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Abstract: Understanding the sensitivity of spring leaf-out dates to temperature (ST) is 36 

integral to predicting phenological responses to climate warming and the consequences 37 

for global biogeochemical cycles. While variation in ST has been shown to be influenced 38 

by local climate adaptations, the impact of biodiversity remains unknown. Here, we 39 

combine 393,139 forest inventory plots with satellite-derived ST across the Northern 40 

Hemisphere during 2001-2022 to show that biodiversity greatly affects spatial variation in 41 

ST and even surpasses the importance of climate variables. High tree diversity significantly 42 

weakened ST, possibly driven by changes in root depth and soil processes. We show that 43 

current Earth System Models failed to reproduce the observed negative correlation 44 

between ST and biodiversity, with important implications for phenological responses under 45 

future pathways. Our results highlight the need to incorporate the buffering effects of 46 

biodiversity to better understand the impact of climate warming on spring leaf unfolding 47 

and carbon uptake.  48 
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Plant phenology is one of the most sensitive indicators of climate change, and greatly 49 

affects interannual variations in carbon uptake of terrestrial ecosystems1,2. Over recent 50 

decades, climate warming has led to strong advances in spring leaf-out dates3,4. The 51 

responsiveness of spring phenology to climate change is typically quantified via measuring 52 

the temperature sensitivity of leaf-out (ST, leaf-out advance in days per each degree air 53 

temperature warming). ST is the optimal strategy evolved by plants under the selection 54 

pressure of historical climate information in the local environment, and its variations reflect 55 

adaptive adjustments to climate change for optimizing their life cycles5,6. Due to its role in 56 

determining the extent of phenological changes in response to future climate warming, ST 57 

has attracted extensive attention in observational records and warming experiments5,7–9. 58 

Understanding temporal and spatial variation in ST is critical to better comprehend 59 

phenological feedbacks to climate change, such as effects on carbon sequestration7, 60 

surface albedo and the energy budget7,10. Furthermore, it is of paramount importance for 61 

evaluating and simulating the dynamics of ecosystems in climate change research8, as 62 

well as for enhancing global dynamic vegetation models, global climate models, and land 63 

surface models6,11. Declines in ST have been observed in several tree species over recent 64 

decades. Yet, although decreased winter chilling has been suggested as a possible factor, 65 

the underlying causes remain poorly understood9. While previous studies have mostly 66 

focused on the climatic drivers of ST, we still lack an understanding of the responses of ST 67 

to changes in the biodiversity of animals, plants, and microorganisms and the communities 68 

they form12. 69 

 70 

Biodiversity plays a crucial role in regulating the growth and development of vegetation, 71 

serving as a key factor in stabilizing and adapting ecosystems to climate change13. At a 72 

large geographical scale, plant phenology responds to climate and environmental factors, 73 

influencing plant growth and resilience, while also governing crucial ecosystem functions 74 

like pollination, herbivory, and carbon uptake14. Consequently, warming-induced changes 75 

in spring leaf-out may lead to asynchronous interactions among mutualistic partners within 76 

communities, affecting food web dynamics and the functioning and stability of 77 
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ecosystems2,3,15,16. In particular, high biodiversity can influence the phenological plasticity 78 

of individual plants, enhance the adaptability of plants to climatic shifts, diminish the 79 

likelihood of phenological discordance, and affect the species assemblage and functional 80 

heterogeneity of plant communities, thereby mitigating the effects of climate change on 81 

ecosystem performance17,18. For example, different genotypes or genera of plants can 82 

adapt to variations in temperature and moisture by altering gene expression, hormone 83 

levels, leaf area, and other parameters that affect phenology19. Different species have 84 

different responses to cope with environmental fluctuations, and higher temporal 85 

complementarity and asynchrony among species can augment their resistance to 86 

drought20. Regions with high biodiversity thus typically have stabler ecosystem responses 87 

to climate change, whereas the loss of diversity may aggravate plant phenological shifts 88 

caused by climate change13,16,17. In this study, we therefore aimed to test whether 89 

biodiversity buffers the sensitivity of trees to climate warming and how interactions between 90 

biodiversity and climate change affect Northern Hemisphere-wide phenological variation. 91 

 92 

We compiled species richness data from the Global Forest Biodiversity Initiative (GFBI) 93 

in the middle and high latitudes of the Northern Hemisphere, incorporating 393,139 unique 94 

forest inventory plots that span various forest types and species, to characterize 95 

biodiversity (Supplementary Fig. 1). Satellite-derived leaf-out data from 2001-2022 came 96 

from the Moderate-resolution Imaging Spectroradiometer (MODIS). We also gathered 97 

spatially-explicit climate and soil data from 2000-2022, as well as gross primary production 98 

(GPP) data from 15 Trendy models for 2001-2021 and 13 Cmip6 models for 2015-2100 99 

(Supplementary Table 1-3). For each forest plot, we calculated the optimal spring pre-100 

season period using partial correlation analysis and calculated ST using ordinary least 101 

squares regression (Supplementary Fig. 2). We then used partial correlation, sequential 102 

regression model, spatial autoregressive model (SAR), structural equation modeling 103 

