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Abstract
We provide a general expression of the Haar measure—that is, the essentially unique
translation-invariant measure—on a p-adic Lie group.We then argue that this measure
can be regarded as the measure naturally induced by the invariant volume form on the
group, as it happens for a standardLie groupover the reals.As an important application,
we next consider the problem of determining the Haar measure on the p-adic special
orthogonal groups in dimension two, three and four (for every prime number p).
In particular, the Haar measure on SO(2,Qp) is obtained by a direct application of
our general formula. As for SO(3,Qp) and SO(4,Qp), instead, we show that Haar
integrals on these two groups can conveniently be lifted to Haar integrals on certain p-
adic Lie groups from which the special orthogonal groups are obtained as quotients.
This construction involves a suitable quaternion algebra over the field Qp and is
reminiscent of the quaternionic realization of the real rotation groups. Our results
should pave the way to the development of harmonic analysis on the p-adic special
orthogonal groups, with potential applications in p-adic quantum mechanics and in
the recently proposed p-adic quantum information theory.
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1 Introduction

During the last decades of the XX century, a new branch of mathematical physics,
the so-called p-adic mathematical physics, has been developed as an effort to find
a non-Archimedean approach to space-time and string dynamics at the Planck scale
[1–5]. Since then, various p-adic quantum mechanical models have been considered
and studied [6–19], and several applications to quantum field theory and string theory
have been proposed [20–24]. Although the original focus of these theories was on the
foundational aspects, further investigation has revealed new surprising applications,
especially in the context of statistical and condensed matter physics. For instance, it
has been observed that the natural ultrametric hierarchical structure of p-adic numbers
makes them suitable for the description of the dynamics of chaotic and disordered
systems. From this observation, Mézard, Parisi and their collaborators have shown, in
the first half of the 1980s, that the ground state of the spin glasses exhibits a natural
(non-Archimedean) ultrametric structure [25–27].

In more recent years, further intriguing applications of p-adic numbers have
emerged, well beyond their original mathematical and physical context. Indeed, p-
adic numbers have proved to be a valuable tool in solving issues related to algebraic
dynamical systems, image analysis, compression of information, image recognition,
cryptography and computer science (see [28], and references therein). Even more
recently, there has been an increasing interest in the potential applications of the field
of p-adic numbers to quantum information theory, as well [29–31]. This interest stems
from the unique properties of p-adic numbers, that may provide new solutions to chal-
lenging problems in quantum information science. E.g., it has been observed that the
p-adic numbers can be profitably used in the construction of mutually unbiased bases
(MUBs), for any Hilbert space dimension [32].

As a first step in establishing the foundations of a p-adic theory of quantum infor-
mation, it has been argued [31] that a suitable model of a p-adic qubit can be obtained
by resorting to two-dimensional irreducible projective representations of the group of
rotations on the configuration space Q3

p (for an alternative ‘purely p-adic’ approach
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to the qubit also see [33]). The special orthogonal groups over the p-adic fields can
be defined through quadratic forms over Qp. Unlike the real case, however, definite
(i.e., representing the zero trivially) quadratic forms over Qp exist only in dimen-
sion two, three and four [34]. The resulting symmetry groups SO(2,Qp), SO(3,Qp)

and SO(4,Qp) are the only compact p-adic special orthogonal groups. In particular,
SO(3,Qp) can be thought of as the group of rotations on Q3

p, and its geometrical
features have been explored in [35]. The compactness of the aforementioned groups
entails that all their irreducible unitary representations occur (and can be studied) as
subrepresentations of the regular representation, according to the celebrated Peter-
Weyl theorem [36].

Now, the study of the regular representation of compact groups—in particular, the
formulation and the application of Schur’s orthogonality relations—as well as several
other fundamental issues of abstract harmonic analysis, involve the Haar measure
on such groups, namely, the essentially unique (say, left) invariant Radon measure,
or, regarding such a measure as a functional [36], the Haar integral. More generally,
the irreducible—in general, projective—representations of compact groups are square
integrable (see [37–40], and references therein), and thus satisfy suitable orthogonality
relations, where, once again, the Haar measure is involved. Still another class of prob-
lemswhere thismeasure plays a central role, is related to the ‘phase-space’ formulation
of quantum mechanics [41]. Here, the phase space appears in quotes for a two-fold
reason: first, because a p-adic model of phase space is what we have in mind; second,
because the usual group of translations on phase space (with its genuinely projective
representations) is replacedwith a locally compact group—e.g., with a compact p-adic
Lie group—admitting square integrable representations. Such representations allow
one to define generalized Wigner transforms mapping quantum-mechanical operators
into complex functions on the relevant group [37–40].

In the present work—as a first point of an ideal program devoted to the study
of harmonic analysis on the compact p-adic special orthogonal groups, and to its
applications to quantum information science—we face the problem of describing the
Haar integral on the p-adic Lie groups SO(2,Qp), SO(3,Qp) and SO(4,Qp), for
every prime p. Whereas the Haar measure on standard special orthogonal groups over
the reals has been extensively studied using different approaches, the corresponding
p-adic problem seems to be (to the best of our knowledge) still unexplored.

Our strategy to deal with such a problem articulates in two main steps:

1. On the one hand, we derive a general formula for the invariant measure on a
generic p-adic Lie group. Our construction relies on the existence of a suitable
atlas of mutually disjoint charts on such a group, which allows one to express its
Haar measure in the local Qn

p-coordinates by exploiting the change-of-variables
formula for integrals on Qn

p. Precisely, we first obtain a quasi-invariant measure
on the group. At this point, we observe that every quasi-invariant measure on a (in
general, locally compact) group immediately yields a Haar measure. This method
is tailored on the peculiar properties of a p-adic Lie group, but we next show that
our result can be interpreted within the invariant volume form approach to the Haar
integral usually adopted for standard Lie groups over the reals.
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2. We then observe that, on the other hand, a direct ‘brute force’ application of the
previous general approach may not be very practical or convenient, depending on
the (more or less) manageable parametrization of the group one has to work with.
In concrete applications, it is often more convenient to exploit a realization of the
group one is interested in as a suitable quotient group X = G/H , where G is some
suitable p-adic Lie group and H is a closed subgroup of G. Now, if the approach
outlined in the previous step provides us with a convenient expression of the Haar
integral on G, then we can simply lift the Haar integral living ‘downstairs’ on X
to an integral ‘upstairs’ on G. This nice lifting strategy for computing the Haar
integrals relies on the so-called Weil–Mackey–Bruhat formula [36, 42, 43].

A direct application of the general formula mentioned in the first point above
easily yields the Haar measure on SO(2,Qp). In dimensions three and four, instead,
we find it convenient to introduce a quaternion algebra over Qp first. We can then
realize SO(3,Qp) and SO(4,Qp) as suitable quotient groups and next apply the lifting
strategy of the Haar integrals outlined in the second point above. This approach is
reminiscent of the quaternionic realization of the standard rotation group SO(3) the
reader may be familiar with.

The structure of the paper is as follows. In Sect. 2, we collect the basic notions and
tools which will be used throughout the remaining sections of the paper. Specifically,
in Sect. 2.1we recall some basic facts concerning theHaarmeasure on locally compact
groups and the lifts of Haar integrals on quotient groups. In Sect. 2.2, we discuss p-
adic manifolds and introduce the notion of a p-adic Lie group, before delving into
the specific class of p-adic special orthogonal groups, in Sect. 2.3. Section3 deals
with a general construction of the Haar measure on a p-adic Lie group, eventually
showing that it naturally coincides with the measure associated with the (maximal-
rank) invariant differential form defined on the group. Section4 is devoted to the
applications of the (previously constructed) theory to the p-adic special orthogonal
groups in dimension two, three and four. Specifically, in Sect. 4.1, we derive the Haar
measure on SO(2,Qp). In Sect. 4.2, we explicitly construct, for any prime number
p, the p-adic quaternion algebra and, in Sect. 4.3, we highlight its relation with the
elements of SO(3,Qp) and SO(4,Qp). Then, in Sects. 4.4 and 4.5 we construct the
Haar integrals on SO(3,Qp) andSO(4,Qp) by exploiting the suitable ‘lifting strategy’
and, hence, by realizing them as Haar integrals on specific subgroups of the p-adic
quaternion algebra. Finally, in Sect. 5, conclusions are drawn, with a quick glance at
future prospects.

2 Basic notions and tools

In this section, we collect some basic results and tools which will be relevant for all
our later derivations. We begin by recalling the notion of Haar measure on a locally
compact group. Then, we introduce the p-adic Lie groups and we consider, in partic-
ular, the class of p-adic special orthogonal groups. Finally, we provide a brief outline
of integration theory on a p-adic manifold.
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2.1 The Haar measure on a locally compact group and the lifts of Haar integrals

Let G be a locally compact (Hausdorff) topological group; in short, a LC group. By a
left (resp. right) Haar measure μ on G we mean a non-zero Radon measure for which
the following condition holds:

μ(gE) = μ(E) (resp.μ(Eg) = μ(E)), (1)

for every Borel set E ⊂ G, and g ∈ G [36, 44]. We refer to (1) as to the left-invariance
(resp. right-invariance) property of the measure.

It is worth recalling a remarkable characterization of the left (resp. right) Haar mea-
sure provided by a suitable left- (right-)invariance condition for a class of functionals
on Cc(G)—the algebra of compactly-supported continuous complex-valued functions
on G [36, 45].

Remark 2.1 We are adopting the convention that the support, supp( f ), of a continuous
function f is the closure of the open set {g ∈ G | f (g) ∈ C\{0}}.

Let μ be a fixed Radon measure on a LC group G. The map defined as

Cc(G) � f �→ I ( f ) :=
∫

G
f (g)dμ(g) ∈ C (2)

is easily seen to be a positive linear functional on Cc(G). On the other hand, the
celebrated Riesz Representation Theorem (cf. Theorem 7.2 in [45]) assures that for
every positive linear functional on Cc(G), there is a unique Radon measure μ on G
such that I is represented as in (2). Exploiting this correspondence, a Radonmeasureμ
is a left Haarmeasure iff the associated functional is left-invariant, i.e., iff the condition

∫
G
(Lh f )(g)dμ(g) =

∫
G

f (g)dμ(g) (3)

holds for every f ∈ Cc(G). Here, the map Lh , for h ∈ G, of left translation on
Cc(G) is defined as (Lh f )(g) := f (h−1g). By defining the right translation via
(Rh f )(g) = f (gh), we capture analogously right-invariance of the measure. In what
follows, whenever μ is a Haar measure on G, we will refer to the integral in the r.h.s.
of (2) as to the Haar integral associated with μ.

It is a well known result (see, e.g., Theorem 2.10 and 2.20 in [36]) that any LC
group admits an essentially uniquely defined Haar measure. In particular, if μ and ν
are left Haar measures on G, then there exists c ∈ R+∗ such that μ = cν. If G is a LC
group, its left and right Haar measures are related via the so-called modular function
� : G → R+∗ [36]. In the case where � ≡ 1 (as it happens for abelian and compact
groups), G is called unimodular, meaning that left and right Haar measures coincide.

Remark 2.2 A locally compact groupG has finite left (and right) Haarmeasureμ if and
only if it is compact [36, 46]; in this case, it is possible (and customary) to normalize
the Haar measure in such a way that μ(G) = 1.
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Example 2.3 (Haar measure on Qp). The (additive) group of the field of p-adic num-
bers Qp (p ∈ N prime) is a LC group once endowed with its standard ultrametric
topology (namely, the topology induced by the non-trivially valued, non-Archimedean
absolute value | · |p onQp). Therefore, it admits a left Haar measure λ. Since (Qp,+)
is abelian (hence, unimodular), λ is right-invariant as well, i.e.,

λ(E + x) = λ(E) = λ(x + E) (4)

holds for every Borel subset E in BQp , and any x ∈ Qp. Since the subring Zp of
p-adic integers is a compact subset of Qp, we can normalize λ by setting

λ(Zp) = 1. (5)

It is now not difficult to explicitly construct the measure λ. Indeed, let B(r , x0) :=
{x ∈ Qp | |x − x0|p ≤ r} be a ball centred in x0 ∈ Qp of radius r ∈ Z>0. Since
B(1, 0) = Zp, owing to the invariance condition (4) and the normalization (5), we
get λ

(
B(1, x)

) = 1 for every x ∈ Qp. Moreover, the topological features ofQp—i.e.,
any ball of radius pk , k > 0, is a disjoint union of pk balls of radius 1—also entail
that λ

(
B(pk, x)

) = pk for every k ∈ Z, x ∈ Qp. Hence, we get to the conclusion that
the measure of every Borel set E of Qp is given by

λ(E) = inf

⎧⎨
⎩
∑
j≥1

pm j | E ⊂
⋃
j≥1

B(pm j , x j )

⎫⎬
⎭ , (6)

analogous to the formula for the Lebesgue measure on the real line.

Example 2.4 The group Qn
p = Qp × · · · × Qp (n-times), endowed with the product

topology, has a natural structure of (additive) LC group; hence, it admits a left (and
right) Haar measure. To find it explicitly, it is enough to observe that, being Qp a
second countable LC group, there is no distinction between the standard product of
measures and the Radon product (see §2.2 in [36]). Therefore, the Haar measure on
Qn

p is provided by the n-times product of the Haar measure on Qp, i.e.,

λn = λ× · · · × λ (n-times), λ Haar measure on Qp. (7)

With a slight abuse of notation, we will denote by λ the Haar measure onQn
p for every

n ∈ N, as the dimension n will be clear from the context.

Let G be a LC group, and let X be a LC Hausdorff space. We call X a (transitive)
G-spacewhenever it is equipped with a (transitive) continuous left action (·) [ · ] : G×
X → X of G. If G is a locally compact second countable Hausdorff (in short, LCSC)
group, and H a closed normal subgroup of G (e.g., the centre of G), let X ≡ G/H
denote the quotient (LCSC) group. Furthermore, let q : G → X be the quotient map
(i.e., the projection homomorphism) which is an open continuous map. We can then
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define a natural continuous action (·) [ · ] : G × X → X of G on X , i.e.,

g[x] := q(g)x, g ∈ G, x ∈ X . (8)

This action is transitive and, hence, turns X ≡ G/H into a transitive G-space. In the
literature, one refers to such a G-space as to a homogeneous space [36, 42–44, 46,
47].

Let now μG , μH , μX denote the (left) Haar measures on G, H , X ≡ G/H respec-
tively, and let�G ,�H be the modular functions on G and H . It is a standard fact that
(since X admits a X -invariant, hence G-invariant, measure μX ; see Theorem 2.51 of
[36])

�G(h) = �H (h), ∀h ∈ H , (9)

i.e., �H = �G |H . Therefore, if G is unimodular, then H shares the same property.
Let (X ,BX ), (Y ,BY ) be (Borel) measurable spaces. We recall that a map ϕ : X →

Y is called a Borel map if, for every Borel set E ∈ BY , ϕ−1(E) ∈ BX ; it is called a
Borel isomorphism if it is one-one, onto, and f −1 is a Borel map. If X ≡ G/H is a
quotient group, we also denote by s : X → G a Borel (cross) section of X into G,
i.e., a Borel map satisfying the condition q(s(x)) = x , for every x ∈ X .

Proposition 2.5 (Lemma 6 of [38]). For every Borel section s : X → G, the mapping

γs : X × H � (x, h) �→ s(x)h ∈ G (10)

is a Borel isomorphism (X × H being endowed with the product topology).

For every f ∈ Cc(G), we put

(P f )(x) :=
∫

H
dμH (h)( f ◦ γs)(x, h)

=
∫

H
dμH (h) f (s(x)h), x ∈ X . (11)

Remark 2.6 It is worth observing that the function H � h �→ f (gh) ∈ C, for any
g ∈ G, is in Cc(H) (in particular, gh ∈ supp( f ) 
⇒ h ∈ g−1supp( f )

⋂
H ), where

g−1supp( f )
⋂

H is a compact subset of G and, hence, of H ). Therefore, the integral
on the r.h.s. of (11) is well-defined.

Remark 2.7 Note that, by the left-invariance of μH , the integral
∫

H dμH (h) f (gh) is
constant w.r.t. g varying in q−1({x}), for every x ∈ X . Hence, (P f )(x) ∈ C does not
depend on the choice of the cross section s.

Theorem 2.8 For every f ∈ Cc(G), the function

X � x �→ (P f )(x) ∈ C (12)
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belongs to Cc(X), and the mapping Cc(G) � f �→ P f ∈ Cc(X) is surjective.
Moreover, for every f ∈ Cc(G), we have that

∫
G

dμG(g) f (g) =
∫

X×H
dμX × μH (x, h) f (s(x)h)

=
∫

X
dμX (x)

∫
H

dμH (h) f (s(x)h)

=
∫

X
dμX (x)(P f )(x), (Weil–Mackey–Bruhat formula), (13)

where the Haar measures μG, μH , μX are supposed to be suitably normalized and
s : X → G is any Borel cross section.

(Note: Since X , H are LCSC groups, in the first line of (13) it is not necessary to
make a distinction between the standard product of measures and the Radon product
[36].)

Proof See Sect. 2.6 of [36]; in particular, Proposition 2.50 and Theorem 2.51. ��
For every φ ∈ Cc(X) and ψ ∈ Cc(G), we set

(Lψφ)(g) := ψ(g)φ(q(g)), g ∈ G. (14)

It is easy to see that Lψφ ∈ Cc(G); in particular, we have that

supp(Lψφ) ⊂ supp(ψ)
⋂

q−1(supp(φ)) (15)

is a compact subset of G.

Lemma 2.9 For every compact subset K of X, there exists a function ψ ∈ C+c (G)

such that
(Pψ)(x) = 1, ∀x ∈ K . (16)

Here and in the following, we set C+c (G) := { f ∈ Cc(G) | f ≥ 0, f �≡ 0}.
Proof Use Lemma 2.49 of [36]. ��

By Lemma 2.9, for every nonempty compact subset K of X , we can define the
following (nonempty) subset of C+c (G)


K := {ψ ∈ C+c (G) | (Pψ)(x) = 1, ∀x ∈ K }. (17)

By convention, we put 
∅ = {ψ ≡ 0}.
Definition 2.10 Given any φ ∈ Cc(X), for every ψ ∈ 
supp(φ), we call the function
Lψφ ∈ Cc(G) a Weil–Mackey–Bruhat (WMB) lift—specifically, the ψ-lift—of φ.
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The notion of Weil–Mackey–Bruhat lift in Definition 2.10 is strictly related to the
WMB formula (13). Indeed, given a ψ-lift of a function φ ∈ Cc(X), exploiting the
WMB formula, it is not difficult to prove the following results:

Lemma 2.11 For every φ ∈ Cc(X), and every ψ ∈ 
supp(φ), we have that

P(Lψφ) = φ. (18)

Proof In fact, by Lemma 2.9, we have:

(
P(Lψφ)

)
(x) =

∫
H
dμH (h)ψ(s(x)h)φ(q(s(x))h)

= (Pψ)(x)φ(x) = φ(x), ∀x ∈ X , (19)

where s : X → G is any Borel cross section (q(s(x)h) = x). ��
We are now able to express any Haar integral on X as a Haar integral on G:

Theorem 2.12 Let φ be a function in Cc(X). Then, for every WMB lift Lψφ ∈ Cc(G)

of φ (ψ ∈ 
supp(φ)), we have that

∫
X
dμX (x)φ(x) =

∫
G
dμG(g)(Lψφ)(g), (20)

where a suitable (mutual) normalization of μX and μG is assumed.

