
This is the **accepted version** of the journal article:

Shen, Pengju; Wang, Xiaoyue Wang; Zohner, Constantin; [et al.]. «Biodiversity buffers the response of spring leaf unfolding to climate warming». *Nature climate change*, 2024. DOI 10.1038/s41558-024-02035-w

This version is available at <https://ddd.uab.cat/record/294943>

under the terms of the IN COPYRIGHT license

1 **Biodiversity buffers the response of spring leaf unfolding to climate
2 warming**

3 **Pengju Shen^{1,2†}, Xiaoyue Wang^{1,2†}, Constantin M. Zohner³, Josep Peñuelas^{4,5}, Yuyu
4 Zhou⁶, Zhiyao Tang⁷, Jianyang Xia⁸, Hua Zheng⁹, Yongshuo Fu¹⁰, Jingjing Liang¹¹,
5 Weiwei Sun^{12*}, Yongguang Zhang^{13*}, Chaoyang Wu^{1,2*}**

6 1. The Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographical
7 Sciences and Natural Resources Research, Chinese Academy of Sciences; Beijing,
8 100101, China.

9 2. University of the Chinese Academy of Sciences; Beijing, 100049, China.

10 3. Department of Environmental Systems Science, Institute of Integrative Biology, ETH
11 Zurich, Zurich, Switzerland.

12 4. CSIC, Global Ecology Unit CREAF-CSIC-UAB, Bellaterra, Barcelona 08193, Catalonia,
13 Spain.

14 5. CREAF, Cerdanyola del Valles, Barcelona 08193, Catalonia, Spain.

15 6. Department of Geological and Atmospheric Sciences, Iowa State University; Ames, IA
16 50011, USA.

17 7. Institute of Ecology, College of Urban and Environmental Science and Key Laboratory
18 for Earth Surface Processes of Ministry of Education, Peking University, Beijing,
19 100871, China.

20 8. Zhejiang Tiantong Forest Ecosystem National Observation and Research Station,
21 Institute of Eco-Chongming, School of Ecological and Environmental Sciences, East
22 China Normal University, Shanghai, 200241, China.

23 9. State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-
24 Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.

25 10. College of Water Sciences, Beijing Normal University, Beijing, 100875, China.

26 11. Forest Advanced computing and Artificial Intelligence Laboratory (FACAI), Department
27 of Forestry and Natural resources, Purdue University, West Lafayette, IN, USA.

28 12. Department of Geography and Spatial Information Techniques, Ningbo University,
29 Ningbo 315211, China.

30 13. International Institute for Earth System Sciences, Jiangsu Center for Collaborative
31 Innovation in Geographical Information Resource Development and Application,
32 Nanjing University, Nanjing, Jiangsu, China.

34 *Corresponding authors: C Wu (wucy@igsnrr.ac.cn), Y Zhang

35 (yongguang_zhang@nju.edu.cn), W Sun (sunweiwei@nbu.edu.cn), † Equal contribution.

36 **Abstract:** Understanding the sensitivity of spring leaf-out dates to temperature (S_T) is
37 integral to predicting phenological responses to climate warming and the consequences
38 for global biogeochemical cycles. While variation in S_T has been shown to be influenced
39 by local climate adaptations, the impact of biodiversity remains unknown. Here, we
40 combine 393,139 forest inventory plots with satellite-derived S_T across the Northern
41 Hemisphere during 2001-2022 to show that biodiversity greatly affects spatial variation in
42 S_T and even surpasses the importance of climate variables. High tree diversity significantly
43 weakened S_T , possibly driven by changes in root depth and soil processes. We show that
44 current Earth System Models failed to reproduce the observed negative correlation
45 between S_T and biodiversity, with important implications for phenological responses under
46 future pathways. Our results highlight the need to incorporate the buffering effects of
47 biodiversity to better understand the impact of climate warming on spring leaf unfolding
48 and carbon uptake.

49 Plant phenology is one of the most sensitive indicators of climate change, and greatly
50 affects interannual variations in carbon uptake of terrestrial ecosystems^{1,2}. Over recent
51 decades, climate warming has led to strong advances in spring leaf-out dates^{3,4}. The
52 responsiveness of spring phenology to climate change is typically quantified via measuring
53 the temperature sensitivity of leaf-out (S_T , leaf-out advance in days per each degree air
54 temperature warming). S_T is the optimal strategy evolved by plants under the selection
55 pressure of historical climate information in the local environment, and its variations reflect
56 adaptive adjustments to climate change for optimizing their life cycles^{5,6}. Due to its role in
57 determining the extent of phenological changes in response to future climate warming, S_T
58 has attracted extensive attention in observational records and warming experiments^{5,7-9}.
59 Understanding temporal and spatial variation in S_T is critical to better comprehend
60 phenological feedbacks to climate change, such as effects on carbon sequestration⁷,
61 surface albedo and the energy budget^{7,10}. Furthermore, it is of paramount importance for
62 evaluating and simulating the dynamics of ecosystems in climate change research⁸, as
63 well as for enhancing global dynamic vegetation models, global climate models, and land
64 surface models^{6,11}. Declines in S_T have been observed in several tree species over recent
65 decades. Yet, although decreased winter chilling has been suggested as a possible factor,
66 the underlying causes remain poorly understood⁹. While previous studies have mostly
67 focused on the climatic drivers of S_T , we still lack an understanding of the responses of S_T
68 to changes in the biodiversity of animals, plants, and microorganisms and the communities
69 they form¹².

70

71 Biodiversity plays a crucial role in regulating the growth and development of vegetation,
72 serving as a key factor in stabilizing and adapting ecosystems to climate change¹³. At a
73 large geographical scale, plant phenology responds to climate and environmental factors,
74 influencing plant growth and resilience, while also governing crucial ecosystem functions
75 like pollination, herbivory, and carbon uptake¹⁴. Consequently, warming-induced changes
76 in spring leaf-out may lead to asynchronous interactions among mutualistic partners within
77 communities, affecting food web dynamics and the functioning and stability of

78 ecosystems^{2,3,15,16}. In particular, high biodiversity can influence the phenological plasticity
79 of individual plants, enhance the adaptability of plants to climatic shifts, diminish the
80 likelihood of phenological discordance, and affect the species assemblage and functional
81 heterogeneity of plant communities, thereby mitigating the effects of climate change on
82 ecosystem performance^{17,18}. For example, different genotypes or genera of plants can
83 adapt to variations in temperature and moisture by altering gene expression, hormone
84 levels, leaf area, and other parameters that affect phenology¹⁹. Different species have
85 different responses to cope with environmental fluctuations, and higher temporal
86 complementarity and asynchrony among species can augment their resistance to
87 drought²⁰. Regions with high biodiversity thus typically have stabler ecosystem responses
88 to climate change, whereas the loss of diversity may aggravate plant phenological shifts
89 caused by climate change^{13,16,17}. In this study, we therefore aimed to test whether
90 biodiversity buffers the sensitivity of trees to climate warming and how interactions between
91 biodiversity and climate change affect Northern Hemisphere-wide phenological variation.