(SEM), and machine-learning methods to determine the influence of biodiversity on ST and 104 

its underlying mechanisms at regional and global levels (see Methods).  105 

 106 
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Results 107 

The partial correlation analysis showed a predominantly negative correlation between 108 

biodiversity and ST at the local scale after removing the effects of spring temperature, 109 

radiation, precipitation, soil moisture, soil organic C (SOC), soil nitrogen (N), forest age 110 

and elevation (Fig. 1A), with 60.5% of the correlations being negative. 8.5% of the local 111 

correlations were significantly negative (P <0.05), while significant positive correlations 112 

were only found for 3.9% of the correlations. The partial correlation analysis showed 113 

consistent results at the levels of plant functional types (Fig. 1E, F), forest biomes (Fig. 1G, 114 

H), and Köppen-Geiger climatic zones (Fig. 1I, J). For example, negative correlations were 115 

found among all eleven plant functional types, with nine being significant. Similarly, four of 116 

the eight biomes showed a negative correlation, and all four correlations were significant, 117 

with only deserts and xeric shrublands (DXS) and Tundra (TUN) showing a non-significant 118 

positive correlation. Furthermore, Biodiversity and ST were negatively correlated in 8 of 11 119 

climatic zones (five were significant) and exhibited significant positive correlations in the 120 

other two zones (DSB (Cold, dry summer, warm summer) and DSC (Cold, dry summer, 121 

cold summer)). Furthermore, a negative correlation between biodiversity and ST is 122 

observed among different plant functional types, as well as across various biomes and 123 

climate zones (Supplementary Fig. 3). In the global analysis covering all plots, we 124 

controlled for evenness variables, in addition to the mentioned environmental factors. And 125 

consistent results were obtained from partial correlation analysis, sequential regression 126 

model, as well as spatial lag and spatial error models, indicating an overall negative 127 

biodiversity-ST effect (Fig. 1B and Supplementary Fig. 4). 128 

 129 

We then analyzed the relative importance of biodiversity in determining the changes 130 

in ST using machine learning (Random Forest and eXtreme Gradient Boosting (XGBoost) 131 

models). We found that biodiversity was a more important driver of ST than were spring 132 

temperature, precipitation, solar radiation, soil moisture, SOC, N, forest age, elevation and 133 

evenness (Fig. 1C-D and Supplementary Fig. 5). Additionally, the SHapley Additive 134 

exPlanations (SHAP) values of Random Forest and XGBoost models revealed that plots 135 
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with higher biodiversity levels often exhibited a negative relationship between biodiversity 136 

and ST, while regions with lower biodiversity levels might have a positive biodiversity-ST 137 

relationship. Overall, a predominance of negative correlations was observed, aligning with 138 

the results from partial correlation and sequential regression analyses. Both feature 139 

importance metrics (GINI importance and SHAP importance), along with the absolute 140 

coefficients of the partial correlation and sequential regression, consistently indicate that 141 

biodiversity is the most important driver of ST. 142 

 143 

We also used grid-form species richness data to ensure spatial consistency with the 144 

scale of climate and other datasets, providing a better match with point-form species 145 

evenness data. We replicated the same analysis, controlling for the influences of spring 146 

temperature, precipitation, solar radiation, soil moisture, SOC, N, forest age, elevation and 147 

evenness in all analyses. The results remained consistent with those obtained from plot 148 

datasets, revealing a negative effect of biodiversity on ST (Supplementary Fig. 6). 149 

 150 

To test the possible mechanisms through which biodiversity may affect ST, we applied 151 

Structural equation modeling (SEM) and partial correlation analysis (Fig. 2). We calculated 152 

the direct effects of biodiversity on ST within the SEM and the indirect effects through 153 

different pathways. The results indicate a strong direct effect of biodiversity. In addition, 154 

root depth, soil organic carbon concentration, the soil carbon-to-nitrogen (C/N) ratio, and 155 

soil physical properties (including bulk density and volumetric fraction of coarse fragments 156 

(VOCF)) may be potential intermediaries between biodiversity and phenological 157 

responsiveness. For example, biodiversity and the C/N ratio were mostly positively 158 

correlated, with 11.7% and 4.1% of correlations being significantly positive and negative, 159 

respectively. The correlation between the C/N ratio and root depth was also positive, with 160 

34.2% of the correlations significantly positive and only 6.8% of the correlations 161 

significantly negative. In comparison, root depth and ST were generally negatively 162 

correlated. Similarly, a higher SOC concentration was associated with increased 163 

biodiversity, but SOC concentration and ST were negatively correlated. Soil physical 164 
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properties may also contribute to the negative relationship between biodiversity and ST. 165 

Biodiversity and bulk density, bulk density and the rate of soil warming in spring (RSWS), 166 

and RSWS and ST were each consistently negatively correlated, with the percentages of 167 

significant positive / negative correlations being 5.8% / 26.1%, 28.7% / 46.0%, and 24.7% 168 

/ 61.4%, respectively. In contrast to bulk density, a higher VOCF was associated with 169 

increased biodiversity, and biodiversity increased as ST decreased, because VOCF and ST 170 

were negatively correlated. Overall, both the direct and the indirect pathways support the 171 

negative correlation between biodiversity and ST. 172 

 173 
We further tested whether state-of-the-art ecosystem models (15 Trendy models with 174 

results over 2001-2021 and 13 Cmip6 models over 2016-2100) can reproduce the negative 175 

correlation between ST and biodiversity (Fig. 3). We found that most Trendy models do not 176 

capture the observed relationships, with 13 out of 15 models simulating predominantly 177 

positive correlations (positive correlations exceeding 60%) and only one of the models 178 

reproducing the extent of observed negative correlations (negative correlations exceeding 179 