Proof In fact, by the second assertion of Theorem 2.8,

∫
G
dμG(g)(Lψφ)(g) =

∫
X
dμX (x)

(
P(Lψφ)

)
(x)

=
∫

X
dμX (x)φ(x), (21)

where, for the second equality, we have used Lemma 2.11. ��
We will call the Haar integral on the r.h.s. of (20) a lift of the Haar integral on the

l.h.s. of the same formula.

In our specific applications, X = G/H will be a compact group. In this case, some
of the previously discussed results admit a remarkable generalization. To start with, let
us notice that, when X is compact, Cc(X) coincides with the set C(X) of all continuous
functions on X . Let us put 
 ≡ 
X . From Theorem 2.12, we can immediately prove
the following:

Corollary 2.13 Let X = G/H be compact. Then, for every ψ ∈ 
, we have that

∫
X

dμX (x)φ(x) =
∫

G
dμG(g)(Lψφ)(g), ∀φ ∈ C(X), (22)

where a suitable (mutual) normalization of μX and μG is assumed.
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Remark 2.14 Fixed any ψ ∈ 
 ≡ 
X , the map Lψ : C(X) → Cc(G) is a right
inverse of P : Cc(G)→ C(X), i.e., it satisfies relation (18) for all φ ∈ C(X).

Remark 2.15 Without any assumption of compactness of X , the map P : Cc(G) →
Cc(X) can be extended to a (surjective) map P̂ : L1(G)→ L1(X), defined by

(
P̂ f

)
(x) :=

∫
H
dμH (h) f (s(x)h), x ∈ X , f ∈ L1(G); (23)

see Lemma 7 of [38] and Theorem 3.4.6 of [42] (L1(G) ≡ L1(G, μG) denotes the
set of complex-valued functions on G whose absolute value is integrable w.r.t. μG).
Moreover, the extended WMB formula holds:

∫
G
dμG(g) f (g) =

∫
X
dμX (x)

(
P̂ f

)
(x), ∀ f ∈ L1(G), (24)

for a suitable (mutual) normalization of the Haar measures μX , μG .

The forthcoming Theorem will provide us with a suitable generalization of the
results in Lemma 2.11 and in Theorem 2.12, tailored to the case where X = G/H
is a compact group. To this end, we find useful to preliminary recall the notion of
pushforward measure.

Definition 2.16 Let (X ,BX ) and (Y ,BY ) be (Borel) measurable spaces. Let μ be a
Borel measure on X . If ϕ : X → Y is a Borel map of X into Y , the pushforward
measure ϕ∗μ of μ through ϕ is the measure on (Y ,BY ) defined by

ϕ∗μ(E) := μ ◦ ϕ−1(E), (25)

for every Borel set E in BY .

Remark 2.17 If (X ,BX ) and (Y ,BY ) areBorelmeasurable spaces, and if f : Y → R is
a Borel function on Y , the following (abstract) change-of-variables formula (C.O.V.F.,
in short) holds [48]: ∫

X
( f ◦ ϕ)dμ =

∫
Y

f d(ϕ∗μ). (26)

Moreover, from (26), it is not difficult to prove the following relation [48]:

ϕ∗(gdμ) = g ◦ ϕ−1d(ϕ∗μ), (27)

for every Borel function g : X → R. We shall constantly resort to this formula in our
description of integration theory on Qp-manifolds.

We are now ready to prove the following result

Theorem 2.18 Let X = G/H be compact. Then, for every ψ ∈ 
, the map
Lψ : C(X)→ Cc(G) admits an extension—a so-called extended WMB lift

L̂ψ : L1(X)→ L1(G), (28)

123



Invariant measures on p-adic Lie groups: the p-adic Page 11 of 59 78

defined by (
L̂ψφ

)
(g) := ψ(g)(φ ◦ q)(g), (29)

that is a right inverse of P̂:

P̂
(
L̂ψφ

) = φ, ∀φ ∈ L1(X). (30)

Moreover, for every φ ∈ L1(X), we have that

∫
X

dμX (x)φ(x) =
∫

G
dμG(g)

(
L̂ψφ

)
(g), (31)

for a suitable (mutual) normalization of μX , μG.

Proof Let us first prove that, for everyφ ∈ L1(X), the (Borel) function L̂ψφ belongs to
L1(G). In fact, by Lemma 7 of [38], for any Borel sections : X → G, the pushforward
measure (γs)∗(μX × μH ) coincides (up to normalization) with μG . Hence, we have
that

∫
G
dμG(g)

∣∣(L̂ψφ
)
(g)

∣∣ =
∫

G
dμG(g)ψ(g)|φ(q(g))|

=
∫

G
d
(
(γs)∗(μX × μH )

)
(g)ψ(g)|φ(q(g))|

=
∫

X×H
dμX × μH (x, h)ψ(s(x)h)|φ(x)|

=
∫

X
dμX (x)

∫
H
dμH (h)ψ(s(x)h)|φ(x)|, (32)

where the last equality is obtained by Tonelli’s theorem. Therefore, we find that

∫
G
dμG(g)

∣∣(L̂ψφ
)
(g)

∣∣ =
∫

X
dμX (x)|φ(x)| = ‖φ‖L1(X), (33)

and L̂ψφ ∈ L1(G). At this point, one easily proves (30) and (31). ��
Remark 2.19 Relation (33) shows that L̂ψ : L1(X)→ L1(G) is a (linear) isometry.

To conclude this section, we state the following remarkable consequence of Theo-
rem 2.8

Theorem 2.20 Let us suppose that H is compact. Then, for a suitable normalization
of μG and μX , q∗(μG) = μX .

Proof Since H is compact, q∗(μG) is a Radon measure on X (for every compact
E ⊂ X , q−1(E) = K H , with K ⊂ G compact by Lemma 2.48 of [36]; hence, K H
is compact too). Then, for every φ ∈ Cc(X), by the WMB formula we have that

∫
X
dq∗(μG)(x)φ(x) =

∫
G
dμG(g)φ(q(g))
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=
∫

X
dμX (x)

∫
H
dμH (h)φ(x) =

∫
X
dμX (x)φ(x), (34)

where we have assumed thatμH (H) = 1 andμG ,μH are suitably normalized. Hence,
q∗(μG) = μX . ��

2.2 p-Adic Lie groups

In this subsection, we discuss the main features of p-adic manifolds and p-adic Lie
groups [49–51].

As in the standard real setting, the starting point is to introduce a suitable notion of
chart on a Hausdorff space.

Definition 2.21 Let X be a Hausdorff space. A chart on X is a triple (U , ϕ,Qn
p),

whereU ⊂X is an open subset and ϕ : U → Qn
p is a map such that ϕ : U → ϕ(U )

is a homeomorphism. We refer to U as the domain of the chart, and to n ∈ N as its
dimension.

If x ∈ U ⊂X , we say that (U , ϕ,Qn
p) is a chart around x . In the following, we

will set
↼
ϕ : ϕ(U )→ U to be the inverse map of ϕ on its range.

Definition 2.22 If U is an open subset of Qn
p, a function f : U → Qp is said to be a

Qp-analytic function, if it is expressed by a convergent power series in a neighborhood
of every x inU . A map f = ( f1, . . . , fm) : U → Qm

p is said to be aQp-analytic map,
if every fi , i = 1, . . . ,m, is a Qp-analytic function.

Definition 2.23 Two charts (U1, ϕ1,Q
n1
p ) and (U2, ϕ2,Q

n2
p ) onX are compatible, if

bothϕ2◦↼ϕ 1 : ϕ1(U1∩U2)→ ϕ2(U1∩U2) andϕ1◦↼ϕ 2 : ϕ2(U1∩U2)→ ϕ1(U1∩U2)

are Qp-analytic maps.

If (U1, ϕ1,Q
n1
p ) and (U2, ϕ2,Q

n2
p ) are compatible charts onX such thatU1∩U2 �=

∅, then one can prove that, necessarily, it is n1 = n2 [49].

Definition 2.24 An atlas A for X is a family {(Uα, ϕα,Q
nα
p )}α∈A of pairwise com-

patible charts which cover X , i.e., X = ⋃
α∈A Uα . An atlas A for X is called

n-dimensional if all the charts in A have dimension n.

Similarly to the standard real case, it is now natural to set the following:

Definition 2.25 AHausdorff space,X , togetherwith amaximal (w.r.t. inclusion) atlas
A is called a Qp-analytic manifold. The manifold is called n-dimensional if the atlas
A is n-dimensional.

For notational convenience, in what follows we shall denote an n-dimensional atlas
on X as A = {(Uα, ϕα)}α∈A; moreover, we will refer to ‘Qp-analytic manifold’
simply as ‘Qp-manifold’. If X , Y are two Qp-manifolds of dimension m and n
respectively, we shall say that a map f from X to Y is Qp-analytic if, for every
x ∈ X , there exist a chart (U , ϕ,Qm

p ) on X around x , and a chart (V , ψ,Qn
p) on

Y around f (x), such that f (U ) ⊂ V , and ψ ◦ f ◦↼ϕ : ϕ(U )→ Qn
p is aQp-analytic

map.

123



Invariant measures on p-adic Lie groups: the p-adic Page 13 of 59 78

Remark 2.26 EveryQp-manifoldX is both totally disconnected and locally compact
(TDLC in short). In particular, the latter condition entails that for every point x of
X , the set Tx of all compact open subsets in X containing x forms a base at x (see
Lemma 7.1.1 in [52]). Therefore, the set T (X ) =⋃

x∈X Tx of all the compact open
subsets ofX forms a basis for the topology of X .

Analytic differential forms onQp-manifolds are defined in a similar fashion to the
standard real setting (see Chapter 2 in [52] for a thorough discussion). Indeed, letX
be aQp-manifold of dimension n, and letA = {(Uα, ϕα)}α∈A be an atlas onX . If

is a differential form of degree k < n onX , its restriction 
α := 
|Uα

—in the local
coordinates of (Uα, ϕα)—is given by


α(u) =
∑

j1<···< jk

θαj1... jk (u)dx j1 ∧ · · · ∧ dx jk , (35)

where θαj1... jk areQp-valued functions onUα , and where we set ϕα(u) = (x1, . . . , xn)

to denote the local coordinates of u in Uα . If, for every α ∈ A, the maps θαj1,..., jk
are

all Qp-analytic functions on Uα , we say that 
 is a Qp-analytic differential k-form
onX . If � is a Qp-analytic differential n-form onX (i.e., of maximal degree equal
to the dimension n of X ), its local expression �α := �|Uα

can be written as

�α(u) = ωα(u)dx1 ∧ · · · ∧ dxn, (36)

for ωα : Uα → Qp a Qp-analytic function. In what follows, we shall abbreviate
‘Qp-analytic differential k-form’ to ‘differential k-form’.

Let F : X → Y be aQp-analytic map between n-dimensionalQp-manifoldsX ,
Y , and let � be a differential n-form on Y . The pullback F∗� of � through F is a
well-defined differential n-form onX [52]; specifically, if (Uα, ϕα) is a chart inX ,
and (Vβ, ψβ) is a chart in Y , then, on Uα ∩ F−1(Vβ) one has:

F∗�β = F∗(ξβ dy1 ∧ · · · ∧ dyn) = (ξβ ◦ F)(det DF)dx1 ∧ · · · ∧ dxn, (37)

where (xi )
n
i=1 and (y j )

n
j=1 denote the systems of local coordinates of Uα and Vβ

respectively, and where DF is the Jacobian matrix of the transformation F .
To conclude this subsection, we now discuss the principal object of our investiga-

tions:

Definition 2.27 A p-adic Lie group G is a Qp-manifold which is also a group, and
such that the multiplication map

G × G � (g, h) �→ gh ∈ G (38)

is Qp-analytic.

From Definition 2.27, it follows that the inverse map, G � g �→ g−1 ∈ G, is aQp-
analytic map. Moreover, it is clear that every p-adic Lie group is a TDLC Hausdorff
space (see Definition 2.25 and Remark 2.26).
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Remark 2.28 Let G be a p-adic Lie group. For h ∈ G, the map �h of left translation
by h is defined as:

G � g �→ �h(g) := hg ∈ G. (39)

This map is the composition of the map G � g �→ (h, g) ∈ G × G, and the multipli-
cation map defined in (38); hence, it is Qp-analytic (the composition of Qp-analytic
maps is aQp-analytic map; see Lemma 8.4 in [49]). Similarly, one can define the map
of right translation, rh , on G, which is Qp-analytic as well.

Remark 2.29 A classical result by van Dantzig (see Theorem 7.7 in [44]) states that a
TDLC group admits a base at the identity consisting of compact open subgroups (and
vice versa). This result provides a peculiar characterization of the topology of p-adic
Lie groups.

Since a p-adic Lie group, G, is a Qp-manifold, we can clearly define differential
k-forms on it. In particular, we say that a differential k-form 
 on G is left-invariant
if �∗h
 = 
 for any h ∈ G, i.e., if

�∗h
(g) = 
(h−1g) (40)

holds for every g and h in G. Right-invariant differential n-forms are defined similarly
with �h replaced by rh . By taking h ≡ g−1 and g ≡ e in (40), we also see that

�∗g−1
(e) = 
(g), (41)

that is, if 
 is left-invariant on G, its value at every point on G is determined by the
value 
 assumes at the identity e in G. In the next subsection, we shall prove that
a left-invariant n-form on G can always be constructed, and that it naturally induces
the left-invariant Haar measure on G. For the moment, we want to stress a relevant
topological feature of p-adic Lie groups which will turn out to be central in our later
derivations. We recall that a Hausdorff spaceX is called paracompact, if every open
covering of X can be refined into a locally finite open covering. We say that X
is strictly paracompact if every open cover of X admits a refinement consisting of
pairwise disjoint open sets.

Proposition 2.30 Let G be a second countable p-adic Lie group. Then, G is a strictly
paracompact space.

Proof By assumption,G is locally compact, second countable andHausdorff, henceσ -
compact (i.e. union of countably many compact subspaces). Every σ -compact space is
Lindelöf, and, therefore, paracompact (cf. Theorem 5.1.11. in [53]). Then, the propo-
sition follows by the equivalence of the points i and ii of Proposition 8.7 in [49].

��
Remark 2.31 From Proposition 2.30 it follows that any second countable p-adic Lie
group G can always be endowed with an atlas consisting of pairwise disjoint charts.
Indeed, since every atlas is an open covering, it admits a refinement consisting of
pairwise disjoint open sets. Then, the restriction of the coordinate maps of the initial
atlas to the sets in the refinement provides a new system of charts for G.
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Remark 2.32 It is well known that a LC group G is Polish iff it admits a second
countable topology (see Theorem 5.3 in [54]). Therefore, a second countable p-adic
Lie group is also a Polish group.

In this work, p-adic Lie groups will always be assumed to be second countable (as
so are the most important examples); hence, they are LCSC Polish groups.

2.3 p-Adic rotation groups

Anoteworthy class of p-adic Lie groups is given by the special orthogonal groups over
the p-adic fields. We devote this subsection to recall some of their basic properties
[31, 35].

The general definition of special orthogonal group is given in terms of quadratic
forms Q : V → F, for V a vector space over a field F (see [34, 55] for a thorough
discussion). Quadratic forms, up to linear equivalence and scaling, lead to isomorphic
special orthogonal groups [34]. In this work, we always assume that the quadratic
forms Q are non-degenerate (i.e. they have maximum rank).

If the characteristic of F is different from 2 (as it is for R and Qp), a bilinear
form b(x, y), x, y ∈ V, induces a quadratic form Q(x) = b(x, x) and, vice versa, a
quadratic form induces a bilinear form, i.e.,

b(x, y) := 1

2

(
Q(x + y)− Q(x)− Q(y)

)
. (42)

Therefore, we are allowed to use interchangeably quadratic forms and bilinear forms.
The unique non-degenerate definite quadratic form onRn , for every n ≥ 2, is given

(up to linear equivalence and scaling) by QR(x) =∑n−1
i=0 x2i . This is represented in the

canonical basis by the n-dimensional identity matrix In . Thus, the (compact) special
orthogonal group over R of degree n is

SO(n,R) = {L ∈ Mn(R) | L�L = In, det(L) = 1} (43)

= {L ∈ Mn(R) | 〈Lx, Ly〉 = 〈x, y〉 for every x, y ∈ Rn, det(L) = 1},
(44)

where 〈· , ·〉 : Rn×Rn → R is the Euclidean scalar product onRn , andMn(R) denotes
the associative algebra of n × n matrices over the field of real numbers R.

The following theorem characterizes the definite quadratic forms overQp in every
dimension, as explicitly derived in [35] (see also [34, 55]).

Theorem 2.33 For every prime p > 2, let u ∈ Up be a non-square—with Up denoting
the group of p-adic units, i.e., the group of all invertible elements ofZp—and letv ∈ Up

be defined by

v :=
{
−1 if p ≡ 3 mod 4,

−u if p ≡ 1 mod 4.
(45)
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In the case where p > 2, there are (precisely) three definite quadratic forms on Q2
p,

up to linear equivalence and scaling,

Q−v(x) = x20 − vx21 , Q p(x) = x20 + px21 , Q p
u
(x) = ux20 + px21 , (46)

and there are seven on Q2
2, namely,

Q1(x) = x20 + x21 , Q±2(x) = x20 ± 2x21 ,

Q±5(x) = x20 ± 5x21 , Q±10(x) = x20 ± 10x21 . (47)

There is a unique definite quadratic form on Q3
p (depending on p), up to linear equiv-

alence and scaling, i.e.,

Q+(x) =
{

x20 − vx21 + px22 if p > 2,

x20 + x21 + x22 if p = 2,
(48)

as well as on Q4
p, i.e.,

Q(4)(x) =
{

x20 − vx21 + px22 − pvx23 if p > 2,

x20 + x21 + x22 + x23 if p = 2.
(49)

No quadratic form on Qn
p is definite for n ≥ 5.

