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Abstract: Understanding the sensitivity of spring leaf-out dates to temperature (St) is
integral to predicting phenological responses to climate warming and the consequences
for global biogeochemical cycles. While variation in St has been shown to be influenced
by local climate adaptations, the impact of biodiversity remains unknown. Here, we
combine 393,139 forest inventory plots with satellite-derived St across the Northern
Hemisphere during 2001-2022 to show that biodiversity greatly affects spatial variation in
Stand even surpasses the importance of climate variables. High tree diversity significantly
weakened S, possibly driven by changes in root depth and soil processes. We show that
current Earth System Models failed to reproduce the observed negative correlation
between St and biodiversity, with important implications for phenological responses under
future pathways. Our results highlight the need to incorporate the buffering effects of
biodiversity to better understand the impact of climate warming on spring leaf unfolding

and carbon uptake.
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Plant phenology is one of the most sensitive indicators of climate change, and greatly
affects interannual variations in carbon uptake of terrestrial ecosystems®?. Over recent
decades, climate warming has led to strong advances in spring leaf-out dates®#. The
responsiveness of spring phenology to climate change is typically quantified via measuring
the temperature sensitivity of leaf-out (Sr, leaf-out advance in days per each degree air
temperature warming). St is the optimal strategy evolved by plants under the selection
pressure of historical climate information in the local environment, and its variations reflect
adaptive adjustments to climate change for optimizing their life cycles®. Due to its role in
determining the extent of phenological changes in response to future climate warming, St
has attracted extensive attention in observational records and warming experiments® /.
Understanding temporal and spatial variation in St is critical to better comprehend
phenological feedbacks to climate change, such as effects on carbon sequestration’,
surface albedo and the energy budget’*°. Furthermore, it is of paramount importance for
evaluating and simulating the dynamics of ecosystems in climate change research®, as
well as for enhancing global dynamic vegetation models, global climate models, and land
surface models®!!. Declines in St have been observed in several tree species over recent
decades. Yet, although decreased winter chilling has been suggested as a possible factor,
the underlying causes remain poorly understood®. While previous studies have mostly
focused on the climatic drivers of St, we still lack an understanding of the responses of St
to changes in the biodiversity of animals, plants, and microorganisms and the communities

they form*2.

Biodiversity plays a crucial role in regulating the growth and development of vegetation,
serving as a key factor in stabilizing and adapting ecosystems to climate change!s. At a
large geographical scale, plant phenology responds to climate and environmental factors,
influencing plant growth and resilience, while also governing crucial ecosystem functions
like pollination, herbivory, and carbon uptake'#. Consequently, warming-induced changes
in spring leaf-out may lead to asynchronous interactions among mutualistic partners within

communities, affecting food web dynamics and the functioning and stability of
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ecosystems?31516_|n particular, high biodiversity can influence the phenological plasticity
of individual plants, enhance the adaptability of plants to climatic shifts, diminish the
likelihood of phenological discordance, and affect the species assemblage and functional
heterogeneity of plant communities, thereby mitigating the effects of climate change on
ecosystem performance!’'8. For example, different genotypes or genera of plants can
adapt to variations in temperature and moisture by altering gene expression, hormone
levels, leaf area, and other parameters that affect phenology'®. Different species have
different responses to cope with environmental fluctuations, and higher temporal
complementarity and asynchrony among species can augment their resistance to
drought?°. Regions with high biodiversity thus typically have stabler ecosystem responses
to climate change, whereas the loss of diversity may aggravate plant phenological shifts
caused by climate change!®1617. In this study, we therefore aimed to test whether
biodiversity buffers the sensitivity of trees to climate warming and how interactions between

biodiversity and climate change affect Northern Hemisphere-wide phenological variation.

We compiled species richness data from the Global Forest Biodiversity Initiative (GFBI)
in the middle and high latitudes of the Northern Hemisphere, incorporating 393,139 unique
forest inventory plots that span various forest types and species, to characterize
biodiversity (Supplementary Fig. 1). Satellite-derived leaf-out data from 2001-2022 came
from the Moderate-resolution Imaging Spectroradiometer (MODIS). We also gathered
spatially-explicit climate and soil data from 2000-2022, as well as gross primary production
(GPP) data from 15 Trendy models for 2001-2021 and 13 Cmip6 models for 2015-2100
(Supplementary Table 1-3). For each forest plot, we calculated the optimal spring pre-
season period using partial correlation analysis and calculated St using ordinary least
squares regression (Supplementary Fig. 2). We then used partial correlation, sequential
regression model, spatial autoregressive model (SAR), structural equation modeling
(SEM), and machine-learning methods to determine the influence of biodiversity on St and

its underlying mechanisms at regional and global levels (see Methods).
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Results