60%, CABLE-POP model). The spatial variation in the correlations simulated by the Trendy 180 

models is shown in Fig. 3 A1-A15. The Cmip6 models also failed to represent the negative 181 

correlation between ST and biodiversity (Fig. 3B-D). We found that only 4 (out of 13) models 182 

(ACCESS-ESM1-5, BCC-CSM2-MR, EC-Earth3-Veg, TaiESM1) had negative ST-183 

biodiversity relationship exceeding 60% under ssp126. The number of correct models 184 

increased to 5-7 for ssp245 and ssp585. Spatial distributions of Cmip6 models were 185 

provided in Supplementary Fig. 7-9. We also tested for spatial consistency between the 186 

observations and simulations and found that most models did not match the observed 187 

biodiversity effects closely (Extended Data Fig. 1). 188 

 189 

Discussion 190 

Our findings demonstrate a widespread buffering effect of biodiversity on the 191 

sensitivity of spring leaf-out dates to climate warming, with weaker responses of spring 192 

leaf-out to warming in forests with multiple species. Our models further showed that 193 
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biodiversity was more important than climate in driving spatial variation in ST (Fig. 1B-D 194 

and Supplementary Fig. 5), highlighting the importance of considering biodiversity when 195 

predicting the consequences of climate change on spring phenology and ecosystem 196 

productivity. We further showed that current ecosystem models could not reproduce the 197 

observed buffering effect of biodiversity on spring phenological sensitivity. Accounting for 198 

spatial and temporal variation in species richness will thus be of great importance to better 199 

understand the extent of shifts in foliar phenology under climate change as well as the 200 

consequences for ecosystem functioning. 201 

 202 

We found that biodiversity has a strong direct impact on ST in our study. We observed 203 

that in forests with higher biodiversity, the sensitivity of tree leaf unfolding to climate 204 

warming is lower. This suggests that in ecosystems with greater biodiversity, the timing of 205 

spring leaf unfolding remains more stable in the face of warming, consistent with recent 206 

research16,17,21. This direct effect can be partly attributed to the presence of a greater 207 

variety of species and individuals in biodiverse forests, where different tree species may 208 

have distinct growth seasons and leaf unfolding times. This seasonal asynchrony may, to 209 

some extent, slow down the overall response of the ecosystem to rising temperatures14,22. 210 

Consequently, the entire ecosystem exhibits lower average temperature sensitivity. 211 

Conversely, in biomes or climate zones with relatively lower biodiversity, often dominated 212 

by a few key species, the response is more uniform, and leaf unfolding is more directly and 213 

significantly influenced by temperature increase (Supplementary Fig. 3). In such cases, 214 

biodiversity may not be able to exert a buffering effect, as observed in biomes like Deserts 215 

and Xeric Shrublands (DXS) and Tundra (TUN), as well as cold and dry climate zones 216 

(DSC (Cold, dry summer, cold summer) and DSB (Cold, dry summer, warm summer)) (Fig. 217 

1G-J). 218 

 219 

While our analyses suggest a strong direct impact of biodiversity on ST, they also 220 

suggest that biogeophysical and biogeochemical factors may contribute to the decrease in 221 

ST with increasing biodiversity. We found that high biodiversity correlates with deeper roots, 222 
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which may facilitate access to soil nutrients and moisture during spring23. The enhanced 223 

water supply may in turn reduce trees’ sensitivity to temperature early in the growing 224 

season, buffering against warming-induced shifts in foliar phenology13 (Extended Data Fig. 225 

2). In agreement with this, experiments and observations have shown reduced leaf-out 226 

sensitivity to warming under drought conditions1,9. Our results also agree with studies 227 

reporting an increased importance of soil moisture in determining the distribution of 228 

vegetation and SOC in cold regions where warming is more pronounced24.  229 

 230 

Our findings also support that higher biodiversity enhances the SOC concentrations 231 

in diverse forests by fixing more C13,18,25. This may be due to improved soil physicochemical 232 

properties, such as VOCF and pH (Extended Data Fig. 3), which in turn accelerate the 233 

activities of both plants and soil microorganisms12,25,26. Enhanced soil fertility is 234 

advantageous for plants because it promotes plant growth and enables roots to anchor 235 

more deeply, facilitating more effective adaptation to temperature changes13. Increasing 236 

soil fertility can in turn increase the diversity of plants and soil microbes, increasing the 237 

stability and resilience of ecosystems. We also found that higher biodiversity increased the 238 

C/N ratio, which may limit the availability of N for plants and cause them to allocate more 239 