Remark 2.34 Note that all restrictions of the definite quadratic form Q(4) on Q4
p to

any three variables, and indeed to any three-dimensional subspace, are equivalent to
Q+ on Q3

p.

We can now characterize a relevant class of special orthogonal groups over Qp.

Corollary 2.35 The p-adic special orthogonal groups associated with the definite
quadratic forms on Q2

p are (up to isomorphism)

SO(2,Qp)κ = {L ∈ M2(Qp) | Aκ = L�Aκ L, det(L) = 1}, (50)

where Aκ are the matrix representations, in the canonical basis ofQ2
p, of the quadratic

forms in (46) and (47). Index κ ranges in {−v, p, p
u } whenever p > 2, while κ ∈

{1,±2,±5,±10} when p = 2.
For every p ≥ 2, the special orthogonal group associated with the definite quadratic
form on Q3

p is (up to isomorphisms)

SO(3,Qp) = {L ∈ M3(Qp) | A = L�AL, det(L) = 1}, (51)

while the one on Q4
p is

SO(4,Qp) = {L ∈ M4(Qp) | A′ = L�A′L, det(L) = 1}. (52)
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A and A′ are the matrix representations in the canonical basis of Q3
p and Q4

p of the
quadratic forms (48) and (49) respectively.

It is not difficult to prove that the special orthogonal groups SO(n,Qp), n = 2, 3, 4,

in Corollary 2.35 are compact as subsets in Qn2
p . Indeed, we can introduce a p-

adic (non-Archimedean) norm on SO(n,Qp) by setting ‖M‖p = ‖(Mi j )i j‖p :=
maxi, j=1,...,n |Mi j |p. Clearly, SO(n,Qp), n = 2, 3, 4, turn into topological groups,
whenever they are endowed with the natural topology generated by the open balls of
the p-adic norm.We recall that a set K ⊂ Qm

p is compact if and only if it is closed and
bounded w.r.t. the ultrametric topology generated by (the open balls of) the p-adic
norm Np(x) := maxi=1,...,m |xi |p of Qm

p [6, 56]. SO(n,Qp), n = 2, 3, 4, are closed,
as they are groups of solutions of a system of continuous (polynomial) equations. On
the other hand, every matrix in the groups of Corollary 2.35 has bounded entries (see
Theorem 5 and Remark 14 in [35] for the details); specifically, we have:1

SO(2,Qp)κ = SO(2,Zp)κ except SO(2,Q2)−5 = SO(2, 2−1Z2)−5;
SO(3,Qp) = SO(3,Zp); (53)

SO(4,Qp) = SO(4,Zp) except SO(4,Q2) = SO(4, 2−1Z2).

This entails that ‖M‖p ≤ p for every M ∈ SO(n,Qp) ⊂ Mn(Qp) ∼= Qn2
p , i.e.,

SO(n,Qp), n = 2, 3, 4, is a bounded subset of Qn2
p .

Remark 2.36 Wehave used definite quadratic forms to define the p-adic special orthog-
onal groups. It turns out that those groups defined on indefinite quadratic forms are
not bounded, whence, not compact.

In the light of the discussion above, the following result is now clear:

Proposition 2.37 The groups SO(n,Qp), n = 2, 3, 4 of Corollary 2.35 are all and the
only compact p-adic special orthogonal groups.

The next theoremprovides a parameterization of the compact p-adic special orthog-
onal groups in dimension two [35].

Theorem 2.38 Any element of SO(2,Qp)κ takes the following matrix form in the
canonical basis of Q2

p:

Rκ(α) =
(

1−κα2
1+κα2 − 2κα

1+κα2
2α

1+κα2
1−κα2
1+κα2

)
, α ∈ Qp ∪ {∞}, (54)

where Rκ(∞) = −Rκ(0) = −I2, and κ ∈ {−v, p, p
u } for p > 2, while κ ∈

{1,±2,±5,±10} for p = 2. The composition of two elements in SO(2,Qp)κ , for
any fixed κ , is given by

Rκ(α)Rκ(β) = Rκ

(
α + β

1− καβ

)
, (55)

1 To be precise, the statements concerning p = 2 are not quite right in Ref. [35], and are corrected here.
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for every α, β ∈ Qp ∪ {∞}.
Remark 2.39 By choosing κ = 1, and taking α = tan (θ/2), a generic p-adic rotation,
as given in (54), assumes the form

(
cos θ − sin θ
sin θ cos θ

)
, (56)

i.e., it ‘formally’ reduces to a real planar rotation by an angle θ .

2.4 Integration on p-adic manifolds

This subsection deals with integration theory on p-adic manifolds [52]. For our pur-
poses, we will need a p-adic counterpart of the well known change-of-variables
formula for multiple integrals on Rn . Therefore, we start with the following:

Theorem 2.40 (Change-of-variables formula). Let a ∈ Qn
p and let ξ = (ξ1, . . . , ξn)

: U ⊂ Qn
p → V ⊂ Qn

p be aQp-analytic isomorphism between an open neighborhood
U of a, and an open neighborhood V of ξ(a), such that

det

(
∂ξi

∂x j
(a)

)
�= 0. (57)

Then, for every integrable function f on V , the following formula holds:

∫
V

f (x)dλ|V (x) =
∫

U
f (ξ(x))

∣∣∣∣det
(
∂ξi

∂x j
(x)

)∣∣∣∣
p

dλ|U (x), (58)

where λ is the Haar measure on Qn
p.

Proof Formula (58) is actually a special case of the abstract C.O.V.F. (see (26) in
Remark 2.17) specialized to the case where the pushforward of the measure on U is
realized via aQp-analytic map. See Proposition 7.4.1 in [52] for the technical details.

��
Let X be a second countable n-dimensional Qp-manifold, and � a differential

n-form on X . If A = {(Uα, ϕα)}α∈A is an atlas on X , � is expressed as in (36) in
the local coordinates of each chart inA. Then, we can associate a Radon measure μ�

with � by setting

μ�(C ) :=
∫
C
|ωα(u)|pd

(
(
↼
ϕα)∗λ

)
(u), (59)

for every compact (open) subset C ⊂ Uα ofX , and where d((
↼
ϕα)∗λ)(u) denotes the

pushforward of the Haar measure λ by
↼
ϕα . It is not difficult to verify that this measure

is well-defined: if (Uβ, ϕβ) is another chart in A containing C (i.e., C ⊂ Uβ ∩Uα),
then ∫

C
|ωα(u)|pd

(
(
↼
ϕα)∗λ

)
(u) =

∫
C
|ωβ(u)|pd

(
(
↼
ϕβ)∗λ

)
(u), (60)
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that is, μ�(C ) does not depend on the considered chart containing C . We shall give
the proof of this result in Remark 2.42 below.

Remark 2.41 Since a second countable Qp-manifold is σ -compact, the measure (59)
is regular (cf. Theorem 7.8 in [45]). Then, the measure of a Borel set E ⊂ Uα of X
is given, by inner regularity, by the supremum of the measures of the compact (open)
sets contained in E .

If f ∈ Cc(X ) is such that supp( f ) ⊂ C ⊂ Uα , its integral w.r.t. μ� is also
well-defined, and is given by

∫
X

f � :=
∫
Uα

f (u)|ωα(u)|pd
(
(
↼
ϕα)∗λ

)
(u). (61)

Let now C be an arbitrary compact (open) subset ofX . Its measure w.r.t. μ� can
be defined as follows. First, we can decompose C as

C =
⊔

i

Ci , Ci ⊂ Uα , for some α ∈ A, (62)

i.e., as a disjoint union of compact (open) subsets Ci , each contained in some Uα .
Then, the measure of C is given by

μ�(C ) =
∑

i

μ�(Ci ). (63)

Similarly, we can then extend the measure (63) to arbitrary Borel sets E in X (see
Remark 2.41). Exploiting (61), it is then not difficult to define the integral of an
arbitrary function f ∈ Cc(X ) w.r.t. μ�, as well.

We can consider the pushforward of the measure μ� via ϕα to a measure on Qn
p.

This allows us to treat the integration theory on a manifold X via integrals on Qn
p.

Indeed, using formula (27), we have:

d
(
(ϕα)∗μ�

)
(x) = (ϕα)∗

(
|ωα(u)|pd

(
(
↼
ϕα)∗λ

)
(u)

)
= |(ωα ◦↼ϕα)(x)|pdλ(x), (64)

where ϕα(u) = (x1, . . . , xn) =: x denotes the coordinate representation of the point
u ∈ X . Hence, using the (abstract) C.O.V.F. (cf. relation (26) in Remark 2.17) with
f = χC , we obtain

μ�(C ) =
∫
C
|ωα(u)|pd

(
(
↼
ϕα)∗λ

)
(u) =

∫
ϕα(C )

|(ωα ◦↼ϕα)(x)|pdλ(x). (65)

Furthermore, if f ∈ Cc(X ) is a function with supp( f ) ⊂ C ⊂ Uα , it is clear that

∫
Uα

f (u)|ωα(u)|pd
(
(
↼
ϕα)∗λ

)
(u) =

∫
ϕα(Uα)

( f ◦↼ϕα)(x)|(ωα◦↼ϕα)(x)|pdλ(x). (66)
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With the above discussion,we get to the following two conclusions. First, from (59),
we see that

μ�|Uα
� (

↼
ϕα)∗λ,

dμ�|Uα

d(
↼
ϕα)∗λ

= |ωα|p, (67)

i.e., μ�|Uα
is an absolutely continuous measure w.r.t. (

↼
ϕα)∗λ, with Radon-Nikodym

derivative given by |ωα|p : Uα → R+∗ . Secondly, (65) entails that (ϕα)∗μ� �
λ|ϕα(Uα) as well, with Radon-Nikodym derivative |ωα ◦ ↼

ϕα|p : ϕα(Uα)→ R+∗ . The
latter condition means that the pushforward of the measureμ� onX via the maps ϕα ,
for every α ∈ A, provides an absolutely continuous measure w.r.t. the Haar measure
λ onQn

p. Their Radon-Nikodym derivative—which, for notational convenience, here-
after we will simply denote by η—is globally defined, and it is uniquely defined up
to a set of points of null measure (any other Radon-Nikodym derivative is equal to η

almost everywhere). Accordingly, we shall denote by ηα := |ωα ◦↼ϕα|p the restriction
of η on ϕα(Uα) ⊂ Qn

p, for every Uα in the covering atlas A of X . Exploiting this
notation, and recalling condition (65), we can then write

μ�(C ) =
∫
ϕα(C )

ηα(x)dλ(x), (68)

for every compact (open) subsetC ⊂ Uα ⊂X . Similarly, we can express the integral
w.r.t. � of every function f ∈ Cc(X )—with supp( f ) ⊂ C ⊂ Uα—as

∫
X

f � =
∫
Uα

f (u)|ωα(u)|pd
(
(
↼
ϕα)∗λ

)
(u) =

∫
ϕα(Uα)

( f ◦↼ϕα)(x)ηα(x)dλ(x).

(69)

Remark 2.42 Using the local representation (68), it is now not difficult to prove the
equality of integrals in (60). Indeed, let C ⊂ Uα ∩Uβ be a compact (open) set inX .
Then, we want to show that

∫
ϕα(C )

ηα(x)dλ(x) =
∫
ϕβ(C )

ηβ(y)dλ(y). (70)

We first consider the change of variable y = (ϕβ ◦↼ϕα)(x) in the r.h.s. of (70). Then,
using Theorem 2.40, we see that (70) holds iff

ηα(x) = (ηβ ◦ ϕβ ◦↼ϕα)(x)| det D(ϕβ ◦↼ϕα)(x)|p, (71)

where det D(ϕβ ◦↼ϕα)(x) denotes the Jacobian of the transformation ϕβ ◦↼ϕα . On the
other hand, the pullback formula (37) also shows that

(ωα ◦↼ϕα)(x)dx1 ∧ · · · ∧ dxn = (
↼
ϕα)

∗�

= (ϕβ ◦↼ϕα)
∗(↼ϕβ)

∗�
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= (ϕβ ◦↼ϕα)
∗(ωβ ◦↼ϕβ)(y)dy1 ∧ · · · ∧ dyn

= (ωβ ◦↼ϕβ ◦ ϕβ ◦↼ϕα)(x) det D(ϕβ ◦↼ϕα)(x)dx1

∧ · · · ∧ dxn . (72)

Therefore, taking the p-adic absolute value of the l.h.s. and of the last equality in (72)
entails that (71) (and, hence, (70)) holds.

To conclude this subsection,we prove that it is always possible to construct an essen-
tially unique—i.e., uniquely defined up to a multiplicative constant—(left-)invariant
differential n-form on every n-dimensional p-adic Lie group. We will then show that
it is naturally associated with the (left) Haar measure on the group. This will draw a
parallel with the standard theory of (real) Lie groups [57, 58].

Let us first note that, also in the p-adic setting the tangent space TeG to G at e ∈ G
has a natural structure of Lie algebra g, whenever the elements X ∈ TeG are identified
with the corresponding left-invariant vector fields X̃ on G [50]. Let X1, . . . , Xn be a
basis of TeG, and let X̃1, . . . , X̃n be the corresponding left-invariant vector fields in
g. We can now define, for all g in G, the 1-forms ω1, . . . , ωn on G via the condition

(ωi )g
(
(X̃ j )g

) = δi j , j = 1, . . . , n. (73)

By construction, ω1, . . . , ωn are left-invariant 1-forms on G, as follows by observing
that

(�∗gωi )(X̃ j ) = ωi (�
∗
g X̃ j ) = ωi (X̃ j ). (74)

In particular, this also entails that ω1, . . . , ωn form a basis of the dual space of TgG
for every g ∈ G. Therefore, the differential form �inv defined as

�inv := ω1 ∧ · · · ∧ ωn, (75)

is a (nowhere vanishing) left-invariant n-form on G. Indeed, since the pullback �∗g
commutes with ∧, we have:

�∗g�inv = �∗g(ω1 ∧ · · · ∧ ωn) = �∗gω1 ∧ · · · ∧ �∗gωn = ω1 ∧ · · · ∧ ωn = �inv, (76)

that is, �inv is left-invariant. It is clear that any constant multiple of �inv is a left-
invariant n-form as well. Conversely, if �̆ is another left-invariant n-form on G, there
must exist c ∈ Qp such that �̆(e) = c�inv(e). But then, the left-invariance condi-
tion (41) entails that �̆(g) = c�inv(g) for every g in G.

We want now to show that if �inv is the left-invariant differential n-form on G, its
induced measure,μ�inv , is the left Haar measure on G (up to multiplicative constants).
Indeed, we already know that μ�inv is a Radon measure. To conclude that it is a Haar
measure, we have to show that it is left-invariant. Let C be a compact (open) set in G.
From the left-invariance of �inv we see that

ωα ◦↼ϕα = (
↼
ϕα)

∗�inv = (
↼
ϕα)

∗L∗g−1�inv, (77)
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for every g ∈ G. This entails that μ�inv(gC ) = μ�inv(C ), for every compact (open)
set C ⊂ G, and g in G (see (65)). Moreover, since G is second countable, μ�inv is
regular. In particular, inner regularity entails that

μ�inv(E) = sup{μ�inv(K ) | K ⊂ E compact}
= sup{μ�inv(gK ) | K ⊂ E compact}
= μ�inv(gE), (78)

for every Borel set E in G, and every g ∈ G. Concluding, we proved that μ�inv is a
left-invariant Radon measure on G, and since the Haar measure is essentially uniquely
defined, it must coincide with the Haar measure on G up to a multiplicative constant.

3 The Haar measure on p-adic Lie groups

In this section, we showhow to construct a left Haarmeasureμ on a (second countable)
p-adic Lie group G. Our approach exploits the peculiar topological features of p-adic
Lie groups, and relies on the possibility to construct a quasi-invariant measure for
G. Eventually, we will prove that the measure thus constructed coincides with the
measure induced by the left-invariant differential n-form �inv on G (see Sect. 2.4).

We begin by recalling the notion of a quasi-invariant measure [36]. Let G be a
p-adic Lie group, and let ν be a Radon measure on it. For h ∈ G, we can define the
left translation νh , of ν by h, as

νh(E) := ν(hE), (79)

for every Borel set E ∈ BG . We say that ν is quasi-invariant if the measures νh are all
equivalent, i.e., mutually absolutely continuous [45]. In such a case, we have:

dνh(g) = η(h, g)dν(g), (80)

where η : G × G → R+∗ is a positive map on G × G. The function η is the Radon-
Nikodym derivative dνh/dν. For h, h′ ∈ G, since νhh′ = (νh)h′ , the chain rule for the
Radon-Nikodym derivative entails the following cocycle formula:

η(hh′, g) = η(h, h′g)η(h′, g), (81)

for every g ∈ G. In particular, using (81) it is not difficult to prove the following result.

Lemma 3.1 Let G be a p-adic Lie group, and let ν be a quasi-invariant measure on
it. The measure defined as

dμ(g) := η(g, e)−1dν(g) (82)

where e denotes the identity element in G—is a left Haar measure on G.
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Proof Let μh be the left translation, by h in G, of the measure μ, as defined in (79).
For every Borel set E in BG , we have:

μh(E) =
∫

hE
η(g, e)−1dν(g) =

∫
E
η(hg, e)−1dνh(g), (83)

where in the last equality we have used the change of variable h−1g �→ g. Then, taking
into account condition (80) for quasi-invariant measures, and exploiting the cocycle
formula (81), we have:

η(hg, e) = η(h, g)η(g, e), dνh(g) = η(h, g)dν(g), (84)

which yield

∫
E
η(hg, e)−1dνh(g) =

∫
E
η(h, g)−1η(g, e)−1η(h, g)dν(g)

=
∫
E
η(g, e)−1dν(g) = μ(E). (85)

Therefore, the first equality in (83) and the last one in (85) give the desired result. ��
From Lemma 3.1 we see that it is always possible to construct a left Haar measure

on a p-adic Lie group G once known a quasi-invariant measure on it. Hence, our next
step is to show how to explicitly construct a quasi-invariant measure on G.