The partial correlation analysis showed a predominantly negative correlation between
biodiversity and St at the local scale after removing the effects of spring temperature,
radiation, precipitation, soil moisture, soil organic C (SOC), soil nitrogen (N), forest age
and elevation (Fig. 1A), with 60.5% of the correlations being negative. 8.5% of the local
correlations were significantly negative (P <0.05), while significant positive correlations
were only found for 3.9% of the correlations. The partial correlation analysis showed
consistent results at the levels of plant functional types (Fig. 1E, F), forest biomes (Fig. 1G,
H), and Koppen-Geiger climatic zones (Fig. 11, J). For example, negative correlations were
found among all eleven plant functional types, with nine being significant. Similarly, four of
the eight biomes showed a negative correlation, and all four correlations were significant,
with only deserts and xeric shrublands (DXS) and Tundra (TUN) showing a non-significant
positive correlation. Furthermore, Biodiversity and St were negatively correlated in 8 of 11
climatic zones (five were significant) and exhibited significant positive correlations in the
other two zones (DSB (Cold, dry summer, warm summer) and DSC (Cold, dry summer,
cold summer)). Furthermore, a negative correlation between biodiversity and St is
observed among different plant functional types, as well as across various biomes and
climate zones (Supplementary Fig. 3). In the global analysis covering all plots, we
controlled for evenness variables, in addition to the mentioned environmental factors. And
consistent results were obtained from partial correlation analysis, sequential regression
model, as well as spatial lag and spatial error models, indicating an overall negative

biodiversity-St effect (Fig. 1B and Supplementary Fig. 4).

We then analyzed the relative importance of biodiversity in determining the changes
in St using machine learning (Random Forest and eXtreme Gradient Boosting (XGBoost)
models). We found that biodiversity was a more important driver of St than were spring
temperature, precipitation, solar radiation, soil moisture, SOC, N, forest age, elevation and
evenness (Fig. 1C-D and Supplementary Fig. 5). Additionally, the SHapley Additive

exPlanations (SHAP) values of Random Forest and XGBoost models revealed that plots
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with higher biodiversity levels often exhibited a negative relationship between biodiversity
and Sr, while regions with lower biodiversity levels might have a positive biodiversity-St
relationship. Overall, a predominance of negative correlations was observed, aligning with
the results from partial correlation and sequential regression analyses. Both feature
importance metrics (GINI importance and SHAP importance), along with the absolute
coefficients of the partial correlation and sequential regression, consistently indicate that

biodiversity is the most important driver of Sr.

We also used grid-form species richness data to ensure spatial consistency with the
scale of climate and other datasets, providing a better match with point-form species
evenness data. We replicated the same analysis, controlling for the influences of spring
temperature, precipitation, solar radiation, soil moisture, SOC, N, forest age, elevation and
evenness in all analyses. The results remained consistent with those obtained from plot

datasets, revealing a negative effect of biodiversity on St (Supplementary Fig. 6).

To test the possible mechanisms through which biodiversity may affect St, we applied
Structural equation modeling (SEM) and partial correlation analysis (Fig. 2). We calculated
the direct effects of biodiversity on St within the SEM and the indirect effects through
different pathways. The results indicate a strong direct effect of biodiversity. In addition,
root depth, soil organic carbon concentration, the soil carbon-to-nitrogen (C/N) ratio, and
soil physical properties (including bulk density and volumetric fraction of coarse fragments
(VOCF)) may be potential intermediaries between biodiversity and phenological
responsiveness. For example, biodiversity and the C/N ratio were mostly positively
correlated, with 11.7% and 4.1% of correlations being significantly positive and negative,
respectively. The correlation between the C/N ratio and root depth was also positive, with
34.2% of the correlations significantly positive and only 6.8% of the correlations
significantly negative. In comparison, root depth and St were generally negatively
correlated. Similarly, a higher SOC concentration was associated with increased

biodiversity, but SOC concentration and St were negatively correlated. Soil physical
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properties may also contribute to the negative relationship between biodiversity and Sr.
Biodiversity and bulk density, bulk density and the rate of soil warming in spring (RSWS),
and RSWS and St were each consistently negatively correlated, with the percentages of
significant positive / negative correlations being 5.8% / 26.1%, 28.7% / 46.0%, and 24.7%
/ 61.4%, respectively. In contrast to bulk density, a higher VOCF was associated with
increased biodiversity, and biodiversity increased as St decreased, because VOCF and St
were negatively correlated. Overall, both the direct and the indirect pathways support the

negative correlation between biodiversity and Sr.

