
on the whole IP’(IHI;7 ).

Atthis point, we are now ready to construct the Haar integral on SO(4, Qp). Indeed,
as done for SO(3, Q,), we can define a suitable (surjective) map P: L! (]P’(IHI[X,)) —

L!(P(H)/Q}) such that

(PfHx): = / di(e) f(s()a), x € PHZ/QY). f e L (PEY)., (195

Qp
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where s : IP’(H; )/Q; — IP’(H;) is any Borel cross section of]P’(]HI; )/Q; onto ]P’(]HI; ).
Again, for any compact subset K of P(H ), we define

Wk = {y € CI(PH))) | (PY)(9) = 1. Vg € K}, (196)

and set ¥ = "IJ]P(H;)/Q,X,- Then, for every ¢ € W, the map .,2/’”:/, - LI (P(H;)/Q;) —

L! (P(H;))—i.e., the extended WMB lift—provides a right inverse of P.
In the light of the above discussion, the following result is now clear:

Theorem 4.26 Let (14 and I be the Haar measures on SO(4, Qp), and P(H;)

respectively. For every prime p > 2, and any ¢ € LI(SO(4, Qp)), the following
equality holds:

dpua(R)p(R) = / dupars (@) (Zy$) (@), (197)
S0(4,Qp) P(H})

where .,Z/,qﬁ el (]P’(H;)) is the (extended) WMB lift of the map ¢.

Proof By Proposition 4.18, SO(4, Qp,) and P(H ;) /Q are homeomorphic and, then,
Borel isomorphic. This then entails that, for any given function ¢ € L!(SO4, Q))),
we can express its Haar integral (w.r.t. the Haar measure 1 on SO(4,Q,)) as an
Haar integral on P(H})/Q);. Moreover, the same homeomorphism also implies that
IP’(H;) / Q; is a compact group. But then, the equality in (197) directly follows
from (31) of Theorem 2.18. ]

5 Conclusions

In this work, we provided a general expression of the Haar measure on a p-adic Lie
group. Considering this measure as naturally induced by the invariant volume form on
the group, we addressed the problem of determining the Haar measure on the p-adic
special orthogonal groups in dimension two, three and four (for every prime number
p). Let us briefly summarize our main achievements:

e The first part of this work is devoted to the discussion of the main tools and tech-
niques used later on, in the application part of the paper. Specifically, in Sect. 2.1,
we first recall the Weil-Mackey—Bruhat formula and the related notion of Weil—
Mackey—Bruhat lift, which provide powerful tools allowing one to express the
Haar integral on a quotient group X = G/H (where H is any closed normal
subgroup of G) as a suitable lift of the Haar integral defined on the (LCH) group
G. We next provide, in Sect. 2.2, an overview of p-adic manifolds and p-adic Lie
groups, suitable for our purposes, especially focusing on the relevant topological
properties.

e In Sect. 3, by exploiting the results discussed in Sect. 2.2—in particular, the total
disconnectedness of p-adic manifolds—we provide a general method for con-
structing the invariant measure on a p-adic Lie group.
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e Next, in Sect. 4, we work out various applications of the general techniques devel-
oped in the previous sections. In particular, a direct application of the general
formula derived in Sect. 3 provides us with the Haar measure on SO(2, Q).

o As for the groups SO(3, Q,) and SO(4, Q,), instead, we argue that a more conve-
nient approach consists in resorting to a quaternionic realization of these groups,
eventually proving the useful group isomorphisms SO(3, Q,) = H7/Q} and
SO4,Qp) = IE”(]HI;;)/Q;< (c.f. Theorems 4.14 and 4.16).

e It is precisely at this stage that the machinery previously developed in Sect. 2.1
comes into play. Indeed, once the Haar measures on H ; and ]P’(]HI; ) (equivalently,
regarding such measures as functionals, the associated Haar integrals) have been
determined, we can construct the Haar integrals on the quotient groups H; / Q;
and ]P’(H; )/Q If —thus, on SO(3, Q,) and SO(4, Q) respectively—in terms of a
suitable Weil-Mackey—Bruhat lift (see Theorems 4.21 and 4.26).