Let A = {(Uα, ϕα)}α∈A be a disjoint atlas on G (cf. Proposition 2.30). We can
construct a (regular) Radon measure ν on G as follows. First, in every chart (Uα, ϕα)

in A, we define a measure να on Uα by setting

να := (
↼
ϕα)∗λα, λα = λ|ϕα(Uα), (86)

that is, να is the pushforward measure, via
↼
ϕα : ϕα(Uα)→ Uα , of the restricted Haar

measure λ|ϕα(Uα) on Qn
p. Note that since να is finite on compact sets, it is a Radon

measure. In this way, we have constructed a Radon measure on every chart (Uα, ϕα)

inA. To obtain a Radon measure ν on the whole group G, we can then act as follows.
Given any Borel set E in BG , we express it as the disjoint union E =⊔

α∈A Eα , where
Eα := E ∩Uα , and set

ν(E) :=
∑
α∈A

να(Eα). (87)

Since A is countable, the series in (87) contains a countable number of non-null terms.
It is now easily proved that the measure defined in (87) is a (regular) Radon measure
on G. Indeed, ν takes values in [0,+∞] as so do all the ναs, and ν(∅) = 0. If {Ei }i
is a countable family of Borel sets in G, then ν(∪iEi ) = ∑

i ν(Ei ), as follows by
observing that the ναs are σ -additive, and that the summation order can be exchanged
in the double series

∑
α

∑
i να(Ei ∩Uα) by positivity of the ναs. Moreover, ν is clearly

finite on compact sets, and since G is second countable, we can conclude that ν is a
regular, and hence Radon, measure on G (cf. Theorem 7.8 in [45]).
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Our next step is to show that this measure is quasi-invariant. To this end, let h ∈ G
be some fixed point, and let us set, for any α, β ∈ A,

U h
α,β := {g ∈ Uα | hg ∈ Uβ} = h−1

(
(hUα) ∩Uβ)

)
= Uα ∩ (h−1Uβ). (88)

Note that U h
α,β ⊂ Uα is an open set and

Uα =
⊔
β

U h
α,β . (89)

Assuming that U h
α,β �= ∅, for every j = 1, . . . , n, and at given h ∈ G, we put

ϕα(U
h
α,β) � x �→ ζβ, j (h; x) := ϕβ, j (h

↼
ϕα(x)) ∈ Qp, (90)

where ϕβ, j is the j-th vector component of ϕβ : Uβ → Qn
p, i.e. ϕβ =

(
ϕβ,1,

. . . , ϕβ, j , . . . , ϕβ,n

)
. Moreover, the definition of ζβ, j (h; · ) can be extended to the

whole open set ϕα(Uα) = ⊔
β ϕα(U

h
α,β) by varying β in A. In this way, we obtain a

map ζβ, j (h; · ) : ϕα(Uα) → Qp (for suitable labels β depending on the charts as in
(90)), for any given h ∈ G. We can then define a function

ρβ(h; · ) : ϕα(Uα)→ R+∗ , ρβ(h; x) :=
∣∣∣∣∣det

[
∂ζβ, j

∂xk
(h; x)

]
1≤ j,k≤n

∣∣∣∣∣
p

. (91)

Eventually, we obtain a function η : G × G → R+∗ , defined as follows:

η(h, g) := ρβ(h;ϕα(g)), g ∈ Uα, α ∈ A. (92)

Let us now define a (regular) Radon measure μh on G by setting

dμh(g) = η(h, g)dν(g). (93)

We want to prove that ν is quasi-invariant and, moreover, μh = νh , so that

dνh

dν
(g) = η(h, g). (94)

Since ν is a regular measure, then νh and μh are regular measures. Hence, by outer
regularity, it is sufficient to show that

μh(O) = νh(O), (95)
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for every open set O ⊂ G. Actually, since

O =
⊔
α

(O ∩Uα), (96)

it is sufficient to prove (95) on every open subsetO ≡ Oα ofUα , for α ∈ A. Moreover,
since for any open Oα ⊂ Uα ,

Oα =
⊔
β

(Oα ∩U h
α,β) =

⊔
β

Oh
α,β, Oh

α,β := Oα ∩U h
α,β, (97)

it is enough to prove (95) on every open subset O ≡ Oh
α,β of U h

α,β . Assuming that

Oh
α,β �= ∅ (otherwise there is nothing to prove), we have:

νh(Oh
α,β) =

∫
hOh

α,β

dν(g)

=
∫
ϕβ(hOh

α,β )

dλ(x) (since hOh
α,β ⊂ Uβ)

=
∫
ϕα(Oh

α,β )

ρ(h; x)dλ(x) (by C.O.V.F. (58))

=
∫
Oh

α,β

η(h, g)dν(g) (by (86)-(87) and (92))

= μh(Oh
α,β). (98)

In conclusion, we have νh = μh . Therefore, νh and ν are mutually absolutely contin-

uous, for every h ∈ G—namely, ν is quasi-invariant—and dνh

dν (g) = η(h, g).
As a direct consequence of Lemma 3.1, the left Haar measureμ on G is of the form

dμ(g) = η(g, e)−1dν(g). (99)

With the above construction, we have proved the following result:

Theorem 3.2 Let G be a p-adic Lie group, and let A = {(Uα, ϕα)}α∈A be a disjoint
atlas on G. If μ is the left Haar measure on G then, for every Borel set E in BG, and
any Uα in A, the following equality holds:

μ(E ∩Uα) =
∫
ϕα(E∩Uα)

∣∣∣∣∣det
[
∂ζα, j

∂xk

(↼
ϕα(y);ϕ0(e)

)]
1≤ j,k≤n

∣∣∣∣∣
−1

p

dλ(y), (100)

where (U0, ϕ0) is the chart around the identity e ∈ G, (xk)
n
k=1 denotes a system of

local coordinates w.r.t. (U0, ϕ0), and ζ j is the map defined in (90).
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Remark 3.3 In (100), the functions ζα, j are correctly labelled byα. In fact, their deriva-

tives are performed in a neighborhood of x = ϕ0(e), and, thus, ζα, j (
↼
ϕα(y); x) =

ϕα, j (
↼
ϕα(y)

↼
ϕ 0(x)) whenever

↼
ϕ 0(x) ∈ U0 is ‘sufficiently close to e’ such that

↼
ϕα(y)

↼
ϕ 0(x) ∈ Uα .

Now, we prove that Theorem 3.2 still holds in the case of an atlas including possibly
overlapping charts. Indeed, let A = {(Uα, ϕα)}α∈A be an arbitrary atlas on G. Since
G is strictly paracompact (see Proposition 2.30), we can always find a refinement A′
ofA consisting of pairwise disjoint charts. Then, Theorem 3.2 provides us with a left
Haar measure on (every chart of)A′. To show that this measure is well-defined onA as
well, we have to prove that for every Borel set E in BG contained in the intersection of
two charts inA, the value of the integral in (100) is the samew.r.t. the local coordinates
of the two charts; that is, we want to prove

μ(E ∩Uα) = μ(E ∩Uβ), (101)

for every Borel set E in G such that E ⊂ Uα ∩ Uβ , Uα,Uβ ∈ A. To start with, the
r.h.s. of (101) explicitly is

μ(E ∩Uβ) =
∫
ϕβ(E∩Uβ)

∣∣∣∣∣det
[
∂ζβ, j

∂xk

(↼
ϕβ(z);ϕ0(e)

)]
1≤ j,k≤n

∣∣∣∣∣
−1

p

dλ(z), (102)

where we have denoted by y the local coordinates in the chart (Uβ, ϕβ). Then, the

change of variable z = ϕβ ◦↼ϕα(y) immediately yields

∫
ϕβ(E∩Uβ)

∣∣∣∣det
[
∂ζβ, j

∂xk

(↼
ϕβ(z);ϕ0(e)

)]∣∣∣∣
−1

p
dλ(z)

=
∫
ϕα(E∩Uα)

∣∣∣∣det
[
∂ζβ, j

∂xk

(
(
↼
ϕβ ◦ ϕβ ◦↼ϕα)(y);ϕ0(e)

)]∣∣∣∣
−1

p

×
∣∣∣∣ det

[
∂(ϕβ ◦↼ϕα) j

∂ yk
(y)

]∣∣∣∣
p
dλ(y)

=
∫
ϕα(E∩Uα)

∣∣∣∣det
[
∂ζα, j

∂xk
(
↼
ϕα(y);ϕ0(e))

]∣∣∣∣
−1

p

∣∣∣∣ det
[
∂(ϕβ ◦↼ϕα) j

∂ yk
(y)

]∣∣∣∣
−1

p

×
∣∣∣∣ det

[
∂(ϕβ ◦↼ϕα) j

∂ yk
(y)

]∣∣∣∣
p
dλ(y)

=
∫
ϕα(E∩Uα)

∣∣∣∣det
[
∂ζα, j

∂xk
(
↼
ϕα(y);ϕ0(e))

]∣∣∣∣
−1

p
dλ(y) = μ(E ∩Uα), (103)

where, for notational convenience, we have omitted 1 ≤ j, k ≤ n in the Jacobians.
Note that in the second equality of (103), we have used the C.O.V.F. for multiple
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integrals in Qn
p (cf. Theorem 2.40). Moreover, in the third equality, we have used the

fact that ζβ, j and ζα, j are related via the condition ζα, j = ϕα, j ◦ ↼
ϕβ, j ◦ ζβ, j , and

then we have exploited the usual chain rule for the Jacobian of a composite function.
Therefore, (101) shows that the (left) Haar measure in Theorem 3.2 is well-defined
over overlapping charts; that is, it does not depend on the particular chosen chart in
A. Concluding, we have the following Corollary of Theorem 3.2.

Corollary 3.4 Let G be a p-adic Lie group, and let A = {(Uα, ϕα)}α∈A be a (not
necessarily disjoint) atlas on G. The left Haar measure μ on G is expressed, in the
local coordinates of any given chart (Uα, ϕα) in A, as

μ(E ∩Uα) =
∫
ϕα(E∩Uα)

∣∣∣∣∣det
[
∂ζα, j

∂xk

(↼
ϕα(y);ϕ0(e)

)]
1≤ j,k≤n

∣∣∣∣∣
−1

p

dλ(y), (104)

for every Borel set E ∈ BG, where (U0, ϕ0) is the chart around e ∈ G, and (xk)
n
k=1

denotes a system of local coordinates w.r.t. (U0, ϕ0).

To conclude this section, we now show that the Haar measure (104) coincides with
the measure on G associated with the left-invariant differential n-form �inv on G, as
constructed in Sect. 2.4. Indeed, let us denote with �̆ the differential n-form on G
whose local expression �̆α , in every chart Uα in A, is given by

�̆α(g) = det[Dζα(g;ϕ0(e))]−1dx1 ∧ · · · ∧ dxn, (105)

where, as usual, Dζα denotes the Jacobian matrix of ζα = (ζα, j )
n
j=1, and where we

set ϕα(g) = (x1, . . . , xn). It is clear that the measure μ�̆, associated with �̆ via
relation (65), coincides with the Haar measure in (104). (It is worth noting that, from
Corollary 3.4, it follows that �̆ does not depend on the particular chosen chart on
G, i.e. it is a well-defined differential n-form on G). To prove that the form (105)
coincides with the left-invariant differential n-form �inv on G, it is enough to show
that condition (40) holds, i.e., �∗h�̆(hg) = �̆(g), for every h, g in G. Indeed, this
will prove that �̆ is a left-invariant differential n-form on G, and due to its essential
uniqueness, we can then conclude that it coincides with �inv (up to a multiplicative
constant). In fact, we have:

�∗h�̆(hg) = �∗h
(
det[Dζβ(· ;ϕ0(e))]−1(hg)dy1 ∧ · · · ∧ dyn

)

= det[D(ζβ(· ;ϕ0(e)) ◦ �h)]−1(hg) det[D�h]dx1 ∧ · · · ∧ dxn

= det[Dζα(h−1hg;ϕ0(e))]−1 det[D�h]−1 det[D�h]dx1 ∧ · · · ∧ dxn

= �̆(g), (106)

wherewe setϕα(hg) = (y1, . . . , yn). Note that, in the second equalitywehave used the
pullback formula (37) for differential forms, while in the third equality we have used
the formula for the Jacobian of a composite function, taking into account the relation
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ζα, j = ϕα, j ◦ ↼
ϕβ, j ◦ ζβ, j between ζα, j and ζβ, j . Hence, since the Haar measure is

essentially uniquely defined, we get to the conclusion that the left Haar measure (104)
must coincide (up to a multiplicative constant) with the measure μ�inv induced by the
left-invariant differential n-form �inv on G.

Remark 3.5 Let us clarify how the local formula (104) for the Haar measure μ on G
allows us to globally integrate a function on G. Given f ∈ Cc(G), its Haar integral∫

G f (g)dμ(g) can be computed by splitting f as a sum of its components on local
supports contained in the domains of the charts in an atlas for G. This is done by
making use of a partition of unity {χα}α∈A under an atlas {(Uα, ϕα)}α∈A of G. Then,
the following relations hold:

∫
G

f (g)dμ(g) =
∫

G

∑
α∈A

χα f (g)dμ(g) =
∑
α∈A

∫
Uα

χα f (g)dμ(g). (107)

Each integral in the summation can be computed by using the local formulas (104).

4 Applications

As previously observed (Proposition 2.37), the groups SO(n,Qp), n = 2, 3, 4, are
compact. Hence, they admit a (left and right) Haar measure, which is essentially
uniquely defined, i.e., unique up to a normalization constant factor. The construction of
the Haar measure on SO(2,Qp)κ immediately follows by formula (104). On the other
hand, we will explicitly construct the Haar integrals on SO(3,Qp) and SO(4,Qp). A
fruitful approach is to introduce a suitable p-adic quaternion algebra,Hp, and exploit
its relations with the p-adic special orthogonal groups in dimension three and four. In
particular,wewill prove that the latter groups canbe realized as suitable quotients of the
quaternion groups H×p and P(H×p ) respectively (c.f. Theorems 4.14 and 4.16), whose
Haar measures are determined, once again, by means of a direct application of (104).
Then, exploiting the Weil–Mackey–Bruhat formula introduced in Sect. 2.1, we will
express the Haar integrals on SO(3,Qp) and SO(4,Qp) as lifts to the Haar integrals
on the covering quaternion groups (see the forthcoming Theorems 4.21 and 4.26).

4.1 The Haar measure on SO(2,Qp)�

In this subsection, we explicitly construct a left and right Haar measure on every
SO(2,Qp)κ , as in Corollary 2.35.

According to parameterization (54), SO(2,Qp)κ is homeomorphic to the p-adic
projective line, and it is covered by two disjoint charts. One coordinate map, say

ϕ(κ), is defined on SO(2,Qp)κ\{−I} to Qp, and it is such that
↼
ϕ(κ)(x) ≡ R(α)

(cf. Theorem 2.38); the other one maps −I ∈ SO(2,Qp)κ to ∞. Since the groups
SO(2,Qp)κ are compact and infinite (uncountable), the singleton {−I} has zero Haar
measure. The Jacobian in (104) is now easily computed: by recalling the composition
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law (55), we find

[∂ζ(κ)
∂β

(
↼
ϕ (κ)(α);β)

]
1≤ j,k≤n

≡ d

dβ

(
α + β

1− καβ

)
= 1+ κα2

(1− καβ)2
. (108)

(Note that−κ is never a square [35], i.e., 1+κα2 �= 0 for every α ∈ Qp). Therefore, an
application of (104)—with β = ϕ(κ)(I) = 0—immediately yields the Haar measure
of every Borel subset E in SO(2,Qp)κ :

μ
(κ)
2 (E) =

∫
ϕ(κ)(E)

1

|1+ κα2|p dλ(α), (109)

with dλ(α) the Haar measure on Qp.

Remark 4.1 One can directly verify that the measure in (109) is a Haar measure, i.e.,
left- and right-invariant. Indeed, let us consider the functional invariance condition
in (3):

∫

SO(2,Qp)κ

Lg f (x)dμ(κ)
2 (x) =

∫

α∈Qp

L Rκ (β) f (Rκ(α))
dλ(α)

|1+ κα2|p

=
∫

α∈Qp

f (Rκ(−β)Rκ(α))
dλ(α)

|1+ κα2|p , (110)

for f ∈ C
(
SO(2,Qp)κ

)
a compactly supported function on SO(2,Qp)κ (recall that

Cc(X) = C(X), whenever X is compact), and where g = Rκ(β), for some β ∈ Qp.
In the last integral, we have also used the fact that Lg f (x) = f (g−1x) (i.e., the left
translation of functions on SO(2,Qp)κ ), togetherwith Rκ (β)

−1 = Rκ(−β). Recalling
formula (55), we have:

∫

SO(2,Qp)κ

Lg f (x)dμ(κ)
2 (x) =

∫

α∈Qp

f

(
Rκ

(
α − β

1+ καβ

))
1

|1+ κα2|p dλ(α). (111)

Let us now set � = (α − β)/(1+ καβ). We have:

α = � + β

1− κβ�
, dλ(α) = 1+ κβ2

(1− κ�β)2
d�, (112)

and, by inserting (112) into (111), we obtain

123



78 Page 30 of 59 P. Aniello et al.

∫

�∈Qp

f (�)
|1− κ�β|2p

|(1− κ�β)2 + κ(� + β)2|p
|1+ κβ2|p
|1− κ�β|2p

d�

=
∫

�∈Qp

f (�)
|1+ κβ2|p

|1+ κ� 2 + κβ2 + κ2� 2β2|p d�

=
∫

�∈Qp

f (�)
|1+ κβ2|p

|(1+ κ� 2)(1+ κβ2)|p d� =
∫

�∈Qp

f (�)
1

|1+ κ� 2|p d�

=
∫

SO(2,Qp)κ

f (x)dμ(κ)
2 (x). (113)

This shows the left-invariance of the measure. On the other hand, since the group is
compact, this also entails the right-invariance of the measure (109).

Remark 4.2 The Haar measure of any Borel subset F of SO(2,R) is given by

μ(F) = λ(ϕ(F)), (114)

where λ denotes the Haar measure on R, and the coordinate map on SO(2,R) is

given by ϕ

(
cos θ − sin θ
sin θ cos θ

)
= θ ∈ [0, 2π [. On the other hand, with κ = 1 and

α = tan
(
θ
2

)
, an element of SO(2,Qp)1 becomes formally identical to an element

of SO(2,R) (cf. Remark 2.39). Therefore, one may expect that such a ‘reduction’
applies also for the Haar measure. Indeed, using the C.O.V.F. for p-adic integrals (see
Theorem 2.40) we have:

μ
(κ)
2 (E) =

∫
ϕ(κ)(E)

1

|1+ κα2|p dλ(α)→
∫
ϕ(F)

∣∣∣∣ 1

1+ tan2(θ/2)

∣∣∣∣
p

∣∣∣∣ 1

cos2(θ/2)

∣∣∣∣
p
dλ(θ)

=
∫
ϕ(F)

dλ(θ), (115)

i.e., the Haar measure on SO(2,Qp)κ reduces to that on SO(2,R), up to the normal-
ization constant factor.