We further tested whether state-of-the-art ecosystem models (15 Trendy models with
results over 2001-2021 and 13 Cmip6 models over 2016-2100) can reproduce the negative
correlation between St and biodiversity (Fig. 3). We found that most Trendy models do not
capture the observed relationships, with 13 out of 15 models simulating predominantly
positive correlations (positive correlations exceeding 60%) and only one of the models
reproducing the extent of observed negative correlations (negative correlations exceeding
60%, CABLE-POP model). The spatial variation in the correlations simulated by the Trendy
models is shown in Fig. 3 A1-A15. The Cmip6 models also failed to represent the negative
correlation between St and biodiversity (Fig. 3B-D). We found that only 4 (out of 13) models
(ACCESS-ESM1-5, BCC-CSM2-MR, EC-Earth3-Veg, TaiESM1) had negative St-
biodiversity relationship exceeding 60% under ssp126. The number of correct models
increased to 5-7 for ssp245 and ssp585. Spatial distributions of Cmip6 models were
provided in Supplementary Fig. 7-9. We also tested for spatial consistency between the
observations and simulations and found that most models did not match the observed

biodiversity effects closely (Extended Data Fig. 1).

Discussion
Our findings demonstrate a widespread buffering effect of biodiversity on the
sensitivity of spring leaf-out dates to climate warming, with weaker responses of spring

leaf-out to warming in forests with multiple species. Our models further showed that
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biodiversity was more important than climate in driving spatial variation in St (Fig. 1B-D
and Supplementary Fig. 5), highlighting the importance of considering biodiversity when
predicting the consequences of climate change on spring phenology and ecosystem
productivity. We further showed that current ecosystem models could not reproduce the
observed buffering effect of biodiversity on spring phenological sensitivity. Accounting for
spatial and temporal variation in species richness will thus be of great importance to better
understand the extent of shifts in foliar phenology under climate change as well as the

consequences for ecosystem functioning.

We found that biodiversity has a strong direct impact on St in our study. We observed
that in forests with higher biodiversity, the sensitivity of tree leaf unfolding to climate
warming is lower. This suggests that in ecosystems with greater biodiversity, the timing of
spring leaf unfolding remains more stable in the face of warming, consistent with recent
research!®1721 This direct effect can be partly attributed to the presence of a greater
variety of species and individuals in biodiverse forests, where different tree species may
have distinct growth seasons and leaf unfolding times. This seasonal asynchrony may, to
some extent, slow down the overall response of the ecosystem to rising temperatures'422,
Consequently, the entire ecosystem exhibits lower average temperature sensitivity.
Conversely, in biomes or climate zones with relatively lower biodiversity, often dominated
by a few key species, the response is more uniform, and leaf unfolding is more directly and
significantly influenced by temperature increase (Supplementary Fig. 3). In such cases,
biodiversity may not be able to exert a buffering effect, as observed in biomes like Deserts
and Xeric Shrublands (DXS) and Tundra (TUN), as well as cold and dry climate zones
(DSC (Cold, dry summer, cold summer) and DSB (Cold, dry summer, warm summer)) (Fig.

1G-J).

While our analyses suggest a strong direct impact of biodiversity on Srt, they also
suggest that biogeophysical and biogeochemical factors may contribute to the decrease in

St with increasing biodiversity. We found that high biodiversity correlates with deeper roots,
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which may facilitate access to soil nutrients and moisture during spring?3. The enhanced
water supply may in turn reduce trees’ sensitivity to temperature early in the growing
season, buffering against warming-induced shifts in foliar phenology*® (Extended Data Fig.
2). In agreement with this, experiments and observations have shown reduced leaf-out
sensitivity to warming under drought conditions®°. Our results also agree with studies
reporting an increased importance of soil moisture in determining the distribution of

vegetation and SOC in cold regions where warming is more pronounced?*.

Our findings also support that higher biodiversity enhances the SOC concentrations
in diverse forests by fixing more C'318.25, This may be due to improved soil physicochemical
properties, such as VOCF and pH (Extended Data Fig. 3), which in turn accelerate the
activities of both plants and soil microorganisms'?2526, Enhanced soil fertility is
advantageous for plants because it promotes plant growth and enables roots to anchor
more deeply, facilitating more effective adaptation to temperature changes'. Increasing
soil fertility can in turn increase the diversity of plants and soil microbes, increasing the
stability and resilience of ecosystems. We also found that higher biodiversity increased the
C/N ratio, which may limit the availability of N for plants and cause them to allocate more
C to root growth to enhance the uptake of water and nutrients while reducing foliar growth

to save energy for photosynthesis and transpiration?’.