92
93 We compiled species richness data from the Global Forest Biodiversity Initiative (GFBi)
94 in the middle and high latitudes of the Northern Hemisphere, incorporating 393,139 unique
95 forest inventory plots that span various forest types and species, to characterize
96 biodiversity (Supplementary Fig. 1). Satellite-derived leaf-out data from 2001-2022 came
97 from the Moderate-resolution Imaging Spectroradiometer (MODIS). We also gathered
98 spatially-explicit climate and soil data from 2000-2022, as well as gross primary production
99 (GPP) data from 15 Trendy models for 2001-2021 and 13 Cmip6 models for 2015-2100
100 (Supplementary Table 1-3). For each forest plot, we calculated the optimal spring pre-
101 season period using partial correlation analysis and calculated S_T using ordinary least
102 squares regression (Supplementary Fig. 2). We then used partial correlation, sequential
103 regression model, spatial autoregressive model (SAR), structural equation modeling
104 (SEM), and machine-learning methods to determine the influence of biodiversity on S_T and
105 its underlying mechanisms at regional and global levels (see Methods).

107 **Results**

108 The partial correlation analysis showed a predominantly negative correlation between
109 biodiversity and S_T at the local scale after removing the effects of spring temperature,
110 radiation, precipitation, soil moisture, soil organic C (SOC), soil nitrogen (N), forest age
111 and elevation (Fig. 1A), with 60.5% of the correlations being negative. 8.5% of the local
112 correlations were significantly negative ($P < 0.05$), while significant positive correlations
113 were only found for 3.9% of the correlations. The partial correlation analysis showed
114 consistent results at the levels of plant functional types (Fig. 1E, F), forest biomes (Fig. 1G,
115 H), and Köppen-Geiger climatic zones (Fig. 1I, J). For example, negative correlations were
116 found among all eleven plant functional types, with nine being significant. Similarly, four of
117 the eight biomes showed a negative correlation, and all four correlations were significant,
118 with only deserts and xeric shrublands (DXS) and Tundra (TUN) showing a non-significant
119 positive correlation. Furthermore, Biodiversity and S_T were negatively correlated in 8 of 11
120 climatic zones (five were significant) and exhibited significant positive correlations in the
121 other two zones (DSB (Cold, dry summer, warm summer) and DSC (Cold, dry summer,
122 cold summer)). Furthermore, a negative correlation between biodiversity and S_T is
123 observed among different plant functional types, as well as across various biomes and
124 climate zones (Supplementary Fig. 3). In the global analysis covering all plots, we
125 controlled for evenness variables, in addition to the mentioned environmental factors. And
126 consistent results were obtained from partial correlation analysis, sequential regression
127 model, as well as spatial lag and spatial error models, indicating an overall negative
128 biodiversity- S_T effect (Fig. 1B and Supplementary Fig. 4).

129
130 We then analyzed the relative importance of biodiversity in determining the changes
131 in S_T using machine learning (Random Forest and eXtreme Gradient Boosting (XGBoost)
132 models). We found that biodiversity was a more important driver of S_T than were spring
133 temperature, precipitation, solar radiation, soil moisture, SOC, N, forest age, elevation and
134 evenness (Fig. 1C-D and Supplementary Fig. 5). Additionally, the SHapley Additive
135 exPlanations (SHAP) values of Random Forest and XGBoost models revealed that plots

136 with higher biodiversity levels often exhibited a negative relationship between biodiversity
137 and S_T , while regions with lower biodiversity levels might have a positive biodiversity- S_T
138 relationship. Overall, a predominance of negative correlations was observed, aligning with
139 the results from partial correlation and sequential regression analyses. Both feature
140 importance metrics (GINI importance and SHAP importance), along with the absolute
141 coefficients of the partial correlation and sequential regression, consistently indicate that
142 biodiversity is the most important driver of S_T .

143

144 We also used grid-form species richness data to ensure spatial consistency with the
145 scale of climate and other datasets, providing a better match with point-form species
146 evenness data. We replicated the same analysis, controlling for the influences of spring
147 temperature, precipitation, solar radiation, soil moisture, SOC, N, forest age, elevation and
148 evenness in all analyses. The results remained consistent with those obtained from plot
149 datasets, revealing a negative effect of biodiversity on S_T (Supplementary Fig. 6).

150

151 To test the possible mechanisms through which biodiversity may affect S_T , we applied
152 Structural equation modeling (SEM) and partial correlation analysis (Fig. 2). We calculated
153 the direct effects of biodiversity on S_T within the SEM and the indirect effects through
154 different pathways. The results indicate a strong direct effect of biodiversity. In addition,
155 root depth, soil organic carbon concentration, the soil carbon-to-nitrogen (C/N) ratio, and
156 soil physical properties (including bulk density and volumetric fraction of coarse fragments
157 (VOCF)) may be potential intermediaries between biodiversity and phenological
158 responsiveness. For example, biodiversity and the C/N ratio were mostly positively
159 correlated, with 11.7% and 4.1% of correlations being significantly positive and negative,
160 respectively. The correlation between the C/N ratio and root depth was also positive, with
161 34.2% of the correlations significantly positive and only 6.8% of the correlations
162 significantly negative. In comparison, root depth and S_T were generally negatively
163 correlated. Similarly, a higher SOC concentration was associated with increased
164 biodiversity, but SOC concentration and S_T were negatively correlated. Soil physical

165 properties may also contribute to the negative relationship between biodiversity and S_T .
166 Biodiversity and bulk density, bulk density and the rate of soil warming in spring (RSWS),
167 and RSWS and S_T were each consistently negatively correlated, with the percentages of
168 significant positive / negative correlations being 5.8% / 26.1%, 28.7% / 46.0%, and 24.7%
169 / 61.4%, respectively. In contrast to bulk density, a higher VOCF was associated with
170 increased biodiversity, and biodiversity increased as S_T decreased, because VOCF and S_T
171 were negatively correlated. Overall, both the direct and the indirect pathways support the
172 negative correlation between biodiversity and S_T .

173
174 We further tested whether state-of-the-art ecosystem models (15 Trendy models with
175 results over 2001-2021 and 13 Cmip6 models over 2016-2100) can reproduce the negative
176 correlation between S_T and biodiversity (Fig. 3). We found that most Trendy models do not
177 capture the observed relationships, with 13 out of 15 models simulating predominantly
178 positive correlations (positive correlations exceeding 60%) and only one of the models
179 reproducing the extent of observed negative correlations (negative correlations exceeding
180 60%, CABLE-POP model). The spatial variation in the correlations simulated by the Trendy
181 models is shown in Fig. 3 A1-A15. The Cmip6 models also failed to represent the negative
182 correlation between S_T and biodiversity (Fig. 3B-D). We found that only 4 (out of 13) models
183 (ACCESS-ESM1-5, BCC-CSM2-MR, EC-Earth3-Veg, TaiESM1) had negative S_T -
184 biodiversity relationship exceeding 60% under ssp126. The number of correct models
185 increased to 5-7 for ssp245 and ssp585. Spatial distributions of Cmip6 models were
186 provided in Supplementary Fig. 7-9. We also tested for spatial consistency between the
187 observations and simulations and found that most models did not match the observed
188 biodiversity effects closely (Extended Data Fig. 1).

189

190 Discussion

191 Our findings demonstrate a widespread buffering effect of biodiversity on the
192 sensitivity of spring leaf-out dates to climate warming, with weaker responses of spring
193 leaf-out to warming in forests with multiple species. Our models further showed that

194 biodiversity was more important than climate in driving spatial variation in S_T (Fig. 1B-D
195 and Supplementary Fig. 5), highlighting the importance of considering biodiversity when
196 predicting the consequences of climate change on spring phenology and ecosystem
197 productivity. We further showed that current ecosystem models could not reproduce the
198 observed buffering effect of biodiversity on spring phenological sensitivity. Accounting for
199 spatial and temporal variation in species richness will thus be of great importance to better
200 understand the extent of shifts in foliar phenology under climate change as well as the
201 consequences for ecosystem functioning.