4.2 The quaternion algebraHp

The study of real quaternions was originally motivated by their property to model
Euclidean orthogonal transformations of R3 and R4 [59]. It turns out that this
familiar picture keeps some of its main futures - but also requires some essential
modifications—when switching from the real to the p-adic setting. In what follows,
we will describe the quaternion algebra Hp over the fieldQp of p-adic numbers [60],
in a way that closely mimics its real counterpart (briefly reminded in “Appendix A.1”);
later, (cf. Sect. 4.3), we shall clarify its relations with the p-adic special orthogonal
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groups in dimension three and four. The cases where p > 2 and p = 2 will be
discussed separately.

4.2.1 Case p > 2

In the standard real case, the quaternion algebra H is the vector space R4 ∼= R× R3

equipped with a suitable standard basis, namely, the one consisting of the vectors
1, i, j,k in R4 satisfying the commutation rules (200) of “Appendix A.1”. From this,
one can then define an isomorphism which realizes H as a subalgebra of M2(C).
Switching to the p-adic setting, it is then natural to set the following

Definition 4.3 Let p > 2 be an odd prime. By a p-adic quaternion algebra we mean
a four-dimensional vector spaceHp ∼= Qp ×Q3

p overQp which is aQp-algebra, and
satisfies the following conditions:

(a) There exist i, j inHp such that, denoting by 1 the multiplicative identity inHp,
the set {1, i, j,k := ji} is a Qp-basis in Hp.

(b) The basis vectors i, j,k in Hp satisfy the following commutation rules:

i2 = v, j2 = −p, k2 = pv, ji = −ij, ki = −ik = vj, kj = −jk = pi,
(116)

for v ∈ Qp a non-quadratic p-adic unit.

Remark 4.4 By means of a direct calculation, one verifies that the centre of the quater-
nion algebraHp coincides with the base fieldQp. This is reminiscent, to some extent,
of the standard real case where, similarly, one shows that the field of real numbers R
is the centre of the real quaternion algebra H.

On the quaternion algebraHp , we can define a natural involutive anti-automorphism
by setting

Hp � ξ = q0 + iq1 + jq2 + kq3 �→ ξ := q0 − iq1 − jq2 − kq3, ξ ∈ Hp. (117)

Then, it is easily checked that, for every ξ ∈ Hp, the product of ξ and ξ results into

ξξ = Q(4)(q0, q1, q2, q3) = q2
0 − vq2

1 + pq2
2 − pvq2

3 , (118)

that is, the unique (up to linear equivalence and scaling) four-dimensional definite
quadratic form over Qp, for p > 2 (cf. (49) in Theorem 2.33). Therefore, we can
express the inverse ξ−1 of every (non-null) p-adic quaternion as

ξ−1 = ξ

Q(4)(q0, q1, q2, q3)
. (119)

In what follows, we shall denote by

H×p := {ξ ∈ Hp | ξ �= 0} = {ξ = q0+iq1+jq2+kq3 ∈ Hp | Q(4)(q0, q1, q2, q3) �= 0}
(120)

the multiplicative group of invertible quaternions.
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Remark 4.5 In the literature (e.g., see [59]), the reduced norm is defined as the map

Hp � ξ �→ nrd(ξ) := ξξ = Q(4)(q0, q1, q2, q3) ∈ Qp. (121)

It is easily checked that nrd is a multiplicative map; namely, nrd(ξη) = ξηξη =
ξηηξ = ξnrd(η)ξ = nrd(η)ξξ = nrd(ξ)nrd(η), for every ξ, η ∈ Hp. More-
over, for every α ∈ Qp and ξ ∈ Hp, nrd(αξ) = α2nrd(ξ), and nrd(ξ) =
Q(4)(q0,−q1,−q2,−q3) = Q(4)(q0, q1, q2, q3) = nrd(ξ). In what follows, we shall
denote by ξ/nrd(ξ) the inverse element (119) of a quaternion ξ ∈ H×p .

In the group of invertible quaternions H×p , it is possible to single out the subgroup
of the so-called unit quaternions, namely, the group:

U(Hp) := {ξ ∈ H×p | ξ−1 = ξ} ≡ {ξ ∈ Hp | nrd(ξ) = 1}. (122)

We want now to show that, as in the standard real case, Hp can be realized as a
suitable matrix algebra. To begin with, we recall that in the quadratic form Q(4)(x) =
x20−vx21+ px22− pvx23 onQp, v ∈ Qp is a non-quadratic p-adic unit, i.e., v /∈ (Q×p )2
and |v|p = 1. Accordingly, we set Qp(

√
v) to denote the quadratic field extension

of Qp by
√
v. LetM2(Qp(

√
v)) denote the algebra of two-dimensional matrices over

Qp(
√
v), and letHp be the subalgebra of the matrices M inM2(Qp(

√
v)) of the form

M =
(

x0 +√vx1 −x2 +√vx3
p(x2 +√vx3) x0 −√vx1

)
, (123)

where xi ∈ Qp, i = 0, 1, 2, 3. It is easily checked that Hp is a (unital) Qp-division
algebra, where the inverse of every non-null element M ∈ Hp is

M−1 = 1

det(M)

(
x0 −√vx1 x2 −√vx3

−p(x2 +√vx3) x0 +√vx1

)
, (124)

and where det(M) = Q(4)(x0, x1, x2, x3). Let us now introduce the matrices i, j,k in
M2(Qp(

√
v)) defined as

i :=
(√

v 0
0 −√v

)
, j :=

(
0 −1
p 0

)
, k :=

(
0

√
v

p
√
v 0

)
. (125)

It is clear that every M in Hp can be expressed as follows:

M = x0 + ix1 + jx2 + kx3, x0, x1, x2, x3 ∈ Qp, (126)

(here, we are omitting the identity matrix I2 multiplying x0); that is, Hp coincides
with theQp-linear span of the set {I2, i, j,k}. Moreover, i, j,k satisfies the following
commutation rules:

i2 = vI2, j2 = −pI2, k2 = pvI2, ji = −ij = k, ki = −ik = vj, (127)

kj = −jk = pi,
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from which we can argue that Hp is a non-commutative Qp-division algebra.

Remark 4.6 As in the complex case, the subset of invertible elements in Hp forms a
group

H×p := {M ∈ Hp | M �= 02} = {M ∈ Hp | det(M) �= 0}, (128)

where 02 denotes the null 2× 2 matrix on Qp(
√
v). Moreover, we can single out the

subgroup U(Hp) of elements in H×p having unit determinant, i.e.,

U(Hp) := {M ∈ H×p | det(M) = 1}, (129)

which provides the p-adic counterpart of (206) in “Appendix A.1”.

In the light of the discussion above, it is now not difficult to prove the following
result:

Proposition 4.7 For every prime p > 2, the p-adic quaternion algebra Hp is isomor-
phic to the Qp-division subalgebra Hp of M2(Qp(

√
v)).

Proof Let us consider the map

θp : Hp � ξ = q0+iq1+jq2+kq3 �→ θp(ξ) :=
(

q0 +√vq1 −q2 +√vq3
p(q2 +√vq3) q0 −√vq1

)
∈Hp.

(130)
It is clear that θp is one-one, onto and linear, i.e., it is an isomorphism of vector spaces.
Also, θp is a ring homomorphism, since θp(ξη) = θp(ξ)θp(η) for every ξ, η ∈ Hp.
Hence, it defines an algebra isomorphism from Hp to Hp. ��

The algebra isomorphism θp identifies the basis vectors 1, i, j,k ofHp with I2 and
the matrices (125) in the spanning set of Hp, respectively. This then also justifies our
abuse of notation in using the same symbols for the basis elements of both Hp and
Hp.

Remark 4.8 Exploiting the algebra isomorphism θp, one can easily check that

nrd(ξ) = det(θp(ξ)) = Q(4)(q0, q1, q2, q3). (131)

Therefore, we can interchangeably use nrd(ξ), det(θp(ξ)) and Q(4)(q0, q1, q2, q3) to
denote the reduced norm of ξ = q0 + iq1 + jq2 + kq3 in Hp.

Remark 4.9 Using the isomorphism θp, it is clear that the subgroups U(Hp) and H×p
of Hp are isomorphic, respectively, to the subgroups U(Hp) and H×p of Hp (cf.
Remark 4.6).

4.2.2 Case p = 2

As for the p > 2 case, we start by giving the following
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Definition 4.10 Let p = 2. By a 2-adic quaternion algebra we mean a four-
dimensional vector spaceH2 ∼= Q2×Q3

2 overQ2 which is aQ2-algebra, and satisfies
the following conditions:

(c) There exist i, j inH2 such that, denoting by 1 the multiplicative identity inH2, the
set {1, i, j,k} is a Q2-basis in H2.

(d) The basis vectors i, j,k satisfy the following commutation rules:

i2 = j2 = k2 = −1, ij = −ji = k, jk = −kj = i, ki = −ik = j. (132)

We can endow H2 with the involution (117), thus turning it into an involutive
algebra. Then, the inverse ξ−1 of every non-null 2-adic quaternion ξ can be expressed
as

ξ−1 = ξ

nrd(ξ)
. (133)

Moreover, we can single out the subgroup H×2 ≤ H2 of invertible 2-adic quaternions
by putting

H×2 = {ξ ∈ H2 | ξ �= 0} ≡ {ξ ∈ H2 | nrd(ξ) �= 0}, (134)

as well as the subgroup U(H2) ≤ H×2 of unit quaternions defined as

U(H2) = {ξ ∈ H×2 | nrd(ξ) = 1}. (135)

We want now prove that H2 can be made in a one to one correspondence with
a suitable matrix algebra. To this end, we recall that the definite quadratic form of
Q4

2 is now given by (49); moreover, since −1 is not a square in Q2, we can consider
the quadratic extension Q2(

√−1) of Q2 by −1. Let M2(Q2(
√−1)) denote the alge-

bra of two-dimensional matrices on Q2(
√−1), and let H2 ⊂ M2(Q2(

√−1)) be the
subalgebra of matrices M defined by

M :=
(

x0 +
√−1x1 x2 +

√−1x3
−x2 +

√−1x3 x0 −
√−1x1

)
, xi ∈ Q2, ∀i = 0, . . . , 3. (136)

By construction, we have that det(M) = Q(4)(x0, x1, x2, x3) = x20 + x21 + x22 + x23 .
Hence, every non-zero M ∈ H2 is invertible, with inverse given by

M−1 = 1

det(M)

(
x0 −

√−1x1 −x2 −
√−1x3

x2 −
√−1x3 x0 +

√−1x1

)
; (137)

i.e.,H2 is an associative (unital)Q2-division algebra.Next, let us introduce thematrices
i, j,k in M2(Q2(

√−1)) defined by

i :=
(√−1 0

0 −√−1
)
, j :=

(
0 1
−1 0

)
, k :=

(
0

√−1√−1 0

)
. (138)
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Every M in H2 can be expressed as M = x0 + ix1 + jx2 + kx3 (we have omitted
the identity I2 multiplying x0); that is, H2 can be realized as the Q2-linear span of
{I2, i, j,k}. By further noting that i, j,k satisfy the commutation rules

i2 = j2 = k2 = −I2, ij = −ji = k, jk = −kj = i, ki = −ik = j, (139)

we also see that H2 is a non-commutative Q2-algebra.

Remark 4.11 As in the p > 2 case, we can introduce the group

H×2 := {M ∈ H2 | M �= 02} ≡ {M ∈ H2 | det(M) �= 0} (140)

of the invertible matrices in H2, as well as the subgroup

U(H2) =
{

M ∈ H×2 | det(M) = 1
}
. (141)

The following result is a straightforward adaptation of Proposition 4.7

Proposition 4.12 Let p = 2. Then, the 2-adic quaternion algebra H2 is isomorphic
with the subalgebra H2 of M2(Q2(

√−1)).
Proof It suffices to consider the map

θ2 : H2 � ξ = q0+iq1+jq2+kq3 �→ θ2(ξ) :=
(

q0 +
√−1q1 q2 +

√−1q3
−q2 +

√−1q3 q0 −
√−1q1

)
∈ H2,

(142)
and observe that it provides the desired algebra isomorphism. ��
Remark 4.13 The quaternion algebraH2 shares some analogies with the standard real
quaternion algebraH. In particular, the matrix representation of a 2-adic quaternion is
‘essentially the same’ as in the standard case (just set

√−1 := i for the square root of
the non quadratic element −1 ∈ Q2). This is what one expects upon considering the
‘formal equivalence’ of the real four-dimensional quadratic form QR with the four-
dimensional quadratic form Q(4) onQ2. However, the analogies between standard and
p-adic quaternion algebras cannot be pursued too far. Indeed, a fundamental difference
between Hp, for every prime p ≥ 2, and H is the following. For the latter, we have
that QR(q0, q1, q2, q3) = ‖(q0, q1, q2, q3)‖2R4 , i.e., the definite quadratic form QR

on R4 coincides with the squared Euclidean norm of R4. (This also entails that the
reduced norm of H is equivalent to the (square of) the Euclidean norm of R4. See
Remarks 4.5 and A.1). On the other hand, in the p-adic setting, we only have the
equivalence Q(4) ≡ nrd, i.e., the reduced norm of Hp does not coincide with the
square of the p-adic norm of Q4

p.

4.3 Relation between p-adic quaternions and special orthogonal groups

This subsection clarifies the relations between p-adic quaternions and the p-adic
groups of rotations SO(3,Qp) and SO(4,Qp), for every p ≥ 2. We begin with
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SO(3,Qp). Let us consider the action by conjugation of the group H×p of invertible
quaternions on Hp; namely, the map

Hp � η �→ ξηξ−1 ∈ Hp, (143)

where ξ ∈ H×p , and p ≥ 2. This map is an isometric linear transformation of Hp,
since it preserves the reduced norm of every quaternion η in Hp:

nrd(ξηξ−1) = nrd(ξ)nrd(η)nrd(ξ−1)
= nrd(ξ)nrd(ξ−1)nrd(η)
= nrd(ξξ−1)nrd(η)
= nrd(η); (144)

equivalently, the action by conjugation ofH×p preserves the definite quadratic form of
Q4

p. Moreover, the operation η �→ ξηξ−1 leaves the centre Qp of Hp pointwise fixed
and, hence, also leaves the orthogonal subspace Q3

p invariant.
(Note: Here, we refer to the orthogonality w.r.t. the inner product induced by the

definite quadratic form of Q4
p, as defined in (42)).

Let us now consider the restriction of (143) to the subset H0
p := {ν ∈ Hp | ν =

iq1+ jq2+kq3} of pure imaginary quaternions inHp; that is, let us consider the map

κp(ξ) : H0
p � ν �→ κp(ξ)ν := ξνξ−1, ξ ∈ H×p . (145)

By noting that H0
p
∼= Q3

p, and reminding that the action (143) is an isometric trans-
formation of Hp, we deduce that κp(ξ) preserves the restriction of Q(4) to Q3

p,
i.e., the (equivalent) quadratic form Q+ (see Remark 2.34). Hence, we deduce that
κp(ξ) ∈ O(3,Qp) ∼= {L ∈ End(Q3

p) | Q+(Lx) = Q+(x), ∀x ∈ Q3
p} represents an

orthogonal transformation in Q3
p. Next, by observing that, for every ξ, ρ ∈ Hp and

ν ∈ H0
p, the equalities κp(ξρ)ν = (ξρ)ν(ξρ)−1 = ξ

(
ρνρ−1

)
ξ−1 = κp(ξ)κp(ρ)ν

hold, we can conclude that κp : H×p → O(3,Qp) provides a group homomorphism.
Let us now explicitly derive its action on a pure imaginary quaternion ν in H0

p. If
ξ = q0 + iq1 + jq2 + kq3 ∈ H×p and ν = is1 + js2 + ks3 ∈ H0

p, the action of κp(ξ)

on ν is given by

ξνξ−1 = (q0+ iq1+jq2+kq3)(is1+js2+ks3)(q0− iq1−jq2−kq3)
1

nrd(ξ)
, (146)

where we have used the fact that ξ−1 = ξ/nrd(ξ) (see Remark 4.5). Expanding the
above products, one sees that the scalar part vanishes, as expected, and, by collecting
the terms in i, j and k, we get
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κp(ξ)

= 1

nrd(ξ)

⎛
⎝q2

0 − vq2
1 − pq2

2 + pvq2
3 2p(q0q3 + q1q2) −2p(q0q2 + vq1q3)

2v(q0q3 − q1q2) q2
0 + vq2

1 + pq2
2 + pvq2

3 −2v(q0q1 + pq2q3)
2(q0q2 − vq1q3) 2(−q0q1 + pq2q3) q2

0 + vq2
1 − pq2

2 − pvq2
3

⎞
⎠

(147)

for p > 2, and

κ2(ξ) = 1

nrd(ξ)

⎛
⎝q2

0 + q2
1 − q2

2 − q2
3 2(q1q2 − q3q0) 2(q2q0 + q3q1)

2(q1q2 + q0q3) q2
0 − q2

1 + q2
2 − q2

3 2(q2q3 − q1q0)
2(q1q3 − q2q0) 2(q1q0 + q2q3) q2

0 − q2
1 − q2

2 + q2
3

⎞
⎠

(148)
for p = 2. A direct calculation shows that the transformations (147) and (148) have
unit determinant, i.e.,

det(κp(ξ)) = 1

nrd(ξ)3
Q(4)(q0, q1, q2, q3)

3 = 1. (149)

Therefore, we get to the conclusion that, for every prime p ≥ 2, and every ξ ∈ H×p ,
κp(ξ) ∈ SO(3,Qp) is a three-dimensional p-adic rotation.

The above discussion shows that κp(H
×
p ) ⊆ SO(3,Qp). We are now going to prove

that, actually, also the reverse inclusion SO(3,Qp) ⊆ κp(H
×
p ) holds. Indeed, let us

first introduce the map τρ : H0
p → H0

p defined, for every ρ ∈ H×p ∩H0
p, as

τρ(ν) := ν − 2b(ν, ρ)

nrd(ρ)
ρ, (150)

where b denotes the bilinear form associated with the quadratic form Q+ in Q3
p (cf.