Several further developments can be foreseen from the present study. First, the
possibility of deriving the explicit expression of the Haar measure on SO(3, Q,)
by exploiting its parameterization in terms of Cardano—a.k.a. nautical—angles (see
[35]). This is enlightened by the relation between p-adic rotations and the values
modulo squares of the reduced norms of p-adic quaternions. However, it can work for
all primes but p = 2, where no Cardano (or Euler) decomposition exists.

Second, since compact p-adic special orthogonal groups are profinite, another pos-
sible approach to their Haar measure is through a suitable notion of inverse limit of
an inverse family of measure spaces on their projections modulo p*, k € Zt.

Looking further ahead, the relevance of the subject treated here lies in the fact that
the compactness of SO(3, Q) entails that all its irreducible unitary representations
occur (and can be studied) as sub-representations of the regular one, according to
the celebrated Peter-Weyl theorem. In turn, the Haar measure on SO(3, Q,) plays a
fundamental role in the study of its regular representation and, more generally, of its
irreducible projective unitary representations. Those of dimension two can be regarded
as a model of p-adic qubit (see [31]) and would be the core of a quantum information
processing based on p-adic numbers.

A The real quaternion algebra and its relations with SO(3, R) and
SO(4, R)

We devote this appendix to a brief account on the real quaternion algebra H, along with
a discussion of the quaternionic realization of the elements in SO(3, R) and SO(4, R).

This will also give us the opportunity to highlight analogies and differences with the
p-adic case of Sect.4.2.

A.1 The real quaternion algebra H

There are several ways of describing the real quaternion algebra H [36, 62]. As a real
vector space H = R x R3, and any element in H is written as & = (a, X), witha € R
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and x € R3. The multiplication law is given by:
(a,x)(b,y) = (ab—x-y,bx+ay +x xy), (198)

where x - y and X x y are respectively the usual inner product and vector product
between vectors in R3. It is easily verified that the product (198) is associative. The
centre of H is given by the subspace R x {0} = R. Likewise, we identify {0} x R3
with R3, in such a way that every element in H can be expressed as &€ = a +x,a € R,
x € R3. Denoting by i, j, k the canonical basis vectors of R3, & can be expressed as

& =a+xii+ x2j+x3k, (199)

where a, x1, x, x3 € R. Then, the multiplication law between quaternions is given
by specifying the products between the basis vectors i, j, k [36, 63]:

P=j=K=-1, ij=—ji=k, jk=-kj=i ki=—-ik=j. (200)

It is straightforward to realize that H is a non-abelian algebra.

H is an involutive algebra, asthe map H 3 £ =a +x+> & :=a —x € Hisan
involutive anti-automorphism. Moreover, £€ = |&|2 = a®>+|x|> = Qr(a, X1, X2, X3),
where QR denotes the definite quadratic form of R*. Thus, every non-zero element in
H is invertible, with €1 = £/|£|?, and so H is a division algebra. Those elements in
H for which || = 1 are called unit quaternions. They form a group in H, denoted by
U(H):

UH) ={§cH||E|=1}={scH|& =&} (201)

Remark A.1 In the literature (e.g., [59]), the quantity ££ is referred to as the reduced
norm of & in H, and denoted by nrd(£€) (see Remark 4.5). From the definition, it
is clear that the reduced norm on the real quaternion algebra H is equivalent to the
square of the Euclidean norm on R* (since the definite quadratic form on R* induces
the Euclidean inner product, and vice versa). However, this is not the case when one
defines a quaternion algebra over a generic field w.r.t. some quadratic form (see, for
instance [59, 61]): The latter does not necessarily induce the considered norm on the
vector-space structure of that algebra.