202

203 We found that biodiversity has a strong direct impact on S_T in our study. We observed
204 that in forests with higher biodiversity, the sensitivity of tree leaf unfolding to climate
205 warming is lower. This suggests that in ecosystems with greater biodiversity, the timing of
206 spring leaf unfolding remains more stable in the face of warming, consistent with recent
207 research^{16,17,21}. This direct effect can be partly attributed to the presence of a greater
208 variety of species and individuals in biodiverse forests, where different tree species may
209 have distinct growth seasons and leaf unfolding times. This seasonal asynchrony may, to
210 some extent, slow down the overall response of the ecosystem to rising temperatures^{14,22}.
211 Consequently, the entire ecosystem exhibits lower average temperature sensitivity.
212 Conversely, in biomes or climate zones with relatively lower biodiversity, often dominated
213 by a few key species, the response is more uniform, and leaf unfolding is more directly and
214 significantly influenced by temperature increase (Supplementary Fig. 3). In such cases,
215 biodiversity may not be able to exert a buffering effect, as observed in biomes like Deserts
216 and Xeric Shrublands (DXS) and Tundra (TUN), as well as cold and dry climate zones
217 (DSC (Cold, dry summer, cold summer) and DSB (Cold, dry summer, warm summer)) (Fig.
218 1G-J).

219

220 While our analyses suggest a strong direct impact of biodiversity on S_T , they also
221 suggest that biogeophysical and biogeochemical factors may contribute to the decrease in
222 S_T with increasing biodiversity. We found that high biodiversity correlates with deeper roots,

which may facilitate access to soil nutrients and moisture during spring²³. The enhanced water supply may in turn reduce trees' sensitivity to temperature early in the growing season, buffering against warming-induced shifts in foliar phenology¹³ (Extended Data Fig. 2). In agreement with this, experiments and observations have shown reduced leaf-out sensitivity to warming under drought conditions^{1,9}. Our results also agree with studies reporting an increased importance of soil moisture in determining the distribution of vegetation and SOC in cold regions where warming is more pronounced²⁴.

Our findings also support that higher biodiversity enhances the SOC concentrations in diverse forests by fixing more C^{13,18,25}. This may be due to improved soil physicochemical properties, such as VOCF and pH (Extended Data Fig. 3), which in turn accelerate the activities of both plants and soil microorganisms^{12,25,26}. Enhanced soil fertility is advantageous for plants because it promotes plant growth and enables roots to anchor more deeply, facilitating more effective adaptation to temperature changes¹³. Increasing soil fertility can in turn increase the diversity of plants and soil microbes, increasing the stability and resilience of ecosystems. We also found that higher biodiversity increased the C/N ratio, which may limit the availability of N for plants and cause them to allocate more C to root growth to enhance the uptake of water and nutrients while reducing foliar growth to save energy for photosynthesis and transpiration²⁷.

The higher biodiversity may contribute to improvements in soil biogeophysical properties, including enhanced soil aeration, thermal conductivity, water retention, which may be associated with increased soil microbial activity and plant root growth^{23,26}. The improvement of soil physical properties, especially water retention and buffering capacity, has been demonstrated to enhance the resistance of plants to stress, thus alleviating the response of plants to warming and consequently improving phenological stability^{23,25}. Our results also showed that S_T becomes less dependent on warming for wetter conditions induced by higher biodiversity (Extended Data Fig. 2). Better soil aeration and thermal conductivity may increase RSWS and its variability, causing a higher frost risk. To avoid

such risks, plants may therefore increasingly rely on other signals, such as photoperiod and higher chilling requirements, leading to declines in S_T ^{5,28}. Enhancement of soil physical properties affects the growth of plant roots and the retention of SOC and N^{23,25}, and increased rooting depth and supply with soil nutrients is likely to drive phenological stability and reduce S_T (Fig. 2).

The predictive models of vegetation leaf phenology are a crucial component of land surface models and dynamic global vegetation models, as well as global climate models that utilize soil–vegetation–atmosphere transfer schemes^{6,11}. Most vegetation models and climate models consider the impact of vegetation phenology on the interannual variations and trends of land carbon-water cycles and land-atmosphere exchanges, but they still pose challenges in terms of phenology model accuracy²⁹. Due to the fact that S_T determines the extent of phenological responses to future climate warming, it is crucial for phenological simulations to consider this effect^{5,7–9}. Without considering the buffering effects of biodiversity on S_T , inaccuracies in phenological simulations may occur, thereby affecting the characterization of ecosystem functions. This may be the reason why many Cmip6 and Trendy models have failed to reproduce the negative biodiversity- S_T correlations (Fig. 3).

In summary, our findings show that the sensitivity of spring leaf-out to warming decreases in more diverse forests, suggesting an important buffering effect of biodiversity on the phenological sensitivity of trees to climate change. The biodiversity effects on phenological sensitivity may be of direct and indirect nature. In diverse forests, the high diversity in temperature sensitivity among species and individuals may lead to a lower average temperature sensitivity than in less diverse forest where single species dominate the observed community sensitivity. In addition, the biodiversity effects could be mediated by soil physicochemical properties, which may stabilize phenology by enhancing nutrient supply, stress tolerance, and productivity^{17,18,20}. Higher productivity in diverse forests may also lead to changes in ecosystem function due to shifts in species composition and community succession, water balance, and climatic feedbacks³⁰. The inability of vegetation

models to reproduce the observed buffering effect of tree diversity on phenological sensitivity highlights the need to represent biodiversity if we are to accurately predict ecosystem responses to climate change. Our findings thus underscore the fundamental importance of biodiversity in our understanding of phenological changes and the maintenance of ecosystem functioning under climate change.

Acknowledgements: This work was funded by the National Natural Science Foundation of China (42125101, 42271034). X.W. was funded by the Youth Innovation Promotion Association of Chinese Academy of Sciences (2022051). Y.Z was funded by the National Natural Science Foundation of China (42125105). J.P. was funded by the TED2021-132627B-I00 grant funded by the Spanish MCIN, AEI/10.13039/501100011033 and by the European Union NextGenerationEU/PRTR, the Fundación Ramón Areces project CIVP20A6621 and the Catalan government grant SGR221-1333. C.M.Z. was funded by SNF Ambizione grant PZ00P3_193646. J.L. was supported by Science-i, of which the cyberinfrastructure was partially sponsored by the National Science Foundation of the United States (award# 2311762).

Author contributions: C.W. designed the research. C.W. and P.S. wrote the first draft of the manuscript. P.S. and X.W. performed the data analysis. All authors assessed the research analyses and contributed to the writing of the manuscript.

Competing interests: The authors declare no competing interest.

Figure 1 | Negative correlations between biodiversity and the sensitivity of spring leaf unfolding to warming (S_T). **A** and **E-J** represent the results of the partial correlation analysis for each plot (**A**), plant functional type (**E, F**), biome (**G, H**), and climate (**I, J**) (the full name of the acronyms in **F, H** and **J** can be found in Supplementary Table 4-6). **B**, the coefficients of the global partial correlation. **C**, the importance of each feature based on GINI coefficients and the mean absolute value of SHapley Additive exPlanations (SHAP).

310 **D**, SHAP values based on the global random forest model. P, positive effect; and N,
311 negative effect, followed by overall and significant proportions (in parentheses) on the right
312 side. The dotted gray lines in **F**, **H**, and **J** mark the transition from significant to non-
313 significant results at $P<0.05$. The significance was based on the t statistics using a two-
314 tailed test. In order to control the false discovery rate, the Benjamini-Hochberg (BH)
315 method was employed in **A**, **F**, **H**, **J**.