C to root growth to enhance the uptake of water and nutrients while reducing foliar growth 240 

to save energy for photosynthesis and transpiration27. 241 

 242 

The higher biodiversity may contribute to improvements in soil biogeophysical 243 

properties, including enhanced soil aeration, thermal conductivity, water retention, which 244 

may be associated with increased soil microbial activity and plant root growth23,26. The 245 

improvement of soil physical properties, especially water retention and buffering capacity, 246 

has been demonstrated to enhance the resistance of plants to stress, thus alleviating the 247 

response of plants to warming and consequently improving phenological stability23,25. Our 248 

results also showed that ST becomes less dependent on warming for wetter conditions 249 

induced by higher biodiversity (Extended Data Fig. 2). Better soil aeration and thermal 250 

conductivity may increase RSWS and its variability, causing a higher frost risk. To avoid 251 
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such risks, plants may therefore increasingly rely on other signals, such as photoperiod 252 

and higher chilling requirements, leading to declines in ST
5,28. Enhancement of soil physical 253 

properties affects the growth of plant roots and the retention of SOC and N23,25, and 254 

increased rooting depth and supply with soil nutrients is likely to drive phenological stability 255 

and reduce ST (Fig. 2). 256 

 257 

The predictive models of vegetation leaf phenology are a crucial component of land 258 

surface models and dynamic global vegetation models, as well as global climate models 259 

that utilize soil–vegetation–atmosphere transfer schemes6,11. Most vegetation models and 260 

climate models consider the impact of vegetation phenology on the interannual variations 261 

and trends of land carbon-water cycles and land-atmosphere exchanges, but they still pose 262 

challenges in terms of phenology model accuracy29. Due to the fact that ST determines the 263 

extent of phenological responses to future climate warming, it is crucial for phenological 264 

simulations to consider this effect5,7–9. Without considering the buffering effects of 265 

biodiversity on ST, inaccuracies in phenological simulations may occur, thereby affecting 266 

the characterization of ecosystem functions. This may be the reason why many Cmip6 and 267 

Trendy models have failed to reproduce the negative biodiversity-ST correlations (Fig. 3).  268 

 269 

In summary, our findings show that the sensitivity of spring leaf-out to warming 270 

decreases in more diverse forests, suggesting an important buffering effect of biodiversity 271 

on the phenological sensitivity of trees to climate change. The biodiversity effects on 272 

phenological sensitivity may be of direct and indirect nature. In diverse forests, the high 273 

diversity in temperature sensitivity among species and individuals may lead to a lower 274 

average temperature sensitivity than in less diverse forest where single species dominate 275 

the observed community sensitivity. In addition, the biodiversity effects could be mediated 276 

by soil physicochemical properties, which may stabilize phenology by enhancing nutrient 277 

supply, stress tolerance, and productivity17,18,20. Higher productivity in diverse forests may 278 

also lead to changes in ecosystem function due to shifts in species composition and 279 

community succession, water balance, and climatic feedbacks30. The inability of vegetation 280 
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models to reproduce the observed buffering effect of tree diversity on phenological 281 

sensitivity highlights the need to represent biodiversity if we are to accurately predict 282 

ecosystem responses to climate change. Our findings thus underscore the fundamental 283 

importance of biodiversity in our understanding of phenological changes and the 284 

maintenance of ecosystem functioning under climate change. 285 
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 303 

Figure 1 | Negative correlations between biodiversity and the sensitivity of spring 304 

leaf unfolding to warming (ST). A and E-J represent the results of the partial correlation 305 

analysis for each plot (A), plant functional type (E, F), biome (G, H), and climate (I, J) (the 306 

full name of the acronyms in F, H and J can be found in Supplementary Table 4-6). B, the 307 

coefficients of the global partial correlation. C, the importance of each feature based on 308 

GINI coefficients and the mean absolute value of SHapley Additive exPlanations (SHAP). 309 
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D, SHAP values based on the global random forest model. P, positive effect; and N, 310 

negative effect, followed by overall and significant proportions (in parentheses) on the right 311 

side. The dotted gray lines in F, H, and J mark the transition from significant to non-312 

significant results at P<0.05. The significance was based on the t statistics using a two-313 

tailed test. In order to control the false discovery rate, the Benjamini-Hochberg (BH) 314 

method was employed in A, F, H, J. 315 

 316 

Figure 2 | Mechanisms underlying the negative correlation between biodiversity and 317 

the sensitivity of spring leaf unfolding to warming (ST). The figure shows the results of 318 

the partial correlation analysis and structural equation modeling (SEM). The coefficients on 319 

the path of SEM are standardized, and the circular map on the path represents the spatial 320 

distributions of the partial correlation results. The bar chart represents the direct and 321 

indirect effects. NS, not significant; P, positive effect; N, negative effect; VOCF, volumetric 322 

fraction of coarse fragments; BD, soil bulk density; RSWS, rate of soil warming in spring; 323 

SOC, soil organic carbon; and C/N ratio, the ratio of soil concentrations of carbon to total 324 

nitrogen. The significance was based on the t statistics using a two-tailed test and to control 325 

the false discovery rate, the Benjamini-Hochberg (BH) method was employed in all 326 

analysis. 327 

 328 

Figure 3 | Evaluation of model performances on the sensitivity of spring leaf 329 

unfolding to warming (ST) with biodiversity. A, B, C and D represent results for 15 330 

Trendy models and 13 Earth system models (Cmip6) under different shared socioeconomic 331 

pathways (ssp126, ssp245 and ssp585) (See Supplementary Table 2, 3 for model details). 332 

The “Observation” bar in A is derived from the analysis results of 11 sets of resampled data 333 