Sect. 2). It is easily shown that this map satisfies the conditions τρ(ρ) = −ρ and
Q+(τρ(ν)) = Q+(ν), for any ν ∈ H0

p
∼= Q3

p; namely, τρ ∈ O(3,Qp)\SO(3,Qp)

defines a hyperplane reflection (w.r.t. ρ) in H0
p. Moreover, by taking into account

the defining properties of b, nrd and H0
p, and recalling that, for a pure imaginary

quaternion ν in H0
p, one has ν = −ν, we see that the reflection (150) is explicitly

given by τρ(ν) = −ρνρ−1, i.e. τρ ≡ −κp(ρ). On the other hand, by a classical
theoremofCartan andDieudonné (cf. Theorem4.5.7. in [59]), every special orthogonal
transformation in SO(3,Qp) can bewritten as the composition of two such reflections,
i.e. g = τρ1τρ2 , for all g ∈ SO(3,Qp), and suitable ρ1, ρ2 ∈ H×p ∩ H0

p. Therefore,
every p-adic rotation in SO(3,Qp) is expressed by

g = τρ1τρ2 = (−τρ1)(−τρ2) = κp(ρ1)κp(ρ2) = κp(ρ1ρ2) = κp(ξ), (151)

for ξ := ρ1ρ2 ∈ H×p . This then shows that κp(H
×
p ) = SO(3,Qp), i.e. that κp is

surjective.
The following result is now straightforward and crucial for our purposes.
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Theorem 4.14 The group SO(3,Qp) is isomorphic to the quotient of the group H×p of
invertible quaternions, and the multiplicative group Q×p of non-null elements in Qp,
namely

SO(3,Qp) ∼= H×p /Q×p . (152)

Proof To prove the group isomorphism (152), we can equivalently show that the
following

1→ Q×p ↪→ H×p
κp−→ SO(3,Qp)→ 1 (153)

is a short exact sequence. We already know that κp is surjective. Furthermore, the
kernel of κp, ker(κp), coincides with the image Q×p of the embedding in the short
sequence:

ker(κp) = {ξ ∈ H×p | κp(ξ) = I ∈ SO(3,Qp)}
= {ξ ∈ H×p | κp(ξ)ν = ν for every ν ∈ H0

p}
= {ξ ∈ H×p | ξν = νξ for every ν ∈ H0

p}
= {ξ ∈ H×p | ξρ = ρξ for every ρ ∈ Hp} = Q×p , (154)

as Q×p is the centre of H×p (see Remark 4.4). ��
The exact sequence (153) is reminiscent, to some extent, of the exact sequence

1→ {±1} ↪→ U(H) ∼= SU(2,C) � SO(3,R)→ 1, (155)

of the standard real case (cf. the isomorphism (210) in “AppendixA.2”). Here, themain
difference with the sequence (153) is provided by the fact that the groups U(H) and
F2 = {±1} are replaced, in the p-adic setting, by the groupsH×p andQ×p respectively.
The reason for this discrepancy is related to the peculiar features of the base fieldQp.
Indeed, it is possible to prove [59, 61] that a sequence as in (155) is exact if and only
if nrd(H×) ⊂ (F×)2, namely, iff the reduced norm of every invertible quaternion is a
quadratic element of the field. In the case where F = R, this is certainly true. Instead,
in the p-adic setting, nrd(H×p ) ⊂ (Q×p )2 is never true.

We want now to show that SO(3,Qp) and H×p /Q×p are homeomorphic. This fact
will indeed play a fundamental role in our construction of the lift of the Haar integrals
on SO(3,Qp) to H×p .

Let us preliminary recall that every LCSCHausdorff space is a standard Borel space
once endowed with its Borel σ -algebra. Accordingly, one calls a space X a standard
Borel G-space if X is a G-space (cf. Sect. 2.1), its Borel structure is standard, and if
the action of G on X is a Borel map. If X is a standard Borel G-space, and x ∈ X is
a fixed point, let Gx := {g ∈ G | g[x] = x} be the stability subgroup at x . One can
show (cf. Corollary 5.8 in [47]) that Gx is a closed subgroup of G. Moreover, denoting
by q : G → G/Gx the projection homomorphism, the map

G/Gx � q(g) �→ g[x] ∈ X (156)
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is a Borel isomorphism, and it is a homeomorphism whenever X is LCSC (cf. Theo-
rem 5.11 in [47]). Therefore, in such a case, X ∼= G/Gx are homeomorphic spaces in
a natural way. We are now ready to prove the following result.

Proposition 4.15 The group isomorphism (152) between SO(3,Qp) and H×p /Q×p is
also an isomorphism of topological groups.

Proof The proof we give here is based on general measure-theoretical arguments on
G-spaces; for amore specific proof, involving the reduced norm of p-adic quaternions,
see “Appendix B”.

As a vector space,Hp ∼= Qp×Q3
p = Q4

p, and we can provideHp with the product
topology (on Qp, we consider the natural (ultra-)metric topology generated by the
p-adic absolute value). Similarly, H×p and Q4

p − {0} are homeomorphic topological
spaces whenever they are equipped with the induced topology as subspaces ofHp and
Q4

p respectively. The continuity of the group operations (multiplication and inverse)
ofH×p is inherited from the continuity of the addition, inner multiplication (according
to the commutation relations among the basis elements) and multiplication by scalars
of Q4

p − {0}; therefore H×p is a topological group. Also, H×p is LCSC, as Q4
p − {0}

is so (being an open subspace of the locally compact Hausdorff space Q4
p). We have

already observed that SO(3,Qp) is a compact second countableHausdorff group, once
endowed with the topology introduced in Sect. 2. Hence, SO(3,Qp), supplied with
its Borel σ -algebra is a standard Borel space. We want now to show that SO(3,Qp)

is a standard Borel H×p -space. To this end, we have to find a Borel action of H×p on
SO(3,Qp).

Let us introduce the map from H×p × SO(3,Qp) to SO(3,Qp) defined as

H×p × SO(3,Qp) � (ξ, R) �→ ξ [R] := κp(ξ)R ∈ SO(3,Qp). (157)

It is easily shown that the map (157) provides a continuous left action of H×p on
SO(3,Qp). Indeed, continuity follows from that of κp and of the matrix multiplication
in SO(3,Qp). Next, we have that ξ [ν[R]] = κp(ξ)

(
κp(ν)R

) = (
κp(ξ)κp(ν)

)
R =

κp(ξν)R = (ξν)[R], for every ξ, ν ∈ H×p , R ∈ SO(3,Qp). Moreover R �→ ξ [R]
is a homeomorphism for every fixed ξ ∈ H×p , as follows by observing that R �→
ξ [R] is surjective (since the multiplication in SO(3,Qp) by the matrix κp(ξ) is so),
and injective (since if κp(ξ)R1 = κp(ξ)R2, then R1 = R2 by the invertibility of
κp(ξ) ∈ SO(3,Qp)), and both the map and its inverse are continuous (as they are just
matrix multiplications and inverses). This shows that (157) is a continuous (actually,
Borel) left action of H×p on SO(3,Qp). This action is also transitive, since it exists
an element R ∈ SO(3,Qp) such that its orbit {κp(ξ)R | ξ ∈ H×p } is the whole space
SO(3,Qp) (it is enough to consider R = I, and the surjectivity of κp). Therefore,
we can argue that SO(3,Qp) is a standard Borel (transitive) H×p -space. On the other
hand, the stability subgroup at every R ∈ SO(3,Qp) is given by {ξ ∈ H×p | ξ [R] =
R} = {ξ ∈ H×p | κp(ξ)R = R} = {ξ ∈ H×p | κp(ξ) = I} = ker(κp) = Q×p ;
hence, we can conclude that SO(3,Qp) and H×p /Q×p are homeomorphic spaces. In
particular, the homeomorphism is as in (156) with, for instance, the stability subgroup
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at I ∈ SO(3,Qp). Explicitly, the homeomorphism is H×p /Q×p � ξQ×p �→ κp(ξ) ∈
SO(3,Qp). This is, indeed, the samemap providing the isomorphism in Theorem4.14.

��

Proposition 4.15 concludes our discussion on the relations between p-adic quater-
nions and rotations in SO(3,Qp). Now, we carry out a similar analysis to clarify the
relation between quaternions and the elements in SO(4,Qp). To begin with, let us
introduce the left action of H×p ×H×p on Hp defined by

Hp � η �→ ξη −1 ∈ Hp, (ξ,  ) ∈ H×p ×H×p . (158)

This action is by similarities, as follows by noting that

nrd(ξη −1) = nrd(ξ)nrd(η)nrd( −1) = nrd(ξ)

nrd( )
nrd(η). (159)

In particular, the action is by isometries whenever nrd(ξ) = nrd( ). Hence, let us
introduce the group

P(H×p ) := {(ξ,  ) ∈ H×p ×H×p | nrd(ξ) = nrd( )}. (160)

The restriction of the action (158) to a pair (ξ,  ) ∈ P(H×p ) ≤ H×p × H×p is denoted
by κ ′p(ξ,  ); namely, we set

κ ′p(ξ,  ) : Hp � η �→ κ ′p(ξ,  )η := ξη −1 ∈ Hp, (ξ,  ) ∈ P(H×p ). (161)

Since this action is by isometries, and Hp ∼= Q4
p, then κ

′
p(ξ,  ) ∈ O(4,Qp) ∼= {L ∈

End(Q4
p) | Q(4)(Lx) = Q(4)(x), for every x ∈ Q4

p}. It can be easily checked that,
as done for the maps κp(ξ) in the three-dimensional case, κ ′p(ξ,  ) ∈ SO(4,Qp), for
every (ξ,  ) ∈ P(H×p ). Also, κ ′p : P(H×p ) → SO(4,Qp) is a group homomorphism,
and we get to the following result:

Theorem 4.16 The group SO(4,Qp) is isomorphic to the quotient of the group P(H×p )
and the multiplicative group Q×p of non-null p-adic numbers:

SO(4,Qp) ∼= P(H×p )/Q×p . (162)

Proof Since char(Qp) �= 2, the isomorphism (162) follows from Proposition 4.5.17.
in [59]. In particular, to prove (162), it suffices to show that the following

1→ Q×p ↪→ P(H×p )
κ ′p−→ SO(4,Qp)→ 1 (163)

is a short exact sequence. This is done similarly to the proof of Theorem 4.14: Surjec-
tivity of the map κ ′p : P(H×p ) → SO(4,Qp) again follows by the Cartan-Dieudonné
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Theorem (cf. Theorem 4.5.7. in [59]), and its kernel is

ker(κ ′p) = {(ξ,  ) ∈ P(H×p ) | κ ′p(ξ,  ) = I ∈ SO(4,Qp)}
= {(ξ,  ) ∈ P(H×p ) | κ ′p(ξ,  )η = η for every η ∈ Hp}
= {(ξ,  ) ∈ P(H×p ) | ξη = η for every η ∈ Hp}. (164)

In particular, the last condition must hold for η = 1 ∈ Hp, providing the necessary
condition ξ =  ; hence,

ker(κ ′p) = {(ξ, ξ) ∈ P(H×p ) | ξη = ηξ for every η ∈ Hp}
∼= {ξ ∈ H×p | ξη = ηξ for every η ∈ Hp} = Q×p . (165)

That is, the kernel of κ ′p is the diagonally embedded Q×p ∼= Q×p (1, 1) in P(H×p ). ��
Remark 4.17 The short exact sequences (163) is the p-adic counterpart of the following
sequence for the standard real setting:

1→ {±1} ↪→ U(H)× U(H) � SO(4,R)→ 1, (166)

where U(H) denotes the group of unit quaternions (see (201) in “Appendix A.1”). This
then entails the well known group isomorphism (211). The main difference with the
p-adic case is provided by the fact that U(H)×U(H) and F2 = {±1} are now replaced
by P(H×p ) and Q×p respectively. Once again, this discrepancy is a consequence of the
fact that in the p-adic setting, nrd(H×p ) �⊂ (Q×p )2.

Similarly towhatwe did for SO(3,Qp), we are interested in proving that SO(4,Qp)

and P(H×p )/Q×p are homeomorphic; this will allow us to consider the lift of the Haar
integrals on SO(4,Qp) to that on P(H×p ).

Proposition 4.18 The group isomorphism (162) between SO(4,Qp) and P(H×p )/Q×p
is also an isomorphism of topological groups.

Proof Consider the group P(H×p ) with the subspace topology induced by Q8
p (the

latter, being endowed with p-adic topology). The group operations are continuous,
hence P(H×p ) is a topological group. It is also Hausdorff and second countable, being
a subspace of the Hausdorff second countable spaceQ8

p. In addition,P(H
×
p ) is a closed

subspace of the locally compact Hausdorff space Q8
p, hence it is locally compact as

well. We are now going to show that, actually, SO(4,Qp) is a standard Borel P(H×p )-
space. The group SO(4,Qp) with p-adic topology is compact, second countable and
Hausdorff. Thus, SO(4,Qp) along with its Borel σ -algebra is a standard Borel space.
Let us introduce the map

P(H×p )×SO(4,Qp) �
(
(ξ, ρ), R

) �→ (ξ, ρ)[R] := κ ′p(ξ, ρ)R ∈ SO(4,Qp). (167)

This map is continuous, and such that (ξ, ρ)
[
(ν, η)[R]] = κ ′p(ξ, ρ)

(
κ ′p(ν, η)R

) =
κ ′p

(
(ξ, ρ)(ν, η)

)
R = (

(ξ, ρ)(ν, η)
)[R], for every (ξ, ρ), (ν, η) ∈ P(H×p ), R ∈
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SO(4,Qp) (here, we have used the fact κ ′p is a homomorphism). Moreover, the
map R �→ (ξ, ρ)[R] is a homeomorphism, for every fixed (ξ, ρ) ∈ P(H×p ). There-
fore, the map (167) is an action of P(H×p ) on SO(4,Qp), which is transitive by
surjectivity of κ ′p. Actually, it is also a Borel map and, hence, SO(4,Qp) is a
standard Borel P(H×p )-space. Now, we observe that the stability subgroup at any
R ∈ SO(4,Qp) is {(ξ, ρ) ∈ P(H×p ) | (ξ, ρ)[R] = R} = {(ξ, ρ) ∈ P(H×p ) |
κ ′p(ξ, ρ)R = R} = {(ξ, ρ) ∈ P(H×p ) | κ ′p(ξ, ρ) = I} = ker(κ ′p) = Q×p . Thus,
we can argue that P(H×p )/Q×p and SO(4,Qp) are homeomorphic, the homeomor-
phism being provided, once again, by (156). In particular, if we consider the stability
subgroup, for instance, at I ∈ SO(4,Qp), the homeomorphism is explicitly given by
P(H×p )/Q×p � (ξ, ρ)Q×p �→ κ ′p(ξ, ρ) ∈ SO(4,Qp), and coincides with the isomor-
phism of Theorem 4.16. ��

4.4 The Haar integral on SO(3,Qp)

The construction of the Haar integral on SO(3,Qp) can be conveniently carried out
by exploiting the conclusions of Theorem 2.18 and Proposition 4.15. In particular, this
will bring us along two main steps: First, we shall construct the Haar measure on H×p
and, hence, its associated Haar integral. Then, owing to the result in Theorem 2.18,
we will show that there is a natural lift of the Haar integral on SO(3,Qp) to that of
H×p .

To begin with, let us notice that, since H×p is locally compact, it admits a left Haar
measure.

Proposition 4.19 The group H×p of invertible quaternions is unimodular.

Proof We exploit the well known result that a locally compact group is unimodular
whenever there exists a compact neighborhood of the identity element which is invari-
ant under the inner automorphisms of the group (see Chapter V in [46]). In the present
case, 1 ∈ H×p is an element of Q×p ≤ H×p . Since Q×p is the centre of H×p , every subset
of Q×p is invariant under the inner automorphisms of H×p . Z×p provides an instance of
such an invariant compact neighborhood of the identity 1. ��

As a consequence of Proposition 4.19, the left and the right Haar measures on H×p
coincide, and we can construct it by directly exploiting formula (104). In particular,
sinceH×p ∼= Q4

p−{0} as topological spaces, the map ϕ defining this homeomorphism
provides us a global coordinate map for the elements of H×p . Specifically, if ξ =
q0 + iq1 + jq2 + kq3 ∈ H×p , its coordinates are given by ϕ(ξ) := (q0, q1, q2, q3).
Therefore, the density function η (cf. Sect. 3) characterizing the Haar measure on H×p
will be globally defined on the wholeH×p . We will discuss the cases p > 2 and p = 2
separately.

Let us assume p > 2 first. If ξ = q0+ iq1+jq2+kq3, and χ = x0+ ix1+jx2+kx3
are two quaternions in H×p , their composition will result in another quaternion ζ =
z0 + iz1 + jz2 + kz3; namely

ζ = z0 + iz1 + jz2 + kz3 = (q0 + iq1 + jq2 + kq3)(x0 + ix1 + jx2 + kx3)
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= q0x0 + iq0x1 + jq0x2 + kq0x3 + iq1x0 + vq1x1
− kq1x2 − jvq1x3 + jq2x0 + kq2x1 − pq2x2 − ipq2x3
+ kq3x0 + jvq3x1 + ipq3x2 + pvq3x3, (168)

from which we argue that

z0 = q0x0 + vq1x1 − pq2x2 + pvq3x3, z1 = q0x1 + q1x0 − pq2x3 + pq3x2,

z2 = q0x2 + q2x0 − vq1x3 + vq3x1, z3 = q0x3 + q3x0 − q1x2 + q2x1. (169)

We can now compute the function
∂ζ j
∂xk

(↼
ϕ(q);ϕ(e)), where the vectors of coordinates

of e and ξ are (1, 0, 0, 0) and (q0, q1, q2, q3) := q respectively:

∂ζ j

∂xk

(↼
ϕ(q);ϕ(e)) =

⎛
⎜⎜⎜⎝

∂ζ0
∂x0

∂ζ0
∂x1

∂ζ0
∂x2

∂ζ0
∂x3

∂ζ1
∂x0

∂ζ1
∂x1

∂ζ1
∂x2

∂ζ1
∂x3

∂ζ2
∂x0

∂ζ2
∂x1

∂ζ2
∂x2

∂ζ2
∂x3

∂ζ3
∂x0

∂ζ3
∂x1

∂ζ3
∂x2

∂ζ3
∂x3

⎞
⎟⎟⎟⎠

∣∣∣∣∣∣∣∣∣
x0=1,
x1,x2,x3=0

=

⎛
⎜⎜⎝

q0 vq1 −pq2 pvq3
q1 q0 pq3 −pq2
q2 vq3 q0 −vq1
q3 q2 −q1 q0

⎞
⎟⎟⎠ .

(170)
This yields

det

(
∂ζ j

∂xk

(↼
ϕ(q);ϕ(e))

)
= (q2

0 − vq2
1 + pq2

2 − pvq2
3 )

2, (171)

which, as anticipated, is globally defined on H×p . Then, using (104), we can conclude
that the Haar measure of any Borel subset E of H×p is

μH×p (E) =
∫
ϕ(E)

1

|q2
0 − vq2

1 + pq2
2 − pvq2

3 |2p
dλ(q), (172)

where we recall that dλ(q) denotes the Haar measure on Q4
p (cf. Example 2.4).