316

317 **Figure 2 | Mechanisms underlying the negative correlation between biodiversity and**
318 **the sensitivity of spring leaf unfolding to warming (S_T)**. The figure shows the results of
319 the partial correlation analysis and structural equation modeling (SEM). The coefficients on
320 the path of SEM are standardized, and the circular map on the path represents the spatial
321 distributions of the partial correlation results. The bar chart represents the direct and
322 indirect effects. NS, not significant; P, positive effect; N, negative effect; VOCF, volumetric
323 fraction of coarse fragments; BD, soil bulk density; RSWS, rate of soil warming in spring;
324 SOC, soil organic carbon; and C/N ratio, the ratio of soil concentrations of carbon to total
325 nitrogen. The significance was based on the t statistics using a two-tailed test and to control
326 the false discovery rate, the Benjamini-Hochberg (BH) method was employed in all
327 analysis.

328

329 **Figure 3 | Evaluation of model performances on the sensitivity of spring leaf**
330 **unfolding to warming (S_T) with biodiversity**. **A**, **B**, **C** and **D** represent results for 15
331 Trendy models and 13 Earth system models (Cmip6) under different shared socioeconomic
332 pathways (ssp126, ssp245 and ssp585) (See Supplementary Table 2, 3 for model details).
333 The “Observation” bar in **A** is derived from the analysis results of 11 sets of resampled data
334 (see Supplementary Fig 11), presented as mean values +/- Standard Deviation (SD). **A1-**
335 **A15** represent spatial distributions results for the 15 Trendy models, respectively. The
336 numbers in these figures are percentages of significant positive correlations with respect
337 to all significant correlations. The significance level was established at $P<0.05$, determined
338 by the t statistics in a two-tailed test.

339 **References**

- 340 1. Gu, H. *et al.* Warming-induced increase in carbon uptake is linked to earlier spring
341 phenology in temperate and boreal forests. *Nat. Commun.* **13**, 3698 (2022).
- 342 2. Peñuelas, J., Rutishauser, T. & Filella, I. Phenology Feedbacks on Climate Change.
343 *Science* **324**, 887–888 (2009).
- 344 3. Peñuelas, J. & Filella, I. Responses to a Warming World. *Science* **294**, 793–795 (2001).
- 345 4. Menzel, A. *et al.* European phenological response to climate change matches the
346 warming pattern. *Glob. Change Biol.* **12**, 1969–1976 (2006).
- 347 5. Wang, T. *et al.* The influence of local spring temperature variance on temperature
348 sensitivity of spring phenology. *Glob. Change Biol.* **20**, 1473–1480 (2014).
- 349 6. Bennie, J., Kubin, E., Wiltshire, A., Huntley, B. & Baxter, R. Predicting spatial and
350 temporal patterns of bud-burst and spring frost risk in north-west Europe: the
351 implications of local adaptation to climate. *Glob. Change Biol.* **16**, 1503–1514 (2010).
- 352 7. Gao, M. *et al.* Three - dimensional change in temperature sensitivity of northern
353 vegetation phenology. *Glob. Change Biol.* **26**, 5189–5201 (2020).
- 354 8. Shen, M. *et al.* Earlier-Season Vegetation Has Greater Temperature Sensitivity of
355 Spring Phenology in Northern Hemisphere. *PLoS ONE* **9**, e88178 (2014).
- 356 9. Fu, Y. H. *et al.* Declining global warming effects on the phenology of spring leaf
357 unfolding. *Nature* **526**, 104–107 (2015).
- 358 10. Maina, F. Z., Kumar, S. V. & Gangodagamage, C. Irrigation and warming drive the
359 decreases in surface albedo over High Mountain Asia. *Sci. Rep.* **12**, 16163 (2022).
- 360 11. Picard, G. *et al.* Bud-burst modelling in Siberia and its impact on quantifying the carbon
361 budget. *Glob. Change Biol.* **11**, 2164–2176 (2005).
- 362 12. Furey, G. N. & Tilman, D. Plant biodiversity and the regeneration of soil fertility. *Proc.*
363 *Natl. Acad. Sci.* **118**, e2111321118 (2021).
- 364 13. Mori, A. S. *et al.* Biodiversity–productivity relationships are key to nature-based climate
365 solutions. *Nat. Clim. Change* **11**, 543–550 (2021).
- 366 14. Rheault, G., Lévesque, E. & Proulx, R. Diversity of plant assemblages dampens the
367 variability of the growing season phenology in wetland landscapes. *BMC Ecol. Evol.*

- 368 21, 91 (2021).

369 15. Yin, R. *et al.* Experimental warming causes mismatches in alpine plant-microbe-fauna
370 phenology. *Nat. Commun.* **14**, 2159 (2023).

371 16. Wolf, A. A., Zavaleta, E. S. & Selmants, P. C. Flowering phenology shifts in response
372 to biodiversity loss. *Proc. Natl. Acad. Sci.* **114**, 3463–3468 (2017).

373 17. Dronova, I., Taddeo, S. & Harris, K. Plant diversity reduces satellite-observed
374 phenological variability in wetlands at a national scale. *Sci. Adv.* **8**, eabl8214 (2022).

375 18. Chen, X. *et al.* Tree diversity increases decadal forest soil carbon and nitrogen accrual.
376 *Nature* 1–8 (2023) doi:10.1038/s41586-023-05941-9.

377 19. Zhang, S., Dai, J. & Ge, Q. Responses of Autumn Phenology to Climate Change and
378 the Correlations of Plant Hormone Regulation. *Sci. Rep.* **10**, 9039 (2020).

379 20. Liu, D., Wang, T., Peñuelas, J. & Piao, S. Drought resistance enhanced by tree species
380 diversity in global forests. *Nat. Geosci.* **15**, 800–804 (2022).

381 21. Oliveira, B. F., Moore, F. C. & Dong, X. Biodiversity mediates ecosystem sensitivity to
382 climate variability. *Commun. Biol.* **5**, 1–9 (2022).

383 22. García-Palacios, P., Gross, N., Gaitán, J. & Maestre, F. T. Climate mediates the
384 biodiversity–ecosystem stability relationship globally. *Proc. Natl. Acad. Sci.* **115**, 8400–
385 8405 (2018).

386 23. Gould, I. J., Quinton, J. N., Weigelt, A., De Deyn, G. B. & Bardgett, R. D. Plant diversity
387 and root traits benefit physical properties key to soil function in grasslands. *Ecol. Lett.*
388 **19**, 1140–1149 (2016).

389 24. Ding, J. *et al.* Decadal soil carbon accumulation across Tibetan permafrost regions.
390 *Nat. Geosci.* **10**, 420–424 (2017).

391 25. Chen, S. *et al.* Plant diversity enhances productivity and soil carbon storage. *Proc. Natl.*
392 *Acad. Sci.* **115**, 4027–4032 (2018).

393 26. Beugnon, R. *et al.* Tree diversity and soil chemical properties drive the linkages
394 between soil microbial community and ecosystem functioning. *ISME Commun.* **1**, 1–
395 11 (2021).

396 27. Zhang, J. *et al.* Variation and evolution of C:N ratio among different organs enable

- 397 plants to adapt to N-limited environments. *Glob. Change Biol.* **26**, 2534–2543 (2020).
- 398 28. Wang, C., Cao, R., Chen, J., Rao, Y. & Tang, Y. Temperature sensitivity of spring
- 399 vegetation phenology correlates to within-spring warming speed over the Northern
- 400 Hemisphere. *Ecol. Indic.* **50**, 62–68 (2015).
- 401 29. Xin, Q. *et al.* A Semiprognostic Phenology Model for Simulating Multidecadal Dynamics
- 402 of Global Vegetation Leaf Area Index. *J. Adv. Model. Earth Syst.* **12**, e2019MS001935
- 403 (2020).
- 404 30. Shen, M. *et al.* Plant phenology changes and drivers on the Qinghai–Tibetan Plateau.
- 405 *Nat. Rev. Earth Environ.* **3**, 633–651 (2022).