The higher biodiversity may contribute to improvements in soil biogeophysical
properties, including enhanced soil aeration, thermal conductivity, water retention, which
may be associated with increased soil microbial activity and plant root growth?326, The
improvement of soil physical properties, especially water retention and buffering capacity,
has been demonstrated to enhance the resistance of plants to stress, thus alleviating the
response of plants to warming and consequently improving phenological stability?325, Our
results also showed that St becomes less dependent on warming for wetter conditions
induced by higher biodiversity (Extended Data Fig. 2). Better soil aeration and thermal

conductivity may increase RSWS and its variability, causing a higher frost risk. To avoid
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such risks, plants may therefore increasingly rely on other signals, such as photoperiod
and higher chilling requirements, leading to declines in St>28. Enhancement of soil physical
properties affects the growth of plant roots and the retention of SOC and N%325 and
increased rooting depth and supply with soil nutrients is likely to drive phenological stability

and reduce Sr (Fig. 2).

The predictive models of vegetation leaf phenology are a crucial component of land
surface models and dynamic global vegetation models, as well as global climate models
that utilize soil-vegetation—atmosphere transfer schemes®!!. Most vegetation models and
climate models consider the impact of vegetation phenology on the interannual variations
and trends of land carbon-water cycles and land-atmosphere exchanges, but they still pose
challenges in terms of phenology model accuracy?®. Due to the fact that St determines the
extent of phenological responses to future climate warming, it is crucial for phenological
simulations to consider this effect>’°. Without considering the buffering effects of
biodiversity on S, inaccuracies in phenological simulations may occur, thereby affecting
the characterization of ecosystem functions. This may be the reason why many Cmip6 and

Trendy models have failed to reproduce the negative biodiversity-St correlations (Fig. 3).

In summary, our findings show that the sensitivity of spring leaf-out to warming
decreases in more diverse forests, suggesting an important buffering effect of biodiversity
on the phenological sensitivity of trees to climate change. The biodiversity effects on
phenological sensitivity may be of direct and indirect nature. In diverse forests, the high
diversity in temperature sensitivity among species and individuals may lead to a lower
average temperature sensitivity than in less diverse forest where single species dominate
the observed community sensitivity. In addition, the biodiversity effects could be mediated
by soil physicochemical properties, which may stabilize phenology by enhancing nutrient
supply, stress tolerance, and productivity?182°_ Higher productivity in diverse forests may
also lead to changes in ecosystem function due to shifts in species composition and

community succession, water balance, and climatic feedbacks®°. The inability of vegetation
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models to reproduce the observed buffering effect of tree diversity on phenological
sensitivity highlights the need to represent biodiversity if we are to accurately predict
ecosystem responses to climate change. Our findings thus underscore the fundamental
importance of biodiversity in our understanding of phenological changes and the

maintenance of ecosystem functioning under climate change.
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Figure 1 | Negative correlations between biodiversity and the sensitivity of spring
leaf unfolding to warming (St). A and E-J represent the results of the partial correlation
analysis for each plot (A), plant functional type (E, F), biome (G, H), and climate (I, J) (the
full name of the acronyms in F, H and J can be found in Supplementary Table 4-6). B, the
coefficients of the global partial correlation. C, the importance of each feature based on

GINI coefficients and the mean absolute value of SHapley Additive exPlanations (SHAP).
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D, SHAP values based on the global random forest model. P, positive effect; and N,
negative effect, followed by overall and significant proportions (in parentheses) on the right
side. The dotted gray lines in F, H, and J mark the transition from significant to non-
significant results at P<0.05. The significance was based on the t statistics using a two-
tailed test. In order to control the false discovery rate, the Benjamini-Hochberg (BH)

method was employed in A, F, H, J.

Figure 2 | Mechanisms underlying the negative correlation between biodiversity and
the sensitivity of spring leaf unfolding to warming (St). The figure shows the results of
the partial correlation analysis and structural equation modeling (SEM). The coefficients on
the path of SEM are standardized, and the circular map on the path represents the spatial
distributions of the partial correlation results. The bar chart represents the direct and
indirect effects. NS, not significant; P, positive effect; N, negative effect; VOCF, volumetric
fraction of coarse fragments; BD, soil bulk density; RSWS, rate of soil warming in spring;
SOC, soil organic carbon; and C/N ratio, the ratio of soil concentrations of carbon to total
nitrogen. The significance was based on the t statistics using a two-tailed test and to control
the false discovery rate, the Benjamini-Hochberg (BH) method was employed in all

analysis.