For the p = 2 case, a similar discussion to the one leading from (168) to (171)
shows that

det

(
∂ζi

∂x j

(↼
ϕ(q);ϕ(e))

)
= det

⎛
⎜⎜⎝

q0 −q1 −q2 −q3
q1 q0 −q3 q2
q2 q3 q0 −q1
q3 −q2 q1 q0

⎞
⎟⎟⎠ = (q2

0+q2
1+q2

2+q2
3 )

2. (173)

Then, using (104), the Haar measure of any Borel subset E of H×2 is

μH×2
(E) =

∫
ϕ(E)

1

|q2
0 + q2

1 + q2
2 + q2

3 |22
dλ(q). (174)

We summarize the above results with the following
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Proposition 4.20 Let p ≥ 2 be a prime number, and let H×p be the group of invertible
p-adic quaternions. The Haar measure μH×p on H×p is given by

μH×p (E) =
∫
ϕ(E)

1

|Q(4)(q0, q1, q2, q3)|2p
dλ(q), (175)

for every Borel set E ⊂ H×p , where ξ = q0+ iq1+ jq2+kq3, ϕ(ξ) = (q0, q1, q2, q3),

dλ(q) = dq0dq1dq2dq3 is the Haar measure on Q4
p, and Q(4) is the definite quadratic

form of Q4
p (see (49) in Theorem 2.33).

Exploiting the results of Theorem 2.18, we shall now prove that there exists a
one-one correspondence between the Haar integrals on SO(3,Qp) and those of H×p .
Indeed, let us consider the quotient groupH×p /Q×p . According to the results in Sect. 2.1,
denoting byλ theHaarmeasure onQp (see Example 2.3), andwiths : H×p /Q×p → H×p
a Borel cross section, the map P̂ : L1(H×p )→ L1(H×p /Q×p ) defined as

(P̂ f )(x) :=
∫
Qp

dλ(α) f (s(x)α), x ∈ H×p /Q×p , f ∈ L1(H×p ) (176)

is a well-defined surjection of L1(H×p ) onto L1(H×p /Q×p ) (cf. Remark 2.15). For K a
compact subset of H×p , we can then define the set (cf. (17)):


K := {ψ ∈ C+c (H×p ) | (Pψ)(q) = 1, ∀q ∈ K }. (177)

In particular, adhering to the notation used inSect. 2.1,we set
 ≡ 
H×p /Q×p .Moreover,

for everyψ ∈ 
, we also denote by L̂ψ : L1(H×p /Q×p )→ L1(H×p )—i.e., the extended
WMB lift—the right inverse of P̂ , as defined in (29). We are now ready to prove the
following

Theorem 4.21 Let μ3 and μH×p be the Haar measures on SO(3,Qp) and H×p respec-

tively. For every prime p ≥ 2, and any φ ∈ L1
(
SO(3,Qp)

)
, the following equality

holds: ∫
SO(3,Qp)

dμ3(R)φ(R) =
∫
H×p

dμH×p (q)
(
L̂ψφ

)
(q), (178)

where L̂ψφ ∈ L1(H×p ) is the (extended) WMB lift of the map φ.

Proof From Proposition 4.15, SO(3,Qp) is homeomorphic toH×p /Q×p , hence this two
spaces are Borel isomorphic. In particular, by exploiting the homeomorphism between
SO(3,Qp) andH×p /Q×p , it is clear that, for any φ ∈ L1

(
SO(3,Qp)

)
, the Haar integral

in the l.h.s. of (178) can be expressed in terms of a Haar integral of the function φ

on the homogeneous space H×p /Q×p . On the other hand, the same homeomorphism
also entails that H×p /Q×p is a compact group. But then, the equality in (178) directly
follows from (31) in Theorem 2.18. ��
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Remark 4.22 Westress that the result of Theorem4.21 provides an equivalence of Haar
integrals. In other terms, computing theHaar integral of a functionφ in L1

(
SO(3,Qp)

)
is equivalent to performing the integration of the function L̂ψφ, namely

∫

SO(3,Qp)

dμ3(R)φ(R) =
∫

H×p

(L̂ψφ)(q0, q1, q2, q3)

|Q(4)(q0, q1, q2, q3)|2p
dq0dq1dq2dq3, (179)

where we have used the explicit form of the Haar measure (175).

4.5 The Haar integral on SO(4,Qp)

Here we extend to SO(4,Qp) the results of the last subsection. In particular, in com-
plete analogy to what was done for SO(3,Qp), we will provide a suitable lift of the
Haar integral on SO(4,Qp) to that on P(H×p ).

We start by observing that the group P(H×p ) is locally compact and, hence, it admits
a left Haar measure. Moreover, P(H×p ) is unimodular, since it is a subgroup of the
unimodular group H×p ×H×p (being the direct product of the unimodular groups H×p )
[46]. Since the measure on every chart covering P(H×p ) can be obtained by translating
the measure around its identity element e, it is enough to explicitly provide the latter
by exploiting formula (104).

Consider the pairs of quaternions (α, β), (γ, δ) ∈ P(H×p ). From the defining con-
dition of the group P(H×p ), it must be true that nrd(α) = nrd(β) and nrd(γ ) = nrd(δ).
Explicitly, let α, β, γ, δ be given by

α = a0 + ia1 + ja2 + ka3, β = b0 + ib1 + jb2 + kb3,

γ = c0 + ic1 + jc2 + kc3, δ = d0 + id1 + jd2 + kd3. (180)

We shall denote the composition of the two elements (α, β), (γ, δ) in P(H×p ) by
ζ := (ζ1, ζ2) = (αγ, βδ), where ζ1 = z0+iz1+jz2+kz3 and ζ2 = z′0+iz′1+jz′2+kz′3.
Clearly, ζ is a function of the parameters ai , bi , ci , di for i = 0, 1, 2, 3. Now, to
construct the Haar measure on P(H×p ), we have first to compute the Jacobian of the
function ζ . In particular, we shall consider (α, β) as fixed, and (γ, δ) as variables. In
what follows, we will treat separately the cases p > 2 and p = 2.

Assume p > 2 at first. The components zi and z′i , i = 0, 1, 2, 3, of ζ1 and ζ2, can
be computed in the same way in which we found (169):

z0 = a0c0 + va1c1 − pa2c2 + pva3c3, z′0 = b0d0 + vb1d1 − pb2d2 + pvb3d3,

z1 = a0c1 + a1c0 − pa2c3 + pa3c2, z′1 = b0d1 + b1d0 − pb2d3 + pb3d2,

z2 = a0c2 + a2c0 − va1c3 + va3c1, z′2 = b0d2 + b2d0 − vb1d3 + vb3d1,

z3 = a0c3 + a3c0 − a1c2 + a2c1, z′3 = b0d3 + b3d0 − b1d2 + b2d1. (181)
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As anticipated, zi and z′i are functions of the parameters ci , di , i = 0, 1, 2, 3 (we are
assuming ai , bi to be fixed). The defining condition nrd(γ ) = nrd(δ) of the group
P(H×p ) is equivalent to c20 = Q(4)(d0, d1, d2, d3) + vc21 − pc22 + pvc23, and imposes
a constraint on the variables ci , di . Actually, this condition allows us to only consider
(c1, c2, c3, d0, d1, d2, d3) as independent parameters in a neighborhood of e ∈ P(H×p ):
As the forthcoming remark will clarify, in such a neighborhood Q(4)(d0, d1, d2, d3)+
vc21 − pc22 + pvc23 is a quadratic element, and its square root will then provide c0 up
to a sign.

Remark 4.23 The identity element of P(H×p ) is identified in Q8
p by (c0, c1, c2, c3, d0,

d1, d2, d3) = (1, 0, 0, 0, 1, 0, 0, 0). Now, consider an open ball in Q8
p of cen-

tre (1, 0, 0, 0, 1, 0, 0, 0) and radius 1, in the usual p-adic topology. Here, d0 =
1 + py0, di = pyi , ci = pxi with y0, yi , xi ∈ Zp, i = 1, 2, 3. Then,
Q(4)(d0, d1, d2, d3) = 1+ pt and Q(4)(d0, d1, d2, d3)+vc21− pc22+ pvc23 = 1+ pt ′,
where t := 2y0 + pQ(4)(y0, y1, y2, y3), t ′ := t + p(vx21 − px22 + pvx23 ) ∈ Zp.
We can now resort to Hensel’s Lemma (Chapter II, Section 2.2 of [34]) to show that,
actually, 1 + pz, z ∈ Zp, is a square in Zp, i.e. that f (x) := x2 − 1 − pz admits
roots in Zp. First, f (x) = x2 − 1 mod p has roots x = ±1 mod p, where the

derivative d f (x)
dx = 2x takes values ±2 �= 0 mod p. Then, Hensel’s Lemma allows

us to (uniquely) lift each of these simple roots to a root of the same function modulo
pn , n ∈ Z>1, converging to a p-adic root. This proves that Q(4)(d0, d1, d2, d3) and
Q(4)(d0, d1, d2, d3)+ vc21 − pc22 + pvc23 are squares. Hence, we can write

c0 = ±
√

Q(4)(d0, d1, d2, d3)+ vc21 − pc22 + pvc23, (182)

at least for (c0, c1, c2, c3, d0, d1, d2, d3) in a ball inQ8
p centred in (1, 0, 0, 0, 1, 0, 0, 0)

of radius 1.

From Remark 4.23 above, we know that the domain of definition of the square
root (182) is non empty, and contains a neighborhood of the coordinates of the identity
element of P(H×p ), where c1, c2, c3, d0, d1, d2, d3 can be assumed as independent
variables. Here, we are referring to the coordinate map on such a neighborhood of
e ∈ P(H×p ) as

P(H×p ) � (γ, δ) �→ ϕ0((γ, δ)) := (c1, c2, c3, d0, d1, d2, d3) ∈ Q7
p, (183)

where γ and δ are as in (180). The same argument can be repeated for the condi-
tion nrd(ζ1) = nrd(ζ2), to express z0 in terms of the other independent coordinates
z′0, zi , z′i , i = 1, 2, 3. In conclusion, we are left with the following 7 × 7 Jacobian
matrix
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∂ζ0, j
(↼
ϕ 0(ai , bi );ϕ0(e)

)
∂xk

∣∣∣∣∣
1≤ j,k≤7

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∂z1
∂c1

∂z1
∂c2

∂z1
∂c3

∂z1
∂d0

∂z1
∂d1

∂z1
∂d2

∂z1
∂d3

∂z2
∂c1

∂z2
∂c2

∂z2
∂c3

∂z2
∂d0

∂z2
∂d1

∂z2
∂d2

∂z2
∂d3

∂z3
∂c1

∂z3
∂c2

∂z3
∂c3

∂z3
∂d0

∂z3
∂d1

∂z3
∂d2

∂z3
∂d3

∂z′0
∂c1

∂z′0
∂c2

∂z′0
∂c3

∂z′0
∂d0

∂z′0
∂d1

∂z′0
∂d2

∂z′0
∂d3

∂z′1
∂c1

∂z′1
∂c2

∂z′1
∂c3

∂z′1
∂d0

∂z′1
∂d1

∂z′1
∂d2

∂z′1
∂d3

∂z′2
∂c1

∂z′2
∂c2

∂z′2
∂c3

∂z′2
∂d0

∂z′2
∂d1

∂z′2
∂d2

∂z′2
∂d3

∂z′3
∂c1

∂z′3
∂c2

∂z′3
∂c3

∂z′3
∂d0

∂z′3
∂d1

∂z′3
∂d2

∂z′3
∂d3

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣ c1=c2=c3=0
d0=1,d1=d2=d3=0

,

(184)
where, in the l.h.s.,ϕ0(e) = (0, 0, 0, 1, 0, 0, 0) and (xk)

7
k=1 = (c1, c2, c3, d0, d1, d2, d3).

By using (182), the partial derivatives of the dependent variable c0 w.r.t. the inde-
pendent ones are

∂c0
∂ci

∣∣∣∣ c1=c2=c3=0
d0=1,d1=d2=d3=0

= ∂c0
∂di

∣∣∣∣ c1=c2=c3=0
d0=1,d1=d2=d3=0

= 0, for i = 1, 2, 3, (185)

and
∂c0
∂d0

∣∣∣∣ c1=c2=c3=0
d0=1,d1=d2=d3=0

= ±1. (186)

Hence, using the expressions in (181), the Jacobian matrix (184) is straightforwardly
computed and reads:

∂ζ0, j
(↼
ϕ 0(ai , bi );ϕ0(e)

)
∂xk

∣∣∣∣∣
1≤ j,k≤7

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

a0 pa3 −pa2 ±a1 0 0 0
va3 a0 −va1 ±a2 0 0 0
a2 −a1 a0 ±a3 0 0 0
0 0 0 b0 vb1 −pb2 pvb3
0 0 0 b1 b0 pb3 −pb2
0 0 0 b2 vb3 b0 −vb1
0 0 0 b3 b2 −b1 b0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

(187)
The p-adic absolute value of the determinant of such a matrix is

∣∣∣∣∣det
∂ζ0, j

(↼
ϕ 0(ai , bi );ϕ0(e)

)
∂xk

∣∣∣∣∣
p

= ∣∣a0(a2
0 − va2

1 + pa2
2 − pva2

3)(b
2
0 − vb21 + pb22 − pvb23)

2
∣∣

p

=
∣∣∣∣
√

Q(4)(b0, b1, b2, b3)+ va2
1 − pa2

2 + pva2
3 Q(4)(b0, b1, b2, b3)

3
∣∣∣∣

p
. (188)

For the last equality, we used again the condition nrd(ξ) = nrd(ρ) in a suit-
able neighborhood for the coordinates of the identity of P(H×p ), where a0 =
±
√

Q(4)(b0, b1, b2, b3)+ va2
1 − pa2

2 + pva2
3 is well-defined.
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Let us now switch to the case where p = 2. The components of ζ1 and ζ2 are now
given by:

z0 = a0c0 − a1c1 − a2c2 − a3c3, z′0 = b0d0 − b1d1 − b2d2 − b3d3
z1 = a0c1 + a1c0 + a2c3 − a3c2, z′1 = b0d1 + b1d0 + b2d3 − b3d2
z2 = a0c2 + a2c0 − a1c3 + a3c1, z′2 = b0d2 + b2d0 − b1d3 + b3d1
z3 = a0c3 + a3c0 + a1c2 − a2c1, z′3 = b0d3 + b3d0 + b1d2 − b2d1. (189)

The defining condition nrd(ν) = nrd( ) is equivalent to c20 = Q(4)(d0, d1, d2, d3) −
c21−c22−c23. Then, analogously to the case where p > 2, it is not difficult to prove that,
in a suitable neighborhood of (1, 0, 0, 0, 1, 0, 0, 0) inQ8

p, c0 can be expressed in terms
of the independent variables c1, c2, c3, d0, d1, d2, d3, as the forthcoming Remark will
clarify.

Remark 4.24 Consider an open ball in Q8
2 of centre (1, 0, 0, 0, 1, 0, 0, 0) and radius

1/2, in which d0 = 1 + 4y0, di = 4yi , ci = 4xi , with y0, yi , xi ∈ Z2, i = 1, 2, 3.
In this case, Q(4)(d0, d1, d2, d3) = (1 + 4y0)2 + (4y1)2 + (4y2)2 + (4y3)2 = 1 +
8
(
y0 + 2Q(4)(y0, y1, y2, y3)

)
and Q(4)(d0, d1, d2, d3)− c21 − c22 − c23 = 1+ 8

[
y0 +

2
(
Q(4)(y0, y1, y2, y3)− x21 − x22 − x23

)]
are squares in Z2, as they are congruent to 1

modulo 8. Therefore, we can write

c0 = ±
√

Q(4)(d0, d1, d2, d3)− c21 − c22 − c23, (190)

at least for (c0, c1, c2, c3, d0, d1, d2, d3) in an open ball inQ8
2 centred in (1, 0, 0, 0, 1,

0, 0, 0), and of radius 1/2.

As a consequence, the coordinate map on a suitable neighborhood of e ∈ P(H×2 )
to Q7

2 is as in (183). An analogous discussion can be carried out for the condition
nrd(ζ1) = nrd(ζ2), to show that z0 can be expressed as a function of the (independent)
variables z′0, zi , z′i , i = 1, 2, 3, in a suitable neighborhood of the identity. It follows
that the Jacobian matrix for p = 2 is of the same form (184) for p > 2 and, as one
can easily check, the partial derivatives of the dependent variable c0 are again given
by (185) and (186). Thus, we obtain

∂ζ0, j
(↼
ϕ 0(ai , bi );ϕ0(e)

)
∂xk

∣∣∣∣∣
1≤ j,k≤7

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

a0 −a3 a2 ±a1 0 0 0
a3 a0 −a1 ±a2 0 0 0
−a2 a1 a0 ±a3 0 0 0
0 0 0 b0 −b1 −b2 −b3
0 0 0 b1 b0 −b3 b2
0 0 0 b2 b3 b0 −b1
0 0 0 b3 −b2 b1 b0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

(191)
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which then yields

∣∣∣∣∣det
∂ζ0, j

(↼
ϕ 0(ai , bi );ϕ0(e)

)
∂xk

∣∣∣∣∣
2

=
∣∣∣a0(a2

0 + a2
1 + a2

2 + a2
3)(b

2
0 + b21 + b22 + b23)

2
∣∣∣
2

=
∣∣∣∣
√

Q(4)(b0, b1, b2, b3)− a2
1 − a2

2 − a2
3 Q(4)(b0, b1, b2, b3)

3
∣∣∣∣
2
. (192)

Once more, this expression is valid in the domain of definition of the p-adic square
root, containing a neighborhood for the coordinates of the identity of P(H×2 ).

By exploiting (104), the p-adic absolute values (188) and (192) immediately yield
the Haar measure on a neighborhood of the identity element of P(H×p ).

Proposition 4.25 Let p ≥ 2 be a prime number, and let P(H×p ) be the group of p-adic
quaternion pairs (160). For any Borel subset E of P(H×p ), the following equalities
hold:

μP(H×p )(E ∩U0)

=
∫
ϕ0(E∩U 0)

∣∣∣∣
√

Q(4)(b0, b1, b2, b3)+ va2
1 − pa2

2 + pva2
3 Q(4)(b0, b1, b2, b3)

3
∣∣∣∣
−1

p
dλ(q),

(193)

for p > 2, while for p = 2,

μP(H×2 )
(E ∩U0)

=
∫
ϕ0(E∩U 0)

∣∣∣∣
√

Q(4)(b0, b1, b2, b3)− a2
1 − a2

2 − a2
3 Q(4)(b0, b1, b2, b3)

3
∣∣∣∣
−1

2
dλ(q).