406 **Methods**

407 **1. Biodiversity, climate and ancillary data**

408 We focused our research on areas in the middle and high latitudes of the Northern
409 Hemisphere ($> 30^{\circ}\text{N}$), where vegetation dynamics exhibit distinct seasonal variations. We
410 extracted species richness data covering most of the forests in our study area from the
411 GFBI ground observation dataset³¹ to characterize biodiversity, which compiles extensive
412 monitoring data from 777,126 permanent plots across 44 countries and 13 ecoregions. The
413 GFBI dataset encompasses diverse forest sources and successional stages, and an
414 excess of 30 million trees belonging to over 8,737 species were measured twice or more,
415 with the aim of unveiling global forest biodiversity patterns.

416

417 Due to the large number of duplicate coordinates in the GFBI dataset, we used a
418 window size of 0.01 degrees, the minimum scale of GFBI coordinate records, to extract the
419 mean value within each window as its corresponding value. In the end, we determined
420 393,139 unique biodiversity records, encompassing 1-190 tree species. Among these plots,
421 75% were measured at two or more time points, with a minimum time interval between
422 measurements of two years or more (global average time interval is 9 years), while 25%
423 were measured only once. Due to the majority of plots being measured multiple times, the
424 impact of sampling frequency on the results is likely minimal²⁰. Notably, deciduous
425 broadleaf forests and woody savannas exhibit the highest species richness per plot scale,
426 averaging 6-7 species per plot, while open shrublands, barren, and grasslands only contain
427 2-3 tree species (Supplementary Fig. 1). We also used grid-form species richness data,
428 which was simulated by the original authors of the GFBI dataset using machine learning
429 techniques, ensuring spatial consistency with the structure of climate and other datasets.

430

431 The leaf-out dates data was determined from Moderate Resolution Imaging
432 Spectroradiometer (MODIS) Land Cover Dynamics (MCD12Q2) dataset, which provides
433 global land surface phenology metrics annually spanning from 2001 to 2022 with a spatial

434 resolution of 500 meters³². These metrics are derived from time series data of the two-
435 band Enhanced Vegetation Index (EVI2) computed from MODIS Nadir Bidirectional
436 Reflectance Distribution Function (BRDF)-Adjusted Reflectance (NBAR). One of these
437 metrics, leaf-out dates, is defined as the date when the EVI2 first exceeds 15% of the
438 segment EVI2 amplitude.

439

440 The climate data was obtained from monthly data of ERA5-Land dataset, which is the
441 fifth-generation atmospheric reanalysis produced by the European Centre for Medium-
442 Range Weather Forecasts³³. It has been widely utilized for evaluating the influence of
443 meteorological variables on the Earth's global climate. Specifically, we extracted
444 temperature, total precipitation, solar radiation, and soil moisture data from 2000 to 2022,
445 with a spatial resolution of 0.1 degrees and a temporal resolution of one month from ERA5-
446 Land. Furthermore, we collected hourly soil temperature data and calculated the daily
447 mean for later analysis. We computed the multi-year average climate variables and spring
448 average climate variables for each plot. Regarding spring average climate variables, we
449 identified the optimal spring pre-season period through partial correlation analysis. We
450 initiated the iteration from the month of the multi-year average leaf-out dates, moving
451 forward continuously. In each iteration, we calculated the average variables of the current
452 pre-season period and computed the correlation coefficient. We continued the iteration
453 until the sixth month, selecting the optimal pre-season period with the maximum partial
454 correlation coefficient.

455

456 The soil attribute data was derived from SoilGrids, a global soil dataset product
457 resulting from international collaboration generated by the ISRIC - World Soil Information
458 Center, with a resolution of 250 meters³⁴. SoilGrids implements advanced machine
459 learning techniques, combining global soil profile data and environmental covariate data to
460 predict and simulate the spatial distribution of soil properties at six standard depths globally.
461 We utilized the latest version of SoilGrids, version 2.0, to extract soil surface organic carbon
462 content, soil total nitrogen content, and subsequently calculated the soil surface carbon-

463 to-nitrogen ratio.

464

465 The GPP (Gross Primary Productivity) data was originated from Trendy and Cmip6
466 model, utilized for the simulation of leaf-out dates across historical and future periods. The
467 Trendy model ensemble encompassed many models reflecting estimates of terrestrial
468 vegetation photosynthesis and was extensively employed to delve into diverse facets of
469 the global carbon cycle³⁵. We curated GPP data spanning from 2001 to 2021,
470 encompassing 15 models (Supplementary Table 2). CMIP6, the Coupled Model
471 Intercomparison Project phase 6, furnishes output data for an array of climate variables
472 under different experimental designs and emission scenarios, encompassing historical and
473 forthcoming epochs³⁶. We gathered GPP, temperature, precipitation, radiation, and soil
474 moisture data from 2015 to 2100 across each of 13 models. Each model encompasses
475 three shared socioeconomic pathways: ssp126, ssp245, and ssp585 (Supplementary
476 Table 3).

477

478 Other auxiliary data includes biomes, vegetation types, climatic regions, forest age,
479 elevation and species evenness. Biomes data is derived from the Resolve Ecoregions
480 2017, which serves as a biogeographic regionalization under an Earth's biomes framework,
481 consisting of 14 terrestrial biomes made up of 846 ecoregions, defining biogeographic
482 assemblages and ecological habitats³⁷ (Supplementary Table 4). Vegetation types data is
483 obtained from the first layer of MCD12Q1 Version 6.1 dataset and represents land cover
484 types in the International Geosphere-Biosphere Programme classification³⁸. And thirteen
485 different types of vegetation are present in the study area (Supplementary Table 5).
486 Climatic regions data is procured from the widely utilized Köppen-Geiger climate
487 classification system, which divides the global climate zones into five primary groups based
488 on local vegetation types: tropical, arid, temperate, continental, and polar³⁹. Further
489 subdivisions of each group are based on temperature or aridity level (Supplementary Table
490 6). The forest age data is sourced from the Max Planck Institute for Biogeochemistry in
491 Germany. It provides global forest age estimations at a 1-kilometer resolution, and this data

492 is predicted using machine learning techniques based on forest inventories, biomass
493 measurements, and climate data. Elevation data is obtained from the Global Multi-
494 resolution Terrain Elevation Data 2010 (GMTED2010), provided by the U.S. Geological
495 Survey Earth Resources Observation and Science Center. We selected the version with a
496 30-arc-second spatial resolution. We used Hill's evenness as an indicator of species
497 evenness, which can be roughly interpreted as the proportion of species dominating the
498 community in terms of abundance concerning richness. This data is sourced from
499 reference⁴⁰, and evenness values range from close to zero, indicating domination by a few
500 species, to one, indicating an equal number of individuals for all species in the community.