Figure 3 | Evaluation of model performances on the sensitivity of spring leaf
unfolding to warming (St) with biodiversity. A, B, C and D represent results for 15
Trendy models and 13 Earth system models (Cmip6) under different shared socioeconomic
pathways (ssp126, ssp245 and ssp585) (See Supplementary Table 2, 3 for model details).
The “Observation” bar in A is derived from the analysis results of 11 sets of resampled data
(see Supplementary Fig 11), presented as mean values +/- Standard Deviation (SD). A1-
A15 represent spatial distributions results for the 15 Trendy models, respectively. The
numbers in these figures are percentages of significant positive correlations with respect
to all significant correlations. The significance level was established at P<0.05, determined

by the t statistics in a two-tailed test.
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Methods
1. Biodiversity, climate and ancillary data

We focused our research on areas in the middle and high latitudes of the Northern
Hemisphere (> 30°N), where vegetation dynamics exhibit distinct seasonal variations. We
extracted species richness data covering most of the forests in our study area from the
GFBI ground observation dataset®! to characterize biodiversity, which compiles extensive
monitoring data from 777,126 permanent plots across 44 countries and 13 ecoregions. The
GFBI dataset encompasses diverse forest sources and successional stages, and an
excess of 30 million trees belonging to over 8,737 species were measured twice or more,

with the aim of unveiling global forest biodiversity patterns.

Due to the large number of duplicate coordinates in the GFBI dataset, we used a
window size of 0.01 degrees, the minimum scale of GFBI coordinate records, to extract the
mean value within each window as its corresponding value. In the end, we determined
393,139 unique biodiversity records, encompassing 1-190 tree species. Among these plots,
75% were measured at two or more time points, with a minimum time interval between
measurements of two years or more (global average time interval is 9 years), while 25%
were measured only once. Due to the majority of plots being measured multiple times, the
impact of sampling frequency on the results is likely minimal?°. Notably, deciduous
broadleaf forests and woody savannas exhibit the highest species richness per plot scale,
averaging 6-7 species per plot, while open shrublands, barren, and grasslands only contain
2-3 tree species (Supplementary Fig. 1). We also used grid-form species richness data,
which was simulated by the original authors of the GFBI dataset using machine learning

techniques, ensuring spatial consistency with the structure of climate and other datasets.

The leaf-out dates data was determined from Moderate Resolution Imaging
Spectroradiometer (MODIS) Land Cover Dynamics (MCD12Q2) dataset, which provides

global land surface phenology metrics annually spanning from 2001 to 2022 with a spatial
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resolution of 500 meters3?. These metrics are derived from time series data of the two-
band Enhanced Vegetation Index (EVI2) computed from MODIS Nadir Bidirectional
Reflectance Distribution Function (BRDF)-Adjusted Reflectance (NBAR). One of these
metrics, leaf-out dates, is defined as the date when the EVI2 first exceeds 15% of the

segment EVI2 amplitude.

The climate data was obtained from monthly data of ERA5-Land dataset, which is the
fifth-generation atmospheric reanalysis produced by the European Centre for Medium-
Range Weather Forecasts®3. It has been widely utilized for evaluating the influence of
meteorological variables on the Earth's global climate. Specifically, we extracted
temperature, total precipitation, solar radiation, and soil moisture data from 2000 to 2022,
with a spatial resolution of 0.1 degrees and a temporal resolution of one month from ERA5-
Land. Furthermore, we collected hourly soil temperature data and calculated the daily
mean for later analysis. We computed the multi-year average climate variables and spring
average climate variables for each plot. Regarding spring average climate variables, we
identified the optimal spring pre-season period through partial correlation analysis. We
initiated the iteration from the month of the multi-year average leaf-out dates, moving
forward continuously. In each iteration, we calculated the average variables of the current
pre-season period and computed the correlation coefficient. We continued the iteration
until the sixth month, selecting the optimal pre-season period with the maximum partial

correlation coefficient.

The soil attribute data was derived from SoilGrids, a global soil dataset product
resulting from international collaboration generated by the ISRIC - World Soil Information
Center, with a resolution of 250 meters3*. SoilGrids implements advanced machine
learning techniques, combining global soil profile data and environmental covariate data to
predict and simulate the spatial distribution of soil properties at six standard depths globally.
We utilized the latest version of SoilGrids, version 2.0, to extract soil surface organic carbon

content, soil total nitrogen content, and subsequently calculated the soil surface carbon-
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to-nitrogen ratio.