(see Supplementary Fig 11), presented as mean values +/- Standard Deviation (SD). A1-334 

A15 represent spatial distributions results for the 15 Trendy models, respectively. The 335 

numbers in these figures are percentages of significant positive correlations with respect 336 

to all significant correlations. The significance level was established at P<0.05, determined 337 

by the t statistics in a two-tailed test.   338 
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Methods 406 

1. Biodiversity, climate and ancillary data 407 

We focused our research on areas in the middle and high latitudes of the Northern 408 

Hemisphere (> 30°N), where vegetation dynamics exhibit distinct seasonal variations. We 409 

extracted species richness data covering most of the forests in our study area from the 410 

GFBI ground observation dataset31 to characterize biodiversity, which compiles extensive 411 

monitoring data from 777,126 permanent plots across 44 countries and 13 ecoregions. The 412 

GFBI dataset encompasses diverse forest sources and successional stages, and an 413 

excess of 30 million trees belonging to over 8,737 species were measured twice or more, 414 

with the aim of unveiling global forest biodiversity patterns. 415 

 416 

Due to the large number of duplicate coordinates in the GFBI dataset, we used a 417 

window size of 0.01 degrees, the minimum scale of GFBI coordinate records, to extract the 418 

mean value within each window as its corresponding value. In the end, we determined 419 

393,139 unique biodiversity records, encompassing 1-190 tree species. Among these plots, 420 

75% were measured at two or more time points, with a minimum time interval between 421 

measurements of two years or more (global average time interval is 9 years), while 25% 422 

were measured only once. Due to the majority of plots being measured multiple times, the 423 

impact of sampling frequency on the results is likely minimal20. Notably, deciduous 424 

broadleaf forests and woody savannas exhibit the highest species richness per plot scale, 425 

averaging 6-7 species per plot, while open shrublands, barren, and grasslands only contain 426 

2-3 tree species (Supplementary Fig. 1). We also used grid-form species richness data, 427 

which was simulated by the original authors of the GFBI dataset using machine learning 428 

techniques, ensuring spatial consistency with the structure of climate and other datasets.  429 

 430 

The leaf-out dates data was determined from Moderate Resolution Imaging 431 

Spectroradiometer (MODIS) Land Cover Dynamics (MCD12Q2) dataset, which provides 432 

global land surface phenology metrics annually spanning from 2001 to 2022 with a spatial 433 
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resolution of 500 meters32. These metrics are derived from time series data of the two-434 

band Enhanced Vegetation Index (EVI2) computed from MODIS Nadir Bidirectional 435 

Reflectance Distribution Function (BRDF)-Adjusted Reflectance (NBAR). One of these 436 

metrics, leaf-out dates, is defined as the date when the EVI2 first exceeds 15% of the 437 

segment EVI2 amplitude. 438 

 439 

The climate data was obtained from monthly data of ERA5-Land dataset, which is the 440 

fifth-generation atmospheric reanalysis produced by the European Centre for Medium-441 

Range Weather Forecasts33. It has been widely utilized for evaluating the influence of 442 

meteorological variables on the Earth's global climate. Specifically, we extracted 443 

temperature, total precipitation, solar radiation, and soil moisture data from 2000 to 2022, 444 

with a spatial resolution of 0.1 degrees and a temporal resolution of one month from ERA5-445 

Land. Furthermore, we collected hourly soil temperature data and calculated the daily 446 

mean for later analysis. We computed the multi-year average climate variables and spring 447 

average climate variables for each plot. Regarding spring average climate variables, we 448 

identified the optimal spring pre-season period through partial correlation analysis. We 449 

initiated the iteration from the month of the multi-year average leaf-out dates, moving 450 

forward continuously. In each iteration, we calculated the average variables of the current 451 

pre-season period and computed the correlation coefficient. We continued the iteration 452 

until the sixth month, selecting the optimal pre-season period with the maximum partial 453 

correlation coefficient. 454 

 455 

The soil attribute data was derived from SoilGrids, a global soil dataset product 456 

resulting from international collaboration generated by the ISRIC - World Soil Information 457 

Center, with a resolution of 250 meters34. SoilGrids implements advanced machine 458 

learning techniques, combining global soil profile data and environmental covariate data to 459 

predict and simulate the spatial distribution of soil properties at six standard depths globally. 460 

We utilized the latest version of SoilGrids, version 2.0, to extract soil surface organic carbon 461 

content, soil total nitrogen content, and subsequently calculated the soil surface carbon-462 
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to-nitrogen ratio. 463 

 464 

The GPP (Gross Primary Productivity) data was originated from Trendy and Cmip6 465 

model, utilized for the simulation of leaf-out dates across historical and future periods. The 466 

Trendy model ensemble encompassed many models reflecting estimates of terrestrial 467 

vegetation photosynthesis and was extensively employed to delve into diverse facets of 468 

the global carbon cycle35. We curated GPP data spanning from 2001 to 2021, 469 

encompassing 15 models (Supplementary Table 2). CMIP6, the Coupled Model 470 

Intercomparison Project phase 6, furnishes output data for an array of climate variables 471 

under different experimental designs and emission scenarios, encompassing historical and 472 

forthcoming epochs36. We gathered GPP, temperature, precipitation, radiation, and soil 473 

moisture data from 2015 to 2100 across each of 13 models. Each model encompasses 474 

three shared socioeconomic pathways: ssp126, ssp245, and ssp585 (Supplementary 475 