(194)

Here, μP(H×p ) and dλ(q) = da1da2da3db0db1db2db3 denote the Haar measure on

P(H×p ) and on Q7
p respectively, Q(4) denotes the definite quadratic form of Q4

p, and
U0 is a suitable neighborhood of the identity element e ∈ P(H×p )where the coordinate
map ϕ0 (cf. (183)) is defined.

Since, by translation invariance, one can ‘move’ the measure on the fixed chart
around e all over the group, Proposition 4.25 is enough to compute any Haar integral
on the whole P(H×p ).

At this point, we are now ready to construct the Haar integral on SO(4,Qp). Indeed,
as done for SO(3,Qp), we can define a suitable (surjective) map P̂ : L1

(
P(H×p )

)→
L1

(
P(H×p )/Q×p

)
such that

(P̂ f )(x) : =
∫
Qp

dλ(α) f (s(x)α), x ∈ P(H×p /Q×p ), f ∈ L1(P(H×p )), (195)
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wheres : P(H×p )/Q×p → P(H×p ) is anyBorel cross section ofP(H×p )/Q×p ontoP(H×p ).
Again, for any compact subset K of P(H×p ), we define


K := {ψ ∈ C+c
(
P(H×p )

) | (Pψ)(q) = 1, ∀q ∈ K }, (196)

and set 
 ≡ 
P(H×p )/Q×p . Then, for every ψ ∈ 
, the map L̂ψ : L1
(
P(H×p )/Q×p

)→
L1

(
P(H×p )

)
—i.e., the extended WMB lift—provides a right inverse of P̂ .

In the light of the above discussion, the following result is now clear:

Theorem 4.26 Let μ4 and μP(H×p ) be the Haar measures on SO(4,Qp), and P(H×p )
respectively. For every prime p ≥ 2, and any φ ∈ L1

(
SO(4,Qp)

)
, the following

equality holds:

∫

SO(4,Qp)

dμ4(R)φ(R) =
∫

P(H×p )

dμP(H×p )(q)(L̂ψφ)(q), (197)

where L̂ψφ ∈ L1
(
P(H×p )

)
is the (extended) WMB lift of the map φ.

Proof By Proposition 4.18, SO(4,Qp) and P(H×p )/Q×p are homeomorphic and, then,
Borel isomorphic. This then entails that, for any given function φ ∈ L1

(
SO(4,Qp)

)
,

we can express its Haar integral (w.r.t. the Haar measure μ on SO(4,Qp)) as an
Haar integral on P(H×p )/Q×p . Moreover, the same homeomorphism also implies that
P(H×p )/Q×p is a compact group. But then, the equality in (197) directly follows
from (31) of Theorem 2.18. ��

5 Conclusions

In this work, we provided a general expression of the Haar measure on a p-adic Lie
group. Considering this measure as naturally induced by the invariant volume form on
the group, we addressed the problem of determining the Haar measure on the p-adic
special orthogonal groups in dimension two, three and four (for every prime number
p). Let us briefly summarize our main achievements:

• The first part of this work is devoted to the discussion of the main tools and tech-
niques used later on, in the application part of the paper. Specifically, in Sect. 2.1,
we first recall the Weil–Mackey–Bruhat formula and the related notion of Weil–
Mackey–Bruhat lift, which provide powerful tools allowing one to express the
Haar integral on a quotient group X = G/H (where H is any closed normal
subgroup of G) as a suitable lift of the Haar integral defined on the (LCH) group
G. We next provide, in Sect. 2.2, an overview of p-adic manifolds and p-adic Lie
groups, suitable for our purposes, especially focusing on the relevant topological
properties.

• In Sect. 3, by exploiting the results discussed in Sect. 2.2—in particular, the total
disconnectedness of p-adic manifolds—we provide a general method for con-
structing the invariant measure on a p-adic Lie group.
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• Next, in Sect. 4, we work out various applications of the general techniques devel-
oped in the previous sections. In particular, a direct application of the general
formula derived in Sect. 3 provides us with the Haar measure on SO(2,Qp).

• As for the groups SO(3,Qp) and SO(4,Qp), instead, we argue that a more conve-
nient approach consists in resorting to a quaternionic realization of these groups,
eventually proving the useful group isomorphisms SO(3,Qp) ∼= H×p /Q×p and
SO(4,Qp) ∼= P(H×p )/Q×p (c.f. Theorems 4.14 and 4.16).

• It is precisely at this stage that the machinery previously developed in Sect. 2.1
comes into play. Indeed, once the Haar measures onH×p and P(H×p ) (equivalently,
regarding such measures as functionals, the associated Haar integrals) have been
determined, we can construct the Haar integrals on the quotient groups H×p /Q×p
and P(H×p )/Q×p —thus, on SO(3,Qp) and SO(4,Qp) respectively—in terms of a
suitable Weil–Mackey–Bruhat lift (see Theorems 4.21 and 4.26).

Several further developments can be foreseen from the present study. First, the
possibility of deriving the explicit expression of the Haar measure on SO(3,Qp)

by exploiting its parameterization in terms of Cardano—a.k.a. nautical—angles (see
[35]). This is enlightened by the relation between p-adic rotations and the values
modulo squares of the reduced norms of p-adic quaternions. However, it can work for
all primes but p = 2, where no Cardano (or Euler) decomposition exists.

Second, since compact p-adic special orthogonal groups are profinite, another pos-
sible approach to their Haar measure is through a suitable notion of inverse limit of
an inverse family of measure spaces on their projections modulo pk , k ∈ Z+∗ .

Looking further ahead, the relevance of the subject treated here lies in the fact that
the compactness of SO(3,Qp) entails that all its irreducible unitary representations
occur (and can be studied) as sub-representations of the regular one, according to
the celebrated Peter-Weyl theorem. In turn, the Haar measure on SO(3,Qp) plays a
fundamental role in the study of its regular representation and, more generally, of its
irreducible projective unitary representations. Those of dimension two can be regarded
as a model of p-adic qubit (see [31]) and would be the core of a quantum information
processing based on p-adic numbers.

A The real quaternion algebra and its relations with SO(3,R) and
SO(4,R)

Wedevote this appendix to a brief account on the real quaternion algebraH, alongwith
a discussion of the quaternionic realization of the elements in SO(3,R) and SO(4,R).
This will also give us the opportunity to highlight analogies and differences with the
p-adic case of Sect. 4.2.

A.1 The real quaternion algebraH

There are several ways of describing the real quaternion algebra H [36, 62]. As a real
vector space H ∼= R×R3, and any element in H is written as ξ = (a, x), with a ∈ R
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and x ∈ R3. The multiplication law is given by:

(a, x)(b, y) = (ab − x · y, bx + ay+ x × y), (198)

where x · y and x × y are respectively the usual inner product and vector product
between vectors in R3. It is easily verified that the product (198) is associative. The
centre of H is given by the subspace R × {0} ∼= R. Likewise, we identify {0} × R3

with R3, in such a way that every element inH can be expressed as ξ = a+ x, a ∈ R,
x ∈ R3. Denoting by i, j,k the canonical basis vectors of R3, ξ can be expressed as

ξ = a + x1i+ x2j+ x3k, (199)

where a, x1, x2, x3 ∈ R. Then, the multiplication law between quaternions is given
by specifying the products between the basis vectors i, j,k [36, 63]:

i2 = j2 = k2 = −1, ij = −ji = k, jk = −kj = i ki = −ik = j. (200)

It is straightforward to realize that H is a non-abelian algebra.
H is an involutive algebra, as the map H � ξ = a + x �→ ξ := a − x ∈ H is an

involutive anti-automorphism.Moreover, ξξ = |ξ |2 = a2+|x|2 = QR(a, x1, x2, x3),
where QR denotes the definite quadratic form of R4. Thus, every non-zero element in
H is invertible, with ξ−1 = ξ/|ξ |2, and so H is a division algebra. Those elements in
H for which |ξ | = 1 are called unit quaternions. They form a group in H, denoted by
U(H):

U(H) = {ξ ∈ H | |ξ | = 1} = {ξ ∈ H | ξ−1 = ξ}. (201)

Remark A.1 In the literature (e.g., [59]), the quantity ξξ is referred to as the reduced
norm of ξ in H, and denoted by nrd(ξ) (see Remark 4.5). From the definition, it
is clear that the reduced norm on the real quaternion algebra H is equivalent to the
square of the Euclidean norm on R4 (since the definite quadratic form on R4 induces
the Euclidean inner product, and vice versa). However, this is not the case when one
defines a quaternion algebra over a generic field w.r.t. some quadratic form (see, for
instance [59, 61]): The latter does not necessarily induce the considered norm on the
vector-space structure of that algebra.

There is another (yet equivalent) way in which H can be described [62]. Let us
consider the subset H of the algebra M2(C) of complex 2× 2 matrices of the form

M =
(

a b
−b a

)
=

(
q0 + iq1 q2 + iq3
−q2 + iq3 q0 − iq1

)
, q j ∈ R, (202)

for every j = 0, 1, 2, 3, where i denotes the imaginary unit. One can easily verify
that H is a subalgebra (actually, a division algebra) inM2(C). In particular, that every
non-null element M ∈ H is invertible easily follows by observing that

det(M) = det

(
q0 + iq1 q2 + iq3
−q2 + iq3 q0 − iq1

)
= q2

0 + q2
1 + q2

2 + q2
3 (203)
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is the (non-degenerate) four-dimensional definite quadratic form over R. From (202),
we also see that every element M ∈ H can be written as M = q0 + iq1 + jq2 + kq3,
where

i :=
(

i 0
0 −i

)
, j :=

(
0 1
−1 0

)
, k :=

(
0 i
i 0

)
, (204)

and where we omitted the identity matrix I2 multiplying q0. Moreover, it can be easily
checked that i, j, k obey commutation relations which are analogous to the quaternion
commutation relations (200). Indeed, the correspondence

θ := H � ξ = (q0, q1, q2, q3) �→ θ(ξ) :=
(

q0 + iq1 q2 + iq3
−q2 + iq3 q0 − iq1

)
∈ H (205)

defines an algebra isomorphism from the quaternions H to the algebra of complex
matrices H [36]. In particular, unit quaternions are identified in H by

U(H) = {M ∈ H | det(M) = 1}. (206)

A.2 Relations between real quaternions and rotations

Here we recall the relation between H and SO(3,R). Let ξ ∈ U(H) be a unit quater-
nion. The map H � η �→ ξηξ−1 ∈ H is an isometric linear transformation of H,
which leaves the centre R of H pointwise fixed and, therefore, also leaves the orthog-
onal subspace R3 invariant. Hence, the restriction of this map to R3 is an element of
O(3,R), that we denote by κ(ξ):

κ(ξ)x := ξxξ−1, x ∈ R3. (207)

Furthermore, κ(ξν) = κ(ξ)κ(ν), i.e., κ : U(H) → O(3,R) is a homomorphism.
Let us derive the explicit form of κ(ξ). For H � ξ = q0 + iq1 + jq2 + kq3, and
R3 � x = ix + jy + kz, we have:

ξxξ−1 = i
(
x(q2

0 + q2
1 − q2

2 − q2
3 )+ 2y(q1q2 − q3q0)+ 2z(q2q0 + q3q1)

)
,

j
(
2x(q1q2 + q0q3)+ y(q2

0 − q2
1 + q2

2 − q2
3 )+ 2z(q2q3 − q1q0)

)
,

k
(
2x(q1q3 − q2q0)+ 2y(q1q0 + q2q3)+ z(q2

0 − q2
1 − q2

2 + q2
3 )
)
, (208)

from which we deduce that κ(ξ) is given by

κ(ξ) =
⎛
⎝q2

0 + q2
1 − q2

2 − q2
3 2(q1q2 − q3q0) 2(q2q0 + q3q1)

2(q1q2 + q0q3) q2
0 − q2

1 + q2
2 − q2

3 2(q2q3 − q1q0)
2(q1q3 − q2q0) 2(q1q0 + q2q3) q2

0 − q2
1 − q2

2 + q2
3

⎞
⎠ . (209)

A direct calculation shows that det(κ(ξ)) = 1, i.e., κ(ξ) ∈ SO(3,R).

Remark A.2 The fact that κ(ξ) ∈ SO(3,R) also follows by observing that U(H) is
connected and κ : U(H)→ SO(3,R) is continuous [36].
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In the light of the discussion above, every unit quaternion ξ = q0 + iq1 + jq2 +
kq3 ∈ U(H) is associated with a rotation R in SO(3,R). In particular, κ is the group
homomorphism U(H) → SO(3,R) in the short exact sequence (155) [59, 61]. This
then yields the group isomorphism

SO(3,R) ∼= U(H)/F2. (210)

With a similar argument, based on the isometries H � η �→ ξη −1 ∈ H for (ξ,  ) ∈
U(H)× U(H), one can prove the following isomorphism [59]:

SO(4,R) ∼= (U(H)× U(H))/F2. (211)

(210) and (211) become homeomorphism, considering the standard topology for the
involved spaces, providing double coverings for SO(3,R) and SO(4,R).

B Alternative proof of Proposition 4.15

In Sect. 4.3, we showed that the group isomorphism ψ : H×p /Q×p → SO(3,Qp) given
inTheorem4.14 is a homeomorphism.Theproof ofProposition4.15 relies onmeasure-
theoretical results; here we provide an alternative proof which shows more explicitly
the relation between p-adic rotations and quaternions, depending on their reduced
norm.

As already argued in the proof ofProposition4.15, the groupsH×p andSO(3,Qp) are
locally compact, once supplied with their p-adic topology. The map κp is continuous,
as κp(ξ) is a rational function on the parameters q0, q1, q2, q3 of ξ = q0 + iq1 +
jq2 + kq3, with denominator nrd(ξ) �= 0 for every ξ �= 0. Therefore, κp redefined on
the quotient of H×p modulo ker(κp) is continuous, i.e. ψ is continuous. We are left to
prove that also the inverse map ψ−1 is continuous, or equivalently that ψ is a closed
function (it maps closed subsets of H×p /Q×p to closed subsets of SO(3,Qp)). To ease
this, we want to deal with compact spaces, rather than just locally compact ones.

Notice that nrd : H×p → Q×p is a homomorphism (it is multiplicative), as well
as the quotient map q : Q×p → Q×p /(Q×p )2, therefore q ◦ nrd : H×p → Q×p /(Q×p )2

is a homomorphism. Its kernel is ker(q ◦ nrd) =
{
ξ ∈ H×p | nrd(ξ) ∈ (Q×p )2

}
, and

Q×p is a normal subgroup of ker(q ◦ nrd) and H×p (being its centre). It follows, by the
fundamental homomorphism theorem, that there exists a unique group homomorphism
ϕ : H×p /Q×p → Q×p /(Q×p )2 such that q ◦ nrd = ϕ ◦ π : this map is ϕ(ξQ×p ) = nrd(ξ)
mod (Q×p )2. In fact, given twodistinct representatives of the same class, i.e. ν �= ξ such
that νQ×p = ξQ×p , we have ν ∈ ξQ×p and hence ϕ(νQ×p ) = nrd(ν) mod (Q×p )2 =
nrd(ξ) mod (Q×p )2 = ϕ(ξQ×p ).
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H×p SO(3,Qp)

Q×p H×p /Q×p

Q×p /(Q×p )2

κp

π
nrd

q ϕ

ψ

Actually, by the isomorphism theorem, we have H×p / ker(q ◦ nrd) " Q×p /(Q×p )2. For
ker(q ◦ nrd) is stable under multiplication by scalars in Q×p , we have the induced
quotient ker(q ◦ nrd)/Q×p , such that (H×p /Q×p )/(ker(q ◦ nrd)/Q×p ) " H×p / ker(q ◦
nrd) " Q×p /(Q×p )2. We observe that ξ and λξ have same image w.r.t. ϕ ◦ π (or
equivalently q ◦ nrd), for every ξ ∈ H×p , λ ∈ Q×p . Therefore, to have a surjective
map onto Q×p /(Q×p )2, once chosen a representative for each equivalence class of this
quotient group, it is enough to consider the restriction of H×p to the set of quaternions
having reduced normexactly equal to those representatives.A similar argument applies
to H×p /Q×p . We recall [34, 55] that

Q×p /(Q×p )2 ∼=
{
{1, u, p, up} ∼= Z/2Z× Z/2Z, p > 2,

{±1,±2,±5,±10} ∼= Z/2Z× Z/2Z× Z/2Z, p = 2,
(212)

where u ∈ Up is a non-squared invertible p-adic integer. We thus define S(ε) :=
{ξ ∈ H×p | nrd(ξ) = ε}, by varying ε in the set of p-adic integer representatives
of the equivalence classes of Q×p /(Q×p )2, i.e. for ε = 1, u, p, up when p > 2 and
for ε = ±1,±2,±5,±10 when p = 2. Now we have the following diagram where,
by abuse of notation, we also denote by π and ϕ the homonyms maps redefined on⋃

ε S(ε) and
(⋃

ε S(ε)
)
/Q×p respectively, and where the injective maps are simply

the (closed, continuous) canonical embeddings of
⋃

ε S(ε) and
(⋃

ε S(ε)
)
/Q×p inH×p

and H×p /Q×p respectively.

⋃
ε S(ε) H×p SO(3,Qp)

(⋃
ε S(ε)

)
/Q×p H×p /Q×p

Q×p /(Q×p )2

π

κp

π

ϕ

ψ

ϕ

The sets S(ε) are pairwise disjoint. Moreover, it can be shown that S(ε) ⊂(
p−1Zp

)4
is compact, in a similar fashion to the proof of Eq. (53) (see Theorem 5 in

[35]). As a consequence,
⋃

ε S(ε) is a compact subset ofH×p , being the finite union of
compact sets. Now that we can consider just the compact subspace

⋃
ε S(ε) of H×p ,

the proof of the fact that ψ is closed is straightforward. Consider a closed subset C in(⋃
ε S(ε)

)
/Q×p ⊂ H×p /Q×p . Its preimage π−1(C) ⊂ ⋃

ε S(ε) ⊂ H×p is closed, since
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π is continuous. Closed subsets of the compact
⋃

ε S(ε) are compact, in particular
π−1(C) is compact. The map κ ′p := κp|⋃

ε S(ε) :
⋃

ε S(ε) → SO(3,Qp) is continu-

ous, as a restriction of the continuous map κp. The continuous image κ ′p
(
π−1(C)

)
of

the compact set π−1(C) is compact. In turn, κ ′p
(
π−1(C)

)
is closed, being a compact

subset of the compact Hausdorff group SO(3,Qp). This proves that κ ′p is a closed
map. Finally, this implies that ψ is closed, and hence it is a homeomorphism.
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