The GPP (Gross Primary Productivity) data was originated from Trendy and Cmip6
model, utilized for the simulation of leaf-out dates across historical and future periods. The
Trendy model ensemble encompassed many models reflecting estimates of terrestrial
vegetation photosynthesis and was extensively employed to delve into diverse facets of
the global carbon cycle®. We curated GPP data spanning from 2001 to 2021,
encompassing 15 models (Supplementary Table 2). CMIP6, the Coupled Model
Intercomparison Project phase 6, furnishes output data for an array of climate variables
under different experimental designs and emission scenarios, encompassing historical and
forthcoming epochs®¢. We gathered GPP, temperature, precipitation, radiation, and soil
moisture data from 2015 to 2100 across each of 13 models. Each model encompasses
three shared socioeconomic pathways: ssp126, ssp245, and ssp585 (Supplementary

Table 3).

Other auxiliary data includes biomes, vegetation types, climatic regions, forest age,

elevation and species evenness. Biomes data is derived from the Resolve Ecoregions
2017, which serves as a biogeographic regionalization under an Earth's biomes framework,
consisting of 14 terrestrial biomes made up of 846 ecoregions, defining biogeographic
assemblages and ecological habitats3” (Supplementary Table 4). Vegetation types data is
obtained from the first layer of MCD12Q1 Version 6.1 dataset and represents land cover
types in the International Geosphere-Biosphere Programme classification®t. And thirteen
different types of vegetation are present in the study area (Supplementary Table 5).
Climatic regions data is procured from the widely utilized Koppen-Geiger climate
classification system, which divides the global climate zones into five primary groups based
on local vegetation types: tropical, arid, temperate, continental, and polar®®. Further
subdivisions of each group are based on temperature or aridity level (Supplementary Table
6). The forest age data is sourced from the Max Planck Institute for Biogeochemistry in

Germany. It provides global forest age estimations at a 1-kilometer resolution, and this data
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is predicted using machine learning techniques based on forest inventories, biomass
measurements, and climate data. Elevation data is obtained from the Global Multi-
resolution Terrain Elevation Data 2010 (GMTED2010), provided by the U.S. Geological
Survey Earth Resources Observation and Science Center. We selected the version with a
30-arc-second spatial resolution. We used Hill's evenness as an indicator of species
evenness, which can be roughly interpreted as the proportion of species dominating the
community in terms of abundance concerning richness. This data is sourced from
reference®?, and evenness values range from close to zero, indicating domination by a few

species, to one, indicating an equal number of individuals for all species in the community.

2. Simulating leaf-out dates utilizing GPP data of Trendy and Cmip6 models

We employ GPP data from Cmip6 and Trendy models to simulate leaf-out dates. GPP
exhibits a close correlation with factors such as vegetation coverage, Leaf Area Index (LAI),
temperature, and precipitation - all pivotal elements influencing vegetative leaf-out dates.
Therefore, the annual fluctuation curve of GPP effectively mirrors the phenological cycles
of vegetation*'. Drawing upon this theoretical foundation, we utilized cubic spline
interpolation for temporal sequence interpolation to enhance data continuity, considering
temporal resolution of most GPP datasets is monthly. Subsequently, we opted for the
“phenofit” function package*? within the R programming language for simulation. To ensure
both efficiency and quality in simulating leaf-out dates, we employed the "Elmore" curve

fitting method36. The fitting function is represented by equation (1) as follows:

f(t)=mn +(mx—m7t)x(l+e_ip([_sos) —1+e_iu(t_eos)j (N
Where t is the corresponding date of time series GPP, mn and mx are the minimum and
maximum value of time series GPP; sos and eos, respectively, denote the start of the
growing season and end of the growing season; rsp and rau are, respectively, the rate of
spring Greenup and autumn senescence, m7 is the summer greendown parameter.

Subsequently, based on the fitted curve, we have utilized three different methods to extract

leaf-out dates: the threshold method, derivative method, and inflection method. Notably,
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through meticulous comparisons, the extracted leaf-out dates exhibited harmonious
interannual variations across all three methods (Supplementary Fig. 10). To maintain
congruity with MCD12Q2, we chose to showcase the 15% threshold method as the primary

approach in the main text.

3. Calculating S, RSWS

We first aggregated data from multiple sources using the coordinates from biodiversity
data. For climate data with coarser resolutions, we directly extracted data from the
corresponding locations. For categorical datasets like biomes, we used the mode within
the corresponding window size as the representative value, while for continuous datasets
like soil properties, we used their mean values within the grid. Subsequently, we
standardized all data using the Z-score method to convert metrics of varying units into a

uniform scale, and excluded outliers in accordance with the PauTa criterion.