Table 3). 476 

 477 

Other auxiliary data includes biomes, vegetation types, climatic regions, forest age，478 

elevation and species evenness. Biomes data is derived from the Resolve Ecoregions 479 

2017, which serves as a biogeographic regionalization under an Earth's biomes framework, 480 

consisting of 14 terrestrial biomes made up of 846 ecoregions, defining biogeographic 481 

assemblages and ecological habitats37 (Supplementary Table 4). Vegetation types data is 482 

obtained from the first layer of MCD12Q1 Version 6.1 dataset and represents land cover 483 

types in the International Geosphere-Biosphere Programme classification38. And thirteen 484 

different types of vegetation are present in the study area (Supplementary Table 5). 485 

Climatic regions data is procured from the widely utilized Köppen-Geiger climate 486 

classification system, which divides the global climate zones into five primary groups based 487 

on local vegetation types: tropical, arid, temperate, continental, and polar39. Further 488 

subdivisions of each group are based on temperature or aridity level (Supplementary Table 489 

6). The forest age data is sourced from the Max Planck Institute for Biogeochemistry in 490 

Germany. It provides global forest age estimations at a 1-kilometer resolution, and this data 491 
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is predicted using machine learning techniques based on forest inventories, biomass 492 

measurements, and climate data. Elevation data is obtained from the Global Multi-493 

resolution Terrain Elevation Data 2010 (GMTED2010), provided by the U.S. Geological 494 

Survey Earth Resources Observation and Science Center. We selected the version with a 495 

30-arc-second spatial resolution. We used Hill’s evenness as an indicator of species 496 

evenness, which can be roughly interpreted as the proportion of species dominating the 497 

community in terms of abundance concerning richness. This data is sourced from 498 

reference40, and evenness values range from close to zero, indicating domination by a few 499 

species, to one, indicating an equal number of individuals for all species in the community. 500 

 501 

2. Simulating leaf-out dates utilizing GPP data of Trendy and Cmip6 models 502 

We employ GPP data from Cmip6 and Trendy models to simulate leaf-out dates. GPP 503 

exhibits a close correlation with factors such as vegetation coverage, Leaf Area Index (LAI), 504 

temperature, and precipitation - all pivotal elements influencing vegetative leaf-out dates. 505 

Therefore, the annual fluctuation curve of GPP effectively mirrors the phenological cycles 506 

of vegetation41. Drawing upon this theoretical foundation, we utilized cubic spline 507 

interpolation for temporal sequence interpolation to enhance data continuity, considering 508 

temporal resolution of most GPP datasets is monthly. Subsequently, we opted for the 509 

“phenofit” function package42 within the R programming language for simulation. To ensure 510 

both efficiency and quality in simulating leaf-out dates, we employed the "Elmore" curve 511 

fitting method36. The fitting function is represented by equation (1) as follows: 512 

   
   7

1 1

1 1
rsp t sos rau t eos

f t mn mx m t
e e
   

 
     

  
  (1) 513 

Where t is the corresponding date of time series GPP, mn and mx are the minimum and 514 

maximum value of time series GPP; sos and eos, respectively, denote the start of the 515 

growing season and end of the growing season; rsp and rau are, respectively, the rate of 516 

spring Greenup and autumn senescence, m7 is the summer greendown parameter. 517 

Subsequently, based on the fitted curve, we have utilized three different methods to extract 518 

leaf-out dates: the threshold method, derivative method, and inflection method. Notably, 519 
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through meticulous comparisons, the extracted leaf-out dates exhibited harmonious 520 

interannual variations across all three methods (Supplementary Fig. 10). To maintain 521 

congruity with MCD12Q2, we chose to showcase the 15% threshold method as the primary 522 

approach in the main text. 523 

 524 

3. Calculating ST, RSWS 525 

We first aggregated data from multiple sources using the coordinates from biodiversity 526 

data. For climate data with coarser resolutions, we directly extracted data from the 527 

corresponding locations. For categorical datasets like biomes, we used the mode within 528 

the corresponding window size as the representative value, while for continuous datasets 529 

like soil properties, we used their mean values within the grid. Subsequently, we 530 

standardized all data using the Z-score method to convert metrics of varying units into a 531 

uniform scale, and excluded outliers in accordance with the PauTa criterion. 532 

 533 

ST, the sensitivity of leaf-out advance to warming, is defined as the days of advanced 534 

leaf-out dates per each degree changes in air temperature. For the purpose of narrative 535 

convenience, we shall define the advancement of leaf-out dates as a positive value and 536 

the delay as a negative value, which is equivalent to taking the opposite of the temperature 537 

coefficient as ST. It can be calculated using the coefficient of temperature in the regression 538 

that relates leaf-out dates to climate variables, as shown in the equation (2):  539 

0 ( )T P RL T P R               (2) 540 

where L stands for leaf-out dates, T, P, and R denote the mean spring temperature, 541 

precipitation, and radiation, respectively. βT, βP, and βR represent their corresponding 542 

regression coefficients, out of which βT signifies ST. β0 is the intercept and ε is the residual 543 

term. It is worth mentioning that, for the calculation of mean spring values of climate 544 

variables, we employed a partial correlation method to iteratively determine the optimal 545 

length of the spring pre-season. For the fitting of the regression equation, we used the OLS 546 