There is another (yet equivalent) way in which H can be described [62]. Let us
consider the subset H of the algebra M, (C) of complex 2 x 2 matrices of the form

a b qo+iqr g2 +ig3
M = — | = . . 5 i € Ra 202
(—b a) <—Q2 +ig3 90 —iq 4 (202)

for every j = 0, 1, 2, 3, where i denotes the imaginary unit. One can easily verify

that H is a subalgebra (actually, a division algebra) in M;(C). In particular, that every
non-null element M € H is invertible easily follows by observing that

+i +ig:
det(M) = det (_422 i ?;3 Z(z) i i;]?) =qy+ai+493+4a3 (203)
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is the (non-degenerate) four-dimensional definite quadratic form over R. From (202),
we also see that every element M € H can be written as M = qq + iq1 + jg2 + kg3,

where
._ (i 0 ._ (01 _ (01
i= (0 —i) , J= (_1 0) , k= <i 0) , (204)

and where we omitted the identity matrix I, multiplying go. Moreover, it can be easily
checked thati, j, k obey commutation relations which are analogous to the quaternion
commutation relations (200). Indeed, the correspondence

qo+iq1 q2+igs3
0=H>¢&= ,q1,q2, 0 = : . eH 205
§ =(q0, 91,92, q3) — 0(§) (_q2+lq3 qo—qu) (205)

defines an algebra isomorphism from the quaternions H to the algebra of complex
matrices H [36]. In particular, unit quaternions are identified in H by

UMH) = {M € H | det(M) = 1}. (206)

A.2 Relations between real quaternions and rotations

Here we recall the relation between H and SO(3, R). Let £ € U(HH) be a unit quater-
nion. The map H 3 n +— &né~! e His an isometric linear transformation of H,
which leaves the centre R of H pointwise fixed and, therefore, also leaves the orthog-
onal subspace R? invariant. Hence, the restriction of this map to R? is an element of
0 (3, R), that we denote by « (§):

k(E)x = &exe7!, xeR. (207)

Furthermore, «(§v) = «(§)x(v), ie., k: UH) — O(3,R) is a homomorphism.
Let us derive the explicit form of x(£). For H > & = g + iq1 + jg2 + kg3, and
R3? 5 x = ix + jy + kz, we have:
-1 _ 2 2 2 2
ext~ =i(x(qg +qf — a5 — 43) + 2y(@192 — 9390) + 22(q2q0 + 4391)).
i(2x(q192 + q093) + y(a§ — af + 43 — q3) +22(q2q3 — 9190))
k(2x(q193 — 4290) + 2y(q190 + q243) + 2(q5 — g7 — a5 +43)). (208)

from which we deduce that « (§) is given by

@ +at—a2—aq} 2qi192—q3q0)  2(q290 + 43q1)
k@) = 2qig2+q093) 45 —ai +4a3 —a3 2(@q3—q1q0) |. (209
20193 — 9290)  2(q190 +9293) 43 — g} — 43 + 43

A direct calculation shows that det(x (£)) = 1, i.e., k(§) € SO(3, R).

Remark A.2 The fact that k(&) € SO(3, R) also follows by observing that U(H) is
connected and k : U(H) — SO(3, R) is continuous [36].
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In the light of the discussion above, every unit quaternion £ = go + ig1 + jg2 +
kgz € U(H) is associated with a rotation R in SO(3, R). In particular, « is the group
homomorphism U(H) — SO(3, R) in the short exact sequence (155) [59, 61]. This
then yields the group isomorphism

SO@3, R) = U(H)/F,. (210)

With a similar argument, based on the isometries H 5 5 — &no~! € H for (£, o) €
U(H) x U(H), one can prove the following isomorphism [59]:

SO(4, R) = (U(H) x U(H))/F,. @211)

(210) and (211) become homeomorphism, considering the standard topology for the
involved spaces, providing double coverings for SO(3, R) and SO(4, R).

B Alternative proof of Proposition 4.15

In Sect. 4.3, we showed that the group isomorphism y: HY/Q — SO(@3, Q,) given
in Theorem 4.14 is ahomeomorphism. The proof of Proposition 4.15 relies on measure-
theoretical results; here we provide an alternative proof which shows more explicitly
the relation between p-adic rotations and quaternions, depending on their reduced
norm.