S, the sensitivity of leaf-out advance to warming, is defined as the days of advanced
leaf-out dates per each degree changes in air temperature. For the purpose of narrative
convenience, we shall define the advancement of leaf-out dates as a positive value and
the delay as a negative value, which is equivalent to taking the opposite of the temperature
coefficient as Sr. It can be calculated using the coefficient of temperature in the regression

that relates leaf-out dates to climate variables, as shown in the equation (2):

L=, +(B)xT+ S, xP+ S xR+e (2)

where L stands for leaf-out dates, T, P, and R denote the mean spring temperature,
precipitation, and radiation, respectively. 87, Br, and Br represent their corresponding
regression coefficients, out of which Br signifies St. Bo is the intercept and ¢ is the residual
term. It is worth mentioning that, for the calculation of mean spring values of climate
variables, we employed a partial correlation method to iteratively determine the optimal
length of the spring pre-season. For the fitting of the regression equation, we used the OLS

(ordinary least squares regression) function provided by the Python “statsmodels” package.
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RSWS, the rate of soil warming in spring, is defined as the speed of soil temperature
change over a period of 60 days, with 30 days before and 30 days after leaf-out date. To
calculate RSWS, we first derived daily soil temperature data from hourly data between
2001 and 2021. Next, we employed the Numpy package in Python to fit the daily mean soil
temperature data for the 60-day period in each plot, allowing us to determine the slope (i.e.,
RSWS) as well as the variance, which represents the degree of temperature variability

within each plot.

4. Analysis

We first used partial correlation and sequential regression methods to investigate the
relationship between biodiversity and St across all plots (Fig.1B). The partial correlation
method was implemented using the “pingouin” package in Python. When calculating partial
correlation, we controlled for mean spring temperature, precipitation, radiation and soil
moisture, as well as soil organic carbon, total nitrogen, elevation and evenness, in order to
eliminate the influence of environmental factors. Based on ordinary least squares
regression method, to isolate the confounding effects of environmental covariates, we
devised a sequential regression model. We regressed biodiversity onto environmental
variables to obtain the residuals of biodiversity without the covariances of environmental
variables. Subsequently, the residuals and environmental variables were regressed on St

to estimate the coefficient of residuals ( g, , as described in equation (4)), which
characterizes the relationship between biodiversity and S, . This sequential regression

model is expressed as:
& =Bt 2 X, (3)
ST =ﬂo+ﬁ8+gs+zin:1ﬂixxi+g (4)

where B is biodiversity, ¢, is the residual of biodiversity, X; is environmental

variable i, S

is the regression coefficient of environmental variable i and ¢ is the

residual term.
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To mitigate the potential impact of spatial autocorrelation among variables, we
employed two spatial autoregressive models (SAR) to investigate the relationship between
biodiversity and Sr. Firstly, the spatial lag model, introduced the lagged values of the
dependent variable (i.e., the values of the dependent variable in neighboring locations) as
explanatory variables to capture spatial dependence among adjacent locations. Secondly,
the spatial error model, assumed that the error terms of the model possess a spatial
structure, indicating a certain level of spatial autocorrelation in the error terms across space.

The analysis of these models was conducted using the “spreg” package in Python.

Furthermore, we utilized the Random Forest and eXtreme Gradient Boosting
(XGBoost) machine learning algorithms, along with the SHapley Additive exPlanations
(SHAP) method, to measure the impact and importance of biodiversity on St. Random
Forest and XGBoost are decision tree-based machine learning algorithms that excel in
processing large-scale data and high-dimensional features, effectively handling nonlinear
relationships between features. we implemented the aforementioned methods using
“scikit-learn” and “xgboost” packages in python to explore the relationship between Sr,
biodiversity, and other environmental variables. While the random forest and XGBoost
models offer the Gini coefficient as an importance metric, they fall short in illustrating the
individual contribution of each feature in predicting results on a per-sample basis. To
overcome this limitation, we used the SHAP (SHapley Additive exPlanations) method - a
robust tool for interpreting machine learning models. Rooted in Shapley values from game
theory, this method assesses the contribution of each feature value within various possible
feature combinations. It ensures a fair distribution of the impact of each feature on the
prediction results. By utilizing the “shap” package in Python, we applied the SHAP method
to interpret the trained random forest and XGBoost models. This allowed to obtain the
magnitude and direction (positive or negative) of the impact of biodiversity on St of each
plot (Fig. 1D and Supplementary Fig. 5). Then, we calculated the mean absolute SHAP
values for each feature across all samples as a measure of feature importance, referred to