501

502 **2. Simulating leaf-out dates utilizing GPP data of Trendy and Cmip6 models**

503 We employ GPP data from Cmip6 and Trendy models to simulate leaf-out dates. GPP
504 exhibits a close correlation with factors such as vegetation coverage, Leaf Area Index (LAI),
505 temperature, and precipitation - all pivotal elements influencing vegetative leaf-out dates.
506 Therefore, the annual fluctuation curve of GPP effectively mirrors the phenological cycles
507 of vegetation⁴¹. Drawing upon this theoretical foundation, we utilized cubic spline
508 interpolation for temporal sequence interpolation to enhance data continuity, considering
509 temporal resolution of most GPP datasets is monthly. Subsequently, we opted for the
510 "phenofit" function package⁴² within the R programming language for simulation. To ensure
511 both efficiency and quality in simulating leaf-out dates, we employed the "Elmore" curve
512 fitting method³⁶. The fitting function is represented by equation (1) as follows:

$$513 \quad f(t) = mn + (mx - m_7 t) \times \left(\frac{1}{1 + e^{-rsp(t-sos)}} - \frac{1}{1 + e^{-rau(t-eos)}} \right) \quad (1)$$

514 Where t is the corresponding date of time series GPP, mn and mx are the minimum and
515 maximum value of time series GPP; sos and eos , respectively, denote the start of the
516 growing season and end of the growing season; rsp and rau are, respectively, the rate of
517 spring Greenup and autumn senescence, m_7 is the summer greendown parameter.
518 Subsequently, based on the fitted curve, we have utilized three different methods to extract
519 leaf-out dates: the threshold method, derivative method, and inflection method. Notably,

520 through meticulous comparisons, the extracted leaf-out dates exhibited harmonious
521 interannual variations across all three methods (Supplementary Fig. 10). To maintain
522 congruity with MCD12Q2, we chose to showcase the 15% threshold method as the primary
523 approach in the main text.

524

525 **3. Calculating S_T , RSWS**

526 We first aggregated data from multiple sources using the coordinates from biodiversity
527 data. For climate data with coarser resolutions, we directly extracted data from the
528 corresponding locations. For categorical datasets like biomes, we used the mode within
529 the corresponding window size as the representative value, while for continuous datasets
530 like soil properties, we used their mean values within the grid. Subsequently, we
531 standardized all data using the Z-score method to convert metrics of varying units into a
532 uniform scale, and excluded outliers in accordance with the PauTa criterion.

533

534 S_T , the sensitivity of leaf-out advance to warming, is defined as the days of advanced
535 leaf-out dates per each degree changes in air temperature. For the purpose of narrative
536 convenience, we shall define the advancement of leaf-out dates as a positive value and
537 the delay as a negative value, which is equivalent to taking the opposite of the temperature
538 coefficient as S_T . It can be calculated using the coefficient of temperature in the regression
539 that relates leaf-out dates to climate variables, as shown in the equation (2):

$$540 \quad L = \beta_0 + (-\beta_T) \times T + \beta_P \times P + \beta_R \times R + \varepsilon \quad (2)$$

541 where L stands for leaf-out dates, T , P , and R denote the mean spring temperature,
542 precipitation, and radiation, respectively. β_T , β_P , and β_R represent their corresponding
543 regression coefficients, out of which β_T signifies S_T . β_0 is the intercept and ε is the residual
544 term. It is worth mentioning that, for the calculation of mean spring values of climate
545 variables, we employed a partial correlation method to iteratively determine the optimal
546 length of the spring pre-season. For the fitting of the regression equation, we used the OLS
547 (ordinary least squares regression) function provided by the Python “statsmodels” package.

548

549 RSWS, the rate of soil warming in spring, is defined as the speed of soil temperature
550 change over a period of 60 days, with 30 days before and 30 days after leaf-out date. To
551 calculate RSWS, we first derived daily soil temperature data from hourly data between
552 2001 and 2021. Next, we employed the Numpy package in Python to fit the daily mean soil
553 temperature data for the 60-day period in each plot, allowing us to determine the slope (i.e.,
554 RSWS) as well as the variance, which represents the degree of temperature variability
555 within each plot.

556

557 **4. Analysis**

558 We first used partial correlation and sequential regression methods to investigate the
559 relationship between biodiversity and S_T across all plots (Fig.1B). The partial correlation
560 method was implemented using the “pingouin” package in Python. When calculating partial
561 correlation, we controlled for mean spring temperature, precipitation, radiation and soil
562 moisture, as well as soil organic carbon, total nitrogen, elevation and evenness, in order to
563 eliminate the influence of environmental factors. Based on ordinary least squares
564 regression method, to isolate the confounding effects of environmental covariates, we
565 devised a sequential regression model. We regressed biodiversity onto environmental
566 variables to obtain the residuals of biodiversity without the covariances of environmental
567 variables. Subsequently, the residuals and environmental variables were regressed on S_T
568 to estimate the coefficient of residuals (β_B , as described in equation (4)), which
569 characterizes the relationship between biodiversity and S_T . This sequential regression
570 model is expressed as:

$$571 \quad \varepsilon_B = B - \left(\beta_B + \sum_{i=1}^n \beta_i \times X_i \right) \quad (3)$$

$$572 \quad S_T = \beta_0 + \beta_B + \varepsilon_B + \sum_{i=1}^n \beta_i \times X_i + \varepsilon \quad (4)$$

573 where B is biodiversity, ε_B is the residual of biodiversity, X_i is environmental
574 variable i , β_i is the regression coefficient of environmental variable i and ε is the
575 residual term.

576 To mitigate the potential impact of spatial autocorrelation among variables, we
577 employed two spatial autoregressive models (SAR) to investigate the relationship between
578 biodiversity and S_T . Firstly, the spatial lag model, introduced the lagged values of the
579 dependent variable (i.e., the values of the dependent variable in neighboring locations) as
580 explanatory variables to capture spatial dependence among adjacent locations. Secondly,
581 the spatial error model, assumed that the error terms of the model possess a spatial
582 structure, indicating a certain level of spatial autocorrelation in the error terms across space.
583 The analysis of these models was conducted using the “spreg” package in Python.

584

585 Furthermore, we utilized the Random Forest and eXtreme Gradient Boosting
586 (XGBoost) machine learning algorithms, along with the SHapley Additive exPlanations
587 (SHAP) method, to measure the impact and importance of biodiversity on S_T . Random
588 Forest and XGBoost are decision tree-based machine learning algorithms that excel in
589 processing large-scale data and high-dimensional features, effectively handling nonlinear
590 relationships between features. we implemented the aforementioned methods using
591 “scikit-learn” and “xgboost” packages in python to explore the relationship between S_T ,
592 biodiversity, and other environmental variables. While the random forest and XGBoost
593 models offer the Gini coefficient as an importance metric, they fall short in illustrating the
594 individual contribution of each feature in predicting results on a per-sample basis. To
595 overcome this limitation, we used the SHAP (SHapley Additive exPlanations) method - a
596 robust tool for interpreting machine learning models. Rooted in Shapley values from game
597 theory, this method assesses the contribution of each feature value within various possible
598 feature combinations. It ensures a fair distribution of the impact of each feature on the
599 prediction results. By utilizing the “shap” package in Python, we applied the SHAP method
600 to interpret the trained random forest and XGBoost models. This allowed to obtain the
601 magnitude and direction (positive or negative) of the impact of biodiversity on S_T of each
602 plot (Fig. 1D and Supplementary Fig. 5). Then, we calculated the mean absolute SHAP
603 values for each feature across all samples as a measure of feature importance, referred to
604 as SHAP importance, as shown in Fig. 1C.