(ordinary least squares regression) function provided by the Python “statsmodels” package.  547 

 548 
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RSWS, the rate of soil warming in spring, is defined as the speed of soil temperature 549 

change over a period of 60 days, with 30 days before and 30 days after leaf-out date. To 550 

calculate RSWS, we first derived daily soil temperature data from hourly data between 551 

2001 and 2021. Next, we employed the Numpy package in Python to fit the daily mean soil 552 

temperature data for the 60-day period in each plot, allowing us to determine the slope (i.e., 553 

RSWS) as well as the variance, which represents the degree of temperature variability 554 

within each plot. 555 

 556 

4. Analysis 557 

We first used partial correlation and sequential regression methods to investigate the 558 

relationship between biodiversity and ST across all plots (Fig.1B). The partial correlation 559 

method was implemented using the “pingouin” package in Python. When calculating partial 560 

correlation, we controlled for mean spring temperature, precipitation, radiation and soil 561 

moisture, as well as soil organic carbon, total nitrogen, elevation and evenness, in order to 562 

eliminate the influence of environmental factors. Based on ordinary least squares 563 

regression method, to isolate the confounding effects of environmental covariates, we 564 

devised a sequential regression model. We regressed biodiversity onto environmental 565 

variables to obtain the residuals of biodiversity without the covariances of environmental 566 

variables. Subsequently, the residuals and environmental variables were regressed on ST 567 

to estimate the coefficient of residuals ( B  , as described in equation (4)), which 568 

characterizes the relationship between biodiversity and 
TS  . This sequential regression 569 

model is expressed as: 570 

 1

n

B B i ii
B X  


      (3) 571 

0 1

n

T B B i ii
S X    


        (4) 572 

where B is biodiversity, 
B   is the residual of biodiversity, 

iX   is environmental 573 

variable i  , i   is the regression coefficient of environmental variable i   and    is the 574 

residual term. 575 
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To mitigate the potential impact of spatial autocorrelation among variables, we 576 

employed two spatial autoregressive models (SAR) to investigate the relationship between 577 

biodiversity and ST. Firstly, the spatial lag model, introduced the lagged values of the 578 

dependent variable (i.e., the values of the dependent variable in neighboring locations) as 579 

explanatory variables to capture spatial dependence among adjacent locations. Secondly, 580 

the spatial error model, assumed that the error terms of the model possess a spatial 581 

structure, indicating a certain level of spatial autocorrelation in the error terms across space. 582 

The analysis of these models was conducted using the “spreg” package in Python. 583 

 584 

Furthermore, we utilized the Random Forest and eXtreme Gradient Boosting 585 

(XGBoost) machine learning algorithms, along with the SHapley Additive exPlanations 586 

(SHAP) method, to measure the impact and importance of biodiversity on ST. Random 587 

Forest and XGBoost are decision tree-based machine learning algorithms that excel in 588 

processing large-scale data and high-dimensional features, effectively handling nonlinear 589 

relationships between features. we implemented the aforementioned methods using 590 

“scikit-learn” and “xgboost” packages in python to explore the relationship between ST, 591 

biodiversity, and other environmental variables. While the random forest and XGBoost 592 

models offer the Gini coefficient as an importance metric, they fall short in illustrating the 593 

individual contribution of each feature in predicting results on a per-sample basis. To 594 

overcome this limitation, we used the SHAP (SHapley Additive exPlanations) method - a 595 

robust tool for interpreting machine learning models. Rooted in Shapley values from game 596 

theory, this method assesses the contribution of each feature value within various possible 597 

feature combinations. It ensures a fair distribution of the impact of each feature on the 598 

prediction results. By utilizing the “shap” package in Python, we applied the SHAP method 599 

to interpret the trained random forest and XGBoost models. This allowed to obtain the 600 

magnitude and direction (positive or negative) of the impact of biodiversity on ST of each 601 

plot (Fig. 1D and Supplementary Fig. 5). Then, we calculated the mean absolute SHAP 602 

values for each feature across all samples as a measure of feature importance, referred to 603 

as SHAP importance, as shown in Fig. 1C. 604 
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In addition, to address possible spatial heterogeneity issues at the global scale, we 605 

employed two approaches to conduct analyses at a smaller local scale. Firstly, we divided 606 

our study area into different regions, including land cover types, biomes, and climatic 607 

regions. We then conducted partial correlation analysis on the data within each region. 608 

Besides, we also conducted point-wise analyses. To do this, we first created a distance 609 

matrix to group the points into clusters based on their proximity to each other. Then, we 610 

used partial correlations to conduct the analysis. To selected the points in each group, we 611 

used the golden section method as the search algorithm and the Akaike information 612 

criterion (AIC) to determine the optimal bandwidth size. The significance was based on the 613 

t statistics using a two-tailed test and to control the false discovery rate, the Benjamini-614 