Asalready argued in the proof of Proposition4.15, the groups H 7 and SO(3, Q) are
locally compact, once supplied with their p-adic topology. The map «, is continuous,
as k(&) is a rational function on the parameters qo, g1, g2, q3 of & = go +ig1 +
Jq2 + kg3, with denominator nrd(¢§) # O for every & # 0. Therefore, k, redefined on
the quotient of H[X, modulo ker (k) is continuous, i.e. ¥ is continuous. We are left to

prove that also the inverse map v ~! is continuous, or equivalently that v is a closed

function (it maps closed subsets of H; /(@; to closed subsets of SO(3, Q,)). To ease

this, we want to deal with compact spaces, rather than just locally compact ones.
Notice that nrd : H; — (@; is a homomorphism (it is multiplicative), as well

as the quotient map ¢q : Q; — Q;/(Q;)2, therefore g o nrd : H; — Q;/(Q;)2
is a homomorphism. Its kernel is ker(g o nrd) = {E € H; | nrd(§) € (Q;)z}, and

Q,, is a normal subgroup of ker(q o nrd) and H 7 (being its centre). It follows, by the
fundamental homomorphism theorem, that there exists a unique group homomorphism
@ H;/Q; — Q;/(Q;)2 such that g o nrd = ¢ o 7: this map is gp(é(@;) = nrd(§)
mod (Q; )2. In fact, given two distinct representatives of the same class, i.e. v # & such
that v(@; = s(@;, we have v € SQ; and hence (p(v(@;) = nrd(v) mod ((@;)2 =
nrd(§) mod (Q})* = p(6Qy).
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Kp
HX —— SO(3,Q))

P

Qp Hpy/Qp
q #‘”

Q /(@)

Actually, by the isomorphism theorem, we have H; / ker(q onrd) ~ Q; / (Q;)z. For
ker(q o nrd) is stable under multiplication by scalars in Q, we have the induced
quotient ker(g o nrd)/Q?, such that (]HI[X, /Q;) /(ker(q o nrd) /Q;) ~ H;‘ /ker(q o
nrd) ~ Q; / (Q;)z. We observe that & and A£ have same image w.r.t. ¢ o w (or
equivalently g o nrd), for every & € ]HI;, A€ (@;. Therefore, to have a surjective
map onto QIX, / (QIX, )2, once chosen a representative for each equivalence class of this
quotient group, it is enough to consider the restriction of H; to the set of quaternions

having reduced norm exactly equal to those representatives. A similar argument applies
to ]HI;,( /Q; . We recall [34, 55] that

Q;/(Q;)z ~ {1,u, p,up} = Z/Z%x 7,27, p > 2, 212)

{£1, £2, 5,10} =2 Z/2Z x Z]27 x 7./2Z, p =2,
where u € U, is a non-squared invertible p-adic integer. We thus define S(e) =
(¢ € H; | nrd(§) = €}, by varying € in the set of p-adic integer representatives
of the equivalence classes of Q;/(Q;)z, ie.fore = 1,u, p,up when p > 2 and
for e = £1, £2, +5, +10 when p = 2. Now we have the following diagram where,
by abuse of notation, we also denote by 7 and ¢ the homonyms maps redefined on
U S(e) and (U6 S (e)) /Q,, respectively, and where the injective maps are simply
the (closed, continuous) canonical embeddings of (_J, S(¢) and (U ) (e)) /Q;,< in ]HI;
and H 7 /Q respectively.

NGE » HY —"—% SO(3,Q,)

gl L

(U, 8(0) /Q —— HX/Q

AN

Q /(@)

The sets S(e) are pairwise disjoint. Moreover, it can be shown that S(e) C
( pZ p)4 is compact, in a similar fashion to the proof of Eq. (53) (see Theorem 5 in
[35]). As a consequence, | J  S(e) is a compact subset of H;, being the finite union of

compact sets. Now that we can consider just the compact subspace | J, S(¢) of H,
the proof of the fact that v is closed is straightforward. Consider a closed subset C in
(U€ S(e)) /(@; - H;/Q;. Its preimage 7~ (C) C U S(e) C H; is closed, since
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7 is continuous. Closed subsets of the compact _J, S(¢) are compact, in particular
771(C) is compact. The map Ky, = KkplU, s * Ue S(€) — SO(3, Q) is continu-
ous, as a restriction of the continuous map « ,. The continuous image K;, (n’l (C)) of

the compact set 7 ~!(C) is compact. In turn, K[’7 (rr_l (C)) is closed, being a compact
subset of the compact Hausdorff group SO(3, Q,). This proves that K;, is a closed
map. Finally, this implies that i is closed, and hence it is a homeomorphism.
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