605 In addition, to address possible spatial heterogeneity issues at the global scale, we
606 employed two approaches to conduct analyses at a smaller local scale. Firstly, we divided
607 our study area into different regions, including land cover types, biomes, and climatic
608 regions. We then conducted partial correlation analysis on the data within each region.
609 Besides, we also conducted point-wise analyses. To do this, we first created a distance
610 matrix to group the points into clusters based on their proximity to each other. Then, we
611 used partial correlations to conduct the analysis. To selected the points in each group, we
612 used the golden section method as the search algorithm and the Akaike information
613 criterion (AIC) to determine the optimal bandwidth size. The significance was based on the
614 t statistics using a two-tailed test and to control the false discovery rate, the Benjamini-
615 Hochberg (BH) method was employed. It is worth noting that due to the sparse of point-
616 form species evenness data, there are limitations in successfully matching it with point-
617 form species richness data and significant S_T data, hindering further analysis. Therefore,
618 we did not use it in the local analysis (Fig. 1A, E-J). To address this limitation, we introduced
619 grid-form species richness data, which perfectly matches with evenness data, supporting
620 all analyses, and the conclusions remain consistent with the original findings (Fig. 1 and
621 Supplementary Fig. 6).

622

623 To investigate the potential mechanisms underlying the impact of biodiversity on S_T ,
624 we used two methods at the point level: partial correlation and structural equation modeling
625 (SEM). We hypothesized that the impact of biodiversity on S_T is mediated by its influence
626 on soil physicochemical properties and tree root growth. To test this hypothesis, we
627 developed a structural equation model (SEM) incorporating 6 mediating variables: two soil
628 physical properties (BD and VOCF), two soil nutrient variables (SOC and C/N ratio), RSWS
629 and root depth. Maximum likelihood estimation was used as the target function while
630 Sequential Least Squares Programming (SLSQP) optimization method was employed to
631 estimate the model parameters. Additionally, we calculated various statistics and fit indices
632 to evaluate the applicability and effectiveness of the model, such as GFI (Goodness of Fit
633 Index) and RMSEA (Root Mean Square Error of Approximation). Subsequently, we

634 selected pathways that surpassed the 0.9 threshold for GFI and exhibited Benjamini-
635 Hochberg corrected p-values below 0.05, calculating their respective mean values. We
636 also used partial correlation analysis as a supplement to the SEM. With controlling for
637 mean annual temperature, precipitation, and solar radiation effects, we conducted partial
638 correlation analyses on variables at both ends of each SEM path.

639

640 For the data of Trendy and Cmip6 models, we followed the same procedure as
641 described above to calculate S_T and analyze the impact of biodiversity on it. However, due
642 to the coarse resolution and lack of time series in these models, temporal and regional
643 analysis were not possible. To determine the biodiversity effects at each point, we
644 employed the geographically weighted regression (GWR) method. GWR is a spatially local
645 regression model that considers spatial heterogeneity. Throughout the analysis, due to the
646 absence of future biodiversity, soil attribute and elevation data, we assumed they remained
647 constant and resampled them to match the resolution of the models. As for future forest
648 age, we conducted year-by-year accumulation to obtain future forest age. Due to the
649 sparse of point-form species evenness data, challenges arose in aligning them with
650 coarse-resolution model data and point-form species richness data, hampering further
651 analysis. Consequently, we didn't use it in the GWR analysis. We then conducted GWR to
652 analyze the relationship between the models' S_T and factors including biodiversity, mean
653 spring temperature, precipitation, radiation and soil moisture, as well as soil organic carbon,
654 soil nitrogen, forest age and elevation. Simultaneously, we resampled the observed data
655 to the same resolution as each model and calculated the impact of biodiversity on S_T
656 (Supplementary Fig. 11). Finally, we compared the biodiversity effect of the observed
657 results, the Trendy and Cmip6 models, and assessed the accuracy of each model at the
658 pixel scale (Fig. 3, Extended Data Fig. 1 and Supplementary Fig. 7-9).

659 **Data availability**

660 All data used in this study are available online, and download links are as follows:

661 GFBI, <https://www.gfbinitiative.org/data>;

662 ERA5, <https://doi.org/10.24381/cds.e2161bac>;

663 Trendy, <https://blogs.exeter.ac.uk/trendy>;

664 Cmip6, <https://esgf-node.llnl.gov/projects/cmip6>;

665 Elevation, <https://doi.org/10.3133/ofr2011073>;

666 SoilGrids, <https://doi.org/10.5194/soil-7-217-2021>;

667 Evenness, <https://doi.org/10.3929/ethz-b-000597256>;

668 Forest age, <https://doi.org/10.5194/essd-13-4881-2021>;

669 MCD12Q1v061, <https://doi.org/10.5067/MODIS/MCD12Q1.061>;

670 MCD12Q2v061, <https://doi.org/10.5067/MODIS/MCD12Q2.061>;

671 Ecoregion2017, <https://ecoregions.appspot.com>;

672 Köppen-Geiger maps, <https://doi.org/10.1038/s41597-023-02549-6>.

673 Source data are provided with this paper.

674

675 **Code availability**

676 All the code used for data analysis and figure generation is available on GitHub at

677 <https://github.com/spjace/asc-for-bio-effect-on-lud>⁴³. Furthermore, we packaged this code

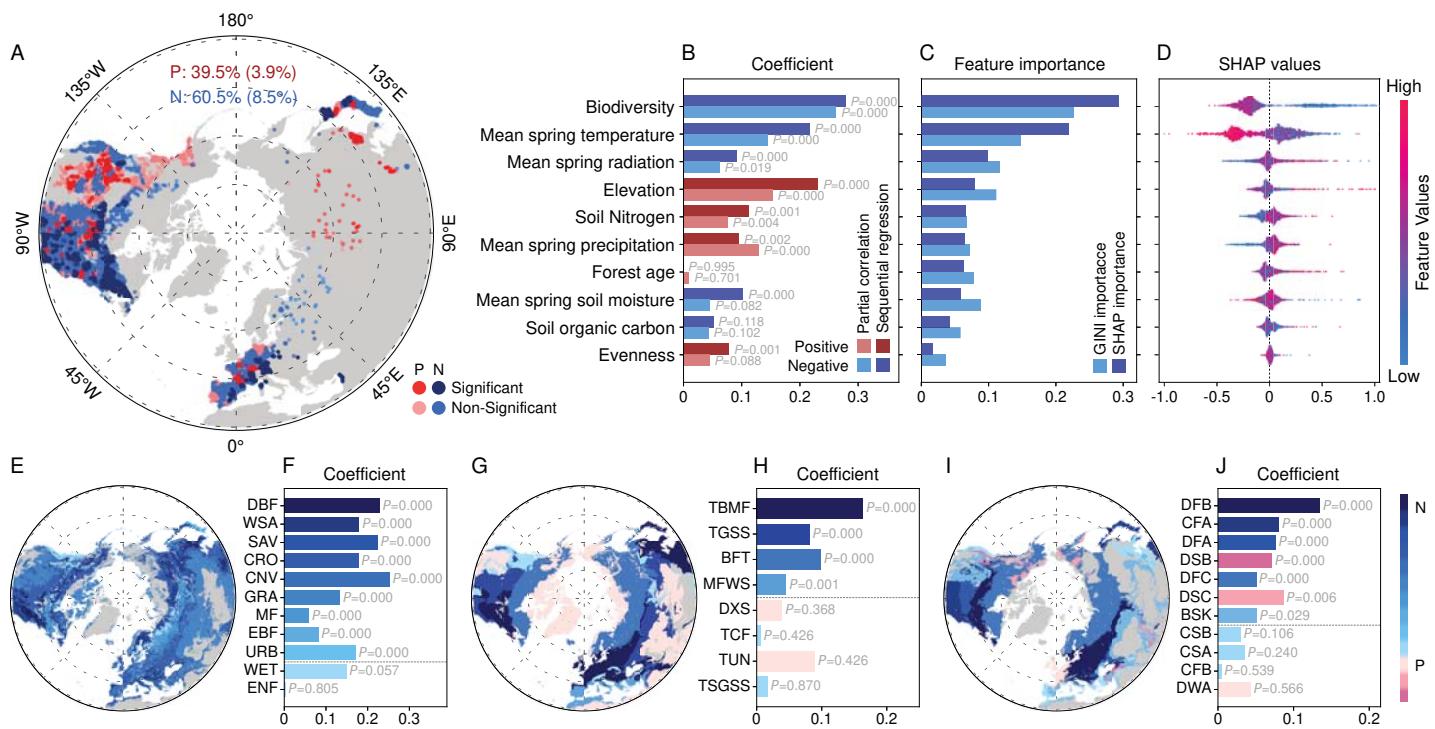
678 into the Python package "phenology" for phenological analysis and computing optimal pre-