Hochberg (BH) method was employed. It is worth noting that due to the sparse of point-615 

form species evenness data, there are limitations in successfully matching it with point-616 

form species richness data and significant ST data, hindering further analysis. Therefore, 617 

we did not use it in the local analysis (Fig. 1A, E-J). To address this limitation, we introduced 618 

grid-form species richness data, which perfectly matches with evenness data, supporting 619 

all analyses, and the conclusions remain consistent with the original findings (Fig. 1 and 620 

Supplementary Fig. 6). 621 

 622 

To investigate the potential mechanisms underlying the impact of biodiversity on ST, 623 

we used two methods at the point level: partial correlation and structural equation modeling 624 

(SEM). We hypothesized that the impact of biodiversity on ST is mediated by its influence 625 

on soil physicochemical properties and tree root growth. To test this hypothesis, we 626 

developed a structural equation model (SEM) incorporating 6 mediating variables: two soil 627 

physical properties (BD and VOCF), two soil nutrient variables (SOC and C/N ratio), RSWS 628 

and root depth. Maximum likelihood estimation was used as the target function while 629 

Sequential Least Squares Programming (SLSQP) optimization method was employed to 630 

estimate the model parameters. Additionally, we calculated various statistics and fit indices 631 

to evaluate the applicability and effectiveness of the model, such as GFI (Goodness of Fit 632 

Index) and RMSEA (Root Mean Square Error of Approximation). Subsequently, we 633 
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selected pathways that surpassed the 0.9 threshold for GFI and exhibited Benjamini-634 

Hochberg corrected p-values below 0.05, calculating their respective mean values. We 635 

also used partial correlation analysis as a supplement to the SEM. With controlling for 636 

mean annual temperature, precipitation, and solar radiation effects, we conducted partial 637 

correlation analyses on variables at both ends of each SEM path.  638 

 639 

For the data of Trendy and Cmip6 models, we followed the same procedure as 640 

described above to calculate ST and analyze the impact of biodiversity on it. However, due 641 

to the coarse resolution and lack of time series in these models, temporal and regional 642 

analysis were not possible. To determine the biodiversity effects at each point, we 643 

employed the geographically weighted regression (GWR) method. GWR is a spatially local 644 

regression model that considers spatial heterogeneity. Throughout the analysis, due to the 645 

absence of future biodiversity, soil attribute and elevation data, we assumed they remained 646 

constant and resampled them to match the resolution of the models. As for future forest 647 

age, we conducted year-by-year accumulation to obtain future forest age. Due to the 648 

sparse of point-form species evenness data, challenges arose in aligning them with 649 

coarse-resolution model data and point-form species richness data, hampering further 650 

analysis. Consequently, we didn’t use it in the GWR analysis. We then conducted GWR to 651 

analyze the relationship between the models' ST and factors including biodiversity, mean 652 

spring temperature, precipitation, radiation and soil moisture, as well as soil organic carbon, 653 

soil nitrogen, forest age and elevation. Simultaneously, we resampled the observed data 654 

to the same resolution as each model and calculated the impact of biodiversity on ST 655 

(Supplementary Fig. 11). Finally, we compared the biodiversity effect of the observed 656 

results, the Trendy and Cmip6 models, and assessed the accuracy of each model at the 657 

pixel scale (Fig. 3, Extended Data Fig. 1 and Supplementary Fig. 7-9).  658 
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Data availability 659 

All data used in this study are available online, and download links are as follows: 660 

GFBI, https://www.gfbinitiative.org/data;  661 

ERA5, https://doi.org/10.24381/cds.e2161bac;  662 

Trendy, https://blogs.exeter.ac.uk/trendy;  663 

Cmip6, https://esgf-node.llnl.gov/projects/cmip6; 664 

Elevation, https://doi.org/10.3133/ofr20111073;  665 

SoilGrids, https://doi.org/10.5194/soil-7-217-2021;  666 

Evenness, https://doi.org/10.3929/ethz-b-000597256;  667 

Forest age, https://doi.org/10.5194/essd-13-4881-2021;  668 

MCD12Q1v061, https://doi.org/10.5067/MODIS/MCD12Q1.061; 669 

MCD12Q2v061, https://doi.org/10.5067/MODIS/MCD12Q2.061;  670 

Ecoregion2017, https://ecoregions.appspot.com;  671 

Köppen-Geiger maps, https://doi.org/10.1038/s41597-023-02549-6.  672 

Source data are provided with this paper. 673 

 674 

Code availability 675 

All the code used for data analysis and figure generation is available on GitHub at 676 

https://github.com/spjace/asc-for-bio-effect-on-lud43. Furthermore, we packaged this code 677 

into the Python package "phenology" for phenological analysis and computing optimal pre-678 

season length, released on Python Package Index at https://pypi.org/project/phenology.  679 

https://www.gfbinitiative.org/data
https://doi.org/10.24381/cds.e2161bac
https://blogs.exeter.ac.uk/trendy
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https://doi.org/10.5194/soil-7-217-2021
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Path effect
Biodiversity

BD RSWS

C/N ratio

SOC

VOCF

Root depth

ST

-0.14±0.08 (P=0.02) -0.34±0.09 (P=0.00)

0.24±0.08 (P=0.03)

0.24±0.09 (P=0.02)

0.14±0.08 (P=0.03) -0.16±0.10 (P=0.02)

 

-0.18±0.09 (P=0.01)

0.26±0.10 (P=0.02) 0.20±0.08 (P=0.02)
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