as SHAP importance, as shown in Fig. 1C.
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In addition, to address possible spatial heterogeneity issues at the global scale, we
employed two approaches to conduct analyses at a smaller local scale. Firstly, we divided
our study area into different regions, including land cover types, biomes, and climatic
regions. We then conducted partial correlation analysis on the data within each region.
Besides, we also conducted point-wise analyses. To do this, we first created a distance
matrix to group the points into clusters based on their proximity to each other. Then, we
used partial correlations to conduct the analysis. To selected the points in each group, we
used the golden section method as the search algorithm and the Akaike information
criterion (AIC) to determine the optimal bandwidth size. The significance was based on the
t statistics using a two-tailed test and to control the false discovery rate, the Benjamini-
Hochberg (BH) method was employed. It is worth noting that due to the sparse of point-
form species evenness data, there are limitations in successfully matching it with point-
form species richness data and significant St data, hindering further analysis. Therefore,
we did not use it in the local analysis (Fig. 1A, E-J). To address this limitation, we introduced
grid-form species richness data, which perfectly matches with evenness data, supporting
all analyses, and the conclusions remain consistent with the original findings (Fig. 1 and

Supplementary Fig. 6).

To investigate the potential mechanisms underlying the impact of biodiversity on Sr,
we used two methods at the point level: partial correlation and structural equation modeling
(SEM). We hypothesized that the impact of biodiversity on St is mediated by its influence
on soil physicochemical properties and tree root growth. To test this hypothesis, we
developed a structural equation model (SEM) incorporating 6 mediating variables: two soil
physical properties (BD and VOCF), two soil nutrient variables (SOC and C/N ratio), RSWS
and root depth. Maximum likelihood estimation was used as the target function while
Sequential Least Squares Programming (SLSQP) optimization method was employed to
estimate the model parameters. Additionally, we calculated various statistics and fit indices
to evaluate the applicability and effectiveness of the model, such as GFI (Goodness of Fit

Index) and RMSEA (Root Mean Square Error of Approximation). Subsequently, we
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selected pathways that surpassed the 0.9 threshold for GFl and exhibited Benjamini-
Hochberg corrected p-values below 0.05, calculating their respective mean values. We
also used partial correlation analysis as a supplement to the SEM. With controlling for
mean annual temperature, precipitation, and solar radiation effects, we conducted partial

correlation analyses on variables at both ends of each SEM path.

For the data of Trendy and Cmip6 models, we followed the same procedure as
described above to calculate St and analyze the impact of biodiversity on it. However, due
to the coarse resolution and lack of time series in these models, temporal and regional
analysis were not possible. To determine the biodiversity effects at each point, we
employed the geographically weighted regression (GWR) method. GWR is a spatially local
regression model that considers spatial heterogeneity. Throughout the analysis, due to the
absence of future biodiversity, soil attribute and elevation data, we assumed they remained
constant and resampled them to match the resolution of the models. As for future forest
age, we conducted year-by-year accumulation to obtain future forest age. Due to the
sparse of point-form species evenness data, challenges arose in aligning them with
coarse-resolution model data and point-form species richness data, hampering further
analysis. Consequently, we didn’t use it in the GWR analysis. We then conducted GWR to
analyze the relationship between the models’ St and factors including biodiversity, mean
spring temperature, precipitation, radiation and soil moisture, as well as soil organic carbon,
soil nitrogen, forest age and elevation. Simultaneously, we resampled the observed data
to the same resolution as each model and calculated the impact of biodiversity on St
(Supplementary Fig. 11). Finally, we compared the biodiversity effect of the observed
results, the Trendy and Cmip6 models, and assessed the accuracy of each model at the

pixel scale (Fig. 3, Extended Data Fig. 1 and Supplementary Fig. 7-9).
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Data availability
All data used in this study are available online, and download links are as follows:
GFBI, https://www.gfbinitiative.org/data;
ERADS, https://doi.org/10.24381/cds.e2161bac;
Trendy, https://blogs.exeter.ac.uk/trendy;
Cmip6, https://esgf-node.linl.gov/projects/cmip6;
Elevation, https://doi.org/10.3133/0fr20111073;
SoilGrids, https://doi.org/10.5194/s0il-7-217-2021;
Evenness, https://doi.org/10.3929/ethz-b-000597256;
Forest age, https://doi.org/10.5194/essd-13-4881-2021;
MCD12Q1v061, https://doi.org/10.5067/MODIS/MCD12Q1.061;
MCD12Q2v061, https://doi.org/10.5067/MODIS/MCD12Q2.061;
Ecoregion2017, https://ecoregions.appspot.com;
Koppen-Geiger maps, https://doi.org/10.1038/s41597-023-02549-6.

Source data are provided with this paper.

Code availability

All the code used for data analysis and figure generation is available on GitHub at
https://github.com/spjace/asc-for-bio-effect-on-lud*3. Furthermore, we packaged this code
into the Python package "phenology" for phenological analysis and computing optimal pre-

season length, released on Python Package Index at https://pypi.org/project/phenology.
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