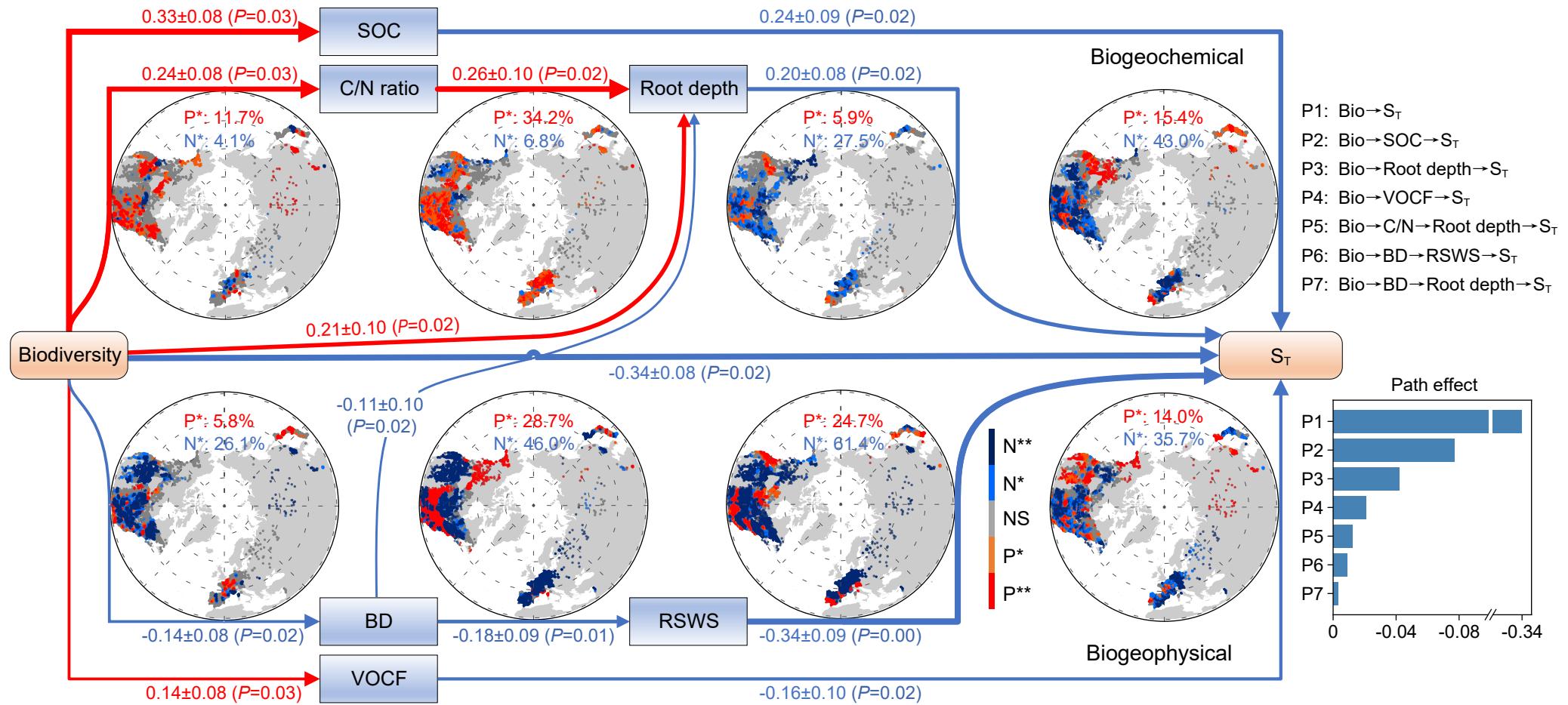
679 season length, released on Python Package Index at <https://pypi.org/project/phenology>.

680 **References**

- 681 31. Liang, J. *et al.* Positive biodiversity-productivity relationship predominant in global
682 forests. *Science* **354**, aaf8957 (2016).
- 683 32. Friedl, M. A., Gray, J. & Sulla-Menashe, D. MODIS/Terra+Aqua Land Cover Dynamics
684 Yearly L3 Global 500m SIN Grid V061 [MCD12Q2]. NASA EOSDIS Land Processes
685 Distributed Active Archive Center. (2022).
- 686 33. Muñoz-Sabater, J. ERA5-Land monthly averaged data from 1950 to present.
687 Copernicus Climate Change Service (C3S) Climate Data Store (CDS). (2019).
- 688 34. Poggio, L. *et al.* SoilGrids 2.0: producing soil information for the globe with quantified
689 spatial uncertainty. *SOIL* **7**, 217–240 (2021).
- 690 35. Yu, Z. *et al.* Forest expansion dominates China's land carbon sink since 1980. *Nat.*
691 *Commun.* **13**, 5374 (2022).
- 692 36. Zhu, B. *et al.* Constrained tropical land temperature-precipitation sensitivity reveals
693 decreasing evapotranspiration and faster vegetation greening in CMIP6 projections.
694 *Npj Clim. Atmospheric Sci.* **6**, 91 (2023).
- 695 37. Dinerstein, E. *et al.* An Ecoregion-Based Approach to Protecting Half the Terrestrial
696 Realm. *BioScience* **67**, 534–545 (2017).
- 697 38. Friedl, M. A. & Sulla-Menashe, D. MODIS/Terra+Aqua Land Cover Type Yearly L3
698 Global 500m SIN Grid V061 [MCD12Q1]. NASA EOSDIS Land Processes Distributed
699 Active Archive Center. (2022).
- 700 39. Beck, H. E. *et al.* Present and future Köppen-Geiger climate classification maps at 1-
701 km resolution. *Sci. Data* **5**, 180214 (2018).
- 702 40. Hordijk, I. *et al.* Evenness mediates the global relationship between forest productivity
703 and richness. *J. Ecol.* **111**, 1308–1326 (2023).
- 704 41. Gonsamo, A., Chen, J. M. & D'Odorico, P. Deriving land surface phenology indicators
705 from CO₂ eddy covariance measurements. *Ecol. Indic.* **29**, 203–207 (2013).
- 706 42. Kong, D. *et al.* *phenofit*: An R package for extracting vegetation phenology from time
707 series remote sensing. *Methods Ecol. Evol.* **13**, 1508–1527 (2022).
- 708 43. Shen, P. Python code for 'Biodiversity buffers the response of spring leaf unfolding to

709 climate warming'. GitHub <https://github.com/spjace/asc-for-bio-effect-on-lud> (2024).





** $P<0.01$, * $P<0.05$ $\chi^2=48.86 \pm 17.05$, GFI=0.93 \pm 0.02, RMSEA=0.06 \pm 0.04, AIC=89.02 \pm 